WorldWideScience

Sample records for cell surface glycan

  1. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  2. Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation.

    Science.gov (United States)

    Nie, Huan; Liu, Xia; Zhang, Yubao; Li, Tingting; Zhan, Chao; Huo, Wenjuan; He, Anshun; Yao, Yuanfei; Jin, Yu; Qu, Youpeng; Sun, Xue-Long; Li, Yu

    2015-11-05

    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.

  3. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    Science.gov (United States)

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-06-01

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma. © 2017 The Authors.

  4. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen S.

    2015-09-13

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.

  5. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis.

    Science.gov (United States)

    Merzaban, Jasmeen S; Imitola, Jaime; Starossom, Sarah C; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J; Olah, Marta; Abuelela, Ayman F; Khoury, Samia J; Sackstein, Robert

    2015-12-01

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  7. A Novel Probe as Surface Glycan Marker of Pluripotent Stem Cells: Research Outcomes and Application to Regenerative Medicine.

    Science.gov (United States)

    Hirabayashi, Jun; Tateno, Hiroaki; Onuma, Yasuko; Ito, Yuzuru

    2015-11-18

    Human pluripotent stem cells (hPSCs), represented by embryonic stem (hESCs) and induced pluripotent stem cells (hiPSCs), are attracting increasing attention in various research fields. However, their application in a clinical scenario must overcome an important hurdle given that these cells are potentially tumorigenic. This inherent problem becomes more significant as the number of transplanted cells becomes larger. In this Progress Report, recent findings concerning a novel glycan marker for hPSCs are described, as well as attempts made in relation to its practical application to regenerative medicine. In line with current thinking in the glycoscience field, it is assumed that cellular glycomes are closely related to cell functions. Based on this premise, hESCs and hiPSCs are analyzed by an advanced glycan profiling technology--the high-density lectin microarray. It is found that all human iPSCs derived from different tissular origins show essentially the same glycan profiles, which are typified by several characteristic structural features. In addition, a recombinant lectin probe, rBC2LCN, which shows rigorous specificity to H type 1 and 3 glycan structures, is found to serve as an excellent probe for hPSCs.

  8. Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification.

    Science.gov (United States)

    Liang, Linlin; Lan, Feifei; Li, Li; Ge, Shenguang; Yu, Jinghua; Ren, Na; Liu, Haiyun; Yan, Mei

    2016-12-15

    A novel colorimetric/fluorescence bimodal lab-on-paper cyto-device was fabricated based on concanavalin A (Con A)-integrating multibranched hybridization chain reaction (mHCR). The product of mHCR was modified PtCu nanochains (colorimetric signal label) and graphene quantum dot (fluorescence signal label) for in situ and dynamically evaluating cell surface N-glycan expression. In this strategy, preliminary detection was carried out through colorimetric method, if needed, then the fluorescence method was applied for a precise determination. Au-Ag-paper devices increased the surface areas and active sites for immobilizing larger amount of aptamers, and then specifically and efficiently captured more cancer cells. Moreover, it could effectively reduce the paper background fluorescence. Due to the specific recognition of Con A with mannose and the effective signal amplification of mHCR, the proposed strategy exhibited excellent high sensitivity for the cytosensing of MCF-7 cells ranging from 100 to 1.0×10(7) and 80-5.0×10(7) cellsmL(-1) with the detection limit of 33 and 26 cellsmL(-1) for colorimetric and fluorescence, respectively. More importantly, this strategy was successfully applied to dynamically monitor cell-surface multi-glycans expression on living cells under external stimuli of inhibitors as well as for N-glycan expression inhibitor screening. These results implied that this biosensor has potential in studying complex native glycan-related biological processes and elucidating the N-glycan-related diseases in biological and physiological processes.

  9. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Science.gov (United States)

    Takeuchi, Yusuke; Morise, Jyoji; Morita, Ippei; Takematsu, Hiromu; Oka, Shogo

    2015-01-01

    The AMPA-type glutamate receptor (AMPAR), which is a tetrameric complex composed of four subunits (GluA1-4) with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc), human natural killer-1 (HNK-1) carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413) within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER) in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  10. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  11. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C

    Directory of Open Access Journals (Sweden)

    Lenz Oliver

    2006-05-01

    Full Text Available Abstract Lassa virus glycoprotein is synthesised as a precursor (preGP-C into the lumen of the endoplasmic reticulum. After cotranslational cleavage of the signal peptide, the immature GP-C is posttranslationally processed into the N-terminal subunit GP-1 and the C-terminal subunit GP-2 by the host cell subtilase SKI-1/S1P. The glycoprotein precursor contains eleven potential N-glycosylation sites. In this report, we investigated the effect of each N-glycan on proteolytic cleavage and cell surface transport by disrupting the consensus sequences of eleven potential N-glycan attachment sites individually. Five glycoprotein mutants with disrupted N-glycosylation sites were still proteolytically processed, whereas the remaining N-glycosylation sites are necessary for GP-C cleavage. Despite the lack of proteolytic processing, all cleavage-defective mutants were transported to the cell surface and remained completely endo H-sensitive. The findings indicate that N-glycans are needed for correct conformation of GP-C in order to be cleaved by SKI-1/S1P.

  12. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells.

    Science.gov (United States)

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T; Schaffer, David V; Bertozzi, Carolyn R; Lebrilla, Carlito B

    2012-04-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine

  13. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    Science.gov (United States)

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  14. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells: e0132122

    National Research Council Canada - National Science Library

    Y Lei; H Yu; Y Dong; J Yang; W Ye; Y Wang; W Chen; Z Jia; Z Xu; Z Li; F Zhang

    2015-01-01

      DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies...

  15. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells

    National Research Council Canada - National Science Library

    Lei, Y; Yu, H; Dong, Y; Yang, J; Ye, W; Wang, Y; Chen, W; Jia, Z; Xu, Z; Li, Z; Zhang, F

    2015-01-01

    DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies...

  16. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles.

    Science.gov (United States)

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki

    2014-02-07

    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  17. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  18. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  19. Parvovirus glycan interactions.

    Science.gov (United States)

    Huang, Lin-Ya; Halder, Sujata; Agbandje-McKenna, Mavis

    2014-08-01

    Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.

  20. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  1. A recombinant fungal lectin for labeling truncated glycans on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Aymeric Audfray

    Full Text Available Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac. Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.

  2. Sialylated β1, 6 branched N-glycans modulate the adhesion, invasion and metastasis of hepatocarcinoma cells.

    Science.gov (United States)

    Yu, Xiao; Zhao, Yujie; Wang, Liping; Chen, Xixi; Su, Zhen; Zhang, Han; Yuan, Qingmin; Wang, Shujing

    2016-12-01

    The mouse hepatocarcinoma cell lines Hca-F and Hca-P have been derived from hepatocarcinoma in mice and metastasize only to the lymph node. Hca-F cells displayed greater lymphatic metastasis ability than Hca-P cells. When the two cell lines were compared for cell surface sialylated β1,6 branched N-glycans by flow cytometry using L-PHA and SNA, Hca-F cells were found to express significantly higher levels. To explore the effect of increased sialylated β1,6 branched N-glycans on hepatocarcinoma progression, we inhibit their expression in Hca-F cells by using swainsonine treatment and RNA interference. We found that swainsonine treatment or GnT-V-shRNA transfection significantly inhibited the formation of β1,6 branched N-glycans, and partially inhibited the expression of α2,6 sialic acids. Knockdown of sialylated β1,6 branched N-glycans significantly attenuated the invasive and metastatic capability both in vitro and in vivo. Blockade of α2,6 sialic acid expression on Hca-F cell surface by the treatment with neuraminidase caused reduction in cellular adherence to lymph node. In addition, knockdown of sialylated β1,6 branched N-glycans could decrease the expression of Notch1, NICD1, NICD2 and HES1 in Hca-F cells. Collectively, these findings suggest that increased sialylated β1,6 branched N-glycans may contribute to hepatocarcinoma progression by altering the adhesive, invasive and metastatic ability to lymph node via Notch signaling pathway.

  3. A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression.

    Science.gov (United States)

    Settem, R P; Honma, K; Nakajima, T; Phansopa, C; Roy, S; Stafford, G P; Sharma, A

    2013-03-01

    Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2-Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases.

  4. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways

    Directory of Open Access Journals (Sweden)

    Imtiaj Hasan

    2015-12-01

    Full Text Available MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis; shows strong binding affinity to globotriose (Gb3: Galα1-4Galβ1-4Glc. MytiLec revealed β-trefoil folding as also found in the ricin B-subunit type (R-type lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK and stress-activated (p38 kinase and JNK Mitogen-activated protein kinases (MAPK pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF-α (a ligand of death receptor-dependent apoptosis and activation of mitochondria-controlling caspase-9 (initiator caspase and caspase-3 (activator caspase. Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt’s lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.

  5. The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity

    NARCIS (Netherlands)

    de Groot, P.W.J.; Klis, F.M.

    2008-01-01

    Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al. (this issue of Molecular Microbiology) used glycan microarrays to compare the glycan-binding cha

  6. The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity

    NARCIS (Netherlands)

    de Groot, P.W.J.; Klis, F.M.

    2008-01-01

    Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al. (this issue of Molecular Microbiology) used glycan microarrays to compare the glycan-binding cha

  7. The conserved PA14 domain of cell wall-associated fungal adhesins governs their glycan-binding specificity

    NARCIS (Netherlands)

    de Groot, P.W.J.; Klis, F.M.

    2008-01-01

    Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al. (this issue of Molecular Microbiology) used glycan microarrays to compare the glycan-binding

  8. Systems analysis of N-glycan processing in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Patrick Hossler

    Full Text Available N-glycosylation plays a key role in the quality of many therapeutic glycoprotein biologics. The biosynthesis reactions of these oligosaccharides are a type of network in which a relatively small number of enzymes give rise to a large number of N-glycans as the reaction intermediates and terminal products. Multiple glycans appear on the glycoprotein molecules and give rise to a heterogeneous product. Controlling the glycan distribution is critical to the quality control of the product. Understanding N-glycan biosynthesis and the etiology of microheterogeneity would provide physiological insights, and facilitate cellular engineering to enhance glycoprotein quality. We developed a mathematical model of glycan biosynthesis in the Golgi and analyzed the various reaction variables on the resulting glycan distribution. The Golgi model was modeled as four compartments in series. The mechanism of protein transport across the Golgi is still controversial. From the viewpoint of their holding time distribution characteristics, the two main hypothesized mechanisms, vesicular transport and Golgi maturation models, resemble four continuous mixing-tanks (4CSTR and four plug-flow reactors (4PFR in series, respectively. The two hypotheses were modeled accordingly and compared. The intrinsic reaction kinetics were first evaluated using a batch (or single PFR reactor. A sufficient holding time is needed to produce terminally-processed glycans. Altering enzyme concentrations has a complex effect on the final glycan distribution, as the changes often affect many reaction steps in the network. Comparison of the glycan profiles predicted by the 4CSTR and 4PFR models points to the 4PFR system as more likely to be the true mechanism. To assess whether glycan heterogeneity can be eliminated in the biosynthesis of biotherapeutics the 4PFR model was further used to assess whether a homogeneous glycan profile can be created through metabolic engineering. We demonstrate by

  9. Clinical implications of serum N-glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors.

    Science.gov (United States)

    Narita, Takuma; Hatakeyama, Shingo; Yoneyama, Tohru; Narita, Shintaro; Yamashita, Shinichi; Mitsuzuka, Koji; Sakurai, Toshihiko; Kawamura, Sadafumi; Tochigi, Tatsuo; Takahashi, Ippei; Nakaji, Shigeyuki; Tobisawa, Yuki; Yamamoto, Hayato; Koie, Takuya; Tsuchiya, Norihiko; Habuchi, Tomonori; Arai, Yoichi; Ohyama, Chikara

    2017-03-20

    Serum biomarker monitoring is essential for management of germ-cell tumors (GCT). However, not all GCT are positive for conventional tumor markers. We examined whether serum N-glycan-based biomarkers can be applied for detection and prognosis in patients with GCT. We performed a comprehensive N-glycan structural analysis of sera from 54 untreated GCT patients and 103 age-adjusted healthy volunteers using glycoblotting methods and mass spectrometry. Candidate N-glycans were selected from those with the highest association; cutoff concentration values were established, and an N-glycan score was created based on the number of positive N-glycans present. The validity of this score for diagnosis and prognosis was analyzed using a receiver operating characteristic (ROC) curve. We identified five candidate N-glycans significantly associated with GCT patients. The accuracy of the N-glycan score for GCT was significant with an area-under-the-curve (AUC) value of 0.87. Diagnostically, the N-glycan score detected 10 of 12 (83%) patients with negative conventional tumor markers. Prognostically, the N-glycan score comprised four candidate N-glycans. The predictive value of the prognostic N-glycan score was significant, with an AUC value of 0.89. A high value prognostic N-glycan score was significantly associated with poor prognosis. Finally, to identify a potential carrier protein, immunoglobulin (Ig) fractions of sera were subjected to N-glycan analysis and compared to whole sera. Candidate N-glycans in Ig-fractions were significantly decreased; therefore, the carrier protein for candidate N-glycans is likely not an immunoglobulin. In summary, our newly developed N-glycan score seems to be a practical diagnostic and prognostic method for GCT.

  10. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans.

    Science.gov (United States)

    Stanley, Pamela; Guidos, Cynthia J

    2009-07-01

    Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.

  11. Colon cancer cells treated with 5‑fluorouracil exhibit changes in polylactosamine‑type N‑glycans.

    Science.gov (United States)

    Gao, Liping; Shen, Li; Yu, Meiyun; Ni, Jianlong; Dong, Xiaoxia; Zhou, Yinghui; Wu, Shiliang

    2014-05-01

    5-Fluorouracil (5-FU) is the major chemotherapeutic agent for the treatment of colorectal carcinoma, which were found to have N-glycans containing polylactosamine on the cancer cell surface. Alterations in the expression and structure of polylactosamine glycans are associated with cellular differentiation and oncogenesis. However, little is known with regard to the correlation between the levels of polylactosamine expressed in colon cancer cells and the anticancer effect of 5-FU. In the present study, SW620 cells were treated with the half maximal inhibitory concentration (IC50; determined by MTT-assay) of 5-FU. Hoechst 33258 staining and flow cytometric analysis indicated that 5-FU administration resulted in apoptosis in SW620 cells. An increased percentage of cells in S phase was also observed among the SW620 cells treated with 5-FU. Under the same experimental conditions, a decrease in the 5-FU‑induced inhibition of polylactosamine glycans was recorded. However, an increase in the activity of alkaline phosphatase was also observed. Furthermore, pretreatment of the SW620 cells with 5-FU inhibited the expression of β1,3-N-acetylglucosaminyltransferase-8 (β3Gn-T8) and cluster of differentiation (CD)147 in a time-dependent manner. Overall, changes in glycosylation were associated with the anticancer effect of 5-FU in the colon cancer cells. In conclusion, polylactosamine may be a useful target for the identification of substances with anticancer activity.

  12. Non-glycanated Decorin Is a Drug Target on Human Adipose Stromal Cells

    Directory of Open Access Journals (Sweden)

    Alexes C. Daquinag

    2017-09-01

    Full Text Available Adipose stromal cells (ASCs have been identified as a mesenchymal cell population recruited from white adipose tissue (WAT by tumors and supporting cancer progression. We have previously reported the existence of a non-glycanated decorin isoform (ngDCN marking mouse ASCs. We identified a peptide CSWKYWFGEC that binds to ngDCN and hence can serve as a vehicle for ASC-directed therapy delivery. We used hunter-killer peptides composed of CSWKYWFGEC and a pro-apoptotic moiety to deplete ASCs and suppress growth of mouse tumors. Here, we report the discovery of the human non-glycanated decorin isoform. We show that CSWKYWFGEC can be used as a probe to identify ASCs in human WAT and tumors. We demonstrate that human ngDCN is expressed on ASC surface. Finally, we validate ngDCN as a molecular target for pharmacological depletion of human ASCs with hunter-killer peptides. We propose that ngDCN-targeting agents could be developed for obesity and cancer treatment.

  13. Structural characterization of surface glycans from Clostridium difficile.

    Science.gov (United States)

    Reid, Christopher W; Vinogradov, Evgeny; Li, Jianjun; Jarrell, Harold C; Logan, Susan M; Brisson, Jean-Robert

    2012-06-01

    Whole-cell high-resolution magic angle spinning (HR-MAS) NMR was employed to survey the surface polysaccharides of a group of clinical and environmental isolates of Clostridium difficile. Results indicated that a highly conserved surface polysaccharide profile among all strains studied. Multiple additional peaks in the anomeric region were also observed which prompted further investigation. Structural characterization of the isolated surface polysaccharides from two strains confirmed the presence of the conserved water soluble polysaccharide originally described by Ganeshapillai et al. which was composed of a hexaglycosyl phosphate repeat consisting of [→6)-β-D-Glcp-(1-3)-β-D-GalpNAc-(1-4)-α-D-Glcp-(1-4)-[β-D-Glcp(1-3]-β-D-GalpNAc-(1-3)-α-D-Manp-(1-P→]. In addition, analysis of phenol soluble polysaccharides revealed a similarly conserved lipoteichoic acid (LTA) which could be detected on whole cells by HR-MAS NMR. Conventional NMR and mass spectrometry analysis indicated that the structure of this LTA consisted of the repeat unit [→6)-α-D-GlcpNAc-(1-3)-[→P-6]-α-D-GlcpNAc-(1-2)-D-GroA] where GroA is glyceric acid. The repeating units were linked by a phosphodiester bridge between C-6 of the two GlcNAc residues (6-P-6). A minor component consisted of GlcpN-(1-3) instead of GlcpNAc-(1-3) in the repeat unit. Through a 6-6 phosphodiester bridge this polymer was linked to →6)-β-D-Glcp-(1-6)-β-D-Glcp-(1-6)-β-D-Glcp-(1-1)-Gro, with glycerol (Gro) substituted by fatty acids. This is the first report of the utility of HR-MAS NMR in the examination of surface carbohydrates of Gram positive bacteria and identification of a novel LTA structure from Clostridium difficile.

  14. Fluorescence assay for glycan expression on living cancer cells based on competitive strategy coupled with dual-functionalized nanobiocomposites.

    Science.gov (United States)

    Fu, Ying; Lu, Danqin; Lin, Bin; Sun, Qianqian; Liu, Kai; Xu, Lili; Zhang, Shengping; Hu, Chen; Wang, Chuangui; Xu, Zhiai; Zhang, Wen

    2013-11-21

    Cell surface glycans are a class of sophisticated biomolecules related to cancer development and progression, and their analysis is of great significance for early cancer diagnosis and treatment. In this paper, we proposed a fluorescence assay to evaluate glycan expression on living cancer cells based on a competitive strategy coupled with dual-functionalized nanobiocomposites. The competitive assay was conducted between living cancer cells and thiomannosyl derivatives using concanavalin A (Con A)-modified electrode as the interaction platform. To impart fluorescence signaling ability to competitive derivatives, quantum dots (QDs) were anchored on BSA-protected Au nanoparticles, and thiomannosyl derivatives were further immobilized on the nanoparticle surface through Au-S binding. Due to the spacing between QDs and Au nanoparticles by BSA, the {QDs-Au-BSA-mannose} nanobiocomposites maintained the fluorescence of QDs and showed binding ability with the Con A-modified electrode. Au nanorods (AuNRs)-modified electrode was used as an effective substrate to immobilize Con A. This assay was successfully applied to the analysis of two cancer cells lines (A549 and QGY-7701). The method is simple and shows promise for the study of glycan expression on living cancer cells.

  15. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor

    Science.gov (United States)

    Chen, Xiaojiao; He, Yao; Zhang, Youyu; Liu, Meiling; Liu, Yang; Li, Jinghong

    2014-09-01

    A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode

  16. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition.

    Directory of Open Access Journals (Sweden)

    Sujata Halder

    Full Text Available The recognition of sialic acids by two strains of minute virus of mice (MVM, MVMp (prototype and MVMi (immunosuppressive, is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM. Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3'SIA-LN and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X identified in a previous glycan microarray screen.

  17. Glycan and lectin biosensors

    Science.gov (United States)

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  18. High mannose N-glycan binding lectin from Remusatia vivipara (RVL) limits cell growth, motility and invasiveness of human breast cancer cells.

    Science.gov (United States)

    Sindhura, B R; Hegde, Prajna; Chachadi, Vishwanath B; Inamdar, Shashikala R; Swamy, Bale M

    2017-09-01

    Breast cancer known for its high metastatic potential is responsible for large mortality rate amongst women; hence it is imperative to search for effective anti-metastatic molecules despite anticancer drugs. The current study describes the potential of Remusatia vivipara lectin (RVL), inducing apoptosis in breast cancer cells there by limiting motility and invasiveness. RVL binds to the cell surface glycans of MDA-MB-468 and MCF-7 cells, exhibiting strong glycan mediated cytotoxic effect, but show marginal effect on non-tumorigenic MCF-10A cells. RVL elicits increased cellular stress, apoptotic vacuoles and nuclear disintegration in both MDA-MB-468 and MCF-7 cells accompanied by depletion of G0/G1, S and G2/M phases. Lectin interaction induced production of reactive oxygen species through altering mitochondrial membrane potential progressing to apoptosis. Further, RVL strongly elicited reproductive cell death in MDA-MB-468 cells and showed strong inhibitory effect on neovascularization demonstrated in chorioallantoic membrane assay. Treatment of MDA-MB-468 cells with RVL, suppress the motility and invasive property as shown by scratch wound heal and Boyden chamber transwell assays respectively. These results provide an insight into significance of interaction of RVL with specific cell surface high mannose N-glycans resulting in curtailing the metastatic ability of cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    Science.gov (United States)

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  20. Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans

    Directory of Open Access Journals (Sweden)

    Samuel J. Hobbs

    2017-05-01

    Full Text Available Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.

  1. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Mathiesen, Caroline Benedicte Kjærulff; Lavrsen, Kirstine; Wandall, Hans H.;

    2013-01-01

    Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical...... steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr), STn (NeuAcα2-6GalNAc-Ser/Thr), T (Galβ1–3GalNAc-Ser/Thr), and ST (NeuAcα2-6Galβ1–3GalNAc-Ser/Thr) antigens...... only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast...

  2. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Fernanda Caroline Carvalho

    Full Text Available ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus (jackfruit, interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC(50 = 10 µg/mL, as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment.

  3. Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray.

    Directory of Open Access Journals (Sweden)

    Angela van Diepen

    Full Text Available BACKGROUND: Schistosomiasis (bilharzia is a chronic and potentially deadly parasitic disease that affects millions of people in (subtropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection. CONCLUSIONS/SIGNIFICANCE: Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further

  4. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology.

    Science.gov (United States)

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2015-10-16

    Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.

  5. A quantitative method to discriminate between non-specific and specific lectin-glycan interactions on silicon-modified surfaces.

    Science.gov (United States)

    Yang, Jie; Siriwardena, Aloysius; Boukherroub, Rabah; Ozanam, François; Szunerits, Sabine; Gouget-Laemmel, Anne Chantal

    2016-02-15

    Essential to the success of any surface-based carbohydrate biochip technology is that interactions of the particular interface with the target protein be reliable and reproducible and not susceptible to unwanted nonspecific adsorption events. This condition is particularly important when the technology is intended for the evaluation of low-affinity interactions such as those typically encountered between lectins and their monomeric glycan ligands. In this paper, we describe the fabrication of glycan (mannoside and lactoside) monolayers immobilized on hydrogenated crystalline silicon (111) surfaces. An efficient conjugation protocol featuring a key "click"-based coupling step has been developed which ensures the obtention of interfaces with controlled glycan density. The adsorption behavior of these newly developed interfaces with the lectins, Lens culinaris and Peanut agglutinin, has been probed using quantitative IR-ATR and the data interpreted using various isothermal models. The analysis reveals that protein physisorption to the interface is more prevalent than specific chemisorption for the majority of washing protocols investigated. Physisorption can be greatly suppressed through application of a strong surfactinated rinse. The coexistence of chemisorption and physisorption processes is further demonstrated by quantification of the amounts of adsorbed proteins distributed on the surface, in correlation with the results obtained by atomic force microscopy (AFM). Taken together, the data demonstrates that the nonspecific adsorption of proteins to these glycan-terminated surfaces can be effectively eliminated through the proper control of the chemical structure of the surface monolayer combined with the implementation of an appropriate surface-rinse protocol.

  6. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells.

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-12-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.

  7. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-01-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis. PMID:26720149

  8. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    Science.gov (United States)

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  9. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    Science.gov (United States)

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  10. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen

    2015-09-01

    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  11. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  12. Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer

    DEFF Research Database (Denmark)

    Mereiter, Stefan; Magalhães, Ana; Adamczyk, Barbara

    2016-01-01

    gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry....... We further validated an identified target expression by proximity ligation assay in gastric tumors. RESULTS: Our results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift...... known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe(X) and the concomitant activation. SLe(X) and RON co-expression was validated in gastric tumors. CONCLUSION: The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells...

  13. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes.

    Science.gov (United States)

    Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B

    2015-11-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation

    DEFF Research Database (Denmark)

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-yu

    2015-01-01

    -glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO......EPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides...

  15. Neutrophil mobilization by surface-glycan altered Th17-skewing bacteria mitigates periodontal pathogen persistence and associated alveolar bone loss.

    Directory of Open Access Journals (Sweden)

    Rajendra P Settem

    Full Text Available Alveolar bone (tooth-supporting bone erosion is a hallmark of periodontitis, an inflammatory disease that often leads to tooth loss. Periodontitis is caused by a select group of pathogens that form biofilms in subgingival crevices between the gums and teeth. It is well-recognized that the periodontal pathogen Porphyromonas gingivalis in these biofilms is responsible for modeling a microbial dysbiotic state, which then initiates an inflammatory response destructive to the periodontal tissues and bone. Eradication of this pathogen is thus critical for the treatment of periodontitis. Previous studies have shown that oral inoculation in mice with an attenuated strain of the periodontal pathogen Tannerella forsythia altered in O-glycan surface composition induces a Th17-linked mobilization of neutrophils to the gingival tissues. In this study, we sought to determine if immune priming with such a Th17-biasing strain would elicit a productive neutrophil response against P. gingivalis. Our data show that inoculation with a Th17-biasing T. forsythia strain is effective in blocking P. gingivalis-persistence and associated alveolar bone loss in mice. This work demonstrates the potential of O-glycan modified Tannerella strains or their O-glycan components for harnessing Th17-mediated immunity against periodontal and other mucosal pathogens.

  16. Monosaccharide composition of glycans based on Q-HSQC NMR.

    Science.gov (United States)

    Sassaki, Guilherme Lanzi; Guerrini, Marco; Serrato, Rodrigo Vassoler; Santana Filho, Arquimedes Paixão; Carlotto, Juliane; Simas-Tosin, Fernanda; Cipriani, Thales Ricardo; Iacomini, Marcello; Torri, Giangiacomo; Gorin, Philip Albert James

    2014-04-15

    Glycans have essential functions related to structural architecture and specific cell surface phenomena, such as differentiation, biosignalling, recognition and cell-cell interaction, with the carbohydrate structure determining main function in the cell. Due to the importance of the primary structure, the monosaccharide composition is crucial to show the glycan structure. We now present a method for complex carbohydrates based on NMR spectroscopy, which has shown to give similar results to those obtained by the classic GC-MS-carboxy-reduction/deuterium labeling approach. Quantitative HSQC, through JCH dependence showed 155 Hz as the best value for (1)H/(13)C anomeric aldoses, allowing milli-microM detection using conventional inverse probe heads. Combining the quantification of native monosaccharide units of the glycan and those from the hydrolyzed product, a strong correlation occurs between the molecular mobility of the monosaccharide units, giving rise to some insights on the dynamic properties of the parent glycan.

  17. Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken.

    Science.gov (United States)

    de Geus, Eveline D; Tefsen, Boris; van Haarlem, Daphne A; van Eden, Willem; van Die, Irma; Vervelde, Lonneke

    2013-12-01

    To increase our understanding of the interaction between avian influenza virus and its chicken host, we identified receptors for putative avian influenza virus (AIV) glycan determinants on chicken dendritic cells. Chicken dendritic cells (DCs) were found to recognize glycan determinants containing terminal αGalNAc, Galα1-3Gal, GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ (chitotriose) and Galα1-2Gal. Infection of chicken dendritic cells with either low pathogenic (LP) or highly pathogenic (HP) AIV results in elevated mRNA expression of homologs of the mouse C-type lectins DEC205 and macrophage mannose receptor (MMR), whereas expression levels of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) homolog remained unchanged. Following uptake and subsequent presentation of avian influenza virus by DCs, adaptive immunity, including humoral immune responses are induced. We have investigated the antibody responses against virus glycan epitopes after avian influenza virus infection. Using glycan micro-array analysis we showed that chicken contained antibodies that predominantly recognize terminal Galα1-3Gal-R, chitotriose and Fucα1-2Galβ1-4GlcNAc-R (H-type 2). After influenza-infection, glycan array analysis showed that both levels and repertoire of glycan-recognizing antibodies decreased. However, analysis of the sera by ELISA indicated that the levels of different isotypes of anti-glycan Abs against specific glycan antigens was increased after influenza-infection, suggesting that the presentation of the glycan antigens and iso-type of the Abs are critical parameters to take into account when measuring anti-glycan Abs. This novel approach in avian influenza research may contribute to the development of a broad spectrum vaccine and improves our mechanistic understanding of innate and adaptive responses to glycans.

  18. Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity.

    Science.gov (United States)

    Ye, J; Wei, X; Shang, Y; Pan, Q; Yang, M; Tian, Y; He, Y; Peng, Z; Chen, L; Chen, W; Wang, R

    2017-07-24

    The attachment of cell-surface carbohydrates to proteins mediated by the amino acids serine or threonine (O-glycan) is involved in tumor metastasis; the roles of O-glycans vary depending on their structure, but the detailed mechanisms by which O-glycans trigger signaling to control tumor metastasis are largely unknown. In this study, we found that the reduced expression of core 3 synthase correlated with metastasis to lymph nodes and distant organs, resulting in poor prognosis for colorectal cancer (CRC) patients. Mechanically, we revealed that mucin-type core 3 O-glycan was synthesized at the membrane-tethered MUC1 N terminus because of core 3 synthase expression in colon cancer cells. This further inhibited the translocation of MUC1-C to the nucleus, initiated p53 gene transcription that was dependent on the inhibition of MUC1-C nucleus translocation, activated p53-mediated miR-200c expression and resulted in mesenchymal-epithelial transition (MET). Inhibition of MUC1 via small interfering RNA (siRNA) in re-expressed core 3 synthase colon cancer cells further inhibited MUC1-C nucleus translocation, increased p53 and miR-200c expression, and enhanced MET. However, inhibition of p53 via siRNA or miR-200c via miR-200c inhibitor in re-expressed core 3 synthase colon cancer cells promoted the epithelial-mesenchymal transition (EMT) in a reversible manner. Core 3 synthase mRNA levels and the p53 mRNA levels or miR-200c levels in the colon cancerous samples were positively correlated. Our findings suggest a novel mechanism linking mucin-type core 3 O-glycan to the EMT-MET plasticity of CRC cells via MUC1/p53/miR-200c-dependent signaling cascade and shed light on therapeutic strategies to treat this malignancy.Oncogene advance online publication, 24 July 2017; doi:10.1038/onc.2017.241.

  19. Investigations of the toxic effects of glycans-based silver nanoparticles on different types of human cells

    Science.gov (United States)

    Panzarini, E.; Mariano, S.; Dini, L.

    2017-08-01

    The effects of glycans-capped AgNPs (30±5 nm average diameter, spherical shape) on biocompatibility and uptake was studied in relation to the glycan capping (glucose AgNPs-G, glucose/sucrose AgNPs-GS, glucose/fructose AgNPs-GF), and to the cell types (HeLa cells, lymphocytes, and HepG2 cells). Glycan capping and type of cells drive morphological changes, viability loss and type and extent of cell death induction; in addition cells response is largely influenced by the AgNPs amount. The MTT photometric method to determine cell metabolism and the analysis of the membrane integrity by Annexin V-Propidium Iodide labelling were used to quantify cell viability and cell death with different concentrations of NPs. It turns out that i) AgNPs-GF are the most toxic, whereas ii) AgNPs-GS are the less toxic NPs, probably due to the stability of glucose/sucrose capping up to 5 days in culture medium; iii) HepG2 cells are the most sensitive to the presence of NPs. A deeper investigation is necessary to explain the interesting PBLs proliferation increase observed in the presence of AgNPs-GS.

  20. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    plants, ferns have been largely neglected in cell wall comparative studies. Results: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species...... across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...

  1. Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins.

    Science.gov (United States)

    Marathe, Dhananjay D; Buffone, Alexander; Chandrasekaran, E V; Xue, Jun; Locke, Robert D; Nasirikenari, Mehrab; Lau, Joseph T Y; Matta, Khushi L; Neelamegham, Sriram

    2010-02-11

    Novel strategies to control the binding of adhesion molecules belonging to the selectin family are required for the treatment of inflammatory diseases. We tested the possibility that synthetic monosaccharide analogs can compete with naturally occurring sugars to alter the O-glycan content on human leukocyte cell surface selectin-ligand, P-selectin glycoprotein ligand-1 (PSGL-1). Resulting reduction in the sialyl Lewis-X-bearing epitopes on this ligand may reduce cell adhesion. Consistent with this hypothesis, 50muM per-acetylated 4F-GalNAc added to the growth media of promyelocytic HL-60 cells reduced the expression of the cutaneous lymphocyte associated-antigen (HECA-452 epitope) by 82% within 2 cell doubling cycles. Cell binding to all 3 selectins (L-, E-, and P-selectin) was reduced in vitro. 4F-GalNAc was metabolically incorporated into PSGL-1, and this was accompanied by an approximately 20% reduction in PSGL-1 glycan content. A 70% to 85% reduction in HECA-452 binding epitope and N-acetyl lactosamine content in PSGL-1 was also noted on 4F-GalNAc addition. Intravenous 4F-GalNAc infusion reduced leukocyte migration to the peritoneum in a murine model of thioglycolate-induced peritonitis. Thus, the compound has pharmacologic activity. Overall, the data suggest that 4F-GalNAc may be applied as a metabolic inhibitor to reduce O-linked glycosylation, sialyl Lewis-X formation, and leukocyte adhesion via the selectins.

  2. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan.

    Science.gov (United States)

    Gao, Zhenxing; Zhang, Huixia; Hu, Fei; Yang, Liheng; Yang, Xiaowen; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2016-06-01

    Whether the two N-linked glycans are important in prion, PrP, biology is unresolved. In Chinese hamster ovary (CHO) cells, the two glycans are clearly not important in the cell surface expression of transfected human PrP. Compared to fully-glycosylated PrP, glycan-deficient PrP preferentially partitions to lipid raft. In CHO cells glycan-deficient PrP also interacts with glycosaminoglycan (GAG) and vascular endothelial growth factor receptor 2 (VEGFR2), resulting in VEGFR2 activation and enhanced Akt phosphorylation. Accordingly, CHO cells expressing glycan-deficient PrP lacking the GAG binding motif or cells treated with heparinase to remove GAG show diminished Akt signaling. Being in lipid raft is critical, chimeric glycan-deficient PrP with CD4 transmembrane and cytoplasmic domains is absent in lipid raft and does not activate Akt signaling. CHO cells bearing glycan-deficient PrP also exhibit enhanced cellular adhesion and migration. Based on these findings, we propose a model in which glycan-deficient PrP, GAG, and VEGFR2 interact, activating VEGFR2 and resulting in changes in cellular behavior.

  3. Application of lectin microarray to crude samples: differential glycan profiling of lec mutants.

    Science.gov (United States)

    Ebe, Youji; Kuno, Atsushi; Uchiyama, Noboru; Koseki-Kuno, Shiori; Yamada, Masao; Sato, Takashi; Narimatsu, Hisashi; Hirabayashi, Jun

    2006-03-01

    We recently developed a novel system for lectin microarray based on the evanescent-field fluorescence-detection principle, by which even weak lectin-oligosaccharide interactions are detectable without a washing procedure. For its practical application, cell glycan analysis was performed for Chinese hamster ovary (CHO) cells and their glycan profile was compared with those of their glycosylation-defective Lec mutants. Each of the cell surface extracts gave a significantly different profile from that of the parental CHO cells in a manner reflecting denoted biosynthetic features. Hence, the developed lectin microarray system is considered to be fully applicable for differential glycan profiling of crude samples.

  4. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells.

    Science.gov (United States)

    Yang, Xiaojing; Tao, Shujuan; Orlando, Ron; Brockhausen, Inka; Kan, Frederick W K

    2012-09-01

    Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development.

  5. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    Science.gov (United States)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  6. Reversal effect of GnT-V on the radioresistance of human nasopharyngeal carcinoma cells by alteration β1, 6-GlcNAc branched N-glycans.

    Science.gov (United States)

    Wu, Jun-Bo; Shen, Li; Qiu, Li; Duan, Qi-Wen; Luo, Zhi-Guo; Dong, Xiao-Xia

    2015-01-01

    Radiotherapy is the primary treatment for human nasopharyngeal carcinoma (NPC), yet radioresistance remains a major obstacle to successful treatment in many cases. N-acetylglucosaminyltransferase V (GnT-V), which synthesizes β1, 6-GlcNAc branched N-glycans, is closely related to the radiosensitivity of NPC cells. However, a better understanding of the functional role of GnT-V in NPC radioresistance and the related mechanisms is urgently needed. In the present study, a radioresistant NPC cell line, CNE-2R, was established by repeated γ-irradiation. We found that GnT-V levels, as well as β1, 6-GlcNAc branched N-glycans were significantly increased in the CNE-2R cells as compared with that in the parental cells. Meanwhile, knockdown of GnT-V in the CNE-2R cells enhanced cell radiosensitivity and inhibited the formation of β1, 6-branched N-glycans. In addition, the regulated expression of GnT-V in the CNE-2R cells converted the heterogeneous N-glycosylated forms of CD147. Furthermore, swainsonine, an inhibitor of N-glycan biosynthesis, was also able to reverse the radioresistance of the CNE-2R cells. Taken together, the present study revealed a novel mechanism of GnT-V as a regulator of radioresistance in NPC cells, which may be useful for fully understanding the biological role of N-glycans in NPC radioresistance.

  7. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

    Science.gov (United States)

    Mak, Anthony B; Blakely, Kim M; Williams, Rashida A; Penttilä, Pier-Andrée; Shukalyuk, Andrey I; Osman, Khan T; Kasimer, Dahlia; Ketela, Troy; Moffat, Jason

    2011-11-25

    The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.

  8. O-glycans and O-glycosylation sites of recombinant human GM-CSF derived from suspension-cultured rice cells, and their structural role.

    Science.gov (United States)

    Kim, Jihye; Park, Heajin; Park, Byung Tae; Hwang, Hye Seong; Kim, Jae Il; Kim, Dae Kyong; Kim, Ha Hyung

    2016-10-14

    Recombinant human GM-CSF (rhGM-CSF) from yeast has been clinically applied to immunosuppressed patients. The production of suspension-cultured rice-cell-derived rhGM-CSF (rrhGM-CSF), which has a longer blood clearance time and the same bioactivity as yeast-derived rhGM-CSF, and the analysis of its N-glycans have been reported recently. However, there are no previous reports of the O-glycosylation of rhGM-CSF from plant cells, and so this study investigated O-glycans, O-glycosylation sites, and their structural role in rrhGM-CSF. Monosaccharide analysis revealed the presence of O-glycans comprising arabinose and galactose. Eight O-glycans comprising four arabinose residues with zero to seven galactose residues along with their relative quantities were analyzed. Analysis of pronase-digested glycopeptides indicated that the O-glycans are partially attached to Ser 5, Ser 7, Ser 9, or Thr 10 residues, and glycan heterogeneity was confirmed at each site. Pro-to-hydroxyproline conversions occurred at Pro 2, Pro 6, and Pro 8 residues. The preparation of deglycosylated rrhGM-CSFs revealed that deglycosylation greatly affects their α-helix structures. These findings indicate that O-glycans of rrhGM-CSF are essential for maintaining its structural stability and result in an extended in vivo half-life, but without affecting its biological function. This is the first report on the O-glycosylation of rhGM-CSF derived from plant cells.

  9. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    Science.gov (United States)

    Natsuka, Shunji; Masuda, Mayumi; Sumiyoshi, Wataru; Nakakita, Shin-ichi

    2014-01-01

    Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  10. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    Directory of Open Access Journals (Sweden)

    Shunji Natsuka

    Full Text Available Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA- glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  11. Hybridoma cell-culture and glycan profile dataset at various bioreactor conditions.

    Science.gov (United States)

    Bhatia, Hemlata; Read, Erik; Agarabi, Cyrus; Brorson, Kurt; Lute, Scott; Yoon, Seongkyu

    2016-12-01

    This is an "11 factor-2 level-12 run" Plackett-Burman experimental design dataset. The dataset includes 11 engineering bioreactor parameters as input variables. These 11 factors were varied at 2 levels and 23 response variables that are glycan profile attributes, were measured "A Design Space Exploration for Control of Critical Quality Attributes of mAb" (H. Bhatia, E.K. Read, C.D. Agarabi, K.A. Brorson, S.C. Lute, S. Yoon S, 2016) [2].

  12. Expanding the diversity of unnatural cell surface sialic acids

    Energy Technology Data Exchange (ETDEWEB)

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  13. Kinetic mechanism for HIV-1 neutralization by antibody 2G12 entails reversible glycan binding that slows cell entry.

    Science.gov (United States)

    Platt, Emily J; Gomes, Michelle M; Kabat, David

    2012-05-15

    Despite structural knowledge of broadly neutralizing monoclonal antibodies (NMAbs) complexed to HIV-1 gp120 and gp41 envelope glycoproteins, virus inactivation mechanisms have been difficult to prove, in part because neutralization assays are complex and were previously not understood. Concordant with recent evidence that HIV-1 titers are determined by a race between entry of cell-attached virions and competing inactivation processes, we show that NMAb 2G12, which binds to gp120 N-glycans with α (1, 2)-linked mannose termini and inhibits replication after passive transfer into patients, neutralizes by slowing entry of adsorbed virions. Accordingly, apparent neutralization is attenuated when a kinetically competing virus inactivation pathway is blocked. Moreover, removing 2G12 from media causes its dissociation from virions coupled to accelerated entry and restored infectivity, demonstrating the reversibility of neutralization. A difference between 2G12 dissociation and infectivity recovery rates implies that the inhibited complexes at virus-cell junctions contain several 2G12's that must dissociate before entry commences. Quantitative microscopy of 2G12 binding and dissociation from single virions and studies using a split CCR5 coreceptor suggest that 2G12 competitively inhibits interactions between gp120's V3 loop and the tyrosine sulfate-containing CCR5 amino terminus, thereby reducing assembly of complexes that catalyze entry. These results reveal a unique reversible kinetic mechanism for neutralization by an antibody that binds near a critical V3 region in the glycan shield of gp120.

  14. Hybridoma cell-culture and glycan profile dataset at various bioreactor conditions

    Directory of Open Access Journals (Sweden)

    Hemlata Bhatia

    2016-12-01

    Full Text Available This is an “11 factor-2 level-12 run” Plackett-Burman experimental design dataset. The dataset includes 11 engineering bioreactor parameters as input variables. These 11 factors were varied at 2 levels and 23 response variables that are glycan profile attributes, were measured “A Design Space Exploration for Control of Critical Quality Attributes of mAb” (H. Bhatia, E.K. Read, C.D. Agarabi, K.A. Brorson, S.C. Lute, S. Yoon S, 2016 [2].

  15. N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth)cells using the LdMNPV expression system

    Science.gov (United States)

    One Choi; Noboru Tomiya; Jung H. Kim; James M. Slavicek; Michael J. Betenbaugh; Yuan C. Lee

    2003-01-01

    N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then...

  16. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review.

    Science.gov (United States)

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L Renee; Lebrilla, Carlito B

    2015-02-01

    Herein we will review the role of glycans in the immune system. Specific topics covered include: the glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode "self" identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and extracellular proteins, especially the site-specific glycosylation patterns of the different immunoglobulin(Ig) classes and subclasses.

  17. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    Science.gov (United States)

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  18. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array.

    Science.gov (United States)

    Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki

    2013-03-19

    A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.

  19. Bitter-sweet symphony: glycan-lectin interactions in virus biology

    NARCIS (Netherlands)

    van Breedam, W.; Pöhlmann, S.; Favoreel, H.W.; de Groot, R.J.|info:eu-repo/dai/nl/07401000X; Nauwynck, H.J.

    2014-01-01

    Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and

  20. Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates.

    Science.gov (United States)

    Mertsch, Alexander; Letschert, Sebastian; Memmel, Elisabeth; Sauer, Markus; Seibel, Jürgen

    2016-09-01

    The synthesis of cyanine dyes addressing absorption wavelengths at 550 and 648 nm is reported. Alkyne functionalized dyes were used for bioorthogonal click reactions by labeling of metabolically incorporated sugar-azides on the surface of living neuroblastoma cells, which were applied to direct stochastic optical reconstruction microscopy (dSTORM) for the visualization of cell-surface glycans in the nm-range.

  1. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion.

    Science.gov (United States)

    Park, Dayoung; Arabyan, Narine; Williams, Cynthia C; Song, Ting; Mitra, Anupam; Weimer, Bart C; Maverakis, Emanual; Lebrilla, Carlito B

    2016-12-01

    Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  3. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  4. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins

    NARCIS (Netherlands)

    Bax, Marieke; Garcia-Vallejo, Juan J.; Jang-Lee, Jihye; North, Simon J.; Gilmartin, Tim J.; Hernandez, Gilberto; Crocker, Paul R.; Leffler, Hakon; Head, Steven R.; Haslam, Stuart M.; Dell, Anne; van Kooyk, Yvette

    2007-01-01

    Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic repr

  5. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine.

    Science.gov (United States)

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G; Labbate, Maurizio; Djordjevic, Steven P; Larsen, Martin R; Szymanski, Christine M; Cordwell, Stuart J

    2012-08-24

    Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions.

  6. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Dini, Luciana

    2015-06-01

    This study reports the induction of autophagy by two concentrations (2×103 or 2×104 NPs/cell) of 30 nm sized β-D-Glucose- and β-D-Glucose/Sucrose-coated silver NanoParticles (AgNPs-G and AgNPs-GS respectively) in HeLa cells treated for 6, 12, 24 and 48 hrs. Cell viability was assessed by Neutral Red (NR) test and morphological evaluation. In addition ROS generation (NBT test) and induction of apoptosis/necrosis (Annexin V/Propidium Iodide-Annexin V/PI staining) and autophagy (Monodansylcadaverine-MDC staining) were evaluated. Cytotoxicity, ROS generation and morphology changes depend on NPs type and amount, and incubation time. As a general result, AgNPs-G are more toxic than AgNPs-GS. Moreover, the lowest AgNPs-GS concentration is ineffective on cell viability and ROS generation. Only 10% and 25% of viable HeLa cells were found at the end of incubation time in the presence of higher amount of AgNPs - G and AgNPs-GS respectively and in parallel ROS generation is induced. To elucidate the type of cell death, Annexin V/PI and MDC staining was performed. Interestingly, irrespective of coating type and NPs amount the percentage of apoptotic cells (Annexin V+/PI-) is similar to viable HeLa cells. At contrary, we observed a NPs amount dependent autophagy and necrosis induction. In fact, the lower amount of NPs induces autophagy (MDC+/PI- cells) whereas the higher one induces necrosis (Annexin V+/PI+ cells). Our findings suggest that AgNPs-induced cytotoxicity depends on AgNPs amount and type and provide preliminary evidence of induction of autophagy in HeLa cells cultured in the presence of AgNPs.

  7. When Galectins Recognize Glycans: From Biochemistry to Physiology and Back Again

    Science.gov (United States)

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P.; Guardia, Carlos M.; Estrin, Dario A.; Vasta, Gerardo R.; Rabinovich, Gabriel A.

    2012-01-01

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. PMID:21848324

  8. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Science.gov (United States)

    Ravidà, Alessandra; Aldridge, Allison M; Driessen, Nicole N; Heus, Ferry A H; Hokke, Cornelis H; O'Neill, Sandra M

    2016-04-01

    Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg.

  9. Novel O-linked glycans containing 6'-sulfo-Gal/GalNAc of MUC1 secreted from human breast cancer YMB-S cells: possible carbohydrate epitopes of KL-6(MUC1) monoclonal antibody.

    Science.gov (United States)

    Seko, Akira; Ohkura, Takashi; Ideo, Hiroko; Yamashita, Katsuko

    2012-02-01

    Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.

  10. Turning-off Signaling by Siglecs, Selectins and Galectins: Chemical Inhibition of Glycan-dependent Interactions in Cancer

    Directory of Open Access Journals (Sweden)

    Alejandro Javier Cagnoni

    2016-05-01

    Full Text Available Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically-relevant information. This information is decoded by families of proteins named lectins, including siglecs, C-type lectin receptors (CLRs and galectins. Siglecs, sialic-acid binding transmembrane lectins, are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade a number of inhibitors of lectin-glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies

  11. Glycans pattern the phase behaviour of lipid membranes

    Science.gov (United States)

    Subramaniam, Anand Bala; Guidotti, Guido; Manoharan, Vinothan N.; Stone, Howard A.

    2013-02-01

    Hydrated networks of glycans (polysaccharides)—in the form of cell walls, periplasms or gel-like matrices—are ubiquitously present adjacent to cellular plasma membranes. Yet, despite their abundance, the function of glycans in the extracellular milieu is largely unknown. Here we show that the spatial configuration of glycans controls the phase behaviour of multiphase model lipid membranes: inhomogeneous glycan networks stabilize large lipid domains at the characteristic length scale of the network, whereas homogeneous networks suppress macroscopic lipid phase separation. We also find that glycan-patterned phase separation is thermally reversible—thus indicating that the effect is thermodynamic rather than kinetic—and that phase patterning probably results from a preferential interaction of glycans with ordered lipid phases. These findings have implications for membrane-mediated transport processes, potentially rationalize long-standing observations that differentiate the behaviour of native and model membranes and may indicate an intimate coupling between cellular lipidomes and glycomes.

  12. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    Directory of Open Access Journals (Sweden)

    M. Kristen Hall

    2016-06-01

    Full Text Available Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9 technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties.

  13. Microarray Glycan Profiling Reveals Algal Fucoidan Epitopes in Diverse Marine Metazoans

    Directory of Open Access Journals (Sweden)

    Armando A. Salmeán

    2017-09-01

    Full Text Available Despite the biological importance and pharmacological potential of glycans from marine organisms, there are many unanswered questions regarding their distribution, function, and evolution. Here we describe microarray-based glycan profiling of a diverse selection of marine animals using antibodies raised against fucoidan isolated from a brown alga. We demonstrate the presence of two fucoidan epitopes in six animals belonging to three phyla including Porifera, Molusca, and Chordata. We studied the spatial distribution of these epitopes in Cliona celata (“boring sponge” and identified their restricted localization on the surface of internal chambers. Our results show the potential of high-throughput screening and probes commonly used in plant and algal cell wall biology to study the diversity and distribution of glycan structures in metazoans.

  14. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  15. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging.

    Science.gov (United States)

    Lee, Chih-Hung; Hsu, Chia-Yen; Huang, Pei-Yu; Chen, Ching-Iue; Lee, Yao-Chang; Yu, Hsin-Su

    2016-03-22

    Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan

  16. Changes in the profile of simple mucin-type O-glycans and polypeptide GalNAc-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, E; Poll, S N; Goukasian, I

    2007-01-01

    Testicular germ cell tumours (TGCT) exhibit remarkable ability to differentiate into virtually all somatic tissue types. In this study, we investigated changes in mucin-type O-glycosylation, which have been associated with somatic cell differentiation and cancer. Expression profile of simple mucin...... in testicular neoplasms recapitulated the developmental order: Pre-invasive carcinoma in situ (CIS) cells and seminoma expressed fetal type sialylated glycans in keeping with their gonocyte-like phenotype. Neither simple mucin-type O-glycans nor GalNAc-transferase isoforms were found in undifferentiated...... nonseminoma, i.e. embryonal carcinoma, whereas teratomas expressed them all to some extent but in a disorganized manner. We concluded that simple mucin-type O-glycans and their transferases are developmentally regulated in the human testis, with profound changes associated with neoplasia. The restricted O...

  17. THE N-GLYCANS OF TRICHOMONAS VAGINALIS CONTAIN VARIABLE CORE AND ANTENNAL MODIFICATIONS

    Science.gov (United States)

    Paschinger, Katharina; Hykollari, Alba; Razzazi-Fazeli, Ebrahim; Greenwell, Pamela; Leitsch, David; Walochnik, Julia; Wilson, Iain B. H.

    2012-01-01

    Trichomonad species are widespread unicellular flagellated parasites of vertebrates which interact with their hosts through carbohydrate-lectin interactions. In the past, some data has been accumulated regarding their lipo(phospho)glycans, a major glycoconjugate on their cell surfaces; on the other hand, other than biosynthetic aspects, few details about their N-linked oligosaccharides are known. In this study, we present both mass spectrometric and HPLC data about the N-glycans of different strains of Trichomonas vaginalis, a parasite of the human reproductive tract. The major structure in all strains examined is a truncated oligomannose form (Man5GlcNAc2) with α1,2-mannose residues, compatible with a previous bioinformatic examination of the glycogenomic potential of T. vaginalis. In addition, dependent on the strain, N-glycans modified by pentose residues, phosphate or phosphoethanolamine and terminal N-acetyllactosamine (Galβ1,4GlcNAc) units were found. The modification of N-glycans by N-acetyllactosamine in at least some strains is shared with the lipo(phospho)glycan and may represent a further interaction partner for host galectins, thereby playing a role in binding of the parasite to host epithelia. On the other hand, the variation in glycosylation between strains may be the result of genetic diversity within this species. PMID:21983210

  18. Growth phase-dependent expression of proteins with decreased plant-specific N-glycans and immunogenicity in tobacco BY2 cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Plants possess some desirable characteristics to synthesize recombinant glycoproteins for pharma-ceutical application.However,the mammalian glycoproteins produced in plants are somewhat different from their natural counterparts in terms of N-glycoforms.The immunogenicity of plant-specific glyco-epitopes is the major concern in human therapy.Here,the distribution of N-glycans in different growth phases of tobacco BY2 cells and their immunogenicity in mice were determined.It was ob-served that the percentage of β1,2-xylose and α1,3-fucose in proteins of growing cells increased and the corresponding protein extracts caused accelerated immune response in mice.Based on this observation,the recombinant erythropoietin in BY2 cells was expressed and characterized,and Western blot analysis showed that the recombinant erythropoietin contained a relatively small amount of plant-specific glyco-epitopes in the early phase of culture growth.This study may provide a simple but effective strategy for the production of therapeutic glycoproteins with human-like N-glycan structures in plant hosts to avoid a great allergenic risk.

  19. Decoding the Role of Glycans in Malaria

    Directory of Open Access Journals (Sweden)

    Pollyanna S. Gomes

    2017-06-01

    Full Text Available Complications arising from malaria are a concern for public health authorities worldwide, since the annual caseload in humans usually exceeds millions. Of more than 160 species of Plasmodium, only 4 infect humans, with the most severe cases ascribed to Plasmodium falciparum and the most prevalent to Plasmodium vivax. Over the past 70 years, since World War II, when the first antimalarial drugs were widely used, many efforts have been made to combat this disease, including vectorial control, new drug discoveries and genetic and molecular approaches. Molecular approaches, such as glycobiology, may lead to new therapeutic targets (both in the host and the parasites, since all interactions are mediated by carbohydrates or glycan moieties decorating both cellular surfaces from parasite and host cells. In this review, we address the carbohydrate-mediated glycobiology that directly affects Plasmodium survival or host resistance.

  20. Glycans of myelin proteins.

    Science.gov (United States)

    Sedzik, Jan; Jastrzebski, Jan Pawel; Grandis, Marina

    2015-01-01

    Human P0 is the main myelin glycoprotein of the peripheral nervous system. It can bind six different glycans, all linked to Asn(93) , the unique glycosylation site. Other myelin glycoproteins, also with a single glycosylation site (PMP22 at Asn(36) , MOG at Asn(31) ), bind only one glycan. The MAG has 10 glycosylation sites; the glycoprotein OMgp has 11 glycosylation sites. Aside from P0, no comprehensive data are available on other myelin glycoproteins. Here we review and analyze all published data on the physicochemical structure of the glycans linked to P0, PMP22, MOG, and MAG. Most data concern bovine P0, whose glycan moieties have an MW ranging from 1,294.56 Da (GP3) to 2,279.94 Da (GP5). The pI of glycosylated P0 protein varies from pH 9.32 to 9.46. The most charged glycan is MS2 containing three sulfate groups and one glucuronic acid; whereas the least charged one is the BA2 residue. All glycans contain one fucose and one galactose. The most mannose rich are the glycans MS2 and GP4, each of them has four mannoses; OPPE1 contains five N-acetylglucosamines and one sulfated glucuronic acid; GP4 contains one sialic acid. Furthermore, human P0 variants causing both gain and loss of glycosylation have been described and cause peripheral neuropathies with variable clinical severity. In particular, the substitution T(95) →M is a very common in Europe and is associated with a late-onset axonal neuropathy. Although peripheral myelin is made up largely of glycoproteins, mutations altering glycosylation have been described only in P0. This attractive avenue of research requires further study.

  1. The glycan profile of endothelial cells in the present of tumor-conditioned medium and potential roles of beta-1,6-GlcNAc branching on HUVEC conformation.

    Science.gov (United States)

    Peng, Yunli; Li, Jing; Geng, Meiyu

    2010-07-01

    Endothelium plays a vital role in the logistics of the immune system, as well as the maintenance of the homeostasis. The major objective of this study is to unravel the relationship between expression changes of carbohydrate structures and the dysfunction of human umbilical vein endothelial cells (HUVEC) stimulated with tumor-conditioned medium (TCM), which is involved in tumor cell extravasation. Using flow cytometry (FCM) assay, the expression profiles of a selected group of 9 carbohydrate structures have been determined in HUVEC under control conditions and TCM-treated conditions, six of which increased significantly in expression after induction. Particularly, the expression level of beta-1,6-GlcNAc branching glycan was extremely higher after the stimulation. In parallel, the conformation change of HUVEC monolayer has been detected with inverted phase contrast microscopy and confocal microscopy. Under TCM stimulation, the actin cytoskeleton underwent rearrangement and formed abundant stress fiber within cells; therefore cell contraction was induced, which resulted in paracellular gap formation and barrier dysfunction. We furthered our study to investigate the mechanism underlying the conformation change of HUVEC. The results demonstrated that TCM induced the increase in beta-1,6-GlcNAc branching expression of PECAM-1, accompanied by the tyrosine phosphorylation of PECAM-1. The downstream effector RhoA was activated in consequence of the activation of PECAM-1. In conclusion, our results strongly suggested that the carbohydrate composition of endothelial cell surface is very important for the cells to exert their physiological effects correlated with cancer extravasation.

  2. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence at the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.

  3. Glycan profile of oviductal isthmus epithelium in normal and superovulated ewes.

    Science.gov (United States)

    Desantis, Salvatore; Accogli, Gianluca; Silvestre, Fabio; Binetti, Francesco; Cox, Sharon Natasha; Roscino, Mariateresa; Caira, Michele; Lacalandra, Giovanni Michele

    2016-04-01

    Glycans of oviductal isthmus are implicated in sperm-isthmus interaction, sperm storage, survival, and capacitation. Isthmus morphology and glycoprotein production are controlled by sex steroids, which could be responsible for alterations of some reproductive events in the superovulated ewes (SE). In this study, the oviductal isthmus epithelium was evaluated in normal and in SE using morphologic and lectin histochemical analysis. The epithelium of normal isthmi was significantly taller in folds than in crypts, whereas it significantly decreased in the folds of SE. Nonciliated cells (NCs) from normal, showed apical blebs revealing apocrine secretory activity, which was missing in SE. The quantitative analysis of lectin staining revealed higher Con A, DBA, and PNA reactivity but lower affinity to KOH-sialidase- (Ks)WGA, GSA II, LTA, UEA I, SBA, GSA I-B4, RCA120, KsPNA, MAL II, SNA in control isthmi compared with superovulated ones. The NCs apical blebs showed terminal fucose (Fuc), N-acetylgalactosamine (GalNAc), galactose (Gal), lactosamine, and O- and N-sialoglycans. In normal isthmi, the luminal surface of NCs and ciliated cells expressed Fuc, highly mannosilated N-glycans terminating with lactosamine as well as O-glycans ending with N-acetylglucosamine (GlcNAc) and GalNAc. Moreover, NCs microvilli contained Gal and α2-3-linked sialic acids. In SE, the luminal surface lacked Gal and GalNAcα1, 3(LFucα1,2)Galβ1,3/4GlcNAcβ1, whereas it was enriched with Fuc in the folds and with α2-3sialo-mucins both in crypts and in folds. The apical surface showed additional O- and N-linked sialoglycans in NCs and αGal in the cilia, which expressed α2-6-linked sialic acid only in the folds. The cytoplasm of control NCs showed highly mannosilated N-glycans throughout the epithelium and GlcNAc in the folds. After superovulation treatment, NCs expressed cytoplasmic terminal Fuc, βGalNAc, lactosamine, α2-3-, and α2-6-linked sialic acids in the folds. The cytoplasm of normal

  4. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Science.gov (United States)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  5. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Directory of Open Access Journals (Sweden)

    Julius W Kim

    Full Text Available BACKGROUND: Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. METHODOLOGY/PRINCIPAL FINDINGS: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. CONCLUSIONS/SIGNIFICANCE: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  6. Loss of intestinal O-glycans promotes spontaneous duodenal tumors.

    Science.gov (United States)

    Gao, Nan; Bergstrom, Kirk; Fu, Jianxin; Xie, Biao; Chen, Weichang; Xia, Lijun

    2016-07-01

    Mucin-type O-glycans, primarily core 1- and core 3-derived O-glycans, are the major mucus barrier components throughout the gastrointestinal tract. Previous reports identified the biological role of O-glycans in the stomach and colon. However, the biological function of O-glycans in the small intestine remains unknown. Using mice lacking intestinal core 1- and core 3-derived O-glycans [intestinal epithelial cell C1galt1(-/-);C3GnT(-/-) or double knockout (DKO)], we found that loss of O-glycans predisposes DKO mice to spontaneous duodenal tumorigenesis by ∼1 yr of age. Tumor incidence did not increase with age; however, tumors advanced in aggressiveness by 20 mo. O-glycan deficiency was associated with reduced luminal mucus in DKO mice before tumor development. Altered intestinal epithelial homeostasis with enhanced baseline crypt proliferation characterizes these phenotypes as assayed by Ki67 staining. In addition, fluorescence in situ hybridization analysis reveals a significantly lower bacterial burden in the duodenum compared with the large intestine. This phenotype is not reduced with antibiotic treatment, implying O-glycosylation defects, rather than bacterial-induced inflammation, which causes spontaneous duodenal tumorigenesis. Moreover, inflammatory responses in DKO duodenal mucosa are mild as assayed with histology, quantitative PCR for inflammation-associated cytokines, and immunostaining for immune cells. Importantly, inducible deletion of intestinal O-glycans in adult mice leads to analogous spontaneous duodenal tumors, although with higher incidence and heightened severity compared with mice with O-glycans constitutive deletion. In conclusion, these studies reveal O-glycans within the small intestine are critical determinants of duodenal cancer risk. Future studies will provide insights into the pathogenesis in the general population and those at risk for this rare but deadly cancer.

  7. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  8. Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi

    Science.gov (United States)

    Hang, Ivan; Lin, Chia-wei; Grant, Oliver C; Fleurkens, Susanna; Villiger, Thomas K; Soos, Miroslav; Morbidelli, Massimo; Woods, Robert J; Gauss, Robert; Aebi, Markus

    2015-01-01

    The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing. PMID:26240167

  9. N-glycan transition of the early developmental stage in Oryza sativa.

    Science.gov (United States)

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans.

  10. Glycan microarray analysis of Candida glabrata adhesin ligand specificity

    National Research Council Canada - National Science Library

    Zupancic, Margaret L; Frieman, Matthew; Smith, David; Alvarez, Richard A; Cummings, Richard D; Cormack, Brendan P

    2008-01-01

    ...) family responsible for mediating adherence to host cells. To better understand the mechanism by which the Epa proteins contribute to pathogenesis, we have used glycan microarray analysis to characterize their carbohydrate...

  11. Characterization of glycans in the developmental stages of Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease.

    Science.gov (United States)

    Kaltner, H; Stippl, M; Knaus, M; El-Matbouli, M

    2007-11-01

    Glycans and sugar-binding molecules (lectins) form an interactive recognition system, which may enable parasitic organisms to adhere to host cells and migrate into target tissues. The aim of the present study was to analyse surface-associated glycans in the developmental stages of Myxobolus cerebralis (Hofer), the causative agent of whirling disease. A panel of biotin-labelled plant lectins was used to detect a broad spectrum of glycan motifs with high specificity. Binding sites were detected histochemically in the tissue sections of infected rainbow trout, Oncorhynchus mykiss (Walbaum), and infected Tubifex tubifex (Müller), and were characterized by light, fluorescence and transmission electron microscopy. With mannose-specific lectins [Lens culinaris agglutinin, Pisum sativum agglutinin, Canavalia ensiformis agglutinin (LCA, PSA, CanA)] mannose-containing glycans were detected in all the developmental stages and host tissues. No binding sites for galactose-specific lectins were present in M. cerebralis spores but reactivity with host tissues occurred. Diversity in glycans was detected by N-acetyl-D-galactosamine-specific lectins in sporoplasm cells of M. cerebralis and triactinomyxon spores. In the group of lectins with monosaccharide-specificity for N-acetyl-D-glucosamine (GlcNAc), the reactivity of Datura stramonium agglutinin (DSA), Lycopersicon esculentum agglutinin (LEA) and Solanum tuberosum agglutinin (STA) was restricted to polar capsules whereas Griffonia simplicifolia agglutinin II (GSA II) also bound to sporoplasm cells of stages in the fish host but not in those present in infected T. tubifex. Moreover, Triticum vulgaris (wheat germ) agglutinin (WGA) and succinylated WGA indicated the presence of N-acetyl-D-glucosamine polymers in polar capsules. No specificity for spores was observed concerning 'bisected'N-glycans and no reactivity in parasitic stages was observed with the fucose-binding lectin Ulex europaeus agglutinin (UEA) I, Sambucus nigra

  12. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    Science.gov (United States)

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  13. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action.

    Science.gov (United States)

    Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David

    2016-10-18

    In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.

  14. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform

    Directory of Open Access Journals (Sweden)

    Yiyan Fei

    2015-07-01

    Full Text Available A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA, with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.

  15. Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract.

    Science.gov (United States)

    Robbe-Masselot, Catherine; Maes, Emmanuel; Rousset, Monique; Michalski, Jean-Claude; Capon, Calliope

    2009-05-01

    Intestinal mucins are very high molecular weight glycoproteins secreted by goblet cells lining the crypt and the surface of the colonic mucosa. Profound alterations of mucin O-glycans are observed in diseases such as cancer and inflammation, modifying the function of the cell and its antigenic and adhesive properties. Based on immunohistochemical studies, certain cancer- and inflammation- associated glycans have been defined as oncofetal antigens. However, little or no chemical analysis has allowed the structural elucidation of O-glycans expressed on human fetal mucins. In this paper, mucins were isolated from different regions of the normal human intestine (ileum, right, transverse and left colon) of eight fetuses with A, B or O blood group. After alkaline borohydride treatment, the released oligosaccharides were investigated by nanoESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem mass spectrometry). More than 117 different glycans were identified, mainly based on core 2 structures. Some core 1, 3 and 4 oligosaccharides were also found. Most of the structures were acidic with NeuAc residues mainly alpha2-6 linked to the N-acetylgalactosaminitol and sulphate residues 3-linked to galactose or 6-linked to GlcNAc. In contrast to adult human intestinal mucins, Sda/Cad determinants were not expressed on fetal mucin O-glycans and the presence of an acidic gradient along the intestinal tract was not observed. Similar patterns of glycosylation were found in each part of the intestine and the level of expression of the major oligosaccharides was in the same order of magnitude. This study could help determining new oncofetal antigens, which can be exploited for the diagnosis or the treatment of intestinal diseases.

  16. CROSSWORK for Glycans: Glycan Identificatin Through Mass Spectrometry and Bioinformatics

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Thaysen-Andersen, Morten; Højrup, Peter

      We have developed "GLYCANthrope " - CROSSWORKS for glycans:  a bioinformatics tool, which assists in identifying N-linked glycosylated peptides as well as their glycan moieties from MS2 data of enzymatically digested glycoproteins. The program runs either as a stand-alone application or as a plug...

  17. Interacción entre proteínas y glicanos en la regulación fisiológica de las células T How do protein-glycan interactions regulate T-cell physiology?

    Directory of Open Access Journals (Sweden)

    Marta A. Toscano

    2006-08-01

    Full Text Available Las interacciones entre proteínas y glicanos juegan un papel fundamental en numerosos eventos de la regulación de la fisiología del sistema inmune, como maduración tímica, activación, migración y apoptosis de células T. Los carbohidratos son capaces de modular la fisiología linfocitaria a través de la interacción específica con lectinas endógenas como selectinas y galectinas. Estas lectinas endógenas son capaces de reconocer estructuras sacarídicas localizadas en glicoproteínas de la superficie celular y regular procesos tan diversos como proliferación, diferenciación y ciclo celular. Existen diversos niveles de control de la interacción entre lectinas y azúcares; en primer lugar podemos mencionar la expresión regulada de estas lectinas durante el desarrollo de una respuesta inmune, y en segundo lugar la regulación espacio-temporal de la actividad de glicosiltranferasas y glicosidasas cuya función es crear y modificar los azúcares específicos para estas lectinas. Existen evidencias de que la expresión y actividad de estas enzimas se regulan en forma positiva o negativa durante diferentes eventos del desarrollo, ejecución y finalización de la respuesta inmune. En este artículo se analizarán los mecanismos a través de los cuales las interacciones entre lectinas con sus carbohidratos específicos modulan en forma específica diversos procesos fisiológicos, como maduración de timocitos, migración linfocitaria, activación y diferenciación de células T y apoptosis.Recent evidence indicates that protein-glycan interactions play a critical role in different events associated with the physiology of T-cell responses including thymocyte maturation, T-cell activation, lymphocyte migration and T-cell apoptosis. Glycans decorating T-cell surface glycoproteins can modulate T-cell physiology by specifically interacting with endogenous lectins including selectins and galectins. These endogenous lectins are capable of

  18. Targeted N-glycan deletion at the receptor-binding site retains HIV Env NFL trimer integrity and accelerates the elicited antibody response.

    Science.gov (United States)

    Dubrovskaya, Viktoriya; Guenaga, Javier; de Val, Natalia; Wilson, Richard; Feng, Yu; Movsesyan, Arlette; Karlsson Hedestam, Gunilla B; Ward, Andrew B; Wyatt, Richard T

    2017-09-13

    Extensive shielding by N-glycans on the surface of the HIV envelope glycoproteins (Env) restricts B cell recognition of conserved neutralizing determinants. Elicitation of broadly neutralizing antibodies (bNAbs) in selected HIV-infected individuals reveals that Abs capable of penetrating the glycan shield can be generated by the B cell repertoire. Accordingly, we sought to determine if targeted N-glycan deletion might alter antibody responses to Env. We focused on the conserved CD4 binding site (CD4bs) since this is a known neutralizing determinant that is devoid of glycosylation to allow CD4 receptor engagement, but is ringed by surrounding N-glycans. We selectively deleted potential N-glycan sites (PNGS) proximal to the CD4bs on well-ordered clade C 16055 native flexibly linked (NFL) trimers to potentially increase recognition by naïve B cells in vivo. We generated glycan-deleted trimer variants that maintained native-like conformation and stability. Using a panel of CD4bs-directed bNAbs, we demonstrated improved accessibility of the CD4bs on the N-glycan-deleted trimer variants. We showed that pseudoviruses lacking these Env PNGSs were more sensitive to neutralization by CD4bs-specific bNAbs but remained resistant to non-neutralizing mAbs. We performed rabbit immunogenicity experiments using two approaches comparing glycan-deleted to fully glycosylated NFL trimers. The first was to delete 4 PNGS sites and then boost with fully glycosylated Env; the second was to delete 4 sites and gradually re-introduce these N-glycans in subsequent boosts. We demonstrated that the 16055 PNGS-deleted trimers more rapidly elicited serum antibodies that more potently neutralized the CD4bs-proximal-PNGS-deleted viruses in a statistically significant manner and strongly trended towards increased neutralization of fully glycosylated autologous virus. This approach elicited serum IgG capable of cross-neutralizing selected tier 2 viruses lacking N-glycans at residue N276 (natural or

  19. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface

    Directory of Open Access Journals (Sweden)

    Rajendra P Settem

    2013-10-01

    Full Text Available Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized S-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.

  20. Glycan microarray analysis of Candida glabrata adhesin ligand specificity.

    Science.gov (United States)

    Zupancic, Margaret L; Frieman, Matthew; Smith, David; Alvarez, Richard A; Cummings, Richard D; Cormack, Brendan P

    2008-05-01

    The Candida glabrata genome encodes at least 23 members of the EPA (epithelial adhesin) family responsible for mediating adherence to host cells. To better understand the mechanism by which the Epa proteins contribute to pathogenesis, we have used glycan microarray analysis to characterize their carbohydrate-binding specificities. Using Saccharomyces cerevisiae strains surface-expressing the N-terminal ligand-binding domain of the Epa proteins, we found that the three Epa family members functionally identified as adhesins in Candida glabrata (Epa1, Epa6 and Epa7) bind to ligands containing a terminal galactose residue. However, the specificity of the three proteins for glycans within this class varies, with Epa6 having a broader specificity range than Epa1 or Epa7. This result is intriguing given the close homology between Epa6 and Epa7, which are 92% identical at the amino acid level. We have mapped a five-amino-acid region within the N-terminal ligand-binding domain that accounts for the difference in specificity of Epa6 and Epa7 and show that these residues contribute to adherence to both epithelial and endothelial cell lines in vitro.

  1. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins.

    Science.gov (United States)

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana

    2013-09-01

    The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder.

  2. Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans.

    Science.gov (United States)

    Shen, Li; Yu, Meiyun; Xu, Xu; Gao, Liping; Ni, Jianlong; Luo, Zhiguo; Wu, Shiliang

    2014-12-01

    Aberrant glycosylation is known to be associated with cancer chemoresistance. β-1,3-N-acetyl-glucosaminyltransferase (β3GnT)8, which synthesizes polylactosamine on β1-6 branched N-glycans, is dramatically upregulated in colorectal cancer (CRC). 5-Fluorouracil (5-FU) resistance remains a major obstacle to the chemotherapy of CRC. However, little is known with regard to the correlation between 5‑FU resistance and the expression of β3GnT8 in CRC. In this study, a 5-FU‑resistant cell line (SW620/5-FU) was generated, and 50% inhibition concentration (IC50) of 5-FU was determined by MTT assay. Flow cytometry and lectin blot analysis were performed to detect the alteration of polylactosamine structures. Quantitative RT-‑PCR and western blot analysis were used to identify and evaluate candidate genes involved in the synthesis of polylactosamine in SW620/5-FU cells. We found polylactosamine chains were significantly increased in SW620/5-FU cells. Inhibition of the biosynthesis of polylactosamine by 3'-azidothymidine (AZT) was able to reduce 5-FU tolerance. Further studies showed that β3GnT8 expression was also upregulated in 5-FU‑resistant cancer cells, and knockdown of β3GnT8 by RNA interference reversed 5-FU resistance through, at least partly, by suppressing the formation of polylactosamine. In conclusion, the alteration of β3GnT8 in CRC cells correlates with tumor sensitivity to the chemotherapeutic drug and has significant implication for the development of new treatment strategies.

  3. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death.

    Science.gov (United States)

    Lantéri, Marion; Giordanengo, Valérie; Hiraoka, Nobuyoshi; Fuzibet, Jean-Gabriel; Auberger, Patrick; Fukuda, Minoru; Baum, Linda G; Lefebvre, Jean-Claude

    2003-12-01

    The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.

  4. A novel lectin (Morniga M) from mulberry (Morus nigra) bark recognizes oligomannosyl residues in N-glycans.

    Science.gov (United States)

    Wu, Albert M; Wu, June H; Singh, Tanuja; Chu, Kang-Chuang; Peumans, Willy J; Rougé, Pierre; Van Damme, Els J M

    2004-01-01

    Morniga M is a jacalin-related and mannose-specific lectin isolated from the bark of the mulberry (Morus nigra). In order to understand the function and application of this novel lectin, the binding property of Morniga M was studied in detail using an enzyme-linked lectinosorbent assay and lectin-glycan inhibition assay with extended glycan/ligand collection. From the results, it was found that the di-, tri-, and oligomannosyl structural units of N-glycans such as those of the bovine alpha1-acid glycoprotein (gp) and lactoferrin were the most active gps, but not the O-glycans or polysaccharides including mannan from yeast. The binding affinity of Morniga M for ligands can be ranked in decreasing order as follows: gps carrying multiple N-glycans with oligomannosyl residues > N-glycopeptide with a single trimannosyl core > Tri-Man oligomer [Man alpha1-->6(Man alpha1-->3) Man], Penta-Man oligomer [Man alpha1-->6(Man alpha1-->3)Man alpha1-->6(Man alpha1-->3) Man] > or = Man alpha1-->2, 3 or 6 Man > Man > GlcNAc, Glc > L-Fuc, Gal, GalNAc (inactive), demonstrating the unique specificity of this lectin that may not only assist in our understanding of cell surface carbohydrate ligand-lectin recognition, but also provide informative guidelines for the application of this structural probe in biotechnological and clinical regimens, especially in the detection and purification of N-linked glycans. 2004 National Science Council, ROC and S. Karger AG, Basel

  5. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    Science.gov (United States)

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  6. Glycobiology Modifications in Intratumoral Hypoxia: The Breathless Side of Glycans Interaction

    Directory of Open Access Journals (Sweden)

    Antônio F. Silva-filho

    2017-04-01

    Full Text Available Post-translational and co-translational enzymatic addition of glycans (glycosylation to proteins, lipids, and other carbohydrates, is a powerful regulator of the molecular machinery involved in cell cycle, adhesion, invasion, and signal transduction, and is usually seen in both in vivo and in vitro cancer models. Glycosyltransferases can alter the glycosylation pattern of normal cells, subsequently leading to the establishment and progression of several diseases, including cancer. Furthermore, a growing amount of research has shown that different oxygen tensions, mainly hypoxia, leads to a markedly altered glycosylation, resulting in altered glycan-receptor interactions. Alteration of intracellular glucose metabolism, from aerobic cellular respiration to anaerobic glycolysis, inhibition of integrin 3α1β translocation to the plasma membrane, decreased 1,2-fucosylation of cell-surface glycans, and galectin overexpression are some consequences of the hypoxic tumor microenvironment. Additionally, increased expression of gangliosides carrying N-glycolyl sialic acid can also be significantly affected by hypoxia. For all these reasons, it is possible to realize that hypoxia strongly alters glycobiologic events within tumors, leading to changes in their behavior. This review aims to analyze the complexity and importance of glycoconjugates and their molecular interaction network in the hypoxic context of many solid tumors.

  7. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Science.gov (United States)

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  8. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting

    DEFF Research Database (Denmark)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina

    2009-01-01

    Bioengineering of Galbeta3GalNAcalpha, known as Thomsen-Friedenreich disaccharide (TFD), is studied to promote glycan immunogenicity and immunotargeting to tumor T antigen (Galbeta3GalNAcalpha-O-Ser/Thr). Theoretical studies on disaccharide conformations by energy minimization of structures using....... Antibodies produced by glycan bioengineering recognize HT29, T47D, MCF7, and CT26 epithelial tumor cells. Epithelial tumor cell adhesion to T antigen-binding lectins and endothelial cells was lower in the presence of antibodies raised against the engineered immunogen. The immune response directed...... to the bioengineered glycoconjugate inhibited CT26 tumor cell proliferation and reduced tumor growth in an in vivo mouse model. These results show that TFD bioengineering is a useful immunogenic strategy with potential application in cancer therapy. The same approach can be extended to other glycan immunogens...

  9. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile.

    Science.gov (United States)

    Lee, Jong Hyun; Jeong, Yeong Ran; Kim, Yeon-Gu; Lee, Gyun Min

    2017-03-07

    To understand the effects of hyperosmolality on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing the Fc-fusion protein were cultivated in hyperosmolar medium resulting from adding NaCl (415 mOsm/kg). The hyperosmotic culture showed increased specific Fc-fusion protein productivity (qFc ) but a decreased proportion of acidic isoforms and sialic acid content of the Fc-fusion protein. The intracellular and extracellular sialidase activities in the hyperosmotic cultures were similar to those in the control culture (314 mOsm/kg), indicating that reduced sialylation of Fc-fusion protein at hyperosmolality was not due to elevated sialidase activity. Expression of 52 N-glycosylation-related genes was assessed by the NanoString nCounter system, which provides a direct digital readout using custom-designed color-coded probes. After three days of hyperosmotic culture, nine genes (ugp, slc35a3, slc35d2, gcs1, manea, mgat2, mgat5b, b4galt3, and b4galt4) were differentially expressed over 1.5-fold of the control, and all these genes were down-regulated. N-linked glycan analysis by anion exchange and hydrophilic interaction HPLC showed that the proportion of highly sialylated (di-, tri-, tetra-) and tetra-antennary N-linked glycans was significantly decreased upon hyperosmotic culture. Addition of betaine, an osmoprotectant, to the hyperosmotic culture significantly increased the proportion of highly sialylated and tetra-antennary N-linked glycans (P ≤ 0.05), while it increased the expression of the N-glycan branching/antennary genes (mgat2 and mgat4b). Thus, decreased expression of the genes with roles in the N-glycan biosynthesis pathway correlated with reduced sialic acid content of Fc-fusion protein caused by hyperosmolar conditions. Taken together, the results obtained in this study provide a better understanding of the detrimental effects of hyperosmolality on N-glycosylation, especially sialylation, in rCHO cells. This article is protected

  10. Cell Surface Glycosylation Is Required for Efficient Mating of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Yarden Shalev

    2017-07-01

    Full Text Available Halophilic archaea use a fusion-based mating system for lateral gene transfer across cells, yet the molecular mechanisms involved remain unknown. Previous work implied that cell fusion involves cell–cell recognition since fusion occurs more efficiently between cells from the same species. Long believed to be restricted only to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target asparagine residues in proteins, and that this post-translational modification is common for archaeal cell surface proteins. Here, we show that differences in glycosylation of the Haloferax volcanii surface-layer glycoprotein, brought about either by changing medium salinity or by knocking out key glycosylation genes, reduced mating success. Thus, different glycosylation patterns are likely to underlie mating preference in halophilic archaea, contributing to speciation processes.

  11. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    Science.gov (United States)

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging.

  12. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer

    Science.gov (United States)

    Santos, Sofia N.; Junqueira, Mara S.; Francisco, Guilherme; Vilanova, Manuel; Magalhães, Ana; Baruffi, Marcelo Dias; Chammas, Roger; Harris, Adrian L.; Reis, Celso A.; Bernardes, Emerson S.

    2016-01-01

    ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I. PMID:27835877

  13. Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula).

    Science.gov (United States)

    Akasaka, K; Terayama, H

    1983-06-01

    Light microscopical observations of the Alcian blue-stained gastrulae of Hemicentrotus pulcherrimus together with the scanning electron microscopical observations of the embryos revealed the presence of highly acidic glycans in the invaginating archenteron (inside surface), the surrounding of secondary mesenchyme cells (pseudopodial protrusions and filamentous structures) and the hyaline layer. In the embryos grown in sulfate-free sea water and thus with arrested gastrulation it was found that the dye stainability in the above regions was markedly reduced. The glycosaminoglycan fraction prepared from the whole embryos (mid-gastrulae) was found to contain various kinds of acidic glycans as analysed by chromatography on DEAE-cellulose. Among these glycan components, the "F" component was mainly recovered in the EDTA extract of the embryos, and was shown to be specifically deleted in the embryos grown in sulfate-free sea water, suggesting that the "F" component may be related to the Alcian blue-stainable material in Hemicentrotus embryos. The component "F" was found to consist of sulfated fucan and acid mucopolysaccharide (unidentified) chains, which are probably linked to a common peptide core, forming macromolecules with larger than 10(6) molecular weights.

  14. Lipochitin oligosaccharides immobilized through oximes in glycan microarrays bind LysM proteins.

    Science.gov (United States)

    Maolanon, Nicolai N; Blaise, Mickael; Sørensen, Kasper K; Thygesen, Mikkel B; Cló, Emiliano; Sullivan, John T; Ronson, Clive W; Stougaard, Jens; Blixt, Ola; Jensen, Knud J

    2014-02-10

    Glycan microarrays have emerged as novel tools to study carbohydrate-protein interactions. Here we describe the preparation of a covalent microarray with lipochitin oligosaccharides and its use in studying proteins containing LysM domains. The glycan microarray was assembled from glycoconjugates that were synthesized by using recently developed bifunctional chemoselective aminooxy reagents without the need for transient carbohydrate protecting groups. We describe for the first time the preparation of a covalent microarray with lipochitin oligosaccharides and its use for studying proteins containing LysM domains. Lipochitin oligosaccharides (also referred to as Nod factors) were isolated from bacterial strains or chemoenzymatically synthesized. The glycan microarray also included peptidoglycan-related compounds, as well as chitin oligosaccharides of different lengths. In total, 30 ligands were treated with the aminooxy linker molecule. The identity of the glycoconjugates was verified by mass spectrometry, and they were then immobilized on the array. The presence of the glycoconjugates on the array surface was confirmed by use of lectins and human sera (IgG binding). The functionality of our array was tested with a bacterial LysM domain-containing protein, autolysin p60, which is known to act on the bacterial cell wall peptidoglycan. P60 showed specific binding to Nod factors and to chitin oligosaccharides. Increasing affinity was observed with increasing chitin oligomer length. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cell surface engineering of mesenchymal stem cells.

    Science.gov (United States)

    Sarkar, Debanjan; Zhao, Weian; Gupta, Ashish; Loh, Wei Li; Karnik, Rohit; Karp, Jeffrey M

    2011-01-01

    By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage

  16. The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans.

    Science.gov (United States)

    Donohue, Dagmara S; Ielasi, Francesco S; Goossens, Katty V Y; Willaert, Ronnie G

    2011-06-01

    The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.

  17. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk.

    Science.gov (United States)

    Gil, Geun-Cheol; Velander, William H; Van Cott, Kevin E

    2008-07-01

    Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galalpha(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors.

  18. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression.

    Science.gov (United States)

    Chen, Huanhuan; Deng, Zaian; Huang, Chuncui; Wu, Hongmei; Zhao, Xia; Li, Yan

    2017-07-01

    Aberrant changes of N-glycan modifications on proteins have been linked to various diseases including different cancers, suggesting possible avenue for exploring their etiologies based on N-glycomic analysis. Changes in N-glycan patterns during epithelial ovarian cancer development have so far been investigated mainly using serum, plasma, ascites, and cell lines. However, changes in patterns of N-glycans in tumor tissues during epithelial ovarian cancer progression have remained largely undefined. To investigate whether changes in N-glycan patterns correlate with oncogenesis and progression of epithelial ovarian cancer, we profiled N-glycans from formalin-fixed paraffin-embedded tissue slides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitatively compared among different pathological grades of epithelial ovarian cancer and healthy controls. Our results show that among the 80 compositions of N-glycan detected, expression levels of high-mannose type were higher in epithelial ovarian cancer samples than that observed in healthy controls, accompanied by reduced levels of hybrid-type glycans. By applying receiver operating characteristic analysis, we show that a combined panel composed of four high-mannose and three fucosylated neutral complex N-glycans allows for good discrimination of epithelial ovarian cancer from healthy controls. Furthermore, using a statistical analysis of variance assay, we found that different N-glycan patterns, including 2 high-mannose-type, 2 fucosylated and sialylated complex structures, and 10 fucosylated neutral complex N-glycans, exhibited specific changes in N-glycan abundance across epithelial ovarian cancer grades. Together, our results provide strong evidence that N-glycomic changes are a strong indicator for epithelial ovarian cancer pathological grades and should provide avenues to identify novel biomarkers for epithelial ovarian cancer diagnosis and monitoring.

  19. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    OpenAIRE

    Anastas Pashov; Bejatolah Monzavi-Karbassi; Raghava, Gajendra P. S.; Thomas Kieber-Emmons

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors le...

  20. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  1. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A. (UWASH); (Progenics); (ICL); (Weill-Med); (NIH); (JSTA); (Scripps); (Oxford)

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  2. Implications of plant glycans in the development of innovative vaccines.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Salazar-González, Jorge A; Decker, Eva L; Reski, Ralf

    2016-07-01

    Plant glycans play a central role in vaccinology: they can serve as adjuvants and/or delivery vehicles or backbones for the synthesis of conjugated vaccines. In addition, genetic engineering is leading to the development of platforms for the production of novel polysaccharides in plant cells, an approach with relevant implications for the design of new types of vaccines. This review contains an updated outlook on this topic and provides key perspectives including a discussion on how the molecular pharming field can be linked to the production of innovative glycan-based and conjugate vaccines.

  3. Human DC-SIGN binds specific human milk glycans.

    Science.gov (United States)

    Noll, Alexander J; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H; Smith, David F; Cummings, Richard D

    2016-05-15

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.

  4. Improved sample preparation for CE-LIF analysis of plant N-glycans.

    Science.gov (United States)

    Nagels, Bieke; Santens, Francis; Weterings, Koen; Van Damme, Els J M; Callewaert, Nico

    2011-12-01

    In view of glycomics studies in plants, it is important to have sensitive tools that allow one to analyze and characterize the N-glycans present on plant proteins in different species. Earlier methods combined plant-based sample preparations with CE-LIF N-glycan analysis but suffered from background contaminations, often resulting in non-reproducible results. This publication describes a reproducible and sensitive protocol for the preparation and analysis of plant N-glycans, based on a combination of the 'in-gel release method' and N-glycan analysis on a multicapillary DNA sequencer. Our protocol makes it possible to analyze plant N-glycans starting from low amounts of plant material with highly reproducible results. The developed protocol was validated for different plant species and plant cells.

  5. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    Science.gov (United States)

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  6. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    Energy Technology Data Exchange (ETDEWEB)

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis (Emory-MED); (UCD); (Adelaide); (Monash)

    2009-01-30

    AB{sub 5} toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB{sub 5} toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.

  7. Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans.

    Science.gov (United States)

    Inamdar, Shashikala R; Eligar, Sachin M; Ballal, Suhas; Belur, Shivakumar; Kalraiya, Rajiv D; Swamy, Bale M

    2016-02-01

    Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.

  8. Neonatal Gut Microbiota and Human Milk Glycans Cooperate to Attenuate Infection and Inflammation.

    Science.gov (United States)

    Newburg, David S; He, Yingying

    2015-12-01

    Glycans of the intestinal mucosa and oligosaccharides of human milk influence the early colonization of the infant gut and establishment of mucosal homeostasis, and differences in colonization of the gut influence the ontogeny of glycans on the surface of the intestinal mucosa, proinflammatory signaling, homeostasis, and resilience to insult. This interkingdom reciprocal interaction is typical of a mutualistic symbiotic relationship. The period in which the infant gut most needs protection from hypersensitive inflammation overlaps with the recommended period of exclusive nursing; electively substituting artificial formula that lacks human milk protective glycans seems ill advised, especially for premature infants.

  9. Parasite glycans and antibody-mediated immune responses in Schistosoma infection.

    Science.gov (United States)

    van Diepen, Angela; Van der Velden, Niels S J; Smit, Cornelis H; Meevissen, Moniek H J; Hokke, Cornelis H

    2012-08-01

    Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.

  10. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G. (Scripps); (Oxford)

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  11. Fucosyltransferases produce N-glycans containing core l-galactose.

    Science.gov (United States)

    Ohashi, Hiroyuki; Ohashi, Takao; Kajiura, Hiroyuki; Misaki, Ryo; Kitamura, Shinichi; Fujiyama, Kazuhito

    2017-01-29

    l-Galactose (l-Gal) containing N-glycans and cell wall polysaccharides have been detected in the l-Fuc deficient mur1 mutant of Arabidopsis thaliana. The l-Gal residue is thought to be transferred from GDP-l-Gal, which is a structurally related analog of GDP-l-Fuc, but in vitrol-galactosylation activity has never been detected. In this study, we carried out preparative scale GDP-l-Gal synthesis using recombinant A. thaliana GDP-mannose-3',5'-epimerase. We also demonstrated the l-galactosylation assay of mouse α1,6-fucosyltransferase (MmFUT8) and A. thaliana α1,3-fucosyltransferase (AtFucTA). Both fucosyltransferases showed l-galactosylation activity from GDP-l-Gal to asparagine-linked N-acetyl-β-d-glucosamine of asialo-agalacto-bi-antennary N-glycan instead of l-fucosylation. In addition, the apparent Km values of MmFUT8 and AtFucTA suggest that l-Fuc was preferentially transferred to N-glycan compared with l-Gal by fucosyltransferases. Our results clearly demonstrate that MmFUT8 and AtFucTA transfer l-Gal residues from GDP-l-Gal and synthesize l-Gal containing N-glycan in vitro.

  12. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates.

    Science.gov (United States)

    Saunders, Kevin O; Nicely, Nathan I; Wiehe, Kevin; Bonsignori, Mattia; Meyerhoff, R Ryan; Parks, Robert; Walkowicz, William E; Aussedat, Baptiste; Wu, Nelson R; Cai, Fangping; Vohra, Yusuf; Park, Peter K; Eaton, Amanda; Go, Eden P; Sutherland, Laura L; Scearce, Richard M; Barouch, Dan H; Zhang, Ruijun; Von Holle, Tarra; Overman, R Glenn; Anasti, Kara; Sanders, Rogier W; Moody, M Anthony; Kepler, Thomas B; Korber, Bette; Desaire, Heather; Santra, Sampa; Letvin, Norman L; Nabel, Gary J; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Alam, S Munir; Danishefsky, Samuel J; Haynes, Barton F

    2017-02-28

    Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.

  13. Relative roles of doxycycline and cation chelation in endothelial glycan shedding and adhesion of leukocytes.

    Science.gov (United States)

    Lipowsky, Herbert H; Sah, Rachna; Lescanic, Anne

    2011-02-01

    Leukocyte [white blood cell (WBC)] adhesion and shedding of glycans from the endothelium [endothelial cells (ECs)] in response to the chemoattractant f-Met-Leu-Phe (fMLP) has been shown to be attenuated by topical inhibition of matrix metalloproteases (MMPs) with doxycycline (Doxy). Since Doxy also chelates divalent cations, these responses were studied to elucidate the relative roles of cation chelation and MMP inhibition. WBC-EC adhesion, WBC rolling flux, and WBC rolling velocity were studied in postcapillary venules in the rat mesentery during superfusion with the cation chelator EDTA or Doxy. Shedding and accumulation of glycans on ECs, with and without fMLP, were quantified by the surface concentration of lectin (BS-1)-coated fluorescently labeled microspheres (FLMs) during constant circulating concentration. Without fMLP, low concentrations of EDTA (1-3 mM) increased FLM-EC sequestration due to disruption of the permeability barrier with prolonged exposure. In contrast, with 0.5 μM Doxy alone, FLM adhesion remained constant (i.e., no change in glycan content) on ECs, and WBC adhesion increased with prolonged superfusion. Without fMLP, EDTA did not affect firm WBC-EC adhesion but reduced WBC rolling flux in a dose-dependent manner. With fMLP, EDTA did not inhibit WBC adhesion, whereas Doxy did during the first 20 min of superfusion. Thus, the inhibition by Doxy of glycan (FLM) shedding and WBC adhesion in response to fMLP results from MMP inhibition, in contrast to cation chelation. With either Doxy or the MMP inhibitor GM-6001, WBC rolling velocity decreased by 50%, as in the case with fMLP, suggesting that MMP inhibition reduces sheddase activity, which increases the adhesiveness of rolling WBCs. These events increase the effective leukocrit on the venular wall and increase firm WBC-EC adhesion. Thus, MMP inhibitors have both a proadhesion effect by reducing sheddase activity while exerting an antiadhesion effect by inhibiting glycocalyx shedding and

  14. Mucin glycan foraging in the human gut microbiome

    Science.gov (United States)

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  15. Comparative Analysis of Ο-glycans from Human Hepatocellular Carcinoma HepG2 and Normal Liver Cells L02†%人肝癌细胞HepG2与正常肝细胞L02的Ο-糖链的比较分析

    Institute of Scientific and Technical Information of China (English)

    潘丽英; 顾笑; 王承健; 强珊; 黄琳娟; 张英; 王仲孚

    2015-01-01

    HepG2 ( a primary hepatocellular carcinoma cell line ) and L02 ( ones derived from normal liver tissue) cells were chosen as model cell lines for research. The O-glycans of the total proteins extracted from HepG2 and L02 cells were released by Carlson reductive β-elimination. The released O-glycans previously purified by Dowex 50 WX8-400 cation exchange resin and C18 cartridges were identified by electrospray ioniza-tion mass spectrometry( ESI-MS) and MS/MS. For comparision studies, β-cyclodextrin was used as the inter-nal standard for relative quantitative analysis of the O-glycans derived from HepG2 and L02 cells by MS. As results, 10 O-glycans were observed in HepG2 cell line and 9 O-glycans were detected in L02 cell line. More-over, 9 O-glycans were observed in both HepG2 and L02 cells, wherears 1 truncated O-glycan assigned as H1A1(NeuAc-GalNAc, sialyl Tn antigen, ubiquitous in cancer cells), was only found in HepG2 cells. t-Test results show that 5 and 2 O-glycans in HepG2 cells have significant differences ( P<0. 01 and P<0. 05 , recpectively) , when compared to those of L02 cells. Our studies show methodological significance in structural investigation of O-glycans expressed in hepatocellular carcinoma and early biomarker discovery in clinical diag-nose.%以培养的原发性肝细胞癌HepG2细胞和正常肝细胞L02为研究对象,用细胞裂解液提取总蛋白,然后采用Carlson还原性β-消除法释放O-糖链,以阳离子交换柱结合C18柱纯化分离O-糖链,用电喷雾电离质谱( ESI-MS)和串联质谱( MS/MS)对O-糖链进行序列鉴定,以β-环糊精为内标对2种细胞系的O-糖链进行定量比较分析.结果表明,在肝癌细胞系HepG2中检测到10种O-糖链,正常细胞系L02中检测到9种O-糖链,其中9种O-糖链是2种细胞系中共有的,但HepG2中存在癌细胞中特有的缩短的O-糖链N1A1( NeuAc-GalNAc, sialyl Tn 抗原). t检验结果表明, HepG2与L02相比,在检测到的10种O-糖链中有5种的

  16. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray

    Science.gov (United States)

    Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame

    2016-01-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596

  17. Automated Glycan Sequencing from Tandem Mass Spectra of N-Linked Glycopeptides.

    Science.gov (United States)

    Yu, Chuan-Yih; Mayampurath, Anoop; Zhu, Rui; Zacharias, Lauren; Song, Ehwang; Wang, Lei; Mechref, Yehia; Tang, Haixu

    2016-06-07

    Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ .

  18. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  19. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.;

    2015-01-01

    across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection...

  20. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  1. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  2. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng; Stewart-Jones, Guillaume B. E.; Chuang, Gwo-Yu; Chambers, Michael; Druz, Aliaksandr; Geng, Hui; McKee, Krisha; Kwon, Young Do; O’Dell, Sijy; Sastry, Mallika; Schmidt, Stephen D.; Xu, Kai; Chen, Lei; Chen, Rita E.; Louder, Mark K.; Pancera, Marie; Wanninger, Timothy G.; Zhang, Baoshan; Zheng, Anqi; Farney, S. Katie; Foulds, Kathryn E.; Georgiev, Ivelin S.; Joyce, M. Gordon; Lemmin, Thomas; Narpala, Sandeep; Rawi, Reda; Soto, Cinque; Todd, John-Paul; Shen, Chen-Hsiang; Tsybovsky, Yaroslav; Yang, Yongping; Zhao, Peng; Haynes, Barton F.; Stamatatos, Leonidas; Tiemeyer, Michael; Wells, Lance; Scorpio, Diana G.; Shapiro, Lawrence; McDermott, Adrian B.; Mascola, John R.; Kwong, Peter D.

    2017-04-01

    While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.

  3. Carboxylated N-glycans on RAGE promote S100A12 binding and signaling

    Science.gov (United States)

    Srikrishna, Geetha; Nayak, Jonamani; Weigle, Bernd; Temme, Achim; Foell, Dirk; Hazelwood, Larnele; Olsson, Anna; Volkmann, Niels; Hanein, Dorit; Freeze, Hudson H.

    2010-01-01

    RAGE, the Receptor for Advanced Glycation End Products, is a signaling receptor protein of the immunoglobulin superfamily implicated in multiple pathologies. It binds a diverse repertoire of ligands, but the structural basis for the interaction of different ligands is not well understood. We earlier showed that carboxylated glycans on the V-domain of RAGE promote the binding of HMGB1 and S100A8/A9. Here we study the role of these glycans on the binding and intracellular signaling mediated by another RAGE ligand, S100A12. S100A12 binds carboxylated glycans, and a subpopulation of RAGE enriched for carboxylated glycans shows more than ten fold higher binding potential for S100A12 than total RAGE. When expressed in mammalian cells, RAGE is modified by complex glycans predominantly at the first glycosylation site (N25IT) that retains S100A12 binding. Glycosylation of RAGE and maximum binding sites for S100A12 on RAGE are also cell type dependent. Carboxylated glycan-enriched population of RAGE forms higher order multimeric complexes with S100A12, and this ability to multimerize is reduced upon deglycosylation or by using non-glycosylated sRAGE expressed in E.coli. mAbGB3.1, an antibody against carboxylated glycans, blocks S100A12 mediated NF-κB signaling in HeLa cells expressing full length RAGE. These results demonstrate that carboxylated N-glycans on RAGE enhance binding potential and promote receptor clustering and subsequent signaling events following oligomeric S100A12 binding. PMID:20512925

  4. Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Yasuhiko Kizuka

    2016-04-01

    Full Text Available N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.

  5. Host Glycan Recognition by a Pore Forming Toxin

    OpenAIRE

    Bouyain, Samuel; Geisbrecht, Brian V.

    2012-01-01

    An exposed F-type lectin domain fused to the N-terminus of a cholesterol-dependent cytolysin scaffold allows Streptococcus mitis Lectinolysin to cluster at fucose-rich sites on target cell membranes, thereby leading to increased pore-forming toxin activity. In this issue of Structure, Feil and coworkers define the structural basis for Lectinolysin glycan-binding specificity (Feil et al, 2012).

  6. Mucin-type O-glycans in human cancer: structures and functions%黏蛋白型O-聚糖:结构、功能及与肿瘤的相关性

    Institute of Scientific and Technical Information of China (English)

    吴士良

    2011-01-01

    黏蛋白是细胞表面的或分泌的、具有高度O-糖基化修饰的糖蛋白.黏蛋白型O-聚糖是由多肽:N-乙酰氨基半乳糖转移酶(ppGalNAc-T)家族催化起始合成的,在肿瘤中常常伴随着黏蛋白型O-聚糖结构和数量上的改变,形成肿瘤特异聚糖结构(cancer-associated glycans),如肿瘤Tn和T抗原等.肿瘤特异聚糖使肿瘤细胞的抗原性和黏附能力发生改变,促进肿瘤细胞的恶性增生与转移.而这些肿瘤特异聚糖结构,也为肿瘤的诊断与抗肿瘤药物或疫苗开发提供了理论基础.%Mucins are heavily O-glycosylated glycoproteins found in mucous secretions and as transmembrane glycoproteins of the cell surface with the glycan exposed to the external environment. In mucins, O-glycans are covalently a-linked via an N-acetylgalactosamine (GalNAc)moiety to serine or threonine, and the structures are named mucin-type O-glycans. Mucin-type O-glycans are initiated by UDP-GalNAc: polypeptide N-Acetylgalactosa minyltransferases, which enzymatic mechanism and structural features have been a hot topic of glycosyltransferases research. Mucin-type O-glycans of cancer cells are often changed, both in structure and in quantity, developing several cancer-associated glycans, such as T and Tn antigens. These structural changes can alter the function of the cancer cells, and its antigenic and adhesive properties, as well as its potential to invade and metastasize. These cancer-associated glycans can be exploited to tumor diagnosis, and in the development of anti-tumor drug or vaccine.

  7. Radically altered T cell receptor signaling in glycopeptide-specific T cell hybridoma induced by antigen with minimal differences in the glycan group

    DEFF Research Database (Denmark)

    Jensen, T; Nielsen, M; Gad, Monika;

    2001-01-01

    A T cell hybridoma raised against the synthetic glycopeptide T(72)(Tn) was used to study whether the initial TCR signaling events are markedly different when the hybridoma is stimulated with glycopeptides closely related to the cognate glycopeptide antigen. T(72)(Tn) has an alpha-D-GalNAc group O...

  8. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans

    Science.gov (United States)

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker (bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells. PMID:28396675

  9. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins.

    Science.gov (United States)

    Jo, Sunhwan; Song, Kevin C; Desaire, Heather; MacKerell, Alexander D; Im, Wonpil

    2011-11-15

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.

  10. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    Science.gov (United States)

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  11. Metastasis-associated cell surface oncoproteomics

    Directory of Open Access Journals (Sweden)

    Piia-Riitta eKarhemo

    2012-11-01

    Full Text Available Oncoproteomics aims to the discovery of molecular markers, drug targets and pathways by studying cancer specific protein expression, localization, modification and interaction. Cell surface proteins play a central role in several pathological conditions, including cancer and its metastatic spread. However, cell surface proteins are underrepresented in proteomics analyses performed from the whole cell extracts due to their hydrophobicity and low abundance. Different methods have been developed to enrich and isolate the cell surface proteins to reduce sample complexity. Despite the method selected, the primary difficulty encountered is the solubilization of the hydrophobic transmembrane proteins from the lipid bilayer. This review focuses on proteomic analyses of metastasis-associated proteins identified using the cell surface biotinylation method. Interestingly, also certain intracellular proteins were identified from the cell surface samples. The function of these proteins at the cell surface might well differ from their function inside the cell.

  12. Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus.

    Science.gov (United States)

    Paschinger, Katharina; Wilson, Iain B H

    2015-06-01

    N-Glycans from the nematode Haemonchus contortus (barber pole worm), a parasite of sheep and cattle, were the first to be described to possess up to three fucose residues associated with the N,N'-diacetylchitobiosyl core, two being on the reducing-terminal proximal GlcNAc and one on the distal core GlcNAc residue. The assumption was that truncated glycans from this organism with three hexose residues have the composition Man3GlcNAc2Fuc1-3. In this study, we have performed HPLC and MALDI-TOF MS/MS in combination with selected digestions of N-glycans from Haemonchus. A dominant trifucosylated Hex3HexNAc2Fuc3 glycan was modified not only with α1,6-fucose but also with a proximal core α1,3-fucose and a galactosylated distal α1,3-fucose; thereby, only two of the hexose residues were mannose. Other N-glycans displayed galactosylation of the core α1,6-fucose, antennal fucosylation or modification with phosphorylcholine. Thus, the N-glycans of Haemonchus contain a number of potentially immunogenic glycan epitopes also found in other parasites and our proposed structures are in line with the previously defined specificity of nematode glycosyltransferases as we show that distal fucosylation and the presence of an α1,6-mannose are apparently mutually exclusive. These data are thereby of importance for engineering cell lines capable of mimicking Haemonchus-type N-glycans in the preparation of recombinant proteins as vaccine candidates.

  13. Combining 3D structure with glycan array data provides insight into the origin of glycan specificity.

    Science.gov (United States)

    Grant, Oliver C; Tessier, Matthew B; Meche, Lawrence; Mahal, Lara K; Foley, Bethany L; Woods, Robert J

    2016-07-01

    Defining how a glycan-binding protein (GBP) specifically selects its cognate glycan from among the ensemble of glycans within the cellular glycome is an area of intense study. Powerful insight into recognition mechanisms can be gained from 3D structures of GBPs complexed to glycans; however, such structures remain difficult to obtain experimentally. Here an automated 3D structure generation technique, called computational carbohydrate grafting, is combined with the wealth of specificity information available from glycan array screening. Integration of the array data with modeling and crystallography allows generation of putative co-complex structures that can be objectively assessed and iteratively altered until a high level of agreement with experiment is achieved. Given an accurate model of the co-complexes, grafting is also able to discern which binding determinants are active when multiple potential determinants are present within a glycan. In some cases, induced fit in the protein or glycan was necessary to explain the observed specificity, while in other examples a revised definition of the minimal binding determinants was required. When applied to a collection of 10 GBP-glycan complexes, for which crystallographic and array data have been reported, grafting provided a structural rationalization for the binding specificity of >90% of 1223 arrayed glycans. A webtool that enables researchers to perform computational carbohydrate grafting is available at www.glycam.org/gr (accessed 03 March 2016).

  14. The HIV glycan shield as a target for broadly neutralizing antibodies.

    Science.gov (United States)

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.

  15. Altered Expression of Glycan-binding Protein in Hepatocellular Carcinoma Cell Lines%肝癌细胞系差异性表达的糖结合蛋白研究

    Institute of Scientific and Technical Information of China (English)

    钟耀刚; 秦鑫敏; 杜昊骐; 党刘毅; 李铮

    2014-01-01

    糖结合蛋白(t)lycan-binding protein,GBP)在细胞生命周期中扮演着重要角色,如细胞识别、运输、免疫、代谢、增殖分化及细胞间的相互作用等.目前,对GBP的改变对细胞生物过程产生影响的研究甚少.本研究用糖芯片技术对肝癌细胞系HepG2和正常肝细胞系L02表达的GBP进行研究;糖细胞化学验证确定差异表达GBP在肝癌细胞系中的变化和分布.结果显示,8种糖探针(如SL、LNT和GalNAc等)和5种糖探针(如Man、Man-9-Glycan,Xyl等)分别对应的GBP在HepG2细胞中表达上调或下调.糖细胞化学结果显示:GalNAc识别的GBPs主要表达在HepG2的胞膜、中央胞质、核周胞质区域,而在L02的相同区域表达减弱;NeuAc识别的GBPs主要表达在L02的胞膜区及核周胞质区,而在HepG2细胞的相同区域表达减弱.这些数据为寻找新的肝癌发病机制和抗肿瘤策略提供了有用信息.%Glycan-binding protein play important biological roles in biological processes.We use carbohydrate microarray to study the alteration of GBP in hepatocellular carcinoma cell line HepG2 and L02.Carbohydrate histochemistry was used to further validate the GBP and assess the distribution.As a result,8 carbohydrate probes (e.g.SL,LNT,and GalNAc) showed increased signal while 5 carbohydrate probes (e.g.Man,Man-9-Glycan,and Xyl) showed decreased signal in HepG2 compared with L02 cell line.Meanwhile,GalNAc staining showed moderate binding to the cytoplasma membrane,central cytoplasm,and perinuclear cytoplasm in the L02,and the binding intensified in the same regions of the HepG2.NeuAc staining showed moderate binding to the cytoplasma membrane,and perinuclear cytoplasm in the HepG2,and the binding intensified in the same regions of the L02.In conclusion,the precision alteration of GBP related to HepG2 may provide useful information to find new molecular mechanism of hepatocellular carcinoma and antitumor therapeutic strategies.

  16. N-glycans and metastasis in galectin-3 transgenic mice.

    Science.gov (United States)

    More, Shyam K; Srinivasan, Nithya; Budnar, Srikanth; Bane, Sanjay M; Upadhya, Archana; Thorat, Rahul A; Ingle, Arvind D; Chiplunkar, Shubhada V; Kalraiya, Rajiv D

    2015-05-01

    Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.

  17. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications.

    Science.gov (United States)

    Friedrich, Valentin; Janesch, Bettina; Windwarder, Markus; Maresch, Daniel; Braun, Matthias L; Megson, Zoë A; Vinogradov, Evgeny; Goneau, Marie-France; Sharma, Ashu; Altmann, Friedrich; Messner, Paul; Schoenhofen, Ian C; Schäffer, Christina

    2016-12-16

    Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.

  18. Glycoarrays with engineered phages displaying structurally diverse oligosaccharides enable high-throughput detection of glycan-protein interactions

    Science.gov (United States)

    Çelik, Eda; Ollis, Anne A.; Lasanajak, Yi; Fisher, Adam C.; Gür, Göksu; Smith, David F.; DeLisa, Matthew P.

    2014-01-01

    Glycan microarrays have become a powerful platform to investigate the interactions of carbohydrates with a variety of biomolecules. However, the number and diversity of glycans available for use in such arrays represents a key bottleneck in glycan array fabrication. To address this challenge, we describe a novel glycan array platform based on surface patterning of engineered glycophages that display unique carbohydrate epitopes. Specifically, we show that glycophages are compatible with surface immobilization procedures and that phage-displayed oligosaccharides retain the ability to be recognized by different glycan-binding proteins (e.g., antibodies, lectins) after immobilization. A key advantage of glycophage arrays is that large quantities of glycophages can be produced biosynthetically from recombinant bacteria and isolated directly from bacterial supernatants without laborious purification steps. Taken together, the glycophage array technology described here should help to expand the diversity of glycan libraries and provide a complement to the existing toolkit for high-throughput analysis of glycan-protein interactions. PMID:25263089

  19. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus.

    Science.gov (United States)

    Hewitson, James P; Nguyen, D Linh; van Diepen, Angela; Smit, Cornelis H; Koeleman, Carolien A; McSorley, Henry J; Murray, Janice; Maizels, Rick M; Hokke, Cornelis H

    2016-03-01

    Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory-secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC-MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory-secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1-4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory-secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory-secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory-secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.

  20. The sweet side of immune evasion: role of glycans in the mechanisms of cancer progression

    Directory of Open Access Journals (Sweden)

    Ana Flávia Fernandes Ribas Nardy

    2016-03-01

    Full Text Available Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes including cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumor cell invasion and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune resistant cancer cells. The involvement of glycans in cancer progression are related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field.

  1. Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles.

    Science.gov (United States)

    Engelmann, Katja; Kinlough, Carol L; Müller, Stefan; Razawi, Hani; Baldus, Stephan E; Hughey, Rebecca P; Hanisch, Franz-Georg

    2005-11-01

    The human mucin MUC1 is expressed both as a transmembrane heterodimeric protein complex that recycles via the trans-Golgi network (TGN) and as a secreted isoform. To determine whether differences in cellular trafficking might influence the O-glycosylation profiles on these isoforms, we developed a model system consisting of membrane-bound and secretory-recombinant glycosylation probes. Secretory MUC1-S contains only a truncated repeat domain, whereas in MUC1-M constructs this domain is attached to the native transmembrane and cytoplasmic domains of MUC1 either directly (M0) or via an intermitting nonfunctional (M1) or functional sperm protein-enterokinase-agrin (SEA) module (M2); the SEA module contains a putative proteolytic cleavage site and is associated with proteins receiving extensive O-glycosylation. We showed that MUC1-M2 simulates endogenous MUC1 by recycling from the cell surface of Chinese hamster ovary (CHO) mutant ldlD14 cells through intracellular compartments where its glycosylation continues. The profiles of O-linked glycans on MUC1-S secreted by epithelial EBNA-293 and MCF-7 breast cancer cells revealed patterns dominated by core 2-based oligosaccharides. In contrast, the respective membrane-shed probes expressed in the same cells showed a complete shift to patterns dominated by sialyl core 1. In conclusion, glycan core profiles reflected the subcellular trafficking pathways of the secretory or membranous probes and the modifying activities of the resident glycosyltransferases.

  2. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.; Wosten, H.A.B.

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the ce

  3. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  4. Cell-surface hydrophobicity of Staphylococcus saprophyticus.

    Science.gov (United States)

    Schneider, P. F.; Riley, T. V.

    1991-01-01

    The cell-surface hydrophobicity of 100 urinary isolates of Staphylococcus saprophyticus, cultured from symptomatic females in the general population, was assessed using a two-phase aqueous:hydrocarbon system. Relatively strong cell-surface hydrophobicity was exhibited by 79 isolates using the criteria employed, while only 2 of the remaining 21 isolates failed to demonstrate any detectable hydrophobicity. Cell-surface hydrophobicity may be a virulence factor of S. saprophyticus, important in adherence of the organism to uroepithelia. Additionally, the data support the concept that cell-surface hydrophobicity may be a useful predictor of clinical significance of coagulase-negative staphylococci isolated from clinical sources. PMID:1993454

  5. Cell attachment on ion implanted titanium surface

    Directory of Open Access Journals (Sweden)

    P.S. Sreejith

    2008-12-01

    Full Text Available Purpose: Of outmost importance for the successful use of an implant is a good adhesion of the surrounding tissue to the biomaterial. In addition to the surface composition of the implant, the surface topography also influences the properties of the adherent cells. In the present investigation, ion implanted and untreated surfaces were compared for cell adhesion and spreading.Design/methodology/approach: The surface topography of the surfaces were analyzed using AFM and the cell studies with SEM.Findings: The results of our present investigation is indicative of the fact that ion implanted titanium surface offer better cell binding affinity compared to untreated/polished surface.Practical implications: Success of non-biodegradable implants will first and foremost depend on biocompatibility, followed by the capacity of the surface topography of the implants to evince desired cell matrix, surface cell matrix interactions. In the present study, the cell growth on ion implanted Ti material is analyzed and discussed.Originality/value: In this paper, we have utilized ion implantation technique, which will produce nano-texturing of the surface without producing any detrimental effects to both the dimensions and properties of the implants.

  6. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes.

    Science.gov (United States)

    Kim, Yeong Hun; Kang, Ji-Yeon; Gil, Jin Young; Kim, Sang-Yoon; Shin, Keun Koo; Kang, Hyun Ah; Kim, Jeong-Yoon; Kwon, Ohsuk; Oh, Doo-Byoung

    2017-04-01

    Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  7. Serum Aberrant N-Glycan Profile as a Marker Associated with Early Antibody-Mediated Rejection in Patients Receiving a Living Donor Kidney Transplant.

    Science.gov (United States)

    Noro, Daisuke; Yoneyama, Tohru; Hatakeyama, Shingo; Tobisawa, Yuki; Mori, Kazuyuki; Hashimoto, Yasuhiro; Koie, Takuya; Tanaka, Masakazu; Nishimura, Shin-Ichiro; Sasaki, Hideo; Saito, Mitsuru; Harada, Hiroshi; Chikaraishi, Tatsuya; Ishida, Hideki; Tanabe, Kazunari; Satoh, Shigeru; Ohyama, Chikara

    2017-08-08

    We determined if the serum N-glycan profile can be used as a diagnostic marker of antibody-mediated rejection (ABMR) in living donor kidney transplant (LKTx) recipients. Glycoblotting, combined with mass spectrometry, was used to retrospectively examine N-glycan levels in the postoperative sera of 197 LKTx recipients of whom 16 recipients had ABMR with or without T-cell-mediated rejection (TCMR), 40 recipients had TCMR, and 141 recipients had no adverse events. Multivariate discriminant analysis for prediction of ABMR was performed by inputting an ABMR event as an explanatory variable and sex, age, and serum N-glycan level as objective variables. The N-glycan score was calculated by multiplying the level of candidate objective variables by objective function values. The ABMR predictive performance of the N-glycan score was assessed by receiver operator characteristic curve and Kaplan-Meier curve analyses. The N-glycan score discriminated ABMR with 81.25% sensitivity, 87.85% specificity, and an area under the curve (AUC) of 0.892 that was far superior to that of preformed donor-specific antibody status (AUC, 0.761). Recipients with N-glycan-positive scores >0.8770 had significantly shorter ABMR survival than that of recipients with N-glycan-negative scores. Although the limitations of our study includ its small sample size and retrospective nature, the serum N-glycan score may contribute to prediction of ABMR.

  8. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  9. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  10. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  11. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans.

    Science.gov (United States)

    Brzezicka, Katarzyna; Echeverria, Begoña; Serna, Sonia; van Diepen, Angela; Hokke, Cornelis H; Reichardt, Niels-Christian

    2015-05-15

    The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.

  12. Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I.

    Science.gov (United States)

    Alvarez-Manilla, Gerardo; Warren, Nicole Lynn; Abney, Trina; Atwood, James; Azadi, Parastoo; York, Will S; Pierce, Michael; Orlando, Ron

    2007-07-01

    Analysis of oligosaccharides by mass spectrometry (MS) has enabled the investigation of the glycan repertoire of organisms with high resolution and sensitivity. It is difficult, however, to correlate the expression of glycosyltransferases with the glycan structures present in a particular cell type or tissue because the use of MS for quantitative purposes has significant limitations. For this reason, in order to develop a technique that would allow relative glycan quantification by MS analysis between two samples, a procedure was developed for the isotopic labeling of oligosaccharides with (13)C-labeled methyl iodide using standard permethylation conditions. Separate aliquots of oligosaccharides from human milk were labeled with (12)C or (13)C methyl iodide; the labeled and non-labeled glycans were mixed in known proportions, and the mixtures analyzed by MS. Results indicated that the isotopic labeling described here was capable of providing relative quantitative data with a dynamic range of at least two orders of magnitude, adequate linearity, and reproducibility with a coefficient of variation that was 13% on average. This procedure was used to analyze N-linked glycans released from various mixtures of glycoproteins, such as alpha-1 acid glycoprotein, human transferrin, and bovine fetuin, using MS techniques that included matrix assisted laser desorption ionization-time of flight MS and electrospray ionization with ion cyclotron resonance-Fourier transformation MS. The measured (12)C:(13)C ratios from mixtures of glycans permethylated with either (12)CH(3)I or (13)CH(3)I were consistent with the theoretical proportions. This technique is an effective procedure for relative quantitative glycan analysis by MS.

  13. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  14. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  15. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  16. Development of Monolithic Column Materials for the Separation and Analysis of Glycans

    Directory of Open Access Journals (Sweden)

    Allan J. Alla

    2015-02-01

    Full Text Available Monolithic column materials offer great advantages as chromatographic media in bioseparations and as solid-supports in biocatalysis. These single-piece porous materials have an interconnected ligament structure that limits the void volume inside the column, thus increasing the efficiency without sacrificing the permeability. The preparation of monolithic materials is easy, reproducible and has available a wide range of chemistries to utilize. Complex, heterogeneous and isobaric glycan structures require preparation methods that may include glycan release, separation and enrichment prior to a comprehensive and site-specific glycosylation analysis. Monolithic column materials aid that demand, as shown by the results reported by the research works presented in this review. These works include selective capture of glycans and glycoproteins via their interactions with lectins, boronic acids, hydrophobic, and hydrophilic/polar functional groups on monolith surfaces. It also includes immobilization of enzymes trypsin and PNGase F on monoliths to digest and deglycosylate glycoproteins and glycopeptides, respectively. The use of monolithic capillary columns for glycan separations through nano-liquid chromatography (nano-LC and capillary electrochromatography (CEC and coupling these columns to MS instruments to create multidimensional systems show the potential in the development of miniaturized, high-throughput and automated systems of glycan separation and analysis.

  17. Glycans in Medicinal Chemistry: An Underexploited Resource.

    Science.gov (United States)

    Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-08-01

    The biological relevance of glycans as mediators of key physiological processes, including disease-related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure-activity correlations and their non-drug-like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan-based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan-based therapeutics and vaccines.

  18. The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x.

    NARCIS (Netherlands)

    Die, van I.M.; Vliet, van SJ; Nyame, AK; Cummings, RD; Bank, CM; Appelmelk, B.J.; Geijtenbeek, T.B.H.; Kooijk, van Y.

    2003-01-01

    Schistosoma mansoni soluble egg antigens (SEAs) are crucially involved in modulating the host immune response to infection by S. mansoni. We report that human dendritic cells bind SEAs through the C-type lectin dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Monoclonal antibodies agai

  19. Rapid characterization of N-linked glycans from secreted and gel-purified monoclonal antibodies using MALDI-ToF mass spectrometry.

    Science.gov (United States)

    Hansen, Rasmus; Dickson, Alan J; Goodacre, Royston; Stephens, Gill M; Sellick, Christopher A

    2010-12-01

    Recombinant monoclonal antibodies (MAbs) are increasingly being used for therapeutic use and correct glycosylation of these MAbs is essential for their correct function. Glycosylation profiles are host cell- and antibody class-dependent and can change over culture time and environmental conditions. Therefore, rapid monitoring of glycan addition/status is of great importance for process validity. We describe two workflows of generally applicability for glycan profiling of purified and gel-purified MAbs produced in NS0 and CHO cells, in which small-scale antibody purification and buffer exchange is combined with PNGase F glycan cleavage and graphite HyperCarb desalting. MALDI-ToF mass spectrometry is used for sensitive detection of glycan forms, with the ability to confirm glycan structures by selective ion fragmentation. Both workflows are rapid, technically simple and amenable to automation, and use in multi-well formats. © 2010 Wiley Periodicals, Inc.

  20. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles.

    Science.gov (United States)

    Zheng, Longtang; Wei, Jinhua; Lv, Xun; Bi, Yuhai; Wu, Peixing; Zhang, Zhenxing; Wang, Pengfei; Liu, Ruichen; Jiang, Jingwen; Cong, Haolong; Liang, Jingnan; Chen, Wenwen; Cao, Hongzhi; Liu, Wenjun; Gao, George F; Du, Yuguang; Jiang, Xingyu; Li, Xuebing

    2017-05-15

    Accurate diagnosis of influenza viruses is difficult and generally requires a complex process because of viral diversity and rapid mutability. In this study, we report a simple and rapid strategy for the detection and differentiation of influenza viruses using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the aggregation of gGNP probes on the viral surface, which is mediated by the specific binding of the virus to the glycans. Using a set of gGNPs bearing different glycan structures, fourteen influenza virus strains, including the major subtypes currently circulating in human and avian populations, were readily differentiated from each other and from a human respiratory syncytial virus in a single-step colorimetric procedure. The results presented here demonstrate the potential of this gGNP-based system in the development of convenient and portable sensors for the clinical diagnosis and surveillance of influenza viruses.

  1. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    LENUS (Irish Health Repository)

    Coss, K P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg\\/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg\\/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  2. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  3. Glycans as biofunctional ligands for gold nanorods: stability and targeting in protein-rich media.

    Science.gov (United States)

    García, Isabel; Sánchez-Iglesias, Ana; Henriksen-Lacey, Malou; Grzelczak, Marek; Penadés, Soledad; Liz-Marzán, Luis M

    2015-03-18

    Poly(ethylene glycol) (PEG) has become the gold standard for stabilization of plasmonic nanoparticles (NPs) in biofluids, because it prevents aggregation while minimizing unspecific interactions with proteins. Application of Au NPs in biological environments requires the use of ligands that can target selected receptors, even in the presence of protein-rich media. We demonstrate here the stabilizing effect of low-molecular-weight glycans on both spherical and rod-like plasmonic NPs under physiological conditions, as bench-marked against the well-established PEG ligands. Glycan-coated NPs are resistant to adsorption of proteins from serum-containing media and avoid phagocytosis by macrophage-like cells, but retain selectivity toward carbohydrate-binding proteins in protein-rich biological media. These results open the way toward the design of efficient therapeutic/diagnostic glycan-decorated plasmonic nanotools for specific biological applications.

  4. Different site-specific N-glycan types in wheat (Triticum aestivum L.) PAP phytase.

    Science.gov (United States)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing; Jørgensen, Malene

    2011-07-01

    Phytase activity in grain is essential to make phosphate available to cell metabolism, and in food and feed. Cereals contain the purple acid phosphatase type of phytases (PAPhy). Mature wheat grain is dominated by TaPAPhy_a which, in the present work, has been characterized by extensive peptide and glycopeptide sequencing by mass spectrometry. Seven N-linked glycosylation sites were found. Three of these sites were dominated by variant forms of the XylMan(3)FucGlcNAc(2), i.e. the HRP-type of glycan. Complex-type glycans with one or two additional GlcNAc were observed, however in trace amounts only. At four sites the glycan consisted of a single GlcNAc residue. The mature protein is ca. 500 residues in size and appears to be truncated at the N- and C-termini. Copyright © 2011. Published by Elsevier Ltd.

  5. Downregulation of the UDP-arabinomutase gene in switchgrass (Panicum virgatum L. results in increased cell wall lignin while reducing arabinose-glycans

    Directory of Open Access Journals (Sweden)

    Jonathan Duran Willis

    2016-10-01

    Full Text Available Switchgrass (Panicum virgatum L. is a C4 perennial prairie grass and a lignocellulosic biofuels feedstock. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and crosslink other cell wall polymers. Grasses have predominately Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP linked to arabinofuranose (Araf. A family of UDP-arabinopyranose mutase/reversible glycosylated polypeptides (UAM/RGPs catalyze the interconversion between UDP-arabinopyranose (UDP-Arap and UDP-Araf. In switchgrass we knocked down expression of the endogenous PvUAM1 gene via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise morphologically similar to non-transgenics. There was decreased cell wall-associated arabinose in leaves and stems by over 50%, but there was an increase in cellulose in these organs. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control, but had increased glucose in cell walls. The increased glucose detected in stems and leaves indicates that attenuation of PvUAM1 expression might have downstream effects on starch

  6. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    Science.gov (United States)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; Zhang, Ji-Yi; Turner, Geoffrey B.; Decker, Stephen R.; Sykes, Robert W.; Poovaiah, Charleson R.; Baxter, Holly L.; Mann, David G. J.; Davis, Mark F.; Udvardi, Michael K.; Peña, Maria J.; Backe, Jason; Bar-Peled, Maor; Stewart, C. N.

    2016-01-01

    Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell

  7. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  8. Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment

    NARCIS (Netherlands)

    Schweizer, A..; Clausen, H.; van Meer, G.; Hauri, H.P.

    1994-01-01

    The identification of an endoplasmic reticulum-Golgi intermediate compartment (ERGIC), defined by the 53-kDa transmembrane marker protein ERGIC-53, has added to the complexity of the exocytic pathway of higher eukaryotic cells. Recently, a subcellular fractionation procedure was established for the

  9. Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment

    NARCIS (Netherlands)

    Schweizer, A..; Clausen, H.; van Meer, G.; Hauri, H.P.

    1994-01-01

    The identification of an endoplasmic reticulum-Golgi intermediate compartment (ERGIC), defined by the 53-kDa transmembrane marker protein ERGIC-53, has added to the complexity of the exocytic pathway of higher eukaryotic cells. Recently, a subcellular fractionation procedure was established for the

  10. Convergent evolution of filamentous microbes towards evasion of glycan-triggered immunity

    NARCIS (Netherlands)

    Rovenich, Hanna; Zuccaro, Alga; Thomma, Bart P.H.J.

    2016-01-01

    I. II. III. IV. V. VI. References Summary: All filamentous microbes produce and release a wide range of glycans, which are essential determinants of microbe-microbe and microbe-host interactions. Major cell wall constituents, such as chitin and β-glucans, are elicitors of host immune responses.

  11. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  12. A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins

    Directory of Open Access Journals (Sweden)

    Reeja Maria Cherian

    2015-08-01

    Full Text Available Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b, CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1, core 3 (B3GNT6, core 4 (GCNT1 and B3GNT6, or extended core 1 (B3GNT3 chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc or type 2 (Galb4GlcNAc outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.

  13. Structure and functions of fungal cell surfaces

    Science.gov (United States)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  14. Inhibition of N-acetylglucosaminyltransferase V enhances the cetuximab-induced radiosensitivity of nasopharyngeal carcinoma cells likely through EGFR N-glycan alterations.

    Science.gov (United States)

    Huang, Xiaomin; Liu, Ting; Wang, Qiongyao; Zhu, Weiliang; Meng, Hui; Guo, Linlang; Wei, Ting; Zhang, Jian

    2017-05-23

    N-acetylglucosaminyltransferase V (GnT-V), an enzyme that catalyses the formation of the N-linked β-1-6 branching of oligosaccharides, is related to the radiosensitivity of nasopharyngeal carcinoma (NPC). Cetuximab (C225) is an epidermal growth factor receptor (EGFR) inhibitor used as a radiosensitizer in the treatment of NPC. In this study, we used GnT-V as a molecular target to further sensitize cetuximab-treated NPC cells to radiation. The results from two NPC cell lines (CNE1 and CNE2) revealed that the silencing of GnT-V enhanced cetuximab-induced radiosensitivity by decreasing the β-1-6 branching of oligosaccharides on the EGFR. GnT-V down-regulation combined with cetuximab decreased the survival fraction, healing rate and cell viability and increased the apoptosis rate. Concomitantly, the combination of cetuximab and irradiation did not change the EGFR mRNA and protein levels and decreased the β-1-6 branching on the EGFR. Subsequently, we further explored the signalling downstream of EGF, particularly the PI3K/Akt signalling pathway, and discovered that treatment consisting of GnT-V down-regulation, irradiation and cetuximab was negatively correlated with phospho-Akt and phspho-PI3K. Finally, an in vivo experiment with radiotherapy revealed that the combination of GnT-V down-regulation and cetuximab decelerated tumour growth. In summary, our study demonstrated that the combination of decreased GnT-V activity and cetuximab enhanced NPC radiosensitivity, and the possible mechanism underlying this effect might involve the N-linked β1-6 branching of the EGFR. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  16. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  17. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs.

    Science.gov (United States)

    Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D

    2011-01-01

    L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs.

  18. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans.

    Science.gov (United States)

    Harvey, David J; Scarff, Charlotte A; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B; Crispin, Max; Scrivens, James H

    2016-11-01

    Nitrogen collisional cross sections (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein and thyroglobulin were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3 GlcNAc3 from chicken ovalbumin and Man3 GlcNAc3 Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra obtained by collision-induced decomposition (CID). Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work, and in the related earlier paper on high-mannose glycans, usually suggested that separations were because of conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in CCSs were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between CCSs and structural types were also investigated, and it was found that complex glycans tended to have slightly smaller CCSs than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger CCSs. Copyright © 2016 John Wiley & Sons

  19. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man3GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  20. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    Science.gov (United States)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  1. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study.

    Science.gov (United States)

    Gomes, Michelle M; Suzuki, Hitoshi; Brooks, Monica T; Tomana, Milan; Moldoveanu, Zina; Mestecky, Jiri; Julian, Bruce A; Novak, Jan; Herr, Andrew B

    2010-07-13

    Aberrancies in IgA1 glycosylation have been linked to the pathogenesis of IgA nephropathy (IgAN), a kidney disease characterized by deposits of IgA1-containing immune complexes in the glomerular mesangium. IgA1 from IgAN patients is characterized by the presence of galactose (Gal)-deficient O-glycans in the hinge region that can act as epitopes for anti-glycan IgG or IgA1 antibodies. The resulting circulating immune complexes are trapped in the glomerular mesangium of the kidney where they trigger localized inflammatory responses by activating mesangial cells. Certain lectins recognize the terminal N-acetylgalactosamine (GalNAc)-containing O-glycans on Gal-deficient IgA1 and can be potentially used as diagnostic tools. To improve our understanding of GalNAc recognition by these lectins, we have conducted binding studies to assess the interaction of Helix aspersa agglutinin (HAA) and Helix pomatia agglutinin (HPA) with Gal-deficient IgA1. Surface plasmon resonance spectroscopy revealed that both HAA and HPA bind to a Gal-deficient synthetic hinge region glycopeptide (HR-GalNAc) as well as various aberrantly glycosylated IgA1 myeloma proteins. Despite having six binding sites, both HAA and HPA bind IgA1 in a functionally bivalent manner, with the apparent affinity for IgA1 related to the number of exposed GalNAc groups in the IgA1 hinge. Finally, HAA and HPA were shown to discriminate very effectively between the IgA1 secreted by cell lines derived from peripheral blood cells of patients with IgAN and that from cells of healthy controls. These studies provide insight into lectin recognition of the Gal-deficient IgA1 hinge region and lay the groundwork for the development of reliable diagnostic tools for IgAN.

  2. Growth of Chitinophaga pinensis on Plant Cell Wall Glycans and Characterisation of a Glycoside Hydrolase Family 27 β-l-Arabinopyranosidase Implicated in Arabinogalactan Utilisation.

    Directory of Open Access Journals (Sweden)

    Lauren S McKee

    Full Text Available The genome of the soil bacterium Chitinophaga pinensis encodes a diverse array of carbohydrate active enzymes, including nearly 200 representatives from over 50 glycoside hydrolase (GH families, the enzymology of which is essentially unexplored. In light of this genetic potential, we reveal that C. pinensis has a broader saprophytic capacity to thrive on plant cell wall polysaccharides than previously reported, and specifically that secretion of β-l-arabinopyranosidase activity is induced during growth on arabinogalactan. We subsequently correlated this activity with the product of the Cpin_5740 gene, which encodes the sole member of glycoside hydrolase family 27 (GH27 in C. pinensis, CpArap27. Historically, GH27 is most commonly associated with α-d-galactopyranosidase and α-d-N-acetylgalactosaminidase activity. A new phylogenetic analysis of GH27 highlighted the likely importance of several conserved secondary structural features in determining substrate specificity and provides a predictive framework for identifying enzymes with the less common β-l-arabinopyranosidase activity.

  3. Sulfated Glycans and Related Digestive Enzymes in the Zika Virus Infectivity: Potential Mechanisms of Virus-Host Interaction and Perspectives in Drug Discovery

    Science.gov (United States)

    2017-01-01

    As broadly reported, there is an ongoing Zika virus (ZIKV) outbreak in countries of Latin America. Recent findings have demonstrated that ZIKV causes severe defects on the neural development in fetuses in utero and newborns. Very little is known about the molecular mechanisms involved in the ZIKV infectivity. Potential therapeutic agents are also under investigation. In this report, the possible mechanisms of action played by glycosaminoglycans (GAGs) displayed at the surface proteoglycans of host cells, and likely in charge of interactions with surface proteins of the ZIKV, are highlighted. As is common for the most viruses, these sulfated glycans serve as receptors for virus attachment onto the host cells and consequential entry during infection. The applications of (1) exogenous sulfated glycans of different origins and chemical structures capable of competing with the virus attachment receptors (supposedly GAGs) and (2) GAG-degrading enzymes able to digest the virus attachment receptors on the cells may be therapeutically beneficial as anti-ZIKV. This communication attempts, therefore, to offer some guidance for the future research programs aimed to unveil the molecular mechanisms underlying the ZIKV infectivity and to develop therapeutics capable of decreasing the devastating consequences caused by ZIKV outbreak in the Americas. PMID:28203251

  4. Relevance of glycosylation of S-layer proteins for cell surface properties.

    Science.gov (United States)

    Schuster, Bernhard; Sleytr, Uwe B

    2015-06-01

    Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices.

  5. Surface cell immobilization within perfluoroalkoxy microchannels

    Science.gov (United States)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  6. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

    Science.gov (United States)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-02-01

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a ``click'' chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with

  7. Identification of a Conserved Glycan Signature for Microvesicles

    Science.gov (United States)

    Batista, Bianca S.; Eng, William S.; Pilobello, Kanoelani T.; Hendricks-Muñoz, Karen D.; Mahal, Lara K.

    2011-01-01

    Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression and the spread of infectious agents. The biological functions of these small vesicles are dependent upon their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting. PMID:21859146

  8. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  9. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  10. Cell surface engineering with edible protein nanoshells.

    Science.gov (United States)

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  11. N-glycan alterations are associated with drug resistance in human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Nakagawa Takahito

    2007-05-01

    Full Text Available Abstract Background Correlations of disease phenotypes with glycosylation changes have been analysed intensively in the tumor biology field. Glycoforms potentially associated with carcinogenesis, tumor progression and cancer metastasis have been identified. In cancer therapy, drug resistance is a severe problem, reducing therapeutic effect of drugs and adding to patient suffering. Although multiple mechanisms likely underlie resistance of cancer cells to anticancer drugs, including overexpression of transporters, the relationship of glycans to drug resistance is not well understood. Results We established epirubicin (EPI – and mitoxantrone (MIT – resistant cell lines (HLE-EPI and HLE-MIT from the human hepatocellular carcinoma cell line (HLE. HLE-EPI and HLE-MIT overexpressed transporters MDR1/ABCB1 and BCRP/ABCG2, respectively. Here we compared the glycomics of HLE-EPI and HLE-MIT cells with the parental HLE line. Core fucosylated triantennary oligosaccharides were increased in the two resistant lines. We investigated mRNA levels of glycosyltransferases synthesizing this oligosaccharide, namely, N-acetylglucosaminyltransferase (GnT-IVa, GnT-IVb and α1,6-fucosyltransferase (α1,6-FucT, and found that α1,6-FucT was particularly overexpressed in HLE-MIT cells. In HLE-EPI cells, GnT-IVa expression was decreased, while GnT-IVb was increased. Both GnT-IVs were downregulated in HLE-MIT cells. HLE-MIT cells also showed decreases in fucosylated tetraantennary oligosaccharide, the product of GnT-V. GnT-V expression was decreased in both lines, but particularly so in HLE-MIT cells. Thus both N-glycan and glycosyltransferase expression was altered as cells acquired tolerance, suggesting novel mechanisms of drug resistance. Conclusion N-glycan and glycosyltransferase expression in HLE-EPI and HLE-MIT were analysed and presented that glycans altered according with acquired tolerance. These results suggested novel mechanisms of drug resistance.

  12. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation.

    Science.gov (United States)

    Fukushima, K; Yamashita, K

    2001-03-01

    Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.

  13. The cell surface proteome of Entamoeba histolytica.

    Science.gov (United States)

    Biller, Laura; Matthiesen, Jenny; Kühne, Vera; Lotter, Hannelore; Handal, Ghassan; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Schümann, Michael; Roeder, Thomas; Tannich, Egbert; Krause, Eberhard; Bruchhaus, Iris

    2014-01-01

    Surface molecules are of major importance for host-parasite interactions. During Entamoeba histolytica infections, these interactions are predicted to be of prime importance for tissue invasion, induction of colitis and liver abscess formation. To date, however, little is known about the molecules involved in these processes, with only about 20 proteins or protein families found exposed on the E. histolytica surface. We have therefore analyzed the complete surface proteome of E. histolytica. Using cell surface biotinylation and mass spectrometry, 693 putative surface-associated proteins were identified. In silico analysis predicted that ∼26% of these proteins are membrane-associated, as they contain transmembrane domains and/or signal sequences, as well as sites of palmitoylation, myristoylation, or prenylation. An additional 25% of the identified proteins likely represent nonclassical secreted proteins. Surprisingly, no membrane-association sites could be predicted for the remaining 49% of the identified proteins. To verify surface localization, 23 proteins were randomly selected and analyzed by immunofluorescence microscopy. Of these 23 proteins, 20 (87%) showed definite surface localization. These findings indicate that a far greater number of E. histolytica proteins than previously supposed are surface-associated, a phenomenon that may be based on the high membrane turnover of E. histolytica.

  14. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  15. Tumor-Associated Glycans and Immune Surveillance

    OpenAIRE

    Anastas Pashov; Behjatolah Monzavi-Karbassi; Thomas Kieber-Emmons

    2013-01-01

    Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. Howev...

  16. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation

    OpenAIRE

    Badr, Haitham A.; Dina M. M. AlSadek; Mohit P. Mathew; Chen-Zhong Li; Djansugurova, Leyla B.; Yarema, Kevin J.; Hafiz Ahmed

    2015-01-01

    This report provides data that are specifically related to the differential sialylation of nutrient deprived breast cancer cells to sialic acid supplementation in support of the research article entitled, “Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation" [1]. Particularly, breast cancer cells, when supplemented with sialic acid under nutrient deprivation, display sialylated glycans at the cell surface, but non-malignant mammary cells show s...

  17. Transduction of Glycan-Lectin Binding using Near Infrared Fluorescent Single Walled Carbon Nanotubes for Glycan Profiling

    Science.gov (United States)

    Reuel, Nigel; Ahn, Jin-Ho; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis; Mahal, Lara; Strano, Michael

    2012-02-01

    In this work, we demonstrate a sensor array employing recombinant lectins as glycan recognition sites tethered via Histidine tags to Ni2+ complexes that act as fluorescent quenchers for semi-conducting single walled carbon nanotubes embedded in a chitosan to measure binding kinetics of model glycans. Two higher-affined glycan-lectin pairs are explored: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. The dissociation constants (KD) for these pairs as free glycans (106 and 19 μM respectively) and streptavidin-tethered (142 and 50 μM respectively) were found. The absolute detection limit for the current platform was found to be 2 μg of glycosylated protein or 100 ng of free glycan to 20 μg of lectin. Glycan detection is demonstrated at the single nanotube level (GlcNAc to GafD). Over a population of 1000 nanotubes, 289 of the SWNT sensors had signals strong enough to yield kinetic information (KD of 250 ± 10 μM). We are also able to identify the locations of ``strong-transducers'' on the basis of dissociation constant (4 sensors with KD 5% quench response). The ability to pinpoint strong-binding, single sensors is promising to build a nanoarray of glycan-lectin transducers as a method to profile glycans without protein labeling or glycan liberation pretreatment steps.

  18. The N-glycan glycoprotein deglycosylation complex (Gpd from Capnocytophaga canimorsus deglycosylates human IgG.

    Directory of Open Access Journals (Sweden)

    Francesco Renzi

    2011-06-01

    Full Text Available C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties from host cells N-glycoproteins. Here, we show that C. canimorsus 5 also has the capacity to deglycosylate human IgG and we analyze the deglycosylation mechanism. We show that deglycosylation is achieved by a large complex spanning the outer membrane and consisting of the Gpd proteins and sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins. GpdDEF could contribute to the binding of glycoproteins at the bacterial surface while GpdG is a endo-β-N-acetylglucosaminidase cleaving the N-linked oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a TonB-dependent OM transporter is presumed to import the oligosaccharide into the periplasm after its cleavage from the glycoprotein. The terminal sialic acid residue of the oligosaccharide is then removed by SiaC, a periplasm-exposed lipoprotein in direct contact with GpdC. Finally, most likely degradation of the oligosaccharide proceeds sequentially from the desialylated non reducing end by the action of periplasmic exoglycosidases, including β-galactosidases, β-N-Acetylhexosaminidases and α-mannosidases.

  19. Identification of a novel glycan processing enzyme with exo-acting β-allosidase activity in the Golgi apparatus using a new platform for the synthesis of fluorescent substrates.

    Science.gov (United States)

    Hakamata, Wataru; Miura, Kazuki; Hirano, Takako; Nishio, Toshiyuki

    2015-01-01

    The majority of eukaryotic proteins undergo post-translational modifications (PTMs) involving the attachment of complex glycans, predominantly through N-glycosylation and O-glycosylation. PTMs play important roles in virtually all cellular processes, and aberrant regulation of protein glycosylation and glycan processing has been implicated in various diseases. However, glycan processing on proteins in various cellular contexts has not been visualized. We had previously developed a quinone methide cleavage (QMC) platform for enhanced substrate design. This platform was applied here to screen for novel glycan-processing enzymes. We designed and synthesized fluorescent substrates with β-allopyranoside residues using the QMC platform. When applied in cell-based assays, the fluorescent substrates allowed rapid and clear visualization of β-allosidase activity in the Golgi apparatus of human cultured cells. The QMC platform will likely find broad applications in visualizing the activities of glycan processing enzymes in living cells and in studying PTMs.

  20. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs.

    Science.gov (United States)

    van Diepen, Angela; van der Plas, Arend-Jan; Kozak, Radoslaw P; Royle, Louise; Dunne, David W; Hokke, Cornelis H

    2015-06-01

    Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets.

  1. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  2. Use of novel mutant galactosyltransferase for the bioconjugation of terminal N-Acetylglucosamine (GlcNAc) residues on live cell surface

    Science.gov (United States)

    Mercer, Natalia; Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Verdi, Luke; Qasba, Pradman K.

    2013-01-01

    Based on the crystal structure of bovine β4Gal-T1 enzyme, mutation of a single amino acid Y289 to L289 (Y289L) changed its donor specificity from Gal to N-acetyl-galactosamine (GalNAc). A chemoenzymatic method that uses GalNAc analogues like GalNAz or 2-keto-Gal as sugar donors with the enzyme Y289LGal-T1 has identified hundreds of cytosolic and nuclear proteins that have O-GlcNAc modifications. To avoid potential cytotoxicity at Mn2+ concentrations required to selectively modify GlcNAc residues on the surface of live cells, we have engineered a Mg2+-dependent enzyme. Earlier, we have found that the mutation of the metal-binding residue Met-344 to His-344 in bovine β4Gal-T1 enzyme altered its meta-lion specificity in such a way that the M344H-β4Gal-T1 enzyme exhibits better catalytic activity with Mg2+ than with Mn2+. Here, we find that when these two mutations are combined, the double mutant, Y289L-M344H-β4Gal-T1, transfers GalNAc and its analogue sugars to the acceptor GlcNAc in the presence of Mg2+. Using this mutant enzyme, we have detected free GlcNAc residues on the surface glycans of live HeLa cells and platelets. The specific transfer of a synthetic sugar with a chemical handle to the terminal GlcNAc residues on the surface of live cells provides a novel tool for selective modification, detection, and isolation of GlcNAc-ending glycans present on the cellular surface. PMID:23259695

  3. Bacterial cell surface structures in Yersinia enterocolitica.

    Science.gov (United States)

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  4. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    Science.gov (United States)

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers.

  5. Structural studies on a non toxic homologue of type II RIPs from bitter gourd: Molecular basis of non toxicity, conformational selection and glycan structure

    Indian Academy of Sciences (India)

    Thyageshwar Chandran; Alok Sharma; M Vijayan

    2015-12-01

    The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPS, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPS of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The -glycosylation of the lectin involves a plant-specific glycan while that in toxic type H RIPS of known structure involves a glycan which is animal as well as plant specific.

  6. Antitumor Active Protein-containing Glycans from the Body of Ganoderma tsugae

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LI Yue-fei; ZHENG Ke-yan; FEI Xiao-fang

    2012-01-01

    To explore the effects of traditional herbal medicine Ganoderma tsugae(G.tsugae) on immunomodulatory and antitumor activities,the crude polysaccharides ofG.tsugae were purified by filtration,diethylaminoethyl(DEAE)sepharose-fast flow chromatography and sephadex G-100 size-exclusion chromatography.Two main fractions,protein-containing glycans CSSLP-I and CSSLP-2,were obtained via the gradient elution.The protein content,molecular weight,and monosaccharide composition of the two fractions were analyzed.Furthermore,the influence of the protein-containing glycans from G.tsugae on the activation of human acute monocytic leukemia cell line(THP-1 ) and their antitumor activities to the human hepatocellular liver carcinoma cell(HepG-2) in vitro were evaluated.The results indicate that CSSLP-I and CSSLP-2 could increase the pinocytic activity of THP-1 cells and induce THP-1 cells to produce the cytokines of TNFa and IL-2,significantly.CSSLP-1 and CSSLP-2 also played an inhibiting effect on the cancer cell(NepG-2).Moreover,the anti-proliferation activity of CSSLP-1 and CSSLP-2 increased with the participation of TNFa and 1L-2 or other antitumor factors induced from THP-1 cclls by G.tsugae protein-containing glycan fractions.

  7. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich

    2012-01-01

    and the determination of site-specific glycan heterogeneity. The described workflow takes approximately 3-5 d, including sample preparation and data analysis. The data obtained from analyzing released glycans of rHuEPO and IgG, described in the second protocol of this series (10.1038/nprot.2012.063), provide...

  8. Surface-exposed glycoproteins of hyperthermophilic Sulfolobus solfataricus P2 show a common N-glycosylation profile.

    Science.gov (United States)

    Palmieri, Gianna; Balestrieri, Marco; Peter-Katalinić, Jasna; Pohlentz, Gottfried; Rossi, Mosè; Fiume, Immacolata; Pocsfalvi, Gabriella

    2013-06-07

    Cell surface proteins of hyperthermophilic Archaea actively participate in intercellular communication, cellular uptake, and energy conversion to sustain survival strategies in extreme habitats. Surface (S)-layer glycoproteins, the major component of the S-layers in many archaeal species and the best-characterized prokaryotic glycoproteins, were shown to have a large structural diversity in their glycan compositions. In spite of this, knowledge on glycosylation of proteins other than S-layer proteins in Archaea is quite limited. Here, the N-glycosylation pattern of cell-surface-exposed proteins of Sulfolobus solfataricus P2 were analyzed by lectin affinity purification, HPAEC-PAD, and multiple mass spectrometry-based techniques. Detailed analysis of SSO1273, one of the most abundant ABC transporters present in the cell surface fraction of S. solfataricus, revealed a novel glycan structure composed of a branched sulfated heptasaccharide, Hex4(GlcNAc)2 plus sulfoquinovose where Hex is d-mannose and d-glucose. Having one monosaccharide unit more than the glycan of the S-layer glycoprotein of S. acidocaldarius, this is the most complex archaeal glycan structure known today. SSO1273 protein is heavily glycosylated and all 20 theoretical N-X-S/T (where X is any amino acid except proline) consensus sequence sites were confirmed. Remarkably, we show that several other proteins in the surface fraction of S. solfataricus are N-glycosylated by the same sulfated oligosaccharide and we identified 56 N-glycosylation sites in this subproteome.

  9. A tetraantennary glycan with bisecting N-acetylglucosamine and the Sda antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins

    DEFF Research Database (Denmark)

    Klisch, Karl; Jeanrond, Evelyne; Pang, Poh-Choo;

    2008-01-01

    Pregnancy-associated glycoproteins (PAGs) are major secretory proteins of trophoblast cells in ruminants. Binucleate trophoblast giant cells (BNCs) store these proteins in secretory granules and release them into the maternal organism after fusion with maternal uterine epithelial cells. By matrix...... the activity of the GlcNAc-transferases that leads to tri- and tetraantennary glycans. The study defines the substantial changes of PAG N-glycosylation in the course of pregnancy. This promotes the hypothesis that PAGs may have different carbohydrate-mediated functions at different stages of pregnancy....

  10. Fungal glycans and the innate immune recognition

    Directory of Open Access Journals (Sweden)

    Rodrigo Tinoco Figueiredo

    2014-10-01

    Full Text Available Polysaccharides such as α- and β-glucans, chitin and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.

  11. N-Glycans on secretory component: mediators of the interaction between secretory IgA and gram-positive commensals sustaining intestinal homeostasis.

    Science.gov (United States)

    Mathias, Amandine; Corthésy, Blaise

    2011-09-01

    Human beings live in symbiosis with billions of microorganisms colonizing mucosal surfaces. The understanding of the mechanisms underlying this fine-tuned intestinal balance has made significant processes during the last decades. We have recently demonstrated that the interaction of SIgA with Gram-positive bacteria is essentially based on Fab-independent, glycan-mediated recognition. Results obtained using mouse hybridoma- and colostrum-derived secretory IgA (SIgA) consistently show that N-glycans present on secretory component (SC) play a crucial role in the process. Natural coating may involve specific Gram-positive cell wall components, which may explain selective recognition at the molecular level. More widely, the existence of these complexes is involved in the modulation of intestinal epithelial cell (IEC) responses in vitro and the formation of intestinal biofilms. Thus, SIgA may act as one of the pillars in homeostatic maintenance of the microbiota in the gut, adding yet another facet to its multiple roles in the mucosal environment.

  12. Global N-Glycan Site Occupancy of HIV-1 gp120 by Metabolic Engineering and High-Resolution Intact Mass Spectrometry.

    Science.gov (United States)

    Struwe, Weston B; Stuckmann, Alexandra; Behrens, Anna-Janina; Pagel, Kevin; Crispin, Max

    2017-02-17

    A vital step in HIV vaccine development strategies has been the observation that some infected individuals generate broadly neutralizing antibodies that target the glycans on the surface of HIV-1 gp120. These antibodies target glycan epitopes on viral envelope spikes, and yet the positions and degree of occupancy of glycosylation sites is diverse. Therefore, there is a need to understand glycosylation occupancy on recombinant immunogens. The sheer number of potential glycosylation sites and degree of chemical heterogeneity impedes assessing the global sequon occupancy of gp120 glycoforms. Here, we trap the glycan processing of recombinant gp120 to generate homogeneous glycoforms, facilitating occupancy assessment by intact mass spectrometry. We show that gp120 monomers of the BG505 strain contain either fully occupied sequons or missing the equivalent of one and sometimes two glycans across the molecule. This biosynthetic engineering approach enables the analysis of therapeutically important glycoproteins otherwise recalcitrant to analysis by native mass spectrometry.

  13. Substrate promiscuity: AglB, the archaeal oligosaccharyltransferase, can process a variety of lipid-linked glycans.

    Science.gov (United States)

    Cohen-Rosenzweig, Chen; Guan, Ziqiang; Shaanan, Boaz; Eichler, Jerry

    2014-01-01

    Across evolution, N-glycosylation involves oligosaccharyltransferases that transfer lipid-linked glycans to selected Asn residues of target proteins. While these enzymes catalyze similar reactions in each domain, differences exist in terms of the chemical composition, length and degree of phosphorylation of the lipid glycan carrier, the sugar linking the glycan to the lipid carrier, and the composition and structure of the transferred glycan. To gain insight into how oligosaccharyltransferases cope with such substrate diversity, the present study analyzed the archaeal oligosaccharyltransferase AglB from four haloarchaeal species. Accordingly, it was shown that despite processing distinct lipid-linked glycans in their native hosts, AglB from Haloarcula marismortui, Halobacterium salinarum, and Haloferax mediterranei could readily replace their counterpart from Haloferax volcanii when introduced into Hfx. volcanii cells deleted of aglB. As the four enzymes show significant sequence and apparently structural homology, it appears that the functional similarity of the four AglB proteins reflects the relaxed substrate specificity of these enzymes. Such demonstration of AglB substrate promiscuity is important not only for better understanding of N-glycosylation in Archaea and elsewhere but also for efforts aimed at transforming Hfx. volcanii into a glycoengineering platform.

  14. Tyramide Signal Amplification for Antibody-overlay Lectin Microarray: A Strategy to Improve the Sensitivity of Targeted Glycan Profiling

    Science.gov (United States)

    Meany, Danni L.; Hackler, Laszlo; Zhang, Hui; Chan, Daniel W.

    2011-01-01

    Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentration. We describe a new Tyramide Signal Amplification (TSA) for Antibody-overlay Lectin Microarray procedure for sensitive profiling of glycosylation patterns. We demonstrated that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein Prostate Specific Antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a sub-nanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of Prostate Specific Membrane Antigen (PSMA) using the TSA and ALM. Thus, the Tyramide Signal Amplification for Antibody-overlay Lectin Microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms. PMID:21133419

  15. Glycan characterization of biopharmaceuticals: Updates and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Planinc, Ana [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Bones, Jonathan [Characterisation and Comparability Laboratory, NIBRT – The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin (Ireland); Dejaegher, Bieke [Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, B-1050 Brussels (Belgium); Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Faculty of Medicines and Pharmacy, Vrije Universiteit Brussel - VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Van Antwerpen, Pierre [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Delporte, Cédric, E-mail: cedric.delporte@ulb.ac.be [Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universite Libre de Bruxelles (ULB), Brussels (Belgium)

    2016-05-19

    Therapeutic proteins are rapidly becoming the most promising class of pharmaceuticals on the market due to their successful treatment of a vast array of serious diseases, such as cancers and immune disorders. Therapeutic proteins are produced using recombinant DNA technology. More than 60% of therapeutic proteins are posttranslationally modified following biosynthesis by the addition of N- or O-linked glycans. Glycosylation is the most common posttranslational modifications of proteins. However, it is also the most demanding and complex posttranslational modification from the analytical point of view. Moreover, research has shown that glycosylation significantly impacts stability, half-life, mechanism of action and safety of a therapeutic protein. Considering the exponential growth of biotherapeutics, this present review of the literature (2009–2015) focuses on the characterization of protein glycosylation, which has witnessed an improvement in methodology. Furthermore, it discusses current issues in the fields of production and characterization of therapeutic proteins. This review also highlights the problem of non-standard requirements for the approval of biosimilars with regard to their glycosylation and discusses recent developments and perspectives for improved glycan characterization. - Highlights: • Biopharmaceuticals have emerged as the new class of blockbuster drugs in the pharmaceutical industry. • More than 60% of the approved biopharmaceuticals are glycosylated. • Glycosylation has an effect on the efficacy and the safety of therapeutic glycoproteins. • N-glycosylation characterization of therapeutic glycoproteins is a regulatory requirement. • Biosimilar releases are increasing and demonstration of comparability poses challenges for N-glycosylation characterization.

  16. Dual Roles of O-Glucose Glycans Redundant with Monosaccharide O-Fucose on Notch in Notch Trafficking.

    Science.gov (United States)

    Matsumoto, Kenjiroo; Ayukawa, Tomonori; Ishio, Akira; Sasamura, Takeshi; Yamakawa, Tomoko; Matsuno, Kenji

    2016-06-24

    Notch is a transmembrane receptor that mediates cell-cell interactions and controls various cell-fate specifications in metazoans. The extracellular domain of Notch contains multiple epidermal growth factor (EGF)-like repeats. At least five different glycans are found in distinct sites within these EGF-like repeats. The function of these individual glycans in Notch signaling has been investigated, primarily by disrupting their individual glycosyltransferases. However, we are just beginning to understand the potential functional interactions between these glycans. Monosaccharide O-fucose and O-glucose trisaccharide (O-glucose-xylose-xylose) are added to many of the Notch EGF-like repeats. In Drosophila, Shams adds a xylose specifically to the monosaccharide O-glucose. We found that loss of the terminal dixylose of O-glucose-linked saccharides had little effect on Notch signaling. However, our analyses of double mutants of shams and other genes required for glycan modifications revealed that both the monosaccharide O-glucose and the terminal dixylose of O-glucose-linked saccharides function redundantly with the monosaccharide O-fucose in Notch activation and trafficking. The terminal dixylose of O-glucose-linked saccharides and the monosaccharide O-glucose were required in distinct Notch trafficking processes: Notch transport from the apical plasma membrane to adherens junctions, and Notch export from the endoplasmic reticulum, respectively. Therefore, the monosaccharide O-glucose and terminal dixylose of O-glucose-linked saccharides have distinct activities in Notch trafficking, although a loss of these activities is compensated for by the presence of monosaccharide O-fucose. Given that various glycans attached to a protein motif may have redundant functions, our results suggest that these potential redundancies may lead to a serious underestimation of glycan functions.

  17. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures

    Directory of Open Access Journals (Sweden)

    Dell Anne

    2007-08-01

    Full Text Available Abstract Background Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. Results A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. Conclusion The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other

  18. Preferential Lectin Binding of Cancer Cells upon Sialic Acid Treatment under Nutrient Deprivation

    OpenAIRE

    Badr, Haitham A.; ElSayed, Abdelaleim I.; Ahmed, Hafiz; Dwek, Miriam V.; Li, Chen-Zhong; Djansugurova, Leyla B.

    2013-01-01

    The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells) as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both ...

  19. Glycomic Analysis of Sialic Acid Linkages in Glycans Derived from Blood Serum Glycoproteins

    OpenAIRE

    Alley, William R.; Novotny, Milos V

    2010-01-01

    A number of alterations to the normal glycomic profile have been previously described for a number of diseases and disorders, thus underscoring the medical importance of studying the glycans associated with proteins present in biological samples. An important alteration in cancer progression is an increased level of α2,6-sialylation, which aids in increasing the metastatic potential of tumor cells. Here we report a glycomic method that selectively amidates α2,6-linked sialic acids, while thos...

  20. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  1. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Science.gov (United States)

    Helle, François; Duverlie, Gilles; Dubuisson, Jean

    2011-01-01

    Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522

  2. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2011-10-01

    Full Text Available Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  3. Tumor-Associated Glycans and Immune Surveillance

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2013-06-01

    Full Text Available Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.

  4. Tumor-Associated Glycans and Immune Surveillance

    Science.gov (United States)

    Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2013-01-01

    Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics. PMID:26343966

  5. Frequency Selective Surfaces with Nanoparticles Unit Cell

    Directory of Open Access Journals (Sweden)

    Nga Hung Poon

    2015-09-01

    Full Text Available The frequency selective surface (FSS is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic monolayer arrays by a confined photocatalytic oxidation-based surface modification method. As the other material, silver gel was used to create multiple layers of silver. Due to the ultra-thin nature of the self-assembled gold nanoparticle monolayer, it is very easy to penetrate the FSS with terahertz radiation. However, the isolated silver islands made from silver gel form thicker multiple layers and contribute to much higher reflectance. This work demonstrated that multiple silver layers are more suitable than gold nanoparticles for use in the fabrication of FSS structures.

  6. The presence of outer arm fucose residues on the N-glycans of tissue inhibitor of metalloproteinases-1 reduces its activity.

    Science.gov (United States)

    Kim, Han Ie; Saldova, Radka; Park, Jun Hyoung; Lee, Young Hun; Harvey, David J; Wormald, Mark R; Wynne, Kieran; Elia, Giuliano; Kim, Hwa-Jung; Rudd, Pauline M; Lee, Seung-Taek

    2013-08-02

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibits matrix metalloproteinases (MMPs) by binding at a 1:1 stoichiometry. Here we have shown the involvement of N-glycosylation in the MMP inhibitory ability of TIMP-1. TIMP-1, purified from HEK 293 cells overexpressing TIMP-1 (293 TIMP-1), showed less binding and inhibitory abilities to MMPs than TIMP-1 purified from fibroblasts or SF9 insect cells infected with TIMP-1 baculovirus. Following deglycosylation of TIMP-1, all forms of TIMP-1 showed similar levels of MMP binding and inhibition, suggesting that glycosylation is involved in the regulation of these TIMP-1 activities. Analysis of the N-glycan structures showed that SF9 TIMP-1 has the simplest N-glycan structures, followed by fibroblast TIMP-1 and 293 TIMP-1, in order of increasing complexity in their N-glycan structures. Further analyses showed that cleavage of outer arm fucose residues from the N-glycans of 293 TIMP-1 or knockdown of both FUT4 and FUT7 (which encode for fucosyltransferases that add outer arm fucose residues to N-glycans) enhanced the MMP-binding and catalytic abilities of 293 TIMP-1, bringing them up to the levels of the other TIMP-1. These results demonstrate that the ability of TIMP-1 to inhibit MMPs is at least in part regulated by outer arm fucosylation of its N-glycans.

  7. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  8. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  9. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry.

    Science.gov (United States)

    Agarwal, Paresh; Beahm, Brendan J; Shieh, Peyton; Bertozzi, Carolyn R

    2015-09-21

    Vertebrate glycans constitute a large, important, and dynamic set of post-translational modifications that are notoriously difficult to manipulate and image. Although the chemical reporter strategy has been used in conjunction with bioorthogonal chemistry to image the external glycosylation state of live zebrafish and detect tumor-associated glycans in mice, the ability to image glycans systemically within a live organism has remained elusive. Here, we report a method that combines the metabolic incorporation of a cyclooctyne-functionalized sialic acid derivative with a ligation reaction of a fluorogenic tetrazine, allowing for the imaging of sialylated glycoconjugates within live zebrafish embryos.

  10. Mucin glycan foraging in the human gut microbiome

    OpenAIRE

    Tailford, Louise E; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These c...

  11. Expression and Purification of Glycosyltransferases in Pichia Pastoris: Towards Improving the Migration of Stem Cells by Enhancing Surface Expression of Sialyl Lewis X

    KAUST Repository

    Al-Amoodi, Asma S.

    2017-05-01

    Recruitment of circulating cells towards target sites is primarily dependent on E-selectin receptor/ligand adhesive interactions. Glycosyltransferase (GTs) are involved in the creation of E-selectin ligands. A sialofucosylated terminal tetrasaccharide like glycan structure known as sialyl Lewis x (sLex), is the most recognized ligand by selectins. This structure is found on the surface of cancer cells and leukocytes but is often absent on the surface of many adult stem cell populations. In order to synthesize sLex, GTs must be endogenously expressed and remain active within the cells. Generally, these stem cells express terminal sialylated lactosamine structures on their glycoproteins which require the addition of alpha-(1,3)-fucose to be converted into an E-selectin ligand. There are a number of fucosyltransferases (FUTs) that are able to modify terminal lactosamine structures to create sLex such as FUT6. In this work we focused on expressing and purifying active recombinant FUTs as a tool to help create sLex structures on the surface of adult stem cells in order to enhance their migration.

  12. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5 induced platelet activation and direct toward glycans as potential inhibitors.

    Directory of Open Access Journals (Sweden)

    Houyuan Hu

    Full Text Available BACKGROUND: Staphylococcus aureus (S. aureus is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5 has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. METHODOLOGY/PRINCIPAL FINDINGS: In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. CONCLUSIONS/SIGNIFICANCE: These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.

  13. [Lactobacillus plantarum and phosprenyl competitively distinguish ovalbumin oligomannoside n-glycan].

    Science.gov (United States)

    Sobolev, S M; Nikolaeva, T N; Grigor'eva, E A; Pronin, A V

    2011-01-01

    Demonstration of the ability of native products of lactobacteria to bind mannose containing N-glycans as a display of one of the mechanisms of probiotic behavior of these symbiont microorganism in gastrointestinal tract (GIT). Lactobacillus plantarum 30 grown on selective medium (MRS-agar) and their ultrasound lysates were used in the study. Standard technique of delayed type hypersensitivity (DTH) reaction was used with inactivated Listeria monocytogenes culture as a priming agent. DTH reaction in vivo has demonstrated that oligomannoside N-glycan of egg albumin is a general acceptor for adhesins that are present in the native preparations of certain L. plantarum strains, as well as for phosprenyl (PHP) immunomodulator--an inhibitor of cell IL-2 reception. The data obtained give evidence that mannose specific adhesins that are conserved in lactobacteria preparations have the same binding sites in egg albumin as PHP and, therefore, IL-2.

  14. Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis.

    Science.gov (United States)

    Szabo, Zoltan; Guttman, András; Bones, Jonathan; Karger, Barry L

    2011-07-01

    Characterization of the N-glycosylation present in the Fc region of therapeutic monoclonal antibodies requires rapid, high-resolution separation methods to guarantee product safety and efficacy during all stages of process development. Determination of fucosylated oligosaccharides is particularly important during clone selection, product characterization, and lot release as fucose has been shown to adversely affect the ability of mAbs to induce antibody dependent cellular cytotoxicity (ADCC). Here, we apply a general capillary electrophoresis optimization strategy to separate functionally relevant fucosylated and afucosylated glycans on mononclonal antibody products in the presence of several high mannose oligosaccharides. The N-glycans chosen represent those most commonly reported on CHO cell derived therapeutic antibodies. A rapid (processing for automated 96 well plate-based glycosylation analyses of two nonproprietary therapeutic monoclonal antibodies, demonstrating ruggedness and suitability for high-throughput process and product monitoring applications.

  15. Knowledge discovery of cell-cell and cell-surface interactions

    Science.gov (United States)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  16. Disruption of O-GlcNAc cycling in C. elegans perturbs Nucleotide Sugar pools and Complex Glycans

    Directory of Open Access Journals (Sweden)

    Salil K Ghosh

    2014-11-01

    Full Text Available The carbohydrate modification of serine and threonine residues with O-linked beta-N-acetylglucosamine (O-GlcNAc is ubiquitous and governs cellular processes ranging from cell signaling to apoptosis. The O-GlcNAc modification along with other carbohydrate modifications, including N-linked and O-linked glycans, glycolipids, and sugar polymers, all require the use of the nucleotide sugar UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway. In this paper, we describe the biochemical consequences resulting from perturbation of the O-GlcNAc pathway in C. elegans lacking O-GlcNAc transferase and O-GlcNAcase activities. In ogt-1 null animals, steady-state levels of UDP-GlcNAc/UDP-GalNAc and UDP-glucose were substantially elevated. Transcripts of genes encoding for key members in the Hexosamine Biosynthetic Pathway (gfat-2, gna-2, C36A4.4 and trehalose metabolism (tre-1, tre-2, and tps-2 were elevated in ogt-1 null animals. While there is no evidence to suggest changes in the profile of N-linked glycans in the ogt-1 and oga-1 mutants, glycans insensitive to PNGase digestion (including O-linked glycans, glycolipids, and glycopolymers were altered in these strains. Our data supports that changes in O-GlcNAcylation alters nucleotide sugar production, overall glycan composition, and transcription of genes encoding glycan processing enzymes. These data along with our previous findings that disruption in O-GlcNAc cycling alters macronutrient storage underscores the noteworthy influence this posttranslational modification plays in nutrient sensing.

  17. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics.

    Directory of Open Access Journals (Sweden)

    Xingwang Zhang

    Full Text Available Generally, most of ovarian cancer cannot be detected until large scale and remote metastasis occurs, which is the major cause of high mortality in ovarian cancer. Therefore, it is urgent to discover metastasis-related biomarkers for the detection of ovarian cancer in its occult metastasis stage. Altered glycosylation is a universal feature of malignancy and certain types of glycan structures are well-known markers for tumor progressions. Thus, this study aimed to reveal specific changes of N-glycans in the secretome of the metastatic ovarian cancer. We employed a quantitative glycomics approach based on metabolic stable isotope labeling to compare the differential N-glycosylation of secretome between an ovarian cancer cell line SKOV3 and its high metastatic derivative SKOV3-ip. Intriguingly, among total 17 N-glycans identified, the N-glycans with bisecting GlcNAc were all significantly decreased in SKOV3-ip in comparison to SKOV3. This alteration in bisecting GlcNAc glycoforms as well as its corresponding association with ovarian cancer metastatic behavior was further validated at the glycotransferase level with multiple techniques including real-time PCR, western blotting, transwell assay, lectin blotting and immunohistochemistry analysis. This study illustrated metastasis-related N-glycan alterations in ovarian cancer secretome in vitro for the first time, which is a valuable source for biomarker discovery as well. Moreover, N-glycans with bisecting GlcNAc shed light on the detection of ovarian cancer in early peritoneal metastasis stage which may accordingly improve the prognosis of ovarian cancer patients.

  18. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  19. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    Science.gov (United States)

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  20. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Satoshi Mitsuda

    2014-01-01

    Full Text Available Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1 in response to interleukin-1α (IL-1α. We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum.

  1. How Cancer Cells Become Resistant to Cationic Lytic Peptides: It's the Sugar!

    Science.gov (United States)

    Pierce, Joshua G

    2017-02-16

    In this issue of Cell Chemical Biology, Ishikawa et al. (2017) demonstrate that the loss of cell-surface anionic saccharides can impart resistance toward anticancer peptides. This study provides the first insight into potential resistance mechanisms toward cationic lytic peptides and highlights the important, yet previously unappreciated, role cell-surface glycans can play in cellular resistance mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Controlling cell-cell interactions using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  3. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis.

    Science.gov (United States)

    Turovskaya, Olga; Foell, Dirk; Sinha, Pratima; Vogl, Thomas; Newlin, Robbin; Nayak, Jonamani; Nguyen, Mien; Olsson, Anna; Nawroth, Peter P; Bierhaus, Angelika; Varki, Nissi; Kronenberg, Mitchell; Freeze, Hudson H; Srikrishna, Geetha

    2008-10-01

    Patients with inflammatory bowel diseases are at increased risk for colorectal cancer, but the molecular mechanisms linking inflammation and cancer are not well defined. We earlier showed that carboxylated N-glycans expressed on receptor for advanced glycation end products (RAGE) and other glycoproteins mediate colitis through activation of nuclear factor kappa B (NF-kappaB). Because NF-kappaB signaling plays a critical role in the molecular pathogenesis of colitis-associated cancer (CAC), we reasoned that carboxylated glycans, RAGE and its ligands might promote CAC. Carboxylated glycans are expressed on a subpopulation of RAGE on colon cancer cells and mediate S100A8/A9 binding to RAGE. Colon tumor cells express binding sites for S100A8/A9 and binding leads to activation of NF-kappaB and tumor cell proliferation. Binding, downstream signaling and tumor cell proliferation are blocked by mAbGB3.1, an anti-carboxylate glycan antibody, and by anti-RAGE. In human colon tumor tissues and in a mouse model of CAC, we found that myeloid progenitors expressing S100A8 and S100A9 infiltrate regions of dysplasia and adenoma. mAbGB3.1 administration markedly reduces chronic inflammation and tumorigenesis in the mouse model of CAC and RAGE-deficient mice are resistant to the onset of CAC. These findings show that RAGE, carboxylated glycans and S100A8/A9 play essential roles in tumor-stromal interactions, leading to inflammation-associated colon carcinogenesis.

  4. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation.

    Science.gov (United States)

    Schwartzman, Julia A; Koch, Eric; Heath-Heckman, Elizabeth A C; Zhou, Lawrence; Kremer, Natacha; McFall-Ngai, Margaret J; Ruby, Edward G

    2015-01-13

    Glycans have emerged as critical determinants of immune maturation, microbial nutrition, and host health in diverse symbioses. In this study, we asked how cyclic delivery of a single host-derived glycan contributes to the dynamic stability of the mutualism between the squid Euprymna scolopes and its specific, bioluminescent symbiont, Vibrio fischeri. V. fischeri colonizes the crypts of a host organ that is used for behavioral light production. E. scolopes synthesizes the polymeric glycan chitin in macrophage-like immune cells called hemocytes. We show here that, just before dusk, hemocytes migrate from the vasculature into the symbiotic crypts, where they lyse and release particulate chitin, a behavior that is established only in the mature symbiosis. Diel transcriptional rhythms in both partners further indicate that the chitin is provided and metabolized only at night. A V. fischeri mutant defective in chitin catabolism was able to maintain a normal symbiont population level, but only until the symbiotic organ reached maturity (∼ 4 wk after colonization); this result provided a direct link between chitin utilization and symbiont persistence. Finally, catabolism of chitin by the symbionts was also specifically required for a periodic acidification of the adult crypts each night. This acidification, which increases the level of oxygen available to the symbionts, enhances their capacity to produce bioluminescence at night. We propose that other animal hosts may similarly regulate the activities of epithelium-associated microbial communities through the strategic provision of specific nutrients, whose catabolism modulates conditions like pH or anoxia in their symbionts' habitat.

  5. Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins.

    Science.gov (United States)

    Alley, William R; Novotny, Milos V

    2010-06-04

    A number of alterations to the normal glycomic profile have been previously described for a number of diseases and disorders, thus underscoring the medical importance of studying the glycans associated with proteins present in biological samples. An important alteration in cancer progression is an increased level of alpha2,6-sialylation, which aids in increasing the metastatic potential of tumor cells. Here we report a glycomic method that selectively amidates alpha2,6-linked sialic acids, while those that are alpha2,3-linked undergo spontaneous lactonization. Following subsequent permethylation, MALDI-TOF MS analysis revealed that many sialylated glycans present on glycoproteins found in blood serum featured increased levels of alpha2,6-sialylation in breast cancer samples. On the basis of the altered ratios of alpha2,3-linked to alpha2,6-linked sialic acids, many of these glycans became diagnostically relevant when they did not act as such indicators when based on traditional glycomic profiling alone.

  6. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido

    Full Text Available Bifidobacterium longum subsp. infantis (B. infantis is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO. Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs, part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  7. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Science.gov (United States)

    Garrido, Daniel; Kim, Jae Han; German, J Bruce; Raybould, Helen E; Mills, David A

    2011-03-15

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  8. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

  9. The Analysis of Sialylation, N-Glycan Branching, and Expression of O-Glycans in Seminal Plasma of Infertile Men

    Directory of Open Access Journals (Sweden)

    Ewa M. Kratz

    2015-01-01

    Full Text Available Carbohydrates are known to mediate some events involved in successful fertilization. Although some studies on the glycosylation of seminal plasma proteins are available, the total glycan profile was rarely analyzed as a feature influencing fertilization potential. In this work we aimed to compare some glycosylation traits in seminal plasma glycoproteins of fertile and infertile men. The following findings emerge from our studies: (1 in human seminal plasma the presence and alterations of O-linked glycans were observed; (2 the expression of SNA-reactive sialic acid significantly differs between asthenozoospermia and both normozoospermic (fertile and infertile groups; (3 the expression of PHA-L-reactive highly branched N-glycans was significantly lower in oligozoospermic patients than in both normozoospermic groups. Indication of the appropriate lectins that would enable the possibly precise determination of the glycan profile seems to be a good supplement to mass spectrum analysis. Extension of the lectin panel is useful for the further research.

  10. Mammalian Cell Surface Display as a Novel Method for Developing Engineered Lectins with Novel Characteristics

    Directory of Open Access Journals (Sweden)

    Keisuke Soga

    2015-07-01

    Full Text Available Leguminous lectins have a conserved carbohydrate recognition site comprising four loops (A–D. Here, we randomly mutated the sequence and length of loops C and D of peanut agglutinin (PNA and expressed the proteins on the surface of mouse green fluorescent protein (GFP-reporter cells. Flow cytometry, limiting dilution, and cDNA cloning were used to screen for several mutated PNAs with distinct properties. The mutated PNA clones obtained using NeuAcα2-6(Galβ1-3GalNAc as a ligand showed preference for NeuAcα2-6(Galβ1-3GalNAc rather than non-sialylated Galβ1-3GlcNAc, whereas wild-type PNA binds to Galβ1-3GlcNAc but not sialylated Galβ1-3GalNAc. Sequence analyses revealed that for all of the glycan-reactive mutated PNA clones, (i loop C was eight amino acids in length, (ii loop D was identical to that of wild-type PNA, (iii residue 127 was asparagine, (iv residue 125 was tryptophan, and (v residue 130 was hydrophobic tyrosine, phenylalanine, or histidine. The sugar-binding ability of wild-type PNA was increased nine-fold when Tyr125 was mutated to tryptophan, and that of mutated clone C was increased more than 30-fold after His130 was changed to tyrosine. These results provide an insight into the relationship between the amino acid sequences of the carbohydrate recognition site and sugar-binding abilities of leguminous lectins.

  11. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  12. Nanofabrication of Nonfouling Surfaces for Micropatterning of Cell and Microtissue

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2010-08-01

    Full Text Available Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.

  13. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  14. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN.

    Science.gov (United States)

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E; Huante, Matthew B; Slack, Olga A L; Carpio, Victor H; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-05-23

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.

  15. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  16. Separation of Two Distinct O-Glycoforms of Human IgA1 by Serial Lectin Chromatography Followed by Mass Spectrometry O-Glycan Analysis.

    Science.gov (United States)

    Lehoux, S; Ju, T

    2017-01-01

    Human immunoglobulin A1 (IgA1), which carries four to six mucin-type O-glycans (O-glycans) on its hinge region (HR), is the most abundant O-glycoprotein in plasma or serum. While normal O-glycans from hematopoietic-originated cells are core 1-based complex structures, many reports showed that the IgA1 from patients with IgA nephropathy (IgAN) carries undergalactosylated or truncated O-glycans such as the Tn antigen and its sialylated version the SialylTn (STn) antigen on the HR. Yet, there is still a debate whether Tn/STn on the HR of IgA1 is specific to the IgA1 from patients with IgAN since these antigens have also been seen in serum IgA1 of healthy individuals. An additional question is whether the O-glycans at all sites on the two HRs of one IgA1 molecule are homogeneous (either all normal or all Tn/STn) or heterogeneous (both normal and Tn/STn O-glycans). To address these questions, we conducted a systematic study on the O-glycans of plasma IgA1 from both IgAN patients and healthy controls using serial HPA and PNA lectin chromatography followed by western blotting and further analysis of O-glycans from HPA-bound and PNA-bound IgA1 fractions by mass spectrometry. Unexpectedly, we found that a variable minor fraction of IgA1 from both IgAN patients and healthy controls had Tn/STn antigens, and that the O-glycoprotein IgA1 molecules from most samples had only two distinct O-glycoforms: one major glycoform with homogeneous normal core 1-based O-glycans and one minor glycoform with homogeneous Tn/STn antigens. These results raised a serious question about the role of Tn/STn antigens on IgA1 in pathogenesis of IgAN, and there is a demand for a practical methodology that any laboratory can utilize to analyze the O-glycans of IgA1. Herein, we describe the methodology we developed in more detail. The method could also be applied to the analysis of any other O-glycosylated proteins.

  17. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  18. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  19. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  20. Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 beta-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core.

    Science.gov (United States)

    Tomiya, Noboru; Narang, Someet; Park, Jung; Abdul-Rahman, Badarulhisam; Choi, One; Singh, Sundeep; Hiratake, Jun; Sakata, Kanzo; Betenbaugh, Michael J; Palter, Karen B; Lee, Yuan C

    2006-07-14

    Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.

  1. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation.

    Science.gov (United States)

    Grainger, Rhian K; James, David C

    2013-11-01

    Here we demonstrate that it is possible to predict and control N-glycan processing of a secreted recombinant monoclonal antibody during manufacturing process development using a combination of statistical modelling and comparative measurement of cell surface glycans using fluorescent lectins. Using design of experiments--response surface modelling (DoE-RSM) methodology to adjust the relative media concentrations of known metabolic effectors of galactosylation (manganese, galactose, and uridine) we have shown that β1,4-galactosylation of the same recombinant IgG4 monoclonal antibody produced by different CHO cell lines can be precisely controlled in a cell line specific manner. For two cell lines, monoclonal antibody galactosylation could be increased by over 100% compared to control, non-supplemented cultures without a reduction in product titre and with minimal effect on cell growth. Analysis of galactosylation effector interactions by DoE-RSM indicated that Mn²⁺ alone was necessary but not sufficient to improve galactosylation, and that synergistic combinations of Gal and Urd were necessary to maximize galactosylation, whilst minimizing the deleterious effect of Urd on cell growth. To facilitate rapid cell culture process development we also tested the hypothesis that substrate-level control of cellular galactosylation would similarly affect both cell surface and secreted monoclonal antibody glycans, enabling facile indirect prediction of product glycan processing. To support this hypothesis, comparative quantitation of CHO cell surface β1,4-galactosylation by flow cytometry using fluorescent derivatives of RCA and ConA lectins revealed that substrate-controlled variation in monoclonal antibody galactosylation and cell surface galactosylation were significantly correlated. Taken together, these data show that precision control of a complex, dynamic cellular process essential for the definition of protein product molecular heterogeneity and bioactivity is

  2. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans.

    Science.gov (United States)

    Garcia-Campos, Andres; Ravidà, Alessandra; Nguyen, D Linh; Cwiklinski, Krystyna; Dalton, John P; Hokke, Cornelis H; O'Neill, Sandra; Mulcahy, Grace

    2016-05-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F

  3. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans.

    Directory of Open Access Journals (Sweden)

    Andres Garcia-Campos

    2016-05-01

    Full Text Available Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS. From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3 and two of the Cathepsin L3 (FhCL3 proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID and electron-transfer dissociation (ETD was carried out. We established that cathepsin B1 (FhCB1 on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139 on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description

  4. N-glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs.

    Science.gov (United States)

    Wedepohl, Stefanie; Kaup, Matthias; Riese, Sebastian B; Berger, Markus; Dernedde, Jens; Tauber, Rudolf; Blanchard, Véronique

    2010-07-01

    The leukocytic adhesion receptor L-selectin plays a crucial role in the first step of the adhesion cascade, enabling leukocytes to migrate into surrounding tissues during inflammation and immune surveillance. We analyzed the site-specific N-glycosylation of the lectin and EGF-like domain of L-selectin using recombinant variants ("LEHis"). The three glycosylation sites of LEHis were mutated to obtain singly glycosylated variants that were expressed in HEK293F cells. alpha1-Acid glycoprotein (AGP), expressed in the same system, was used to distinguish between cell type- and protein-specific glycosylation. Using mass spectrometry and exoglycosidase digestions, we established that LEHis was mostly bearing multifucosylated diantennary N-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could also show that parts of the GalNAc residues were sulfated. Furthermore, we identified novel diantennary glycan structures terminating with the motif GalNAc-GalNAc or SO(4)-GalNAc-GalNAc, which have not been described for N-glycans yet. Interestingly, none of these specific features were found in the N-glycan profile of AGP. This indicates that protein intrinsic information of L-selectin leads to decoration with specific N-glycans, which in turn may be related to L-selectin function.

  5. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  6. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Science.gov (United States)

    Sommerstein, Rami; Flatz, Lukas; Remy, Melissa M; Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; Ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D

    2015-11-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  7. N-glycan abnormalities in children with galactosemia.

    Science.gov (United States)

    Coss, Karen P; Hawkes, Colin P; Adamczyk, Barbara; Stöckmann, Henning; Crushell, Ellen; Saldova, Radka; Knerr, Ina; Rubio-Gozalbo, Maria E; Monavari, Ardeshir A; Rudd, Pauline M; Treacy, Eileen P

    2014-02-07

    Galactose intoxication and over-restriction in galactosemia may affect glycosylation pathways and cause multisystem effects. In this study, we describe an applied hydrophilic interaction chromatography ultra-performance liquid chromatography high-throughput method to analyze whole serum and extracted IgG N-glycans with measurement of agalactosylated (G0), monogalactosylated (G1), and digalactosylated (G2) structures as a quantitative measure of galactose incorporation. This was applied to nine children with severe galactosemia (genotype Q188R/Q188R) and one child with a milder variant (genotype S135L/S135L). The profiles were also compared with those obtained from three age-matched children with PMM2-CDG (congenital disorder of glycosylation type Ia) and nine pediatric control samples. We have observed that severe N-glycan assembly defects correct in the neonate following dietary restriction of galactose. However, treated adult galactosemia patients continue to exhibit ongoing N-glycan processing defects. We have now applied informative galactose incorporation ratios as a method of studying the presence of N-glycan processing defects in children with galactosemia. We identified N-glycan processing defects present in galactosemia children from an early age. For G0/G1, G0/G2, and (G0/G1)/G2 ratios, the difference noted between galactosemia patients and controls was found to be statistically significant (p = 0.002, 0.01, and 0.006, respectively).

  8. Use of co2 for the synthesis of cyclic glycocarbonates and linear polyglycocarbonates by polycondensation from glycans

    KAUST Repository

    Gnanou, Yves

    2016-10-20

    Provided herein are methods for synthesizing cyclic carbonates, glycocarbonates, and polyglycocarbonates by reacting polyol glycans with carbon dioxide. Synthesis can include selective polycondensation of polyol glycan hydroxyl moieties.

  9. EndoE from Enterococcus faecalis hydrolyzes the glycans of the biofilm inhibiting protein lactoferrin and mediates growth.

    Directory of Open Access Journals (Sweden)

    Julia Garbe

    Full Text Available Glycosidases are widespread among bacteria. The opportunistic human pathogen Enterococcus faecalis encodes several putative glycosidases but little is known about their functions. The identified endo-β-N-acetylglucosaminidase EndoE has activity on the N-linked glycans of the human immunoglobulin G (IgG. In this report we identified the human glycoprotein lactoferrin (hLF as a new substrate for EndoE. Hydrolysis of the N-glycans from hLF was investigated using lectin blot, UHPLC and mass spectrometry, showing that EndoE releases major glycoforms from this protein. hLF was shown to inhibit biofilm formation of E. faecalis in vitro. Glycans of hLF influence the binding to E. faecalis, and EndoE-hydrolyzed hLF inhibits biofilm formation to lesser extent than intact hLF indicating that EndoE prevents the inhibition of biofilm. In addition, hLF binds to a surface-associated enolase of E. faecalis. Culture experiments showed that the activity of EndoE enables E. faecalis to use the glycans derived from lactoferrin as a carbon source indicating that they could be used as nutrients in vivo when no other preferred carbon source is available. This report adds important information about the enzymatic activity of EndoE from the commensal and opportunist E. faecalis. The activity on the human glycoprotein hLF, and the functional consequences with reduced inhibition of biofilm formation highlights both innate immunity functions of hLF and a bacterial mechanism to evade this innate immunity function. Taken together, our results underline the importance of glycans in the interplay between bacteria and the human host, with possible implications for both commensalism and opportunism.

  10. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  11. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  12. Cell Surface-based Sensing with Metallic Nanoparticles

    OpenAIRE

    Jiang, Ziwen; Le, Ngoc D. B.; Gupta, Akash; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed.

  13. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage.

    Science.gov (United States)

    Heiskanen, Annamari; Hirvonen, Tia; Salo, Hanna; Impola, Ulla; Olonen, Anne; Laitinen, Anita; Tiitinen, Sari; Natunen, Suvi; Aitio, Olli; Miller-Podraza, Halina; Wuhrer, Manfred; Deelder, André M; Natunen, Jari; Laine, Jarmo; Lehenkari, Petri; Saarinen, Juhani; Satomaa, Tero; Valmu, Leena

    2009-04-01

    Human mesenchymal stem cells (MSCs) are adult multipotent progenitor cells. They hold an enormous therapeutic potential, but at the moment there is little information on the properties of MSCs, including their surface structures. In the present study, we analyzed the mesenchymal stem cell glycome by using mass spectrometric profiling as well as a panel of glycan binding proteins. Structural verifications were obtained by nuclear magnetic resonance spectroscopy, mass spectrometric fragmentation, and glycosidase digestions. The MSC glycome was compared to the glycome of corresponding osteogenically differentiated cells. More than one hundred glycan signals were detected in mesenchymal stem cells and osteoblasts differentiated from them. The glycan profiles of MSCs and osteoblasts were consistently different in biological replicates, indicating that stem cells and osteoblasts have characteristic glycosylation features. Glycosylation features associated with MSCs rather than differentiated cells included high-mannose type N-glycans, linear poly-N-acetyllactosamine chains and alpha2-3-sialylation. Mesenchymal stem cells expressed SSEA-4 and sialyl Lewis x epitopes. Characteristic glycosylation features that appeared in differentiated osteoblasts included abundant sulfate ester modifications. The results show that glycosylation analysis can be used to evaluate MSC differentiation state.

  14. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy

    Science.gov (United States)

    Walker, S. Hunter; Taylor, Amber D.; Muddiman, David C.

    2013-09-01

    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  15. [Cell surface RNA--a possible molecular receptor of adaptogens].

    Science.gov (United States)

    Malenkov, A G; Kolotygina, I M

    1984-01-01

    When RNA of the cell surface is destroyed with RNAase, the effect of adaptogenes is removed. Such effect is produced by introduction of actinomycin D 30 minutes before intake of adaptogene. Destruction of surface RNA stimulates protein synthesis. Comparison of these facts permits a hypothesis to be advanced saying that surface RNA is a receptor of adaptogenes obtained from plants of Aralia family.

  16. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  17. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    Science.gov (United States)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  18. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    Science.gov (United States)

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  19. Designed synthesis of MOF-derived magnetic nanoporous carbon materials for selective enrichment of glycans for glycomics analysis.

    Science.gov (United States)

    Sun, Nianrong; Zhang, Xiangmin; Deng, Chunhui

    2015-04-21

    In this work, magnetic nanoporous carbon (NPC) materials were synthesized by choosing a MOF as a sacrificial template and a carbon precursor. The obtained Co-ZIF-67 materials showed strong magnetic response, high surface area, a uniform size of mesopores and high carbon content. The Co-ZIF-67 materials were successfully applied to glycomics analysis by enriching N-linked glycans in bio-samples with high selectivity and efficiency.

  20. Glycan Node Analysis: A Bottom-up Approach to Glycomics.

    Science.gov (United States)

    Zaare, Sahba; Aguilar, Jesús S; Hu, Yueming; Ferdosi, Shadi; Borges, Chad R

    2016-01-01

    Synthesized in a non-template-driven process by enzymes called glycosyltransferases, glycans are key players in various significant intra- and extracellular events. Many pathological conditions, notably cancer, affect gene expression, which can in turn deregulate the relative abundance and activity levels of glycoside hydrolase and glycosyltransferase enzymes. Unique aberrant whole glycans resulting from deregulated glycosyltransferase(s) are often present in trace quantities within complex biofluids, making their detection difficult and sometimes stochastic. However, with proper sample preparation, one of the oldest forms of mass spectrometry (gas chromatography-mass spectrometry, GC-MS) can routinely detect the collection of branch-point and linkage-specific monosaccharides ("glycan nodes") present in complex biofluids. Complementary to traditional top-down glycomics techniques, the approach discussed herein involves the collection and condensation of each constituent glycan node in a sample into a single independent analytical signal, which provides detailed structural and quantitative information about changes to the glycome as a whole and reveals potentially deregulated glycosyltransferases. Improvements to the permethylation and subsequent liquid/liquid extraction stages provided herein enhance reproducibility and overall yield by facilitating minimal exposure of permethylated glycans to alkaline aqueous conditions. Modifications to the acetylation stage further increase the extent of reaction and overall yield. Despite their reproducibility, the overall yields of N-acetylhexosamine (HexNAc) partially permethylated alditol acetates (PMAAs) are shown to be inherently lower than their expected theoretical value relative to hexose PMAAs. Calculating the ratio of the area under the extracted ion chromatogram (XIC) for each individual hexose PMAA (or HexNAc PMAA) to the sum of such XIC areas for all hexoses (or HexNAcs) provides a new normalization method that

  1. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation.

    Science.gov (United States)

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-12-01

    This report provides data that are specifically related to the differential sialylation of nutrient deprived breast cancer cells to sialic acid supplementation in support of the research article entitled, "Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation" [1]. Particularly, breast cancer cells, when supplemented with sialic acid under nutrient deprivation, display sialylated glycans at the cell surface, but non-malignant mammary cells show sialylated glycans intracellularly. The impact of sialic acid supplementation under nutrient deprivation was demonstrated by measuring levels of expression and sialylation of two markers, EGFR1 and MUC1. This Data in Brief article complements the main manuscript by providing detailed instructions and representative results for cell-level imaging and Western blot analyses of changes in sialylation during nutrient deprivation and sialic acid supplementation. These methods can be readily generalized for the study of many types of glycosylation and various glycoprotein markers through the appropriate selection of fluorescently-labeled lectins.

  2. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  3. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  4. Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein.

    Directory of Open Access Journals (Sweden)

    Joseph R Francica

    Full Text Available Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV glycoprotein (GP was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection.

  5. A spin column-free approach to sodium hydroxide-based glycan permethylation.

    Science.gov (United States)

    Hu, Yueming; Borges, Chad R

    2017-07-24

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues-yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p 0.75; p < 0.01). In summary, the SCF permethylation procedure expedites and economizes both intact glycan analysis and linkage analysis of glycans from whole biospecimens.

  6. Structural analysis of N- and O-glycans released from glycoproteins

    DEFF Research Database (Denmark)

    Jensen, Pia Hønnerup; Karlsson, Niclas G; Kolarich, Daniel;

    2012-01-01

    This protocol shows how to obtain a detailed glycan compositional and structural profile from purified glycoproteins or protein mixtures, and it can be used to distinguish different isobaric glycan isomers. Glycoproteins are immobilized on PVDF membranes before the N-glycans are enzymatically...

  7. Distinct glycan-charged phosphodolichol carriers are required for the assembly of the pentasaccharide N-linked to the Haloferax volcanii S-layer glycoprotein.

    Science.gov (United States)

    Guan, Ziqiang; Naparstek, Shai; Kaminski, Lina; Konrad, Zvia; Eichler, Jerry

    2010-12-01

    In Archaea, dolichol phosphates have been implicated as glycan carriers in the N-glycosylation pathway, much like their eukaryal counterparts. To clarify this relation, highly sensitive liquid chromatography/mass spectrometry was employed to detect and characterize glycan-charged phosphodolichols in the haloarchaeon Haloferax volcanii. It is reported that Hfx. volcanii contains a series of C(55) and C(60) dolichol phosphates presenting saturated isoprene subunits at the α and ω positions and sequentially modified with the first, second, third and methylated fourth sugar subunits comprising the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein, a reporter of N-glycosylation. Moreover, when this glycan-charged phosphodolichol pool was examined in cells deleted of agl genes encoding glycosyltransferases participating in N-glycosylation and previously assigned roles in adding pentasaccharide residues one to four, the composition of the lipid-linked glycans was perturbed in the identical manner as was S-layer glycoprotein N-glycosylation in these mutants. In contrast, the fifth sugar of the pentasaccharide, identified as mannose in this study, is added to a distinct dolichol phosphate carrier. This represents the first evidence that in Archaea, as in Eukarya, the oligosaccharides N-linked to glycoproteins are sequentially assembled from glycans originating from distinct phosphodolichol carriers.

  8. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    Directory of Open Access Journals (Sweden)

    Ema T Crooks

    2015-05-01

    Full Text Available Eliciting broad tier 2 neutralizing antibodies (nAbs is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs expressing trimers (trimer VLP sera and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera. All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs. Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype rendered 50% or 16.7% (n = 18 of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  9. Cell multiplication following partial enzymatic removal of surface coat.

    Science.gov (United States)

    Wyroba, E

    1978-08-01

    Treatment of Paramecium aurelia with trypsin or pronase (1 mg per 10(5) cells, at 0 to 4 degrees C) partially removes the surface coat and modifies significantly multiplication of cells. The division rate after 24 hours of cultivation is diminished approximately twice in the case of pronase-treated cells and 1.5 for tyrpsin-digested ciliates as compared with the control. On the second day the division rate increases rapidly and number of cell divisions exceeds the values observed in the control. After 72 hours of cultivation the division rate in both untreated and enzyme-treated cells is almost the same. It is concluded that the observed inhibition of cell fission results from the enzymatic removal of the surface coat--the integrity of this surface coat seems to be necessary in the process of cell division. The influence of environmental factors on the rate of growth is presented.

  10. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  11. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  12. Interaction of Epithelial Cells with Surfaces and Surfaces Decorated by Molecules

    CERN Document Server

    Martini, Daniele; Beil, Michael; Paust, T; Huang, C; Moosmann, M; Jin, J; Heiler, T; Gröger, R; Schimmel, Thomas; Walheim, Stefan

    2013-01-01

    A detailed understanding of the interface between living cells and substrate materials is of rising importance in many fields of medicine, biology and biotechnology. Cells at interfaces often form epithelia. The physical barrier that they form is one of their main functions. It is governed by the properties of the networks forming the cytoskeleton systems and by cell-to-cell contacts. Different substrates with varying surface properties modify the migration velocity of the cells. On the one hand one can change the materials composition. Organic and inorganic materials induce differing migration velocities in the same cell system. Within the same class of materials, a change of the surface stiffness or of the surface energy modifies the migration velocity, too. For our cell adhesion studies a variety of different, homogeneous substrates were used (polymers, bio-polymers, metals, oxides). In addition, an effective lithographic method, Polymer Blend Lithography (PBL), is reported, to produce patterned Self-Assem...

  13. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  14. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    Science.gov (United States)

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  15. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Julien

    Full Text Available New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664 reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.

  16. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  17. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  18. Endoplasmic Reticulum α-Glycosidases of Candida albicans Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction▿

    OpenAIRE

    2007-01-01

    The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc3Man9GlcNAc2 N-glycan is processed by α-glucosidases I and II and α1,2-mannosidase to generate Man8GlcNAc2. This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. I...

  19. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  20. Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.

    2016-11-17

    Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases and provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.

  1. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  2. Expression of LacdiNAc Groups on N-Glycans among Human Tumors Is Complex

    Directory of Open Access Journals (Sweden)

    Kiyoko Hirano

    2014-01-01

    Full Text Available Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs, β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.

  3. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation.

    Science.gov (United States)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-08-21

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 10(10). The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.

  4. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2 Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    Directory of Open Access Journals (Sweden)

    Masaki Kurogochi

    Full Text Available Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain, and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC and complement dependent cytotoxicity (CDC. To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases, one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2, high-mannose type (Man4-9GlcNAc2, and complex type (Man3GlcNAc3-4 N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL, the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1 were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q, and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2 was performed using SKBR-3 and BT-474 as target

  5. High mannose-binding antiviral lectin PFL from Pseudomonas fluorescens Pf0-1 promotes cell death of gastric cancer cell MKN28 via interaction with α2-integrin.

    Directory of Open Access Journals (Sweden)

    Yuichiro Sato

    Full Text Available Novel anti-HIV lectin family which shows a strict binding specificity for high mannose glycans has been found in lower organisms. The bacterial orthologue has been identified in the genome of Pseudomonas fluorescens Pf0-1 and the gene coding a putative lectin was cloned, expressed in Escherichia coli and purified by one step gel filtration. Glycan array screening of the recombinant lectin, termed PFL, has revealed that PFL preferentially recognizes high mannose glycans with α1-3 Man that was highly exposed at the D2 position. In contrast, masking of this α1-3 Man with α1-2 Man dramatically impaired lectin-carbohydrate interactions. Reducing terminal disaccharide, GlcNAc-GlcNAc of high mannose glycans was also essential for PFL-binding. PFL showed a potent anti-influenza virus activity by inhibiting the virus entry into cells at doses of low nanomolar concentration. At micromolar concentration or higher, PFL showed a cytotoxicity accompanying loss of the cell adhesion against human gastric cancer MKN28 cells. The cell surface molecule to which PFL bound was co-precipitated with biotin-labeled PFL and identified as integrin α2 by peptide mass fingerprinting using MALDI-TOF mass spectrometry. Intriguingly, upon treatment with exogenous PFL, integrin α2 on the cell surface underwent rapid internalization to the cytoplasm and accumulated to perinuclear region, together with the bound PFL. The resulting loss of cell adherence would trigger a signaling pathway that induced anoikis-like cell death. These events were effectively inhibited by pretreatment of PFL with mannnan, indicating the involvement of high mannose glycans on PFL-induced cell death that was triggered by PFL-integrin α2 interactions.

  6. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    Science.gov (United States)

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  8. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  9. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism

    Directory of Open Access Journals (Sweden)

    J Kang

    2014-11-01

    Full Text Available Control of cell-matrix adhesion has become an important issue in the regulation of stem cell function. In this study, a maltose-binding protein (MBP-linked basic fibroblast growth factor (FGF2-immobilised polystyrene surface (PS-MBP-FGF2 was applied as an artificial matrix to regulate integrin-mediated signalling. We sought to characterise human mesenchymal-stem cell (hMSC behaviour in response to two different mechanisms of cell adhesion; (i FGF2-heparan sulphate proteoglycan (HSPG-mediated adhesion vs. (ii fibronectin (FN-integrin-mediated adhesion. Heparin inhibited hMSC adhesion to PS-MBP-FGF2 but not to FN-coated surface. The phosphorylation of focal adhesion kinase, cytoskeletal re-organisation, and cell proliferation were restricted in hMSCs adhering to PS-MBP-FGF2 compared to FN-coated surface. Expression of MSC markers, such as CD105, CD90 and CD166, decreased in hMSCs expanded on PS-MBP-FGF2 compared to expression in cells expanded on FN-coated surface. hMSCs that were expanded on FN-coated surface differentiated into osteogenic and adipogenic cells more readily than those that were expanded on PS-MBP-FGF2. Furthermore, we characterised the N-linked glycan structures of hMSCs depending on the cell adhesion mechanism using mass spectrometry (MS-based quantitative techniques. MS analysis revealed that 2,3-sialylated glycans, a potential marker of stem cell function, were more abundant on hMSCs expanded on FN-coated surface than on those expanded on PS-MBP-FGF2. Thus, the differentiation potential of hMSCs is controlled by the type of adhesion substrate that might provide an idea for the design of biomaterials to control stem cell fate. Elucidation of the glycan structure on the cell membrane may help characterise hMSC function.

  10. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism.

    Science.gov (United States)

    Kang, J; Park, H M; Kim, Y W; Kim, Y H; Varghese, S; Seok, H K; Kim, Y G; Kim, S H

    2014-11-25

    Control of cell-matrix adhesion has become an important issue in the regulation of stem cell function. In this study, a maltose-binding protein (MBP)-linked basic fibroblast growth factor (FGF2)-immobilised polystyrene surface (PS-MBP-FGF2) was applied as an artificial matrix to regulate integrin-mediated signalling. We sought to characterise human mesenchymal-stem cell (hMSC) behaviour in response to two different mechanisms of cell adhesion; (i) FGF2-heparan sulphate proteoglycan (HSPG)-mediated adhesion vs. (ii) fibronectin (FN)-integrin-mediated adhesion. Heparin inhibited hMSC adhesion to PS-MBP-FGF2 but not to FN-coated surface. The phosphorylation of focal adhesion kinase, cytoskeletal re-organisation, and cell proliferation were restricted in hMSCs adhering to PS-MBP-FGF2 compared to FN-coated surface. Expression of MSC markers, such as CD105, CD90 and CD166, decreased in hMSCs expanded on PS-MBP-FGF2 compared to expression in cells expanded on FN-coated surface. hMSCs that were expanded on FN-coated surface differentiated into osteogenic and adipogenic cells more readily than those that were expanded on PS-MBP-FGF2. Furthermore, we characterised the N-linked glycan structures of hMSCs depending on the cell adhesion mechanism using mass spectrometry (MS)-based quantitative techniques. MS analysis revealed that 2,3-sialylated glycans, a potential marker of stem cell function, were more abundant on hMSCs expanded on FN-coated surface than on those expanded on PS-MBP-FGF2. Thus, the differentiation potential of hMSCs is controlled by the type of adhesion substrate that might provide an idea for the design of biomaterials to control stem cell fate. Elucidation of the glycan structure on the cell membrane may help characterise hMSC function.

  11. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.

    Science.gov (United States)

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R

    2017-06-22

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.

  12. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    Science.gov (United States)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors. PMID:28378791

  13. Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components.

    Science.gov (United States)

    de Kivit, Sander; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M

    2011-09-01

    The intestinal mucosa is constantly exposed to the luminal content, which includes micro-organisms and dietary components. Prebiotic non-digestible oligosaccharides may be supplemented to the diet to exert modulation of immune responses in the intestine. Short chain galacto- and long chain fructo-oligosaccharides (scGOS/lcFOS), functionally mimicking oligosaccharides present in human milk, have been reported to reduce the development of allergy through modulation of the intestinal microbiota and immune system. Nonetheless, the underlying working mechanisms of scGOS/lcFOS are unclear. Intestinal epithelial cells lining the mucosa are known to express carbohydrate (glycan)-binding receptors that may be involved in modulation of the mucosal immune response. This review aims to provide an overview of glycan-binding receptors, in particular galectins, which are expressed by intestinal epithelial cells and immune cells. In addition, their involvement in health and disease will be addressed, especially in food allergy and inflammatory bowel disease, diseases originating from the gastro-intestinal tract. Insight in the recognition of glycans in the intestinal tract may open new avenues for the treatment of intestinal inflammatory diseases by either nutritional concepts or pharmacological intervention. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  15. Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation.

    Science.gov (United States)

    Serna, Sonia; Etxebarria, Juan; Ruiz, Nerea; Martin-Lomas, Manuel; Reichardt, Niels-Christian

    2010-11-22

    An effective chemoenzymatic strategy is reported that has allowed the construction, for the first time, of a focused microarray of synthetic N-glycans. Based on modular approaches, a variety of N-glycan core structures have been chemically synthesized and covalently immobilized on a glass surface. The printed structures were then enzymatically diversified by the action of three different glycosyltransferases in nanodroplets placed on top of individual spots of the microarray by a printing robot. Conversion was followed by lectin binding specific for the terminal sugars. This enzymatic extension of surface-bound ligands in nanodroplets reduces the amount of precious glycosyltransferases needed by seven orders of magnitude relative to reactions carried out in the solution phase. Moreover, only those ligands that have been shown to be substrates to a specific glycosyltransferase can be individually chosen for elongation on the array. The methodology described here, combining focused modular synthesis and nanoscale on-chip enzymatic elongation, could open the way for the much needed rapid construction of large synthetic glycan arrays.

  16. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  18. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  19. Membrane Tether Formation on a Cell Surface with Reservoir

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qiang; GUO Hong-Lian; LIU Chun-Xiang; LI Zhao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong; JIA Suo-Tang

    2004-01-01

    @@ We propose a mathematical model to analyse the membrane tether formation process on a cell surface with reservoir. Based on the experimental results, the membrane reservoir density of breast cancer cell was obtained,p = 8.02. The membrane surface viscosity between membrane and environment η is 0.021(pN.s/μm3), and the static force F0 = 5.71 pN.

  20. Microfabricated surface designs for cell culture and diagnosis.

    Science.gov (United States)

    Matsuda, T; Chung, D J

    1994-01-01

    Grooved and holed surfaces with a well fabricated design may serve as microsubstrates for cell culture and microreactors for diagnosis. In this study, the authors prepared chemically treated, micrometer scale grooved and holed glass surfaces by combined surface modification and ultraviolet (UV) excimer laser ablation techniques, as follows. 1) Microcell-culture substrate: Amino group attached glass surfaces, prepared by the treatment with an aminopropylsilane, were condensed with a carboxylated radical initiator. Subsequently, polyacrylamide was grafted by surface initiated radical polymerization to create a very hydrophilic surface layer. Ultraviolet excimer laser beams (KrF: 248 nm) were irradiated through a microscope onto surfaces to create grooves or holes that were 10 and 50 microns in width or diameter, respectively. The depth, depending on the irradiation light strength, ranged from a few to several tenths of a micrometer. On endothelial cell (EC) seeding, ECs adhered and grew on the bottoms of the grooved or holed surface where glass was exposed on ablation. Little cell adhesion was observed on non ablated, grafted surfaces. Endothelial cells aligned along the groove, resulting in very narrow tube like tissue formation, whereas ECs tended to form a multilayered spherical aggregate in a hole. A single cell resided in a 10 microns square hole. 2) Microreactor for diagnosis: The glass surface, treated with a fluorinated silane, was ablated to create round holes. On addition of a few microliters of water, water could be quantitatively transferred into a hole because of the water repellent characteristics of non ablated, fluorinated glass. As a model of a microreactor, enzyme reactions to affect different levels of glucose were carried out in tiny holed surfaces.

  1. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  2. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  3. Cell orientation on a stripe-micropatterned surface

    Institute of Scientific and Technical Information of China (English)

    SUN JianGuo; TANG Jian; DING JianDong

    2009-01-01

    Stripe-micropatterned surfaces have recently been a unique tool to study cell orientation. In this paper,we prepared,by the photolithography transfer technique,stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) proparties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns.With the increase of inter-stripe distance,the orientational order parameter,the ratio of long and short axes of a cell,and the occupation fraction of cells on stripes increased gradually,whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.

  4. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  5. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.

    2013-01-01

    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced rad

  6. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  7. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  8. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  9. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  10. Glycans expressed on Trichinella spiralis excretory-secretory antigens are important for anti-inflamatory immune response polarization.

    Science.gov (United States)

    Cvetkovic, Jelena; Ilic, Natasa; Sofronic-Milosavljevic, Ljiljana; Gruden-Movsesijan, Alisa

    2014-12-01

    Trichinella spiralis muscle larvae excretory-secretory antigens (ES L1) are most likely responsible for the induction of immune response during infection by this parasitic. The antigens bear carbohydrate structures that may contribute to immune system activation resulting in a Th2/anti-inflammatory immune response. We show that T. spiralis glycans affect the expression and the production of IL-4 and IL-10 in vivo. Alteration of carbohydrate structures on ES L1 altered dendritic cell (DC) maturation. Periodate treatment of ES L1 led to the reduction in both ERK and p38 phosphorylation which may be the cause of reduced IL-10 and IL-12p70 production. In vitro priming of naïve T cells with DCs stimulated with native and periodate-treated ES L1 emphasized the importance of intact glycans for IL-10 production. We conclude that T. spiralis glycans affect the anti-inflammatory environment and can interfere with the development of inflammatory diseases.

  11. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    -derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally, membrane-bound Hsp70 can stimulate antigen presenting cells to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells...... frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...... cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 cell surface expression was confined...

  12. Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [(13)C,(15)N]-N-acetylglucosamine labeling of immunoglobulin G1.

    Science.gov (United States)

    Barb, Adam W

    2015-01-20

    Asparagine-linked (N) glycosylation is a common eukaryotic protein modification that affects protein folding, function, and stability through intramolecular interactions between N-glycan and polypeptide residues. Attempts to characterize the structure-activity relationship of each N-glycan are hindered by inherent properties of the glycoprotein, including glycan conformational and compositional heterogeneity. These limitations can be addressed by using a combination of nuclear magnetic resonance techniques following enzymatic glycan remodeling to simultaneously generate homogeneous glycoforms. However, widely applicable methods do not yet exist. To address this technological gap, immature glycoforms of the immunoglobulin G1 fragment crystallizable (Fc) were isolated in a homogeneous state and enzymatically remodeled with [(13)C,(15)N]-N-acetylglucosamine (GlcNAc). UDP-[(13)C,(15)N]GlcNAc was synthesized enzymatically in a one-pot reaction from [(13)C]glucose and [(15)N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases (Gnt1 and Gnt2) and UDP-[(13)C,(15)N]GlcNAc resulted in complete glycoform conversion as judged by mass spectrometry. Two-dimensional heteronuclear single-quantum coherence spectra of the Gnt1 product, containing a single [(13)C,(15)N]GlcNAc residue on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues. Similar spectra of homogeneous glycoforms, halted at different points along the N-glycan remodeling pathway, revealed the presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose trimming, as the N-glycan was converted to a complex-type, biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied to a broad range of

  13. Intramolecular N-Glycan/Polypeptide Interactions Observed at Multiple N-Glycan Remodeling Steps through [13C,15N]-N-Acetylglucosamine Labeling of Immunoglobulin G1

    Science.gov (United States)

    2014-01-01

    Asparagine-linked (N) glycosylation is a common eukaryotic protein modification that affects protein folding, function, and stability through intramolecular interactions between N-glycan and polypeptide residues. Attempts to characterize the structure–activity relationship of each N-glycan are hindered by inherent properties of the glycoprotein, including glycan conformational and compositional heterogeneity. These limitations can be addressed by using a combination of nuclear magnetic resonance techniques following enzymatic glycan remodeling to simultaneously generate homogeneous glycoforms. However, widely applicable methods do not yet exist. To address this technological gap, immature glycoforms of the immunoglobulin G1 fragment crystallizable (Fc) were isolated in a homogeneous state and enzymatically remodeled with [13C,15N]-N-acetylglucosamine (GlcNAc). UDP-[13C,15N]GlcNAc was synthesized enzymatically in a one-pot reaction from [13C]glucose and [15N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases (Gnt1 and Gnt2) and UDP-[13C,15N]GlcNAc resulted in complete glycoform conversion as judged by mass spectrometry. Two-dimensional heteronuclear single-quantum coherence spectra of the Gnt1 product, containing a single [13C,15N]GlcNAc residue on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues. Similar spectra of homogeneous glycoforms, halted at different points along the N-glycan remodeling pathway, revealed the presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose trimming, as the N-glycan was converted to a complex-type, biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied to a broad range of glycoprotein

  14. Zinc uptake by brain cells: `surface' versus `bulk'

    Science.gov (United States)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  15. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation.

    Science.gov (United States)

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-07-10

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na(+)/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104-23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  16. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    Science.gov (United States)

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  17. Transforming ocular surface stem cell research into successful clinical practice

    Directory of Open Access Journals (Sweden)

    Virender S Sangwan

    2014-01-01

    Full Text Available It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.

  18. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  19. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  20. CD44 is the principal cell surface receptor for hyaluronate.

    Science.gov (United States)

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  1. Soluble and cell surface receptors for tumor necrosis factor

    DEFF Research Database (Denmark)

    Wallach, D; Engelmann, H; Nophar, Y

    1991-01-01

    Tumor necrosis factor (TNF) initiates its multiple effects on cell function by binding at a high affinity to specific cell surface receptors. Two different molecular species of these receptors, which are expressed differentially in different cells, have been identified. The cDNAs of both receptor...... have recently been cloned. Antibodies to one of these receptor species (the p55, type I receptor) can trigger a variety of TNF like effects by cross-linking of the receptor molecules. Thus, it is not TNF itself but its receptors that provide the signal for the response to this cytokine...... in certain pathological situations. Release of the soluble receptors from the cells seems to occur by proteolytic cleavage of the cell surface forms and appears to be a way of down-regulating the cell response to TNF. Because of their ability to bind TNF, the soluble receptors exert an inhibitory effect...

  2. Comparative N-linked glycan analysis of wild-type and α1,3-galactosyltransferase gene knock-out pig fibroblasts using mass spectrometry approaches.

    Science.gov (United States)

    Park, Hae-Min; Kim, Yoon-Woo; Kim, Kyoung-Jin; Kim, Young June; Yang, Yung-Hun; Jin, Jang Mi; Kim, Young Hwan; Kim, Byung-Gee; Shim, Hosup; Kim, Yun-Gon

    2015-01-31

    Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.

  3. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces.

    Science.gov (United States)

    Alderete, J F; Garza, G E

    1985-01-01

    The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface

  4. Characterization of the Secondary Binding Sites of Maclura pomifera agglutinin by Glycan Array and Crystallographic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    J Huang; Z Xu; D Wang; C Ogata; K Palczewski; X Lee; N Young

    2011-12-31

    The Maclura pomifera agglutinin (MPA) recognizes the T-antigen disaccharide Gal{beta}1,3GalNAc mainly through interaction of the {alpha}-GalNAc moiety with its primary site, but the interactions of the two flanking subsites A and B with aglycones and substituents other than Gal, respectively, are not well understood. We therefore characterized the specificity of MPA in more detail by glycan microarray analysis and determined the crystal structures of MPA without ligand and in complexes with Gal{beta}1,3GalNAc and p-nitrophenyl {alpha}-GalNAc. In both sugar complexes, pairs of ligands created inter-tetramer hydrogen-bond bridging networks. While subsite A showed increased affinity for hydrophobic aglycones, it also accommodated several sugar substituents. Notably, a GalNAc-O-tripeptide, a Tn-antigen mimic, showed lower affinity than these compounds in surface plasmon resonance (SPR) experiments. The glycan array data that showed subsite B accepted compounds in which the O3 position of the GalNAc was substituted with various sugars other than Gal, but substitutions at O6 led to inactivity. Additions to the Gal moiety of the disaccharide also had only small effects on reactivity. These results are all compatible with the features seen in the crystal structures.

  5. Antifouling property of highly oleophobic substrates for solar cell surfaces

    Science.gov (United States)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  6. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either direct...

  7. Effect of hydroxyapatite surface morphology on cell adhesion.

    Science.gov (United States)

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  8. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  9. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  10. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    , membrane-bound Hsp70 can stimulate antigen presenting cells (APCs) to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several...... clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...... hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 surface expression was confined to the apoptotic Annexin V positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis...

  11. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    Science.gov (United States)

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish.

  12. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  13. Engineered microtopographies and surface chemistries direct cell attachment and function

    Science.gov (United States)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  14. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search.

    Directory of Open Access Journals (Sweden)

    Davide Alocci

    Full Text Available Resource description framework (RDF and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP. In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues.

  15. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search.

    Science.gov (United States)

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T; Campbell, Matthew P; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues.

  16. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  17. Development of exosome surface display technology in living human cells.

    Science.gov (United States)

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  18. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  19. Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans.

    Science.gov (United States)

    Pabst, Martin; Bondili, Jayakumar Singh; Stadlmann, Johannes; Mach, Lukas; Altmann, Friedrich

    2007-07-01

    Analysis of the numerous possible, often isobaric structures of protein-bound oligosaccharides calls for a high-performance two-dimensional method that combines liquid chromatography's ability to separate isomers and mass spectrometry's ability to determine glycan composition. Here we investigate the usefulness of porous graphitic carbon columns coupled to ESI-MS for the separation of N-glycans with two or more sialic acids. Internal standards helped to rectify retention time fluctuations and thus allowed elution times to play an essential role in the structural assignment of peaks. For generation of a retention time library, standards representing the possible isomers of diantennary non-, mono-, and disialylated N-glycans, differing in the linkage of galactose and sialic acids as well as isobaric hybrid-type N-glycans, were produced using recombinant glycosyltransferases. Once the retention times library was established, isomers could be identified by LC-ESI-MS in the positive mode without additional MS/MS experiments. The method was applied for the detailed structural analysis of fibrin(ogen) N-glycans from various species (human, cow, pig, mouse, rat, cat, dog, Chinese hamster, horse, sheep, and chicken). All fibrins contained diantennary N-glycans. They differed in the occurrence of beta1,3-linked galactose, alpha2,3-linked sialic acids, and N-glycolylneuraminic acid, in the mono/diantennary glycan ratio, and in the O-acetylation of neuraminic acids. The separation system's potential for analyzing tri- and tetrasialylated N-glycans was demonstrated.

  20. Chemo-Enzymatic Synthesis of (13)C Labeled Complex N-Glycans As Internal Standards for the Absolute Glycan Quantification by Mass Spectrometry.

    Science.gov (United States)

    Echeverria, Begoña; Etxebarria, Juan; Ruiz, Nerea; Hernandez, Álvaro; Calvo, Javier; Haberger, Markus; Reusch, Dietmar; Reichardt, Niels-Christian

    2015-11-17

    Methods for the absolute quantification of glycans are needed in glycoproteomics, during development and production of biopharmaceuticals and for the clinical analysis of glycan disease markers. Here we present a strategy for the chemo-enzymatic synthesis of (13)C labeled N-glycan libraries and provide an example for their use as internal standards in the profiling and absolute quantification of mAb glycans by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. A synthetic biantennary glycan precursor was (13)C-labeled on all four amino sugar residues and enzymatically derivatized to produce a library of 15 glycan isotopologues with a mass increment of 8 Da over the natural products. Asymmetrically elongated glycans were accessible by performing enzymatic reactions on partially protected UV-absorbing intermediates, subsequent fractionation by preparative HPLC, and final hydrogenation. Using a preformulated mixture of eight internal standards, we quantified the glycans in a monoclonal therapeutic antibody with excellent precision and speed.

  1. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Karim, Salim S. Abdool; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.; Kwong, Peter D.; Morris, Lynn (NHLS-South Africa); (NIH); (Witwatersrand); (KwaZulu-Natal)

    2016-08-31

    ABSTRACT

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage.

    IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of

  2. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools.

    Science.gov (United States)

    Oliveira, Carla; Teixeira, José A; Domingues, Lucília

    2013-03-01

    Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.

  3. Allosteric modulation of the HIV-1 gp120-gp41 association site by adjacent gp120 variable region 1 (V1 N-glycans linked to neutralization sensitivity.

    Directory of Open Access Journals (Sweden)

    Heidi E Drummer

    Full Text Available The HIV-1 gp120-gp41 complex, which mediates viral fusion and cellular entry, undergoes rapid evolution within its external glycan shield to enable escape from neutralizing antibody (NAb. Understanding how conserved protein determinants retain functionality in the context of such evolution is important for their evaluation and exploitation as potential drug and/or vaccine targets. In this study, we examined how the conserved gp120-gp41 association site, formed by the N- and C-terminal segments of gp120 and the disulfide-bonded region (DSR of gp41, adapts to glycan changes that are linked to neutralization sensitivity. To this end, a DSR mutant virus (K601D with defective gp120-association was sequentially passaged in peripheral blood mononuclear cells to select suppressor mutations. We reasoned that the locations of suppressors point to structural elements that are functionally linked to the gp120-gp41 association site. In culture 1, gp120 association and viral replication was restored by loss of the conserved glycan at Asn¹³⁶ in V1 (T138N mutation in conjunction with the L494I substitution in C5 within the association site. In culture 2, replication was restored with deletion of the N¹³⁹INN sequence, which ablates the overlapping Asn¹⁴¹-Asn¹⁴²-Ser-Ser potential N-linked glycosylation sequons in V1, in conjunction with D601N in the DSR. The 136 and 142 glycan mutations appeared to exert their suppressive effects by altering the dependence of gp120-gp41 interactions on the DSR residues, Leu⁵⁹³, Trp⁵⁹⁶ and Lys⁶⁰¹. The 136 and/or 142 glycan mutations increased the sensitivity of HIV-1 pseudovirions to the glycan-dependent NAbs 2G12 and PG16, and also pooled IgG obtained from HIV-1-infected individuals. Thus adjacent V1 glycans allosterically modulate the distal gp120-gp41 association site. We propose that this represents a mechanism for functional adaptation of the gp120-gp41 association site to an evolving glycan

  4. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    Science.gov (United States)

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  5. alpha-mannosidase involved in turnover of plant complex type N-glycans in tomato (Lycopersicum esculentum) fruits.

    Science.gov (United States)

    Hossain, Md Anowar; Nakamura, Kosuke; Kimura, Yoshinobu

    2009-01-01

    In this study, we purified and characterized an alpha-mannosidase to homogeneity from mature red tomato fruits. Purified alpha-mannosidase (alpha-Man LE-1) gave two separate bands, of molecular masses of 70 kDa (L-subunit) and 47 kDa (S-subunit), on SDS-PAGE under non-reducing and reducing conditions. On the other hand, the molecular weight was estimated to be 230 kDa by gel filtration, indicating that alpha-Man LE-1 functions in a tetrameric structure in plant cells. The N-terminal sequence of the L-subunit and the S-subunit were determined to be L-Y-M-V-Y-M-T-K-Q-G- and X-X-L-E-Q/K-S-F-S-Y-Y respectively. When pyridylaminated N-glycans were used as substrates, alpha-Man LE-1 showed optimum activity at about pH 6 and at 40 degrees C, and the activity was completely inhibited by both swainsonine and 1-deoxy-mannojirimycin. alpha-Man LE-1 hydrolyzed the alpha-mannosidic linkages from both high-mannose type and plant complex type N-glycan, but preferred a truncated plant complex type structure to high-mannose type N-glycans bearing alpha1-2 mannosyl residues.

  6. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

    Science.gov (United States)

    Pomin, Vitor H.

    2015-01-01

    Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics available for clinical studies. Here, the principal structural features and the major mechanisms of action of the SFs and SGs in the above-mentioned pathophysiological systems are presented. Discussion is also given on the current challenges and the future perspectives in drug development of these marine glycans. PMID:26690451

  7. A Single Host-Derived Glycan Impacts Key Regulatory Nodes of Symbiont Metabolism in a Coevolved Mutualism.

    Science.gov (United States)

    Pan, Min; Schwartzman, Julia A; Dunn, Anne K; Lu, Zuhong; Ruby, Edward G

    2015-07-14

    Most animal-microbe mutualistic associations are characterized by nutrient exchange between the partners. When the host provides the nutrients, it can gain the capacity to shape its microbial community, control the stability of the interaction, and promote its health and fitness. Using the bioluminescent squid-vibrio model, we demonstrate how a single host-derived glycan, chitin, regulates the metabolism of Vibrio fischeri at key points in the development and maintenance of the symbiosis. We first characterized the pathways for catabolism of chitin sugars by V. fischeri, demonstrating that the Ccr-dependent phosphoenolpyruvate-pyruvate phosphotransferase system (PTS) prioritizes transport of these sugars in V. fischeri by blocking the uptake of non-PTS carbohydrates, such as glycerol. Next, we found that PTS transport of chitin sugars into the bacterium shifted acetate homeostasis toward a net excretion of acetate and was sufficient to override an activation of the acetate switch by AinS-dependent quorum sensing. Finally, we showed that catabolism of chitin sugars decreases the rate of cell-specific oxygen consumption. Collectively, these three metabolic functions define a physiological shift that favors fermentative growth on chitin sugars and may support optimal symbiont luminescence, the functional basis of the squid-vibrio mutualism. Host-derived glycans have recently emerged as a link between symbiont nutrition and innate immune function. Unfortunately, the locations at which microbes typically access host-derived glycans are inaccessible to experimentation and imaging, and they take place in the context of diverse microbe-microbe interactions, creating a complex symbiotic ecology. Here we describe the metabolic state of a single microbial symbiont in a natural association with its coevolved host and, by doing so, infer key points at which a host-controlled tissue environment might regulate the physiological state of its symbionts. We show that the presence of

  8. Regulation of Mac-2BP secretion is mediated by its N-glycan binding to ERGIC-53.

    Science.gov (United States)

    Chen, Yang; Hojo, Sanae; Matsumoto, Naoki; Yamamoto, Kazuo

    2013-07-01

    The leguminous-type (L-type) lectin ER-Golgi intermediate compartment (ERGIC)-53, a homo-oligomeric endoplasmic reticulum (ER)-Golgi recycling protein, functions as a transport receptor for newly synthesized glycoproteins in the early secretory pathway. Although a limited subset of cargo glycoproteins transported by ERGIC-53, such as the coagulation factors V and VIII, cathepsin C and Z and α1-antitrypsin, has been identified, the exact role of the N-glycan binding of ERGIC-53 in the transport of secretory glycoproteins for ER exit has yet to be clarified. By screening a cDNA library isolated from HepG2 cells via a green fluorescent protein fragment complementation assay, we assessed several candidate luminal ERGIC-53-interacting partners and identified Mac-2 binding protein (Mac-2BP) as a novel ERGIC-53-transported cargo glycoprotein. Using an N-glycan-binding-deficient mutant of ERGIC-53 (N156A) or treatment with N-glycosylation processing inhibitors, as well as the introduction of the ER-mis-targeting mutant (KKAA), we demonstrated that the high-mannose-type N-glycan binding of ERGIC-53 contributes to its interaction with Mac-2BP, which is essential for the ERGIC-53-mediated ER-Golgi transport of nascent proteins during early secretion. Furthermore, we also provide evidence that MCFD2 is involved in the secretion of Mac-2BP. These observations reveal a distinct role for the N-glycan binding of ERGIC-53 in the receptor-mediated ER exit of newly synthesized Mac-2BP in the early secretion pathway.

  9. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  10. Development of exosome surface display technology in living human cells

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu; Zhang, Zhiwen, E-mail: zzhang@scu.edu; Lu, Biao, E-mail: blu2@scu.edu

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  11. DNA display of glycoconjugates to emulate oligomeric interactions of glycans

    Directory of Open Access Journals (Sweden)

    Alexandre Novoa

    2015-05-01

    Full Text Available Glycans (carbohydrate portion of glycoproteins and glycolipids frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed.

  12. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Michiyo Terashima

    2014-11-01

    Full Text Available Alterations in the structure of cell surface glycoforms occurring during the stages of stem cell differentiation remain unclear. We describe a rapid glycoblotting-based cellular glycomics method for quantitatively evaluating changes in glycoform expression and structure during neuronal differentiation of murine induced pluripotent stem cells (iPSCs and embryonic stem cells (ESCs. Our results show that changes in the expression of cellular N-glycans are comparable during the differentiation of iPSCs and ESCs. The expression of bisect-type N-glycans was significantly up-regulated in neurons that differentiated from both iPSCs and ESCs. From a glycobiological standpoint, iPSCs are an alternative neural cell source in addition to ESCs.

  13. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  14. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  15. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Jimin Xiong

    2016-01-01

    Full Text Available The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.

  16. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins.

    Directory of Open Access Journals (Sweden)

    Malin E V Johansson

    Full Text Available The enormous bacterial load and mechanical forces in colon create a special requirement for protection of the epithelium. In the distal colon, this problem is largely solved by separation of the bacteria from the epithelium by a firmly attached inner mucus layer. In addition, an outer mucus layer entraps bacteria to be cleared by distal transport. The mucus layers contain a network of Muc2 mucins as the main structural component. Here, the renewal rate of the inner protective mucus layer was studied as well as the production and secretion of Muc2 mucin in the distal colon. This was performed by intraperitoneal injection of N-azidoacetyl-galactosamine (GalNAz that was in vivo incorporated during biosynthesis of O-glycosylated glycoproteins. The only gel-forming mucin produced in the colon is the Muc2 mucin and as it carries numerous O-glycans, the granulae of the goblet cells producing Muc2 mucin were intensely stained. The GalNAz-labeled glycoproteins were first observed in the Golgi apparatus of most cells. Goblet cells in the luminal surface epithelium had the fastest biosynthesis of Muc2 and secreted material already three hours after labeling. This secreted GalNAz-labeled Muc2 mucin formed the inner mucus layer. The goblet cells along the crypt epithelium accumulated labeled mucin vesicles for a longer period and secretion of labeled Muc2 mucin was first observed after 6 to 8 h. This study reveals a fast turnover (1 h of the inner mucus layer in the distal colon mediated by goblet cells of the luminal surface epithelium.

  17. In vitro behaviour of endothelial cells on a titanium surface

    Directory of Open Access Journals (Sweden)

    Oliveira-Filho Ricardo

    2008-07-01

    Full Text Available Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs harvested on titanium (Ti, using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

  18. Fabrication of cell container arrays with overlaid surface topographies.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  19. 3D surface topology guides stem cell adhesion and differentiation.

    Science.gov (United States)

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  20. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice

    Science.gov (United States)

    Luyai, Anthony E; Heimburg-Molinaro, Jamie; Prasanphanich, Nina Salinger; Mickum, Megan L; Lasanajak, Yi; Song, Xuezheng; Nyame, A Kwame; Wilkins, Patricia; Rivera-Marrero, Carlos A; Smith, David F; Van Die, Irma; Secor, W Evan; Cummings, Richard D

    2014-01-01

    Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8–11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcβ1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections. PMID:24727442

  1. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V...... activity selectively induces surface expression of Hsp70 on hematopoietic cancer cells and that this may increase immunorecognition of these cells.......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...

  2. Identification of a novel, alpha2-fucosylation-dependent uptake system in highly proliferative cells.

    Science.gov (United States)

    Aldi, Silvia; Capone, Antonietta; Giovampaola, Cinzia Della; Ermini, Leonardo; Pianigiani, Elisa; Mariotti, Giancarlo; Rosati, Floriana

    2015-02-01

    In this paper we describe a new structure present in highly proliferative cells and absent in cells with normal growth potential. We used cultured bovine venular endothelial cells (CVEC) as examples of high proliferation, and dermal fibroblasts of a primary culture as examples of normal proliferation. The structure, consisting of tubules radiating from the nuclear region to the tips of cell protrusions, was revealed by its strong positivity to the fucose-binding lectin from Lotus (LTL) that prefers glycans with alpha-1,2-linked fucose. Another fucose-binding lectin that prefers glycans with alpha-1,6-linked fucose was instead found to localize glycans exclusively in Golgi complexes. LTL binding sites were also found at the surface of CVEC in a restricted region close to the nucleus. The role of alpha-1,2-linked fucose in forming or maintaining the tubules was confirmed by the fact that down-regulation of the fucosyltransferases FUT1 and FUT2 resulted in disappearance of the tubular structure. LTL also proved able to penetrate the cells through the tubular structures up to the nuclear region and to inhibit proliferation. Endostatin was also found to massively penetrate the cells in the tubular structures in control cells but not in FUT1/2 depleted cells. In cells of a first passage primary culture of dermal fibroblasts the tubular LTL-positive structure was absent as well as the LTL-positive sites at the external surface, and both fucose-binding lectins were found to exclusively localize glycans in Golgi complexes. Tubules were again found progressively in fibroblasts derived from repeated passages, where faster growing cells predominate. Disappearance of LTL-positivity in Golgi complexes paralleled appearance of LTL-positive tubules. The role of Golgi complexes in forming the tubules is discussed.

  3. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  4. Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies.

    Science.gov (United States)

    Qi, Yifei; Jo, Sunhwan; Im, Wonpil

    2016-03-01

    Many novel broadly neutralizing antibodies against human immunodeficiency virus (HIV) have been identified during the past decade, providing promising templates for the development of an effective HIV-1 vaccine. Structural studies reveal that the epitopes of some of these antibodies involve one or more crucial glycans, without which the binding is completely abolished. In this study, we have investigated the critical roles of glycans in interactions between HIV-1 gp120 and two broadly neutralizing antibodies PG9 (targeting V1/V2) and PGT128 (targeting V3) that are able to neutralize more than 70% of HIV-1 isolates. We have performed molecular dynamics simulations of a number of systems including antibody-gp120 complex with and without glycans, antibody, gp120 with and without glycans, and glycan-only systems. The simulation results show that the complex structures are stabilized by the glycans, and the multivalent interactions between the antibody and gp120 promote cooperativities to further enhance the binding. In the free gp120, the glycans increase the flexibility of the V1/V2 and V3 loops, which likely increases the entropy cost of the antibody recognition. However, the antibodies are able to bind the flexible interface by recognizing the preexisting glycan conformation, and penetrating the glycan shield with flexible complementarity determining region loops that sample the bound conformations occasionally.

  5. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  6. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface.

    Science.gov (United States)

    Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E; Mallikaratchy, Prabodhika

    2017-08-29

    Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics.

  7. Comparative analysis of the N-glycans of rat, mouse and human Thy-1. Site-specific oligosaccharide patterns of neural Thy-1, a member of the immunoglobulin superfamily.

    Science.gov (United States)

    Williams, A F; Parekh, R B; Wing, D R; Willis, A C; Barclay, A N; Dalchau, R; Fabre, J W; Dwek, R A; Rademacher, T W

    1993-08-01

    Protein structure and tissue type are known to influence glycosylation of proteins. We have previously investigated the N-glycans at each of the three glycosylation sites of the cell surface glycoprotein Thy-1 when isolated from rat brain and thymocytes. Here we report a comparative analysis of the site-specific N-glycosylation patterns from rat (Asn 23, 74, 98), mouse (Asn 23, 75, 99) and human (Asn 23, 60, 100) neural Thy-1. Despite considerable differences in amino acid sequence, the results show a remarkable conservation of the pattern of N-glycans at corresponding sites between the three species, as judged by chromatographic comparisons and glycosidase susceptibility. This is particularly marked for sites at Asn 74/75 in rat/mouse and the equivalent site at 60 in human Thy-1, as well as for sites at Asn 98/99 and 100, respectively. The sites at Asn 23 in rat/mouse also contained almost identical glycosylation patterns, but at this site human Thy-1 showed significantly different glycosylation patterns. These site glycosylation patterns are discussed in relation to the likely accessibility of the oligosaccharides for processing. It is known that within a species, the glycosylation of Thy-1 is tissue specific; therefore, this degree of conservation of glycosylation of Thy-1 expressed in the same tissue in different species is all the more striking, given the known variation between species in the amino acid sequence of Thy-1. It is therefore proposed that neural cells have a particular requirement for specific surface carbohydrates and that the Thy-1 polypeptide serves as an appropriate carrier for these structures.

  8. Cell surface activation of progelatinase A (proMMP—2) and cell migration

    Institute of Scientific and Technical Information of China (English)

    NAGASEHIDEAKI

    1998-01-01

    Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.

  9. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1.

    Science.gov (United States)

    Razawi, Hanieh; Kinlough, Carol L; Staubach, Simon; Poland, Paul A; Rbaibi, Youssef; Weisz, Ora A; Hughey, Rebecca P; Hanisch, Franz-Georg

    2013-08-01

    The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111-1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [(35)S]Met/Cys or glycans with [(3)H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [(3)H]MUC1 when compared with [(35)S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan

  10. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  11. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  12. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  13. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  14. Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides.

    Science.gov (United States)

    Corvaglia, Valentina; Marega, Riccardo; De Leo, Federica; Michiels, Carine; Bonifazi, Davide

    2016-01-20

    Thiolated peptides bearing the Ile-Gly-Asp (IGD) motif, a highly conserved sequence of fibronectin, are used for the preparation of anisotropic self-assembled monolayers (SAM gradients) to study the whole-population migratory behavior of metastatic breast cancer cells (MDA-MB-231 cells). Ile-Gly-Asp-Gln-(IGDQ)-exposing SAMs sustain the adhesion of MDA-MB-231 cells by triggering focal adhesion kinase phosphorylation, similarly to the analogous Gly-Arg-Gly-Asp-(GRGD)-terminating surfaces. However, the biological responses of different cell lines interfaced with the SAM gradients show that only those exposing the IGDQ sequence induce significant migration of MDA-MB-231 cells. In particular, the observed migratory behavior suggests the presence of cell subpopulations associated with a "stationary" or a "migratory" phenotype, the latter determining a considerable cell migration at the sub-cm length scale. These findings are of great importance as they suggest for the first time an active role of biological surfaces exposing the IGD motif in the multicomponent orchestration of cellular signaling involved in the metastatic progression.

  15. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  16. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  17. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  18. "Race for the Surface": Eukaryotic Cells Can Win.

    Science.gov (United States)

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.

  19. Surface manipulation of biomolecules for cell microarray applications.

    Science.gov (United States)

    Hook, Andrew L; Thissen, Helmut; Voelcker, Nicolas H

    2006-10-01

    Many biological events, such as cellular communication, antigen recognition, tissue repair and DNA linear transfer, are intimately associated with biomolecule interactions at the solid-liquid interface. To facilitate the study and use of these biological events for biodevice and biomaterial applications, a sound understanding of how biomolecules behave at interfaces and a concomitant ability to manipulate biomolecules spatially and temporally at surfaces is required. This is particularly true for cell microarray applications, where a range of biological processes must be duly controlled to maximize the efficiency and throughput of these devices. Of particular interest are transfected-cell microarrays (TCMs), which significantly widen the scope of microarray genomic analysis by enabling the high-throughput analysis of gene function within living cells. This article reviews this current research focus, discussing fundamental and applied research into the spatial and temporal surface manipulation of DNA, proteins and other biomolecules and the implications of this work for TCMs.

  20. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  1. Surface modification of substrates for bacteria and cell culture.

    Science.gov (United States)

    Baede, Tom; Sladek, Raymond; Stoffels, Eva

    2006-10-01

    The plasma needle is a medical device that consists of a tungsten wire placed in a tube through which helium flows. A RF voltage frequency of 13.05 MHz is applied to the wire to produce the plasma. The device has a non-thermal effect and is therefore suited for both organic and inorganic surfaces. It was designed to manipulate tissues, but can also be used to modify the bacterial adhesion properties of material surfaces. The surface modification has a number of applications, most notably cell culture and the preventive treatment of caries. The research consists of two sets of experiments. In the first experiments the effect of the plasma treatment on the wettability was studied by means of contact angle measurements. The wettability quantifies the hydrophilic behavior of a surface. Plasma treatment with the plasma needle significantly increased the wettability of the studied materials. The persistence of the wettability change was also examined. For some materials the effect was only temporary. Bacteria are very particular about the surfaces they adhere to and the wettability of the surface plays an important role in their preference. The next set of experiments dealt with the effect of plasma treatment on bacterial adhesion. This effect was measured by comparing the growth rates of E. coli and S. mutans bacteria that were cultured on both plasma and non-treated surfaces. The effect appears to be species specific.

  2. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  3. Surface science studies of model fuel cell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Ross, P.N. [Lawrence Berkeley National Laboratory, Materials Sciences Division, University of California, 94720 Berkeley, CA (United States)

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  4. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  5. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  6. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    Science.gov (United States)

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  7. O-glycans direct selectin ligands to lipid rafts on leukocytes.

    Science.gov (United States)

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P

    2015-07-14

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.

  8. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    Science.gov (United States)

    Chang, Jiyoung; Yoon, Sang-Hee; Mofrad, Mohammad R. K.; Lin, Liwei

    2011-05-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of -1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions.

  9. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  10. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  11. Diagnosis of toxoplasmosis using a synthetic glycosylphosphatidylinositol glycan.