WorldWideScience

Sample records for cell surface cxcr4

  1. Down-regulation of cell surface CXCR4 by HIV-1

    Directory of Open Access Journals (Sweden)

    Vigh Sandor

    2008-01-01

    Full Text Available Abstract Background CXC chemokine receptor 4 (CXCR4, a member of the G-protein-coupled chemokine receptor family, can serve as a co-receptor along with CD4 for entry into the cell of T-cell tropic X4 human immunodeficiency virus type 1 (HIV-1 strains. Productive infection of T-lymphoblastoid cells by X4 HIV-1 markedly reduces cell-surface expression of CD4, but whether or not the co-receptor CXCR4 is down-regulated has not been conclusively determined. Results Infection of human T-lymphoblastoid cell line RH9 with HIV-1 resulted in down-regulation of cell surface CXCR4 expression. Down-regulation of surface CXCR4 correlated temporally with the increase in HIV-1 protein expression. CXCR4 was concentrated in intracellular compartments in H9 cells after HIV-1 infection. Immunofluorescence microscopy studies showed that CXCR4 and HIV-1 glycoproteins were co-localized in HIV infected cells. Inducible expression of HIV-1 envelope glycoproteins also resulted in down-regulation of CXCR4 from the cell surface. Conclusion These results indicated that cell surface CXCR4 was reduced in HIV-1 infected cells, whereas expression of another membrane antigen, CD3, was unaffected. CXCR4 down-regulation may be due to intracellular sequestering of HIV glycoprotein/CXCR4 complexes.

  2. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface.

    Science.gov (United States)

    Martínez-Muñoz, Laura; Barroso, Rubén; Dyrhaug, Sunniva Y; Navarro, Gemma; Lucas, Pilar; Soriano, Silvia F; Vega, Beatriz; Costas, Coloma; Muñoz-Fernández, M Ángeles; Santiago, César; Rodríguez Frade, José Miguel; Franco, Rafael; Mellado, Mario

    2014-05-13

    CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.

  3. ِIncreased expression of T- cell- surface CXCR4 in asthmatic children.

    African Journals Online (AJOL)

    Ehab

    significantly increased in children with acute exacerbations of bronchial asthma as ... CXCR4 in bronchial asthma. 81 properties of ... (OP), and 4 patients with severe persistent asthma. (SP). .... in IL-4 and IL-5 levels and a significant increase.

  4. Bryostatin-5 blocks stromal cell-derived factor-1 induced chemotaxis via desensitization and down-regulation of cell surface CXCR4 receptors.

    Science.gov (United States)

    He, Xing; Fang, Liyan; Wang, Jue; Yi, Yanghua; Zhang, Shuyu; Xie, Xin

    2008-11-01

    The chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1), play important roles in hematopoiesis regulation, lymphocyte activation, and trafficking, as well as in developmental processes, including organogenesis, vascularization, and embryogenesis. The receptor is also involved in HIV infection and tumor growth and metastasis. Antagonists of CXCR4 have been widely evaluated for drugs against HIV and tumors. In an effort to identify novel CXCR4 antagonists, we screened a small library of compounds derived from marine organisms and found bryostatin-5, which potently inhibits chemotaxis induced by SDF-1 in Jurkat cells. Bryostatin-5 is a member of the macrolactones, and its analogue bryostatin-1 is currently being evaluated in clinical trials for its chemotherapeutic potential. The involvement of bryostatins in the SDF-1/CXCR4 signaling process has never been reported. In this study, we found that bryostatin-5 potently inhibits SDF-1-induced chemotaxis but does not affect serum-induced chemotaxis. Further studies indicate that this inhibitory effect is not due to receptor antagonism but rather to bryostatin-5-induced receptor desensitization and down-regulation of cell surface CXCR4. We also show that these effects are mediated by the activation of conventional protein kinase C.

  5. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4

    LENUS (Irish Health Repository)

    Cronin, Patricia A

    2010-05-21

    Abstract Background Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Methods Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. Results CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. Conclusions CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer.

  6. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  7. Expression and functional heterogeneity of chemokine receptors CXCR4 and CXCR7 in primary patient-derived glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Che Liu

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor in adults. The poor prognosis and minimally successful treatments of these tumors indicates a need to identify new therapeutic targets. Therapy resistance of GBMs is attributed to heterogeneity of the glioblastoma due to genetic alterations and functional subpopulations. Chemokine receptors CXCR4 and CXCR7 play important roles in progression of various cancers although the specific functions of the CXCL12-CXCR4-CXCR7 axis in GBM are less characterized. In this study we examined the expression and function of CXCR4 and CXCR7 in four primary patient-derived GBM cell lines of the proliferative subclass, investigating their roles in in vitro growth, migration, sphere and tube formation. CXCR4 and CXCR7 cell surface expression was heterogeneous both between and within each cell line examined, which was not reflected by RT-PCR analysis. Variable percentages of CXCR4+CXCR7- (CXCR4 single positive, CXCR4-CXCR7+ (CXCR7 single positive, CXCR4+CXCR7+ (double positive, and CXCR4-CXCR7- (double negative subpopulations were evident across the lines examined. A subpopulation of slow cell cycling cells was enriched in CXCR4 and CXCR7. CXCR4+, CXCR7+, and CXCR4+/CXCR7+ subpopulations were able to initiate intracranial tumors in vivo. CXCL12 stimulated in vitro cell growth, migration, sphere formation and tube formation in some lines and, depending on the response, the effects were mediated by either CXCR4 or CXCR7. Collectively, our results indicate a high level of heterogeneity in both the surface expression and functions of CXCR4 and CXCR7 in primary human GBM cells of the proliferative subclass. Should targeting of CXCR4 and CXCR7 provide clinical benefits to GBM patients, a personalized treatment approach should be considered given the differential expression and functions of these receptors in GBM.

  8. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  9. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV......-infected individuals with CXCR4 antagonists delays the onset of AIDS by preventing the CCR5 to CXCR4 coreceptor switch. In addition to the endogenous CXCR4 and CCR5 ligands, other chemokines, for example the human herpesvirus 8 encoded CC-chemokine, vCCL2, and modifications hereof, have proven efficient HIV-1 cell...... no oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides...

  10. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Ferrari Angelo

    2012-03-01

    Full Text Available Abstract Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas, 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did

  11. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer

    Science.gov (United States)

    Lee, Hyun Hee; Bellat, Vanessa

    2017-01-01

    Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy. PMID:28196146

  12. Suicide gene reveals the myocardial neovascularization role of mesenchymal stem cells overexpressing CXCR4 (MSC(CXCR4.

    Directory of Open Access Journals (Sweden)

    Jialiang Liang

    Full Text Available BACKGROUND: Our previous studies indicated that MSC(CXCR4 improved cardiac function after myocardial infarction (MI. This study was aimed to investigate the specific role of MSC(CXCR4 in neovascularization of infarcted myocardium using a suicide gene approach. METHODS: MSCs were transduced with either lentivirus-null vector/GFP (MSC(Null as control or vector encoding for overexpressing CXCR4/GFP. The MSC derived-endothelial cell (EC differentiation was assessed by a tube formation assay, Dil-ac-LDL uptake, EC marker expression, and VE-cadherin promoter activity assay. Gene expression was analyzed by quantitative RT-PCR or Western blot. The suicide gene approach was under the control of VE-cadherin promoter. In vivo studies: Cell patches containing MSC(Null or MSC(CXCR4 were transduced with suicide gene and implanted into the myocardium of MI rat. Rats received either ganciclovir (GCV or vehicle after cell implantation. After one month, the cardiac functional changes and neovascularization were assessed by echocardiography, histological analysis, and micro-CT imaging. RESULTS: The expression of VEGF-A and HIF-1α was significantly higher in MSC(CXCR4 as compared to MSC(Null under hypoxia. Additionally, MSC(CXCR4 enhanced new vessel formation and EC differentiation, as well as STAT3 phosphorylation under hypoxia. STAT3 participated in the transcription of VE-cadherin in MSC(CXCR4 under hypoxia, which was inhibited by WP1066 (a STAT3 inhibitor. In addition, GCV specifically induced death of ECs with suicide gene activation. In vivo studies: MSC(CXCR4 implantation promoted cardiac functional restoration, reduced infarct size, improved cardiac remodeling, and enhanced neovascularization in ischemic heart tissue. New vessels derived from MSC(CXCR4 were observed at the injured heart margins and communicated with native coronary arteries. However, the derived vessel networks were reduced by GCV, reversing improvement of cardiac function. CONCLUSION: The

  13. Evidence for existence of a close association between CD14 and CXCR4 on monocytic cell line U937

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The surface expression of HIV-1 coreceptors (CXCR4 and CCR5) on monocytes can be regulated by the ligand of CD14, and the susceptibility of the cells to HIV-1 is then changed. Our previous study found that monoclonal antibody against CD14 could dramatically inhibit CXCR4-mediated chemotaxis and cell-cell fusion. Based on these studies, we explored potential relationship between CD14 and CXCR4 on monocytic cell line U937. Flow cytometry analysis showed that anti-CXCR4 monoclonal antibody (mAb) 12G5 strongly inhibited binding of the FITC-conjugated anti-CD14 monoclonal antibodies (TUK4 and UCHM1 ) to U937, while another CXCR4-specific mAb B-R24 did not show any effect on this binding. On the other hand, two anti-CD14 monoclonal antibodies (TUK4 and UCH-M1) obviously inhibited the binding of the PE-conjugated anti-CXCR4 mAb 12G5 to U937 but did not inhibit the binding of mAb 12G5 to CXCR4-transfected 3T3 cells (3T3. T4. CXCR4), which indicates that the blocking of mAb 12G5 binding to CXCR4 by CD14-specific mAbs is not involved in the possibility that CD14-specific mAbs directly bind to CXCR4. These results suggested existence of a close association between CD14 and CXCR4 on monocytic cell line U937.

  14. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  15. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  16. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  17. CXCR4 silencing inhibits invasion and migration of human laryngeal cancer Hep-2 cells.

    Science.gov (United States)

    Niu, Juntao; Huang, Yongwang; Zhang, Lun

    2015-01-01

    CXCR4 has been reported in various types of human cancer, which is associated with cancer progression and metastasis. However, the investigation of CXCR4 in laryngeal cancer is extremely rare. In the present study, we used lentivirus-mediated shRNA targeting CXCR4 to silenced CXCR4 expression in Hep-2 cells and evaluated the effect of long-term suppression of CXCR4 on Hep-2 growth and metastasis. The Cell proliferation was analyzed by MTS assay, and the invasion and metastasis potentials were analyzed using wound healing and transwell assays, respectively. Our results showed that lentivirus-mediated shRNA effectively infected Hep-2 cells and suppressed CXCR4 expression, and inhibited cell growth of Hep-2 cells. Cell invasion and apoptosis were decreased concomitantly with the reduction in CXCR4 protein expression. Further analysis revealed that CXCR4 silencing caused the reducion of CXCR4, CXCL12, TIMP2, VEGF and MMP9, and the phosphorylation levels of IκB, AKT and MAPK, and also decreased the activity of NF-κB. These results suggested that knockdown of CXCR4 inhibits the invasion and metastasis of Hep-2 through PI3K/AKT and MAPK signaling pathways, by decreasing NF-κB activities to down-regulate VEGF, TIMP-2 and MMP-9 expression. These data demonstrate that the inhibition of CXCR4 may be an effective interventional therapeutic strategy in laryngeal cancer.

  18. Chloroquine-Containing HPMA Copolymers as Polymeric Inhibitors of Cancer Cell Migration Mediated by the CXCR4/SDF-1 Chemokine Axis

    OpenAIRE

    Yu, Fei; Xie, Ying; Wang, Yan; Peng, Zheng-Hong; Li, Jing; Oupický, David

    2016-01-01

    Chloroquine-containing HPMA copolymers (pCQs) were synthesized for the first time by copolymerization of methacryloylated hydroxychloroquine and HPMA. The copolymers showed lower cytotoxicity when compared with hydroxychloroquine. Treatment of cancer cells with pCQ resulted in decreased surface expression of chemokine receptor CXCR4. The pCQ copolymers showed effective inhibition of CXCR4/SDF1-mediated cancer cell migration that was fully comparable with a commercial small-molecule CXCR4 anta...

  19. Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150.

    Directory of Open Access Journals (Sweden)

    Magali Rolland-Turner

    Full Text Available BACKGROUND: Administration of endothelial progenitor cells (EPC represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS: EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS: Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001. CXCR4 expression at the cell surface was also increased. This effect involved the A(2B receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION: Adenosine increases the migration of EPC. The mechanism involves A(2B receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These

  20. Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles.

    Science.gov (United States)

    Moghaddam, Farzaneh; Oodi, Arezoo; Nikougoftar Zarif, Mahin; Amani, Maryam; Amirizadeh, Naser

    2016-11-01

    Platelet micro-particles (MPs) contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, effect of platelet MPs (PMPs) on the expression levels of CXCR4 and CD34 markers in these cells was examined. Isolated CD 133+ cells cultivated for 5 d in the stem span medium and PMPs. Fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Cord blood CD133+ cells are able to maintain long-term hematopoiesis and to differentiate to hematopoietic lineages. CXCR4 over expression is involved in homing and successful transplantation of hematopoietic stem cells (HSCs) in the bone marrow. PMPs contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, considering the importance of CD133+ cells as primitive HSCs, the effect of PMPs on the expression levels of CXCR4 and CD34 markers in these cells was examined. Cord blood CD133+ cells were isolated by MACS. Isolated cells were divided into three groups: (i) control cells, (ii) cells treated with 5 μg/ml PMPs, (iii) cells treated with 10 μg/ml PMPs. Cells were cultivated for 5 d in the stem span medium. Expression of CD 133, CD34, and CXCR4 surface marker was analyzed by flow cytometry. Total cell numbers were counted by hemocytometer and clonogenicity were measured by colony assay. PMPs were no effect on CD133+ cells proliferation, but fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Exposure of CD133+ cells isolated from cord blood to PMPs with 10

  1. Down-regulation of CXCR4 expression by tamoxifen is associated with DNA methyltransferase 3B up-regulation in MCF-7 breast cancer cells.

    Science.gov (United States)

    Kubarek, Ł; Kozłowska, A; Przybylski, M; Lianeri, M; Jagodzinski, P P

    2009-09-01

    The CXCR4 chemokine receptor is a seven transmembrane G protein-coupled receptor present on the surface of various cells including cancer cells. The CXCR4 receptor contributes to the induction of several intracellular signalling pathways that enhance survival, proliferation, and migration of malignant cells. We observed that tamoxifen (Tam) reduced the CXCR4 transcript and protein levels in MCF-7 breast cancer cells. However, we did not see a Tam effect on CXCR4 transcript and protein levels in MCF-7(LVMT3B) cells with RNA interference-mediated knockdown of DNMT3B. We also observed that Tam significantly increased, for several hours, the expression of enzymatically active DNMT3B splice variants in MCF-7 cells. However, there was no Tam effect on these DNMT3B splice variants' expression in MCF-7(LVMT3B) cells. Bisulfite sequencing suggests that Tam may reduce CXCR4 expression via increased methylation of cytosine in the cytosine-guanosine (CpG) dinucleotide island of the CXCR4 promoter of MCF-7 breast cancer cells. Our findings suggest that Tam induces an increase in DNMT3B expression that is associated with the increase of CpG dinucleotide methylation in the CXCR4 promoter and significant reduction of CXCR4 gene expression in MCF-7 cells.

  2. Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy.

    Directory of Open Access Journals (Sweden)

    Kentaro Nobutani

    Full Text Available Our understanding of the mechanism of cancer dormancy is emerging, but the underlying mechanisms are not fully understood. Here we analyzed mouse xenograft tumors derived from human breast cancer tissue and the human breast cancer cell line MDA-MB-231 to identify the molecules associated with cancer dormancy. In immunohistological examination using the proliferation marker Ki-67, the tumors included both proliferating and dormant cancer cells, but the number of dormant cells was remarkably increased when they metastasized to the lung. In the gene expression analysis of the orthotopic cancer cells by a single-cell multiplex real-time quantitative reverse transcription PCR followed by flow cytometric analysis, restrained cellular proliferation was associated with downregulation of the chemokine receptor CXCR4. In the immunohistological and flow cytometric analyses, the expression level of CXCR4 in the metastasized cancer cells was decreased compared with that in the cancer cells in orthotopic tumors, although the expression level of the CXCR4 ligand CXCL12 was not reduced in the lung. In addition, the proliferation of the metastasized cancer cells was further decreased by the CXCR4 antagonist administration. In the ex vivo culture of the metastasized cancer cells, the expression level of CXCR4 was increased, and in the xenotransplantation of ex vivo cultured cancer cells, the expression level of CXCR4 was again decreased in the metastasized cancer cells in the lung. These findings indicate that CXCR4 is downregulated in metastasized breast cancer cells and implicated in their dormancy.

  3. Epigenetic Silencing of CXCR4 Promotes Loss of Cell Adhesion in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Suresh Singh Yadav

    2014-01-01

    Full Text Available In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.

  4. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.

    Science.gov (United States)

    Zhang, Lijun; Hua, Qiuhong; Tang, Kaiyi; Shi, Changjie; Xie, Xin; Zhang, Ru

    2016-11-19

    G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth, death, movement, transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study, we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol, we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially, the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted, whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4, knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together, our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.

  5. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  6. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling.

    Science.gov (United States)

    Masuda, Tetsuro; Endo, Motoyoshi; Yamamoto, Yutaka; Odagiri, Haruki; Kadomatsu, Tsuyoshi; Nakamura, Takayuki; Tanoue, Hironori; Ito, Hitoshi; Yugami, Masaki; Miyata, Keishi; Morinaga, Jun; Horiguchi, Haruki; Motokawa, Ikuyo; Terada, Kazutoyo; Morioka, Masaki Suimye; Manabe, Ichiro; Iwase, Hirotaka; Mizuta, Hiroshi; Oike, Yuichi

    2015-03-16

    Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.

  7. RTN3 Regulates the Expression Level of Chemokine Receptor CXCR4 and is Required for Migration of Primordial Germ Cells

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-04-01

    Full Text Available CXCR4 is a crucial chemokine receptor that plays key roles in primordial germ cell (PGC homing. To further characterize the CXCR4-mediated migration of PGCs, we screened CXCR4-interacting proteins using yeast two-hybrid screening. We identified reticulon3 (RTN3, a member of the reticulon family, and considered an apoptotic signal transducer, as able to interact directly with CXCR4. Furthermore, we discovered that the mRNA and protein expression levels of CXCR4 could be regulated by RTN3. We also found that RTN3 altered CXCR4 translocation and localization. Moreover, increasing the signaling of either CXCR4b or RTN3 produced similar PGC mislocalization phenotypes in zebrafish. These results suggested that RTN3 modulates PGC migration through interaction with, and regulation of, CXCR4.

  8. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis.

    Science.gov (United States)

    Pavlasova, Gabriela; Borsky, Marek; Seda, Vaclav; Cerna, Katerina; Osickova, Jitka; Doubek, Michael; Mayer, Jiri; Calogero, Raffaele; Trbusek, Martin; Pospisilova, Sarka; Davids, Matthew S; Kipps, Thomas J; Brown, Jennifer R; Mraz, Marek

    2016-09-22

    Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of neoplastic B cells from the lymphoid tissues into the blood, which makes them potentially ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzumab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells (HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates CD20 (MS4A1) expression in vivo. We observed that CLL cells that have recently exited the lymph node microenvironment and moved into the peripheral blood (CXCR4(dim)CD5(bright) subpopulation) have higher cell surface levels of CD20 than the cells circulating in the bloodstream for a longer time (CXCR4(bright)CD5(dim) cells). We found that CD20 is directly upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1α, CXCL12) produced by stromal cells, and BTK-inhibitor ibrutinib and CXCR4-inhibitor plerixafor block SDF-1α-mediated CD20 upregulation. Ibrutinib also downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed mechanistic explanation of CD20 expression regulation in the context of chemokine signaling and microenvironmental interactions, which may have important implications for microenvironment-targeting therapies.

  9. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  10. Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration.

    Science.gov (United States)

    Chen, Dong; Xia, Yanli; Zuo, Ke; Wang, Ying; Zhang, Shiying; Kuang, Dong; Duan, Yaqi; Zhao, Xia; Wang, Guoping

    2015-11-18

    Stromal cell-derived factor 1 (SDF-1) is a chemokine that can be expressed in injured cardiomyocytes after myocardial infarction (MI). By combining with its receptor CXCR4, SDF-1 induced stem and progenitor cells migration. CXCR7, a novel receptor for SDF-1, has been identified recently. We aimed to explore the roles of SDF-1/CXCR4 and SDF-1/CXCR7 pathway and their crosstalk in CSCs migration. In the present study, CXCR4 and CXCR7 expression were identified in CSCs. Transwell assay showed that SDF-1 caused CSCs migration in a dose- and time-dependent manner, which could be significantly suppressed by CXCR4 or CXCR7 siRNA. Phospho-ERK, phospho-Akt and Raf-1 significantly elevated in CSCs with SDF-1 stimulation. Knockdown of CXCR4 or CXCR7 significantly decreased phospho-ERK or phospho-Akt, respectively, and eventually resulted in the inhibition of CSCs migration. Moreover, western blot showed that MK2206 (Akt inhibitor) increased the expression of phospho-ERK and Raf-1, whereas PD98059 (ERK inhibitor) had no effect on phospho-Akt and Raf-1. GW5074 (Raf-1 inhibitor) upregulated the expression of phospho-ERK, but had no effect on phospho-Akt. The present study indicated that SDF-1/CXCR7/Akt and SDF-1/CXCR4/ERK pathway played important roles in CSCs migration. Akt phosphorylation inhibited Raf-1 activity, which in turn dephosphorylated ERK and negatively regulated CSCs migration.

  11. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    Science.gov (United States)

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  12. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis

    Directory of Open Access Journals (Sweden)

    Leah A. Marquez-Curtis

    2013-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.

  13. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line.

    Science.gov (United States)

    Sheng, Xianfu; Zhong, Hua; Wan, Haixia; Zhong, Jihua; Chen, Fangyuan

    2016-07-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  14. Interfering with CXCR4 expression inhibits proliferation, adhesion and migration of breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Guo, Shanyu; Xiao, Dan; Liu, Huihui; Zheng, Xiao; Liu, Lei; Liu, Shougui

    2014-10-01

    To investigate the effect and mechanism of the CXC chemokine receptor 4 (CXCR4) in the proliferation and migration of breast cancer, a short-hairpin RNA (shRNA) eukaryotic expression vector targeting CXCR4 was constructed, and the impact of such on the proliferation, adhesion and migration of human breast cancer MDA-MB-231 cells was observed. The fragments of CXCR4-shRNA were synthesized and cloned into a pGCsi-U6-Neo-green fluorescent protein vector. The recombinant plasmids were transfected into 293T cells and the most efficacious interfering vector was selected. MDA-MB-231 cells were transfected by liposome assay. The effects of silencing CXCR4 expression by shRNA on the growth, adhesion and migration of MDA-MB-231 cells were determined by Cell Counting Kit-8, cell-matrix adhesion and wound-healing assays. The shRNA eukaryotic expression vectors targeting CXCR4 (CXCR4-shRNA) were successfully constructed and transfected into 293T cells. Quantitative polymerase chain reaction and western blot analysis revealed that the maximum inhibitory rate of CXCR4 expression was 81.3%. CXCR4-shRNA transfection significantly inhibited the proliferation of MDA-MB-231 cells (PMB-231 cells and the extracellular matrix (PMB-231 cells in the CXCR4-shRNA transfection group was significantly smaller than that in the control plasmid and blank control groups (PMB-231 cells.

  15. Research progress of SDF-1/CXCR-4 pathway in mesenchymal stem cell homing after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Qiang MA

    2016-06-01

    Full Text Available Mesenchymal stem cells (MSCs, for their potential of differentiation into cardiomyocytes and easy acquisition, have been used in repair of myocardium tissue and improvement of heart functions after myocardial infarction. However, a vexed problem is the low homing rate of MSCs no matter what delivery methods (including intravenous, intracoronary or endocardial delivery are used. SDF-1/CXCR-4 signal pathway plays an important role in variety of stem cell homing, and has been employed to enhance the function of SDF-1/CXCR-4 signal pathway for improving the efficiency of stem cell homing. The present paper has reviewed the methods used recent years to enhance the function of SDF-1/CXCR-4 signal pathway and the mechanism of the signal pathway in MSCs homing. DOI: 10.11855/j.issn.0577-7402.2016.05.14

  16. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  17. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Kuroda, Tomoya; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Mifune, Yutaka; Shoji, Taro; Fukui, Tomoaki; Kurosaka, Masahiro; Asahara, Takayuki

    2015-01-01

    CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF-1/CXCR4 pathway in Tie2-lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2-Cre(ER) CXCR4 knockout mice (CXCR4(-/-) ) and wild-type mice (WT). We report here that in vitro, EPCs derived from of CXCR4(-/-) mouse bone marrow demonstrated severe reduction of migration activity and EPC colony-forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4(-/-) group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4(-/-) group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4(-/-) group. Especially, CXCR4(-/-) group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real-time RT-PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE-cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4(-/-) group. In the gain-of-function study, the fracture in the SDF-1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF-1 injected CXCR4(-/-) group. We demonstrated that an EPC SDF-1/CXCR4 axis plays an

  18. Drug-resistant CXCR4-positive cells have the molecular characteristics of EMT in NSCLC.

    Science.gov (United States)

    Yin, Hanlu; Wang, Yi; Chen, Wenping; Zhong, Shanliang; Liu, Zhian; Zhao, Jianhua

    2016-12-05

    High expression of Chemokine receptor 4 (CXCR4) is important in tumor invasion, metastasis, drug-resistance and maintenance of stemness in non-small cell lung cancer (NSCLC). We therefore studied the molecular characteristics of drug-resistant CXCR4-positive cells on epithelial-mesenchymal transition (EMT) for the future identification of the tumor cells with the properties of both EMT and stemness. EMT RT(2) Profier PCR Array was performed to determine the expression levels of mRNA genes in A549 with TGF-β1 induced EMT (A549/TGF-β1) and gefitinib-resistant CXCR4-positive cells (A549/GR). TCGA database on the cBio Cancer Genomics Portal website and Gene Network Central (GNC) Pro Tutorial were used to analyze their clinical relevance and pathway interactions. CXCR4 was up-regulated both in TGF-β induced EMT cells and in gefitinib-resistant cells. In 84 mRNA genes related to EMT, 17 mRNA genes were up-regulated in CXCR4-positive population of A549/GR when compared to those in CXCR4 negative fraction, while 66 mRNA genes were up-regulated during TGF-β induced EMT. ITGA5, BMP7, MMP3, VIM, RGS2, ZEB2, TCF3, SNAI2, VCAN, PLEK2, WNT5A, COL3A1, SPARC and FOXC2 were doubly up-regulated during the two biological processes. Kaplan-Meier analysis indicated that the doubly up-regulated ITGA5, RGS2, SNAI2 and PLEK2 mRNA genes were related to poor overall survival in lung adenocarcinoma patients (P=9.291e-6, 0.0090, 3.81e-7 and 0.0013, respectively). In GNC analysis, SNAI2 mRNA gene but not ITGA5, RGS2 and PLEK2 was dependent on the signaling pathway of CXCR4. The molecular characteristics of drug-resistant CXCR4-positive cells have a crosstalk with EMT, which has the potential to find the marker with prognostic value on multiple signaling pathways in NSCLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche.

    Science.gov (United States)

    Yokohama-Tamaki, Tamaki; Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R; Weisgerber, Daniel W; Harley, Brendan A C

    2015-12-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.

  20. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    Science.gov (United States)

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  1. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  2. The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7.

    Directory of Open Access Journals (Sweden)

    Haruko Hayasaka

    Full Text Available During human immunodeficiency virus (HIV infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.

  3. The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7.

    Science.gov (United States)

    Hayasaka, Haruko; Kobayashi, Daichi; Yoshimura, Hiromi; Nakayama, Emi E; Shioda, Tatsuo; Miyasaka, Masayuki

    2015-01-01

    During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.

  4. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    Science.gov (United States)

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  5. CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph.

    Directory of Open Access Journals (Sweden)

    Skye A Geherin

    Full Text Available T cell recirculation through extralymphoid tissues is essential to immune surveillance, host defense and inflammation. In this process, T cells enter the tissue from the blood and subsequently leave via the afferent lymph. In the absence of inflammation, T cells require CCR7 expression to egress from the skin or lung, which is consistent with the constitutive expression of the CCR7 ligand CCL21 on lymphatic endothelium. However, during chronic inflammation alternative chemoattractants come into play, allowing Ccr7-deficient (Ccr7-/- T cells to egress efficiently from affected skin. As T cell egress from inflamed sites is a potential control point of the inflammatory response, we aimed to determine alternative T cell exit receptors using a mouse and a sheep model. We show that CCR7+ and CCR7- T cells exiting from the chronically inflamed skin were highly responsive to the CXCR4 ligand CXCL12, which was induced in the lymphatics in the inflamed site. Based on these findings, we hypothesized that CXCR4 mediates T cell egress from inflamed skin. However, pharmacological inhibition of CXCR4 did not affect the tissue egress of wildtype or Ccr7-/- CD4 and CD8 T cells after adoptive transfer into chronically inflamed skin. Similarly, adoptively transferred Cxcr4-/- Ccr7-/- and Ccr7-/- T cells egressed from the inflamed skin equally well. Based on these data, we conclude that, while CXCR4 might play an essential role for other cell types that enter the afferent lymphatics, it is dispensable for T cell egress from the chronically inflamed skin.

  6. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-01-01

    Full Text Available Mesenchymal stem cell (MSC therapy shows considerable promise for the treatment of myocardial infarction (MI. However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.

  7. Relevance of P-glycoprotein on CXCR4(+) B cells to organ manifestation in highly active rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya

    2017-07-11

    In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4(+) B cells to clinical manifestations in refractory RA. CD19(+) B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4(+)CD19(+) B cells in RA. The proportion of P-gp-expressing CXCR4(+) B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp(+)CXCR4(+)CD19(+) B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp(+)CXCR4(+) CD19(+) B cells. Adalimumab reduced P-gp(+)CXCR4(+) CD19(+) B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp(+)CXCR4(+) B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.

  8. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    Science.gov (United States)

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  9. Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells.

    Science.gov (United States)

    Prasad, Anil; Qamri, Zahida; Wu, Jane; Ganju, Ramesh K

    2007-09-01

    Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal, dendritic, and leukocyte migration. However, the molecular mechanism by which the Slit/Robo complex inhibits the migration of cells is not well defined. Here, we showed that Slit-2 can inhibit the CXCL12-induced chemotaxis and transendothelial migration of T cells and monocytes. We observed that CXCR4 associates with Robo-1 and that Slit-2 treatment enhances this association with the Robo-1 receptor. Robo-1 is a single-pass transmembrane receptor whose intracellular region contains four conserved motifs designated as CC0, CC1, CC2, and CC3. Structural and functional analyses of Robo receptors revealed that interaction of the CC3 motif with the CXCR4 receptor may regulate the CXCL12-induced chemotaxis of T cells. We further characterized Slit-2-mediated inhibition of the CXCL12/CXCR4 chemotactic pathway and found that Slit-2 can block the CXCL12-induced activation of the Src and Lck kinases but not Lyn kinase. Although Slit-2 did not inhibit the CXCL12-induced activation of MAPKs, it did inhibit the Akt phosphorylation and Rac activation induced by this chemokine. Altogether, our studies indicate a novel mechanism by which the Slit/Robo complex may inhibit the CXCR4/CXCL12-mediated chemotaxis of T cells.

  10. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity.

    Science.gov (United States)

    Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B

    2014-02-15

    C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast

  11. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells.

    Science.gov (United States)

    Yi, Tingfang; Zhai, Bo; Yu, Yonghao; Kiyotsugu, Yoshikawa; Raschle, Thomas; Etzkorn, Manuel; Seo, Hee-Chan; Nagiec, Michal; Luna, Rafael E; Reinherz, Ellis L; Blenis, John; Gygi, Steven P; Wagner, Gerhard

    2014-05-27

    Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4-mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4-mediated phosphoproteome, including construction of kinase-substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.

  12. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    Science.gov (United States)

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  13. Cyclophosphamide-induced cystitis increases bladder CXCR4 expression and CXCR4-macrophage migration inhibitory factor association.

    Directory of Open Access Journals (Sweden)

    Pedro L Vera

    Full Text Available BACKGROUND: Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine involved in cystitis and a non-cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder and the effect of experimental cystitis. METHODS AND FINDINGS: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3(rd day to induce persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1; cognate ligand for CXCR4 levels. Bladder CXCR4 expression (real-time RTC-PCR and protein levels (Western blotting were examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1 significant redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells and increased bladder CXCR4 expression; 2 increased urine MIF with decreased bladder MIF; 3 increased bladder SDF-1; 4 increased CXCR4-MIF associations. CONCLUSIONS: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation. In the bladder, MIF may compete with SDF-1 (cognate ligand to activate signal transduction mediated by CXCR4.

  14. Regulated expression of CXCR4 constitutive active mutants revealed the up-modulated chemotaxis and up-regulation of genes crucial for CXCR4 mediated homing and engraftment of hematopoietic stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    Sharma M

    2013-04-01

    Full Text Available SDF-1/CXCR4 axis plays a principle role in the homing and engraftment of hematopoietic stem/progenitor cells (HSPCs, a process that defines cells ability to reach and seed recipient bone marrow niche following their intravenous infusion. However, the proper functioning of CXCR4 downstream signaling depends upon consistent optimal expression of both SDF-1 ligand and its receptor CXCR4, which in turn is variable and regulated by several factors. The constitutive active mutants of CXCR4 (N119A and N119S being able to induce autonomous downstream signaling, overcome the limitation of ligand-receptor interaction for induction of CXCR4 signaling. Therefore, we intended to explore their potential in chemotaxis; a key cellular process which crucially regulates cells homing to bone marrow. In present study, Tet-on inducible gene expression vector system was used for doxycycline inducible regulated transgene expression of CXCR4 active mutants in hematopoietic stem progenitor cell line K-562. Both of these mutants revealed significantly enhanced chemotaxis to SDF-1 gradient as compared to wild type. Furthermore, gene expression profiling of these genetically engineered cells as assessed by microarray analysis revealed the up-regulation of group of genes that are known to play a crucial role in CXCR4 mediated cells homing and engraftment. Hence, this study suggest the potential prospects of CXCR4 active mutants in research and development aimed to improve the efficiency of cells in the mechanism of homing and engraftment process.

  15. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  16. SDF-1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF-κB pathway

    Science.gov (United States)

    LIU, ZONGCHAO; MA, CHUAN; SHEN, JIELIANG; WANG, DAWU; HAO, JIE; HU, ZHENMING

    2016-01-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  17. CXCR4 signaling regulates radial glial morphology and cell fate during embryonic spinal cord development.

    Science.gov (United States)

    Mithal, Divakar S; Ren, Dongjun; Miller, Richard J

    2013-08-01

    Embryonic meninges secrete the chemokine SDF-1/CXCL12 as a chemotactic guide for migrating neural stem cells, but SDF-1 is not known to directly regulate the functions of radial glia. Recently, the developing meninges have been shown to regulate radial glial function, yet the mechanisms and signals responsible for this phenomenon remain unclear. Moreover, as a nonmigratory cell type, radial glia do not conform to traditional models associated with chemokine signaling in the central nervous system. Using fluorescent transgenes, in vivo genetic manipulations and pharmacological techniques, we demonstrate that SDF-1 derived from the meninges exerts a CXCR4-dependent effect on radial glia. Deletion of CXCR4 expression by radial glia influences their morphology, mitosis, and progression through both oligodendroglial and astroglial lineages. Additionally, disruption of CXCR4 signaling in radial glia has a transient effect on the migration of oligodendrocyte progenitors. These data indicate that a specific chemokine signal derived from the meninges has multiple regulatory effects on radial glia.

  18. Expression of the CXCL12/CXCR4 chemokine axis predicts regional control in head and neck squamous cell carcinoma.

    Science.gov (United States)

    León, Xavier; Diez, Santiago; García, Jacinto; Lop, Joan; Sumarroca, Anna; Quer, Miquel; Camacho, Mercedes

    2016-12-01

    Expression of the CXCL12/CXCR4 chemokine axis has been related with the appearance of metastatic recurrence survival, including regional and distant recurrence, in patients with head and neck squamous cell carcinoma (HNSCC). RT-PCR was used to determine mRNA expression levels of CXCL12 and CXCR4 in biopsy tumor samples in 111 patients with HNSCC. Five-year regional recurrence-free survival for patients with low CXCR4 expression (n = 39, 31.5 %) was 97.4 %, for patients with high CXCR4/high CXCL12 expression (n = 22, 19.8 %) it was 94.7 %, and for patients with high CXCR4/low CXCL12 expression (n = 50, 45.0 %) it was 63.3 %. We found significant differences in the regional recurrence-free survival according to CXCR4/CXCL12 expression values (P = 0.001). HNSCC patients with high CXCR4 and low CXCL12 expression values had a significantly higher risk of regional recurrence and could benefit from a more intense treatment of lymph node areas in the neck.

  19. CXCR4 Expression in Gastric Cancer and Bone Marrow: Association with Hypoxia-Regulated Indices, Disseminated Tumor Cells, and Patients Survival

    Directory of Open Access Journals (Sweden)

    Dmitry Osinsky

    2015-01-01

    Full Text Available Aim. The analysis of the association of CXCR4 expression in gastric cancer (GC and bone marrow (BM with clinical characteristics. Patients and Methods. 65 patients with GC were investigated. Immunohistochemistry, immunocytochemistry, NMR-spectroscopy, and zymography were used. Results. CXCR4 was expressed in 78.5% of GC specimens and correlated with tumor hypoxia (P<0.05, VEGF expression (P<0.01, and gelatinases activity (P<0.05. CXCR4-positive cells in GC were detected in 80% of patients with disseminated tumor cells (DTCs. Overall survival (OS of patients with CXCR4-positive tumors was poorer than that of patients with CXCR4-negative tumors (P=0.037. The CXCR4-positive cells in BM were found in 46% of all patients and in 56% of patients with DTCs. CXCR4 expression in BM was not associated with OS. Risk of unfavourable outcome is increased in patients with CXCR4-positive tumors (P<0.05. CXCR4 expression in BM was positively associated with DTCs, especially in patients with M0 category. Risk of unfavourable outcome is increased in patients with M0 category and with both CXCR4-positive BM and DTCs (P=0.03. Conclusions. CXCR4 expression in tumor was positively correlated with hypoxia level and VEGF expression in tumor as well as OS. CXCR4 expression in BM is associated with DTCs.

  20. Superoxide Dismutase 1 Regulation of CXCR4-Mediated Signaling in Prostate Cancer Cells is Dependent on Cellular Oxidative State

    Directory of Open Access Journals (Sweden)

    Brent Young

    2015-11-01

    Full Text Available Background/Aims: CXCL12, acting via one of its G protein-coupled receptors, CXCR4, is a chemoattractant for a broad range of cell types, including several types of cancer cells. Elevated expression of CXCR4, and its ligand CXCL12, play important roles in promoting cancer metastasis. Cancer cells have the potential for rapid and unlimited growth in an area that may have restricted blood supply, as oxidative stress is a common feature of solid tumors. Recent studies have reported that enhanced expression of cytosolic superoxide dismutase (SOD1, a critical enzyme responsible for regulation of superoxide radicals, may increase the aggressive and invasive potential of malignant cells in some cancers. Methods: We used a variety of biochemical approaches and a prostate cancer cell line to study the effects of SOD1 on CXCR4 signaling. Results: Here, we report a direct interaction between SOD1 and CXCR4. We showed that SOD1 interacts directly with the first intracellular loop (ICL1 of CXCR4 and that the CXCL12/CXCR4-mediated regulation of AKT activation, apoptosis and cell migration in prostate cancer (PCa cells is differentially modulated under normal versus hypoxic conditions when SOD1 is present. Conclusions: This study highlights a potential new regulatory mechanism by which a sensor of the oxidative environment could directly regulate signal transduction of a receptor involved in cancer cell survival and migration.

  1. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  2. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells.

    Science.gov (United States)

    Guan, Guofeng; Zhang, Yinglong; Lu, Yao; Liu, Lijuan; Shi, Doufei; Wen, Yanhua; Yang, Lianjia; Ma, Qiong; Liu, Tao; Zhu, Xiaodong; Qiu, Xiuchun; Zhou, Yong

    2015-02-01

    HIF-1α mediates hypoxia-induced expression of the chemokine receptor CXCR4 and contributes to metastasis in many different cancers. We have previously shown that hypoxia promotes migration of human osteosarcoma cells by activating the HIF-1α/CXCR4 pathway. Here, immunohistochemical analysis showed that unlike control osteochondroma samples, osteosarcoma specimens were characterized by elevated expression levels of HIF-1α and CXCR4. Moreover, we found that hypoxia-induced invasiveness was more pronounced in high metastatic potential F5M2 osteosarcoma cells than in low metastatic potential F4 cells, and that this induction was sensitive to treatment with the CXCR4 antagonist AMD3100 and the HIF-1α inhibitor KC7F2. Interestingly, hypoxia-induced CXCR4 expression persisted after cultured osteosarcoma cells were returned to normoxic conditions. These observations were confirmed by experiments in a mouse model of osteosarcoma lung metastasis showing that hypoxia stimulation of pulmonary metastasis was greater in F5M2 than in F4 cells, and was sensitive to treatment with AMD3100. Our study provides further evidence of the contributions of hypoxia and the HIF-1α/CXCR4 pathway to the progression of osteosarcoma, and suggests that this axis might be efficiently leveraged in the development of novel osteosarcoma therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    Science.gov (United States)

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.

  4. Plerixafor (a CXCR4 antagonist following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery

    Directory of Open Access Journals (Sweden)

    Michael M. B. Green

    2016-08-01

    Full Text Available Abstract Background The binding of CXCR4 with its ligand (stromal-derived factor-1 maintains hematopoietic stem/progenitor cells (HSPCs in a quiescent state. We hypothesized that blocking CXCR4/SDF-1 interaction after hematopoietic stem cell transplantation (HSCT promotes hematopoiesis by inducing HSC proliferation. Methods We conducted a phase I/II trial of plerixafor on hematopoietic cell recovery following myeloablative allogeneic HSCT. Patients with hematologic malignancies receiving myeloablative conditioning were enrolled. Plerixafor 240 μg/kg was administered subcutaneously every other day beginning day +2 until day +21 or until neutrophil recovery. The primary efficacy endpoints of the study were time to absolute neutrophil count >500/μl and platelet count >20,000/μl. The cumulative incidence of neutrophil and platelet engraftment of the study cohort was compared to that of a cohort of 95 allogeneic peripheral blood stem cell transplant recipients treated during the same period of time and who received similar conditioning and graft-versus-host disease prophylaxis. Results Thirty patients received plerixafor following peripheral blood stem cell (n = 28 (PBSC or bone marrow (n = 2 transplantation. Adverse events attributable to plerixafor were mild and indistinguishable from effects of conditioning. The kinetics of neutrophil and platelet engraftment, as demonstrated by cumulative incidence, from the 28 study subjects receiving PBSC showed faster neutrophil (p = 0.04 and platelet recovery >20 K (p = 0.04 compared to the controls. Conclusions Our study demonstrated that plerixafor can be given safely following myeloablative HSCT. It provides proof of principle that blocking CXCR4 after HSCT enhances hematopoietic recovery. Larger, confirmatory studies in other settings are warranted. Trial registration ClinicalTrials.gov NCT01280955

  5. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM. The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p<0.01. Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p<0.01. Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.

  6. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell.

    Directory of Open Access Journals (Sweden)

    Yi-fan Feng

    Full Text Available Stromal cell-derived factor-1 (SDF-1 has been confirmed to participate in the formation of choroidal neovascularization (CNV via its two receptors: CXC chemokine receptors 4 (CXCR4 and CXCR7. Previous studies have indicated that the activation of Toll-like receptors (TLRs by lipopolysaccharide (LPS might elevate CXCR4 and/or CXCR7 expression in tumor cells, enhancing the response to SDF-1 to promote invasion and cell dissemination. However, the impact of LPS on the CXCR4 and CXCR7 expression in endothelial cells and subsequent pathological angiogenesis formation remains to be elucidated. The present study shows that LPS enhanced the CXCR4 and CXCR7 expression via activation of the TLR4 pathway in choroid-retinal endothelial (RF/6A cells. In addition, the transcriptional regulation of CXCR4 and CXCR7 by LPS was found to be mediated by phosphorylation of the extracellular signal-related kinase (ERK 1/2 and activation of nuclear factor kappa B (NF-κB signaling pathways, which were blocked by ERK- or NF-κB-specific inhibitors. Furthermore, the increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cells proliferation, migration and tube formation. In vivo, LPS-treated rat had significantly higher mRNA levels of CXCR4 and CXCR7 expression and lager laser-induced CNV area than vehicle-treated rat. SDF-1 blockade with a neutralizing antibody attenuated the progression of CNV in LPS-treated rat after a single intravitreal injection. Altogether, these results demonstrated that LPS might influence CNV formation by enhancing CXCR7 and CXCR7 expression in endothelial cells, possibly providing a new perspective for the treatment of CNV-associated diseases.

  7. Dimethyl Sulfoxide (DMSO) Increases Percentage of CXCR4(+) Hematopoietic Stem/Progenitor Cells, Their Responsiveness to an SDF-1 Gradient, Homing Capacities, and Survival.

    Science.gov (United States)

    Jarocha, Danuta; Zuba-Surma, Ewa; Majka, Marcin

    2016-01-01

    Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.

  8. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003.

    Science.gov (United States)

    Abraham, Michal; Biyder, Katia; Begin, Michal; Wald, Hanna; Weiss, Ido D; Galun, Eithan; Nagler, Arnon; Peled, Amnon

    2007-09-01

    An increase in the number of stem cells in blood following mobilization is required to enhance engraftment after high-dose chemotherapy and improve transplantation outcome. Therefore, an approach that improves stem cell mobilization is essential. The interaction between CXCL12 and its receptor, CXCR4, is involved in the retention of stem cells in the bone marrow. Therefore, blocking CXCR4 may result in mobilization of hematopoietic progenitor and stem cells. We have found that the CXCR4 antagonist known as 4F-benzoyl-TN14003 (T-140) can induce mobilization of hematopoietic stem cells and progenitors within a few hours post-treatment in a dose-dependent manner. Furthermore, although T-140 can also increase the number of white blood cells (WBC) in blood, including monocytes, B cells, and T cells, it had no effect on mobilizing natural killer cells. T-140 was found to efficiently synergize with granulocyte colony-stimulating factor (G-CSF) in its ability to mobilize WBC and progenitors, as well as to induce a 660-fold increase in the number of erythroblasts in peripheral blood. Comparison between the CXCR4 antagonists T-140 and AMD3100 showed that T-140 with or without G-CSF was significantly more potent in its ability to mobilize hematopoietic stem cells and progenitors into blood. These results demonstrate that different CXCR4 antagonists may have different therapeutic potentials.

  9. Effects of Triptolide on Cell Proliferation and CXCR4 Expression in Burkitt's Lymphoma Raji Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun; CUI Guo-hui; LIU Fang; WU Qiu-ling; CHEN Yan

    2007-01-01

    Objective: To investigate the inhibitory effects of triptolide on cell proliferation and CXCR4 expression in Burkitt's lymphoma cell line Raji cells. Methods: The effects of triptolide on the growth of Raji cells were studied by 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium(MTT) assay. The effects of triptolide on CXCR4 expression on Raji cells were studied by flow cytometric analysis. Chemotaxis assays were performed to observe the effects of triptolide on migration of Raji cells towards recombinant human SDF-1α (rhSDF-1α) in vitro. Results: Triptolide inhibited the proliferation of Raji cells in a dose- and time-dependent way with a 24-h IC50 value of 43.06 nmol/L and a 36-h IC50 value of 25.08 nmol/L. Triptolide could downregulate the CXCR4 expression on Raji cells in a dose-dependent manner. Furthermore, chemotaxis assays showed that triptolide could block the migration of Raji cells to rhSDF-1α in vitro, and the inhibition was dose-dependent. Conclusion: Triptolide could inhibit the proliferation and migration of Raji cells in vitro. The underlying anti-tumor mechanism of triptolide might be related to the anti-proliferative effect and the blockage of SDF-1/CXCR4 axis.

  10. Expression of CXCR4 and CXCL12 and their correlations to the cell proliferation and angiogenesis in mycosis fungoides

    Science.gov (United States)

    Maj, Joanna; Hałoń, Agnieszka; Woźniak, Zbigniew; Plomer-Niezgoda, Ewa; Reich, Adam

    2015-01-01

    Introduction Chemokines play an important role in tumor growth, invasion and metastasis. The CXCR4/CXCL12 axis has been implicated in development of both solid tumors and hematological malignancies and is also relevant in the pathogenesis of the most common primary cutaneous T-cell lymphoma, mycosis fungoides (MF). Aim To evaluate the expression of CXCR4 and CXCL12 in MF and to examine their associations with cell proliferation and angiogenesis. Material and methods The material for the study consisted of skin samples obtained from 56 patients with MF and 20 healthy volunteers. The expression of CXCR4 and CXCL12 was assessed by immunohistochemistry on the paraffin blocks and compared to the expression of angiogenesis marker (CD34) and proliferation indicators (Ki-67, AgNORs). Results The expression of chemokine CXCL12 and its receptor CXCR4 was significantly higher in MF than in the healthy skin (p < 0.001). There was no significant difference between early and advanced stages of MF. Similarly, there was no statistically important correlation between the expression of CXCR4/CXCL12 and angiogenesis and proliferation markers, however a significant correlation between CD34 and AgNORs expression was found (p < 0.001). Conclusions The CXCR4/CXCL12 axis seems to play an important role in MF development in the early as well as in the advanced stages of the disease. Therefore, the CXCR4/CXCL12 axis seems to be an interesting potential target for the future strategies of new drug development, giving hope for more efficacious therapies for mycosis fungoides. PMID:26755907

  11. Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α-CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Fengdi Yan

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been shown to be suitable in stem cell therapy for resurrecting damaged myocardium, but poor retention of transplanted cells in the ischemic myocardium causes ineffective cell therapy. Hypoxic preconditioning of cells can increase the expression of CXCR4 and pro-survival genes to promote better cell survival; however, it is unknown whether hypoxia preconditioning will influence the survival and retention of CPCs via the SDF-1α/CXCR4 axis. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts and purified by magnetic activated cell sorting using c-kit magnetic beads. These cells were cultured at various times in either normoxic or hypoxic conditions, and cell survival was analyzed using flow cytometry and the expression of hypoxia-inducible factor-1α (HIF-1α, CXCR4, phosphorylated Akt and Bcl-2 were measured by Western blot. Results showed that the expression of pro-survival genes significantly increased after hypoxia treatment, especially in cells cultured in hypoxic conditions for six hours. Upon completion of hypoxia preconditioning from c-kit+ CPCs for six hours, the anti-apoptosis, migration and cardiac repair potential were evaluated. Results showed a significant enhancement in anti-apoptosis and migration in vitro, and better survival and cardiac function after being transplanted into acute myocardial infarction (MI mice in vivo. The beneficial effects induced by hypoxia preconditioning of c-kit+ CPCs could largely be blocked by the addition of CXCR4 selective antagonist AMD3100. CONCLUSIONS: Hypoxic preconditioning may improve the survival and retention of c-kit+ CPCs in the ischemic heart tissue through activating the SDF-1α/CXCR4 axis and the downstream anti-apoptosis pathway. Strategies targeting this aspect may enhance the effectiveness of cell-based cardiac regenerative therapy.

  12. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  13. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Cristina Maria Costantino

    Full Text Available Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1R and CB(2R and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2R, but not CB(1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.

  14. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.

    Science.gov (United States)

    Barhanpurkar-Naik, Amruta; Mhaske, Suhas T; Pote, Satish T; Singh, Kanupriya; Wani, Mohan R

    2017-07-14

    Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards

  15. 穿心莲对人外周血CD4+T淋巴细胞表面CXCR4和CCR5的影响以及对CXCR4/CCR5启动子作用机制的研究%Effect and mechanism of Andrographitis Herba on human CD4 +T cell Promoters CXCR4 and CCR5

    Institute of Scientific and Technical Information of China (English)

    冯龙; 赵国强; 马云云; 李敏; 马晶; 靳静; 崔英

    2011-01-01

    目的:探讨穿心莲对人外周血CD4+T淋巴细胞表面趋化因子受体CXCR4和CCR5的影响以及对CXCR4,CCR5启动子的作用机制.方法:健康志愿者口服含穿心莲内酯的穿心莲胶囊后,采集人外周静脉血并分离CD4+T淋巴细胞,RT-PCR、流式细胞术、Western-bloting检测服药前后人外周血CD4+T淋巴细胞表面CXCR4,CCR5的表达;采用报告基因技术,中药穿心莲提取物给大鼠灌胃后采集含药血清,将含药血清作用于转染有CXCR4,CCR5启动子载体的H9细胞株,检测穿心莲对CXCR4,CCR5启动子的影响.结果:健康志愿者口服穿心莲后,外周血CD4+T淋巴细胞表面CXCR4,CCR5 mRNA和蛋白表达水平较服药前显著降低;并且穿心莲能够显著降低体外培养细胞CXCR4,CCR5启动子活性.结论:穿心莲能够降低人外周血CD4+T淋巴细胞表面CXCR4和CCR5的表达,具有潜在的抗HIV-1作用.%Objective: Utilizing a gene reporter technique to study the effects of Andrographitis Herba on human CXCR4 and CCR5 promoters. Method; Inhibition of CXCR4 and CCR5 on T cells of healthy volunteers was analyzed by RT PCR, Western blot and flow cytometry. The human CXCR4 and CCR5 promoters driving a luciferase reporter in vectors pGL4. 17-CXCR4 and pGL4. 17-CCR5 were transfected into H9 stem cells. G418 was used for selecting stable cell lines. Rat sera thus medicated was collected and added to the transfected H9 cells, in which the expression of CXCR4 and CCR5 promoters was detected. Result; They showed that the mRNA and protein expression levels of CXCR4 and CCR5 in human CD4 + T cells decreased significantly after taking Andrographitis Herba ( P < 0. 05). Furthermore human CXCR4 and CCR5 promoter activity was downregulated significantly by sera from rats medicated with Andrographitis Herba. Conclusion; Andrographitis Herba may have the effect of down-regulating CXCR4 and CCR5 promoters. It provides a feasible experimental platform for screening herbal medicine as the

  16. No selection of CXCR4-using variants in cell reservoirs of dual-mixed HIV-infected patients on suppressive maraviroc therapy.

    Science.gov (United States)

    Raymond, Stéphanie; Nicot, Florence; Carcenac, Romain; Jeanne, Nicolas; Cazabat, Michelle; Requena, Mary; Cuzin, Lise; Delobel, Pierre; Izopet, Jacques

    2016-03-27

    We used ultradeep sequencing to investigate the evolution of the frequency of CXCR4-using viruses in the peripheral blood mononuclear cells of 22 patients infected with both CCR5 and CXCR4-using viruses treated with the CCR5 antagonist maraviroc for 24 weeks and a stable antiviral therapy. The mean CXCR4-using virus frequency in peripheral blood mononuclear cells was 59% before maraviroc intensification and 52% after 24 weeks of effective treatment, indicating no selection by maraviroc.

  17. 正常成年SD大鼠脑内CXCR4免疫阳性细胞的形态学观察%Morphological observation of CXCR4 immnopositve cell of brain in normal adult rat

    Institute of Scientific and Technical Information of China (English)

    袁红海; 潘三强; 王海树; 宿宝贵

    2011-01-01

    Objective To study morphological feature of expression CXCR4 cell of adult brain in rats. Methods Immuno-hisochemistry was used to identiy cells of expression CXCR4 and light microscopy was used to observe their distribution and shape. Results In normal adult rat brain cells of expression CXCR4 distributed all neocortex each layer and each region. In external granular layer cells of CXCR4 immunopositive were more concentration and make cell band but in other layer the positive cell was distracted by varies ship. In the neocotex region, CXCR4 positive cell were seen, for example, frontal cortex, parietal cortex, temporal cortex, and amygdaloid cortex. In subcortal region, there were many cells of expression CXCR4, for example, third paraven-tricular gray, choroid plexuses, ventricular tube membrane, medial and lateral hebunular nucle, paraventricular and supraoptical nucleus of hypothalamus, thalamus neuclei complex, and lateral geniculate bodies, globul pallidus and putamen. In archi-paleo-cortex, hippocampal formation and amygloid complex body were expression CXCR4. Conclusion In normal rat brain expression CXCR4 cells are show in choroid plexuses, ventricular tube membrane, habenular nuclei and hippocampal formation as well as amygdaloid complex bodies except reported brain region and nuclei.%目的 研究成年大鼠脑内表达CXCR4细胞的形态学特征.方法 用免疫组织细胞化学方法对成年大鼠脑内表达CXCR4细胞的分布和形态特点.结果 在成年大鼠脑内,CXCR4免疫阳性细胞广泛分布于新皮质各层和各区.在皮层上,外颗粒层阳性细胞相对比较集中,形成一个深染的阳性细胞带,而其它各层阳性细胞比较分散.在各区皮质,如压部皮质、额叶、顶叶、嗅皮质区以及杏仁周皮质区.在皮质下区,CXCR4免疫阳性细胞相对集中见于第三脑室脉络丛、室管膜和内、外侧僵核、室周灰质、丘脑核群、外侧膝状体核、尾壳核

  18. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rave-Fraenk, Margret; Tehrany, Narges; Leu, Martin; Weber, Hanne Elisabeth; Wolff, Hendrik Andreas [University Medical Center Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Kitz, Julia [University Medical Center Goettingen, Department of Pathology, Goettingen (Germany); Burfeind, Peter [University Medical Center Goettingen, Department of Human Genetics, Goettingen (Germany); Schliephake, Henning [University Medical Center Goettingen, Department of Oral and Maxillofacial Surgery, Goettingen (Germany); Canis, Martin [University Medical Center Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Beissbarth, Tim [University Medical Center Goettingen, Institute of Medical Statistics, Goettingen (Germany); Reichardt, Holger Michael [University Medical Center Goettingen, Institute for Cellular and Molecular Immunology, Goettingen (Germany)

    2016-01-15

    The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16{sup INK4A} status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16{sup INK4A} positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis. (orig.) [German] Das Chemokin CXCL12 und sein Rezeptor CXCR4 beeinflussen Tumorwachstum, Auftreten von Rezidiven und Metastasierung. Es wurde die Hypothese geprueft, dass ein Zusammenhang der CXCL12- und CXCR4-Expression mit der Prognose von Patienten bestehe, die wegen eines inoperablen Kopf-Hals-Tumors eine primaere Radio- oder Radiochemotherapie erhielten. Dabei wurde auch der HPV-Status der Patienten beruecksichtigt. Formalinfixierte Proben aus unbehandelten Tumoren von 233 Patienten mit bekanntem HPV/p16{sup INK4A}-Status wurden ausgewertet. Die CXCL12- und CXCR4-Expression wurde mit klinischen Parametern und Ueberlebensdaten mittels uni- und multivariater Cox Regression analysiert. CXCL12 wurde von 43,3 %, CXCR4 von 66,1 % der Tumoren exprimiert, und beide Marker korrelierten mit einer HPV/p16{sup INK4A}-Expression. Eine hohe CXCL12-Expression war mit einem verbesserten

  19. Research on expression of CXCR4 and CCR7 in non small cell lung cancer cells%CXCR4、CCR7在非小细胞肺癌中表达的差异及意义

    Institute of Scientific and Technical Information of China (English)

    李醒; 温剑虎; 曾涛

    2008-01-01

    目的 探讨非小细胞肺癌(non small cell lung cancer,NSCLC)中CXC类趋化因子受体4(chemokine CXC motif receptor 4,CXCR4)、CC类趋化因子体7(chemokine CC motif receptor 7,CCR7)表达的差异性及其表达在局部淋巴结转移中的作用.方法 未做治疗的41例NSCLC肿瘤原发灶,以及25例移淋巴结和20例正常肺组织接SABC免疫组化法观察CXCR4、CCR7的表达.结果 NSCLC原发灶中肿瘤细胞CXCR4、CCR7阳性表达均明显高于正常肺组细胞(P<0.05);CXCR4阳性表达率高于CCR7(分别为92.68%、68.29%;P<0.05).原发灶中CCR7与TNM分期、淋巴结转移状况相关(P<0.05).淋巴结移灶中CXCR4、CCR7表达阳性率差异无统计学意义(96%、84%;P>0.05).结论 NSCLC中肿瘤细胞高表达CXCR4及CCR7可能与肿瘤细胞局部淋巴结靶性转移有关.对NSCLC而言,CCR7的作用可能更为关键.

  20. Molecular Pharmacology of CXCR4 inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Rosenkilde, Mette Marie

    2012-01-01

    pharmacology of well-known CXCR4 antagonists in order to augment the potency and affinity and to increase the specificity of future CXCR4-targeting compounds. In this chapter, binding modes of CXCR4 antagonists that have been shown to mobilize stem cells are discussed. In addition, comparisons between results...

  1. Molecular Pharmacology of CXCR4 inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Rosenkilde, Mette Marie

    2012-01-01

    pharmacology of well-known CXCR4 antagonists in order to augment the potency and affinity and to increase the specificity of future CXCR4-targeting compounds. In this chapter, binding modes of CXCR4 antagonists that have been shown to mobilize stem cells are discussed. In addition, comparisons between results...

  2. CXCR4/CXCL12 in Non-Small-Cell Lung Cancer Metastasis to the Brain

    Directory of Open Access Journals (Sweden)

    Sebastiano Cavallaro

    2013-01-01

    Full Text Available Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC and the pharmacological tools that may be used to interfere with this signaling axis.

  3. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  4. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro.

    Science.gov (United States)

    Chen, Tong; Bai, Hao; Shao, Ying; Arzigian, Melanie; Janzen, Viktor; Attar, Eyal; Xie, Yi; Scadden, David T; Wang, Zack Z

    2007-02-01

    The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.

  5. The CXCR4 antagonist plerixafor enhances the effect of rituximab in diffuse large B-cell lymphoma cell lines

    DEFF Research Database (Denmark)

    Reinholdt, Linn; Laursen, Maria Bach; Schmitz, Alexander;

    2016-01-01

    . Accordingly, the fraction of apoptotic/dead cells significantly increased following addition of plerixafor to rituximab treatment. Furthermore, exposure of DLBCL cells to plerixafor resulted in a significant decrease in CXCR4 fluorescence intensity. CONCLUSIONS: Based on our results, implying that the anti......BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with variable clinical outcome, accounting for at least 25-30 % of adult non-Hodgkin lymphomas. Approximately one third of DLBCL patients are not cured by the currently used treatment regimen, R-CHOP. Hence, new treatment......-proliferative/pro-apoptotic effect of rituximab on DLBCL cells can be synergistically enhanced by the CXCR4 antagonist plerixafor, addition of plerixafor to the R-CHOP regimen can be suggested to improve treatment outcome for DLBCL patients....

  6. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    Directory of Open Access Journals (Sweden)

    Xu C

    2015-08-01

    Full Text Available Chao Xu,1,* Hong Zhao,1,* Haitao Chen,1 Qinghua Yao2,3 1First Clinical College of Zhejiang Chinese Medical University, 2Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, 3Key Laboratory of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4, also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12. CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. Keywords: breast cancer, CXCR4, drug target, chemokine, angiogenesis

  7. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

    Science.gov (United States)

    Zhu, Chang; Yao, Wen-Long; Tan, Wei; Zhang, Chuan-Han

    2017-02-15

    Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

  8. Roles of Chemokine Receptor 4(CXCR4)and Chemokine Ligand 12(CXCL12)in Metastasis of Hepatocellular Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Zeya Pan; Aijun Li; Siyuan Fu; Yin Lei; Hangyong Sun; Mengchao Wu; Weiping Zhou

    2008-01-01

    Chemokines are involved in human hepatocellular carcinoma (HCC) carcinogenesis.However,the exact mechanism of chemokines in HCC carcinogenesis remains unknown.Here we investigated the roles of chemokine receptor 4(CXCR4) and chemokine ligand 12(CXCL12)in the metastasis of HCC.We found that the expression levels of CXCR4 mRNA in HCC tissues,MHCC97 cells,and HUVEC cells were 2.52±1.13,2.34±1.16 and 1.63±1.26,respectively and that the CXCR4 protein levels were 1.38±0.13,1.96±0.32 and 1.86±0.21,respectively.In contrast,CXCR4 was not detected in normal hepatic tissues.In 78 HCC patients,we also found that the concentration of CXCL12 in cancerous ascitic fluid was 783-8,364 Pg/ml and that CXCL12 mRNA level in HCC metastasis portal lymph nodes was 1.21±0.87 but undetectable in normal hepatic tissues.Finally we discovered that recombinant human CXCL12 could induce MHCC97 cells and HUVEC cells to migrate with chemotactic indexes(CI)of 3.9±1.1 and 4.1±1.6,respectively.Cancerous ascitic fluid could also induce the migration of MHCC97 cells with a CI of 1.9±0.8.Thus,our data suggest that CXCR4 and CXCL12 may play an important role in the metastasis of HCC by promoting the migration of tumor cells.

  9. Transfusion of CXCR4-primed endothelial progenitor cells reduces cerebral ischemic damage and promotes repair in db/db diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available This study investigated the role of stromal cell-derived factor-1α (SDF-1α/CXC chemokine receptor 4 (CXCR4 axis in brain and endothelial progenitor cells (EPCs, and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO. In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null or CXCR4 (Ad-CXCR4 followed with high glucose (HG treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1 The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2 The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3 Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4 Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4 Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.

  10. Expression of CXCR4 and VEGF-C is correlated with lymph node metastasis in non-small cell lung cancer.

    Science.gov (United States)

    Bi, Ming Ming; Shang, Bin; Wang, Zhou; Chen, Gang

    2017-09-19

    This study investigated the correlations between CXCR4 and VEGF-C expression and lymph node metastasis in non-small cell lung cancer (NSCLC). Tumor specimens, lymph nodes, and normal lung tissues were obtained from 110 NSCLC patients who underwent complete resection. Quantitative reverse transcription-PCR and immunohistochemistry assays were conducted to evaluate messenger RNA (mRNA) and protein expression of CXCR4 and VEGF-C. Logistic regression analysis was performed to determine the independent risk factors for lymph node metastasis in NSCLC. CXCR4 and VEGF-C mRNA expression were observed in 78 (70.9%) and 64 (58.2%) lung cancer tissues, while CXCR4 and VEGF-C protein expression were observed in 76 (69.9%) and 58 (52.7%) lung cancer tissues, respectively. The expression rates of CXCR4 and VEGF-C mRNA in metastatic lymph nodes were 84.8% and 66.7%, which were higher than that in non-metastatic lymph nodes (27.3% and 18.2%), respectively. Logistic regression analysis revealed that positive expressions of CXCR4 and VEGF-C mRNA were independent risk factors for lymph node metastasis in NSCLC. Furthermore, combined expression of CXCR4 and VEGF-C showed a much higher odds ratio than CXCR4 or VEGF-C expression alone. CXCR4 and VEGF-C were highly expressed in lung cancer tissues and metastatic lymph nodes. CXCR4 and VEGF-C expression levels were significantly correlated with lymph node metastasis in NSCLC. CXCR4 and VEGF-C might synergically promote lymphatic metastasis in lung cancer and might be a clinical predictor of lymph node metastasis in NSCLC patients. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  11. Downregulation of CXCR4 by SDF-KDEL in SBC-5 cells inhibits their migration in vitro and organ metastasis in vivo.

    Science.gov (United States)

    Ma, Ningqiang; Pang, Hailin; Shen, Weiwei; Zhang, Feng; Cui, Zaoxun; Wang, Junyan; Wang, Jianlin; Liu, Lili; Zhang, Helong

    2015-02-01

    Metastasis is the principal cause of morbidity and mortality in cancer patients. The master genes that govern organ-selective metastasis remain elusive. We compared the expression levels of C-X-C chemokine receptor type 4 (CXCR4) in the human small cell lung cancer (SCLC) cells, SBC-5 and SBC-3, by flow cytometric analysis and found that CXCR4 was expressed at markedly higher levels in the SBC-5 cells which can produce multiple organ metastasis, particularly bone metastasis compared to the SBC-3 cells. Stromal-derived-factor-1 (SDF-1)-CXCR4 has been shown to regulate cell migration and metastasis in a various types of cancer; however, the roles of SDF-1-CXCR4 in the organ-selective metastasis of SCLC in vivo remain to be elucidated. Thus, in this study, we constructed a phenotype of SBC-5 cells in which CXCR4 was knocked out using the intrakine strategy and found that the downregulation of CXCR4 inhibited cell migration and invasion, but did not affect cell proliferation or apoptosis in vitro. In in vivo experiments, the knockout of CXCR4 suppressed the development of metastastic lesions in the lungs, liver and bone, but did not decrease metastasis to the kidneys. Our data demonstrate that CXCR4 is a candidate gene involved in the development of metastastic lesions in specific organs, such as the lungs, bone and liver, which can secrete high concentrations of SDF-1, the sole ligand of CXCR4. Thus, CXCR4 may prove to be a promising target for the prevention and effective treatment of metastastic lesions due to SCLC.

  12. Expression of the CXCR4 ligand SDF-1/CXCL12 is prognostically important for adenocarcinoma and large cell carcinoma of the lung.

    Science.gov (United States)

    Sterlacci, William; Saker, Shereen; Huber, Bettina; Fiegl, Michael; Tzankov, Alexandar

    2016-04-01

    The SDF-1/CXCR4 axis is associated with tumor progression and has been reported as a prognostic parameter, although with conflicting data for non-small cell lung cancer (NSCLC). This study examines a large cohort of clinically and pathologically well-characterized NSCLC patients and includes the activated form of CXCR4 (pCXCR4), which has not been studied in this context so far. SDF-1, CXCR4, and pCXCR4 were assessed immunohistochemically in 371 surgically resected NSCLC using a standardized tissue microarray platform. Extensive clinical and pathological data and a postoperative follow-up period of 17 years enabled detailed correlations. CXCR4 and pCXCR4 were frequently expressed on squamous cell carcinoma. Membranous expression of SDF-1 was a marker of poor prognosis and proved to be an independent prognostic parameter for the entire cohort and for patients with adenocarcinoma (ACA) and large cell carcinoma (LCC). Targeted cancer therapies blocking SDF-1/CXCR4 interaction already exist, and our data suggest that expression of SDF-1, especially on poorer prognosis subgroups of LCC and ACA, indicates patients that might benefit more than others. This should be taken into account when assessing the effectiveness of such targeted approaches for NSCLC patients and could lead to important implications.

  13. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

    Science.gov (United States)

    Borrell, Víctor; Marín, Oscar

    2006-10-01

    Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.

  14. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-Kun Li; Liang Yu; Yun Shen; Li-Sheng Zhou; Yi-Cheng Wang; Jian-Hai Zhang

    2008-01-01

    AIM: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells in vitro.METHODS: Human colorectal cancer cell line SW480 was treated with AMD3100 at different final concentrations.3-(4,5-dimethylthiazole-2-yl)-2.5-dipheny-ltetrazolium bromide (MTT) assay was used to detect the effect of AMD3100 on cell proliferation. The invasion ability of SW480 cells was determined by cell invasion assay kit.In the presence of AMD3100, the CXCL12-mediated migratory response of SW480 cells was tested by classical chemotaxis assays. RT-PCR analysis and Western blotting were used to detect the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2)and -9 (MMP-9) in SW480 cells.RESULTS: Cell viability was significantly suppressed by AMD3100 in a dose-dependent manner. AMD3100 (100and 1000 ng/mL) significantly inhibited the invasion ability of SW480 cells. Treatment with AMD3100markedly reduced the expression of VEGF and MMP-9but not MMP-2 in SW480 cells.CONCLUSION: The CXCL12/CXCR4 system is an important mediator of proliferation and invasion of CXCR4-expressing colorectal cancer cells, AMD3100inhibited invasion and metastasis activity of the colorectal cancer cell line SW480 through down-regulation of VEGF and MMP-9 expression.

  15. Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line

    OpenAIRE

    Neves, Bruno Miguel; Cruz, Maria Teresa; Francisco, Vera; Gonçalo, Margarida; Figueiredo, Américo; Duarte, Carlos B.; Lopes, Maria Celeste

    2008-01-01

    The development of non-animal methods for skin sensitization testing is an urgent challenge. Some of the most promising in vitro approaches are based on the analysis of phenotypical and functional modifications induced by sensitizers in dendritic cell models. In this work, we evaluated, for the first time, a fetal skin-derived dendritic cell line (FSDC) as a model to discriminate between sensitizers and irritants, through analysis of their effects on CD40 and CXCR4 protein expression. The che...

  16. HuR-targeted nanotherapy in combination with AMD3100 suppresses CXCR4 expression, cell growth, migration, and invasion in lung cancer

    Science.gov (United States)

    Muralidharan, Ranganayaki; Panneerselvam, Janani; Chen, Allshine; Zhao, Yan Daniel; Munshi, Anupama; Ramesh, Rajagopal

    2015-01-01

    The CXCR4 chemokine receptor plays an important role in cancer cell metastasis. The CXCR4 antagonist, AMD3100, has limited efficacy in controlling metastasis. HuR, an RNA-binding protein, regulates CXCR4 in cancer cells. We therefore investigated whether targeting HuR using a siRNA-based nanoparticle plus AMD3100 would suppress CXCR4 and inhibit lung cancer metastasis. We treated human H1299 lung cancer cell with HuR-specific siRNA contained in a folate-targeted lipid nanoparticle (HuR-FNP) plus AMD3100, and compared this with AMD3100 alone, HuR-FNP alone and no treatment. HuR-FNP plus AMD3100 treatment produced a G1 phase cell-cycle arrest and reduced cell viability above and beyond the effects of AMD3100 alone. HuR and CXCR4 mRNA and protein expression levels were markedly reduced in all treatment groups. Phosphorylated (p) AKTS473 protein was also reduced. P27 protein expression increased with HuR-FNP and combination treatment. Promoter-based reporter studies showed that the combination inhibited CXCR4 promoter activity more than did either treatment alone. Cell migration and invasion was significantly reduced with all treatment; the combination provided the most inhibition. Reduced matrix metalloprotease (MMP) -2 and -9 expression was associated with reduced invasion in all treatment groups. Thus, we found that combined HuR and CXCR4 targeting effectively controlled lung cancer metastasis. PMID:26494555

  17. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng

    2013-11-22

    Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  18. HuR-targeted nanotherapy in combination with AMD3100 suppresses CXCR4 expression, cell growth, migration and invasion in lung cancer.

    Science.gov (United States)

    Muralidharan, R; Panneerselvam, J; Chen, A; Zhao, Y D; Munshi, A; Ramesh, R

    2015-12-01

    The CXCR4 chemokine receptor has an important role in cancer cell metastasis. The CXCR4 antagonist, AMD3100, has limited efficacy in controlling metastasis. HuR, an RNA-binding protein, regulates CXCR4 in cancer cells. We therefore investigated whether targeting HuR using a siRNA-based nanoparticle plus AMD3100 would suppress CXCR4 and inhibit lung cancer metastasis. We treated human H1299 lung cancer cells with HuR-specific siRNA contained in a folate-targeted lipid nanoparticle (HuR-FNP) plus AMD3100, and compared this with AMD3100 alone, HuR-FNP alone and no treatment. HuR-FNP plus AMD3100 treatment produced a G1 phase cell cycle arrest and reduced cell viability above and beyond the effects of AMD3100 alone. HuR and CXCR4 mRNA and protein expression levels were markedly reduced in all treatment groups. Phosphorylated (p) AKT(S473) protein was also reduced. P27 protein expression increased with HuR-FNP and combination treatment. Promoter-based reporter studies showed that the combination inhibited CXCR4 promoter activity more than did either treatment alone. Cell migration and invasion was significantly reduced with all treatments; the combination provided the most inhibition. Reduced matrix metalloprotease (MMP)-2 and -9 expression was associated with reduced invasion in all treatment groups. Thus, we found that combined HuR and CXCR4 targeting effectively controlled lung cancer metastasis.

  19. Intravenous administration of mesenchymal stem cells overexpressing CXCR4 protects against experimental colitis in rats%过表达CXCR4的间充质干细胞缓解实验性结肠炎

    Institute of Scientific and Technical Information of China (English)

    刘星星; 范恒; 唐庆; 寿折星; 陶玲; 张丽娟; 左冬梅

    2016-01-01

    目的:观察过表达CXCR4的骨髓间充质干细胞治疗2,4,6-三硝基苯磺酸诱导的实验性结肠炎的效果及其潜在的免疫作用机制.方法:从♀SD大鼠骨髓中分离骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)并使用流式细胞术鉴定.通过慢病毒技术使BMSCs表达GFP(green fluorescent protein-GFP,Ad-GFP-BMSCs)或共表达CXCR4和GFP(Ad-CXCR4-BMSCs),32只大鼠被随机分成4组(n=8):空白组、模型组、Ad-GFP-BMSCs组、Ad-CXCR4-BMSCs组.采用TNBS诱导实验性结肠炎,尾静脉注射Ad-CXCR4-BMSCs或Ad-GFP-BMSCs.治疗1 wk,收集结肠组织进行HE染色和病理学分析.PCR检测结肠部位干扰素-γ(interferon-γ,IFN-γ)、肿瘤坏死因子-α(tumor necrosis factor α,TNF-α)、白介素(interleukin,IL)-6和IL-10的mRNA表达,Western blot检测信号传导子及转录激活子(signal transducer and activator of transcription,STAT)-3和磷酸化STAT-3蛋白表达,免疫组织化学检测磷酸化STAT3蛋白表达.结果:相对于空白组,模型组结肠部位的IFN-γ、TNF-α、IL-6和IL-10的mRNA表达显著上升,S TAT-3及磷酸化STAT-3的蛋白表达明显上升(P<0.05).系统治疗1 wk后,相对于模型组,Ad-GFP-BMSCs组大鼠的临床症状及结肠病理损害并没有得到有效的缓解.相对于Ad-GFP-BMSCs组,Ad-CXCR4-BMSCs组大鼠结肠组织的IFN-γ、TNF-α、IL-6的mRNA表达显著下降,IL-10 的mRNA表达显著上升(P<0.05);STAT3 及磷酸化STAT-3的蛋白表达显著下降(P<0.05).结论:过表达CXCR4的BMSCs可能通过抗炎及免疫调节机制来缓解实验性结肠炎,这可能为BMSC缓解IBD提供可靠的理论依据.%AIM:To investigate the role of SDF-1α/CXCR4 axis in the therapeutic effects of lentivirus-preconditioned bone mesenchymal stem cells (BMSCs) for 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats.METHODS:BMSCs were isolated from Sprague-Dawley (SD) rats and identified by flow cytometry.Lentivirus transfection was applied to

  20. Evaluation of assay interference and interpretation of CXCR4 receptor occupancy results in a preclinical study with MEDI3185, a fully human antibody to CXCR4

    Science.gov (United States)

    Chavez, Carlos; Henderson, Simon; Vainshtein, Inna; Standifer, Nathan; DelNagro, Christopher; Mehrzai, Freshta; Schneider, Amy; Roskos, Lorin; Liang, Meina

    2015-01-01

    Background Receptor occupancy (RO) assays provide a means to measure the direct interaction of therapeutics with their cell surface targets. Free receptor assays quantify cell‐surface receptors not bound by a therapeutic while total receptor assays quantify the amount of target on the cell surface. Methods We developed both a flow cytometry‐based free RO assay to detect free surface CXCR4, and a total surface CXCR4 assay. In an effort to evaluate potential displacement interference, we performed in vitro experiments to compare on‐cell affinity with the IC50 values from in vitro and in vivo from the free CXCR4 assay. We determined free and total surface CXCR4 on circulating blood cells in cynomolgus monkeys dosed with MEDI3185, a fully human monoclonal antibody to CXCR4. Results We devised an approach to evaluate displacement interference during assay development and showed that our free assay demonstrated little to no displacement interference. After dosing cynomolgus monkeys with MEDI3185, we observed dose‐dependence in the magnitude and duration of receptor occupancy and found CXCR4 to increase on lymphocytes, monocytes, and granulocytes. In a multiple dose study, we observed time points where surface CXCR4 appeared fully occupied but MEDI3185 was not detectable in serum. These paradoxical results represented a type of assay interference, and by comparing pharmacokinetic, ADA and total CXCR4 results, the most likely reason for the free CXCR4 results was the emergence of neutralizing anti‐drug antibodies (ADA). The total CXCR4 assay was unaffected by ADA and provided a reliable marker of target modulation in both in vivo studies. © 2015 The Authors Cytometry Part B: Clinical Cytometry Published byWiley Periodicals, Inc. PMID:26384735

  1. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus

    2009-01-01

    into deeper structures of 3D porous bone substitute scaffolds. Here we show that transient overexpression of CXCR4 in human BMSCs induced by mRNA transfection enhances stromal cell-derived factor-1alpha (SDF-1alpha)-directed chemotactic capacity to invade internal compartments of porous 3D bone substitute...... scaffolds in vitro and in vivo. In vitro native BMCSs invaded up to 500 mum into SDF-1alpha-releasing 3D scaffolds, whereas CXCR4-overexpressing BMSCs invaded up to 800 mum within 5 days. In addition, 60% downregulation of endogenous SDF-1 transcription in BMSCs by endoribonuclease-prepared siRNA before...... CXCR4 mRNA transfection enhanced SDF-1alpha-directed migration of human BMSCs by 50%. Implantation of SDF-1alpha-releasing scaffolds seeded with transiently CXCR4-overexpressing BMSCs resulted in an increase of invasion into internal compartments of the scaffolds in a mouse model. In vivo native BMCS...

  2. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks.

    Science.gov (United States)

    Guo, F; Wang, Y; Liu, J; Mok, S C; Xue, F; Zhang, W

    2016-02-18

    Increasing evidence indicates that the tumor microenvironment has critical roles in all aspects of cancer biology, including growth, angiogenesis, metastasis and progression. Although chemokines and their receptors were originally identified as mediators of inflammatory diseases, it is being increasingly recognized that they serve as critical communication bridges between tumor cells and stromal cells to create a permissive microenvironment for tumor growth and metastasis. Thus, an important therapeutic strategy for cancer is to break this communication channel and isolate tumor cells for long-term elimination. Cytokine CXCL12 (also known as stromal-derived factor 1α) and its receptor CXCR4 represent the most promising actionable targets for this strategy. Both are overexpressed in various cancer types, and this aberrant expression strongly promotes proliferation, migration and invasion through multiple signal pathways. Several molecules that target CXCL12 or CXCR4 have been developed to interfere with tumor growth and metastasis. In this article, we review our current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression and discuss its therapeutic implications.

  3. CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC Pathologic Roles and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Ori Wald, Oz M. Shapira, Uzi Izhar

    2013-01-01

    Full Text Available Lung cancer is the second most common malignancy and the leading cause of cancer-related death in the western world. Moreover, despite advances in surgery, chemotherapy and radiotherapy, the death rate from lung cancer remains high and the reported overall five-year survival rate is only 15%. Thus, novel treatments for this devastating disease are urgently needed. Chemokines, a family of 48 chemotactic cytokines interacts with their 7 transmembrane G-protein-coupled receptors, to guide immune cell trafficking in the body under both physiologic and pathologic conditions. Tumor cells, which express a relatively restricted repertoire of chemokine and chemokine receptors, utilize and manipulate the chemokine system in a manner that benefits both local tumor growth and distant dissemination. Among the 19 chemokine receptors, CXCR4 is the receptor most widely expressed by malignant tumors and whose role in tumor biology is most thoroughly studied. The chemokine CXCL12, which is the sole ligand of CXCR4, is highly expressed in primary lung cancer as well as in the bone marrow, liver, adrenal glands and brain, which are all sites for lung cancer metastasis. This review focuses on the pathologic role of the CXCR4/CXCL12 axis in NSCLC and on the potential therapeutic implication of targeting this axis for the treatment of NSCLC.

  4. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells.

    Science.gov (United States)

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen

    2015-01-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  5. Src and CXCR4 are involved in the invasiveness of breast cancer cells with acquired resistance to lapatinib.

    Science.gov (United States)

    De Luca, Antonella; D'Alessio, Amelia; Gallo, Marianna; Maiello, Monica R; Bode, Ann M; Normanno, Nicola

    2014-01-01

    Lapatinib is a dual EGFR and ErbB-2 tyrosine kinase inhibitor that has significantly improved the clinical outcome of ErbB-2-overexpressing breast cancer patients. However, patients inexorably develop mechanisms of resistance that limit the efficacy of the drug. In order to identify potential targets for therapeutic intervention in lapatinib-resistant patients, we isolated, from ErbB-2-overexpressing SK-Br-3 breast cancer cells, the SK-Br-3 Lap-R-resistant subclone, which is able to routinely grow in 1 µM lapatinib. Resistant cells have a more aggressive phenotype compared with parental cells, as they show a higher ability to invade through a matrigel-coated membrane. Lapatinib-resistant cells have an increased Src kinase activity and persistent levels of activation of ERK1/2 and AKT compared with parental cells. Treatment with the Src inhibitor saracatinib in combination with lapatinib reduces AKT and ERK1/2 phosphorylation and restores the sensitivity of resistant cells to lapatinib. SK-Br-3 Lap-R cells also show levels of expression of CXCR4 that are higher compared with parental cells and are not affected by Src inhibition. Treatment with saracatinib or a specific CXCR4 antibody reduces the invasive ability of SK-Br-3 Lap-R cells, with the two drugs showing cooperative effects. Finally, blockade of Src signaling significantly increases TRAIL-induced cell death in SK-Br-3 Lap-R cells. Taken together, our results demonstrate that breast cancer cells with acquired resistance to lapatinib have a more aggressive phenotype compared with their parental counterpart, and that Src signaling and CXCR4 play an important role in this phenomenon, thus representing potential targets for therapeutic intervention in lapatinib-resistant breast cancer patients.

  6. Novel anti-metastatic action of cidofovir mediated by inhibition of E6/E7, CXCR4 and Rho/ROCK signaling in HPV tumor cells.

    Directory of Open Access Journals (Sweden)

    Abdessamad Amine

    Full Text Available Cervical cancer is frequently associated with HPV infection. The expression of E6 and E7 HPV oncoproteins is a key factor in its carcinogenicity and might also influence its virulence, including metastatic conversion. The cellular mechanisms involved in metastatic spread remain elusive, but pro-adhesive receptors and their ligands, such as SDF-1alpha and CXCR4 are implicated. In the present study, we assessed the possible relationship between SDF-1alpha/CXCR4 signaling, E6/E7 status and the metastatic process. We found that SDF-1alpha stimulated the invasion of E6/E7-positive cancer cell lines (HeLa and TC-1 in Matrigel though CXCR4 and subsequent Rho/ROCK activation. In pulmonary metastatic foci generated by TC-1 cells IV injection a high proportion of cells expressed membrane-associated CXCR4. In both cases models (in vitro and in vivo cell adhesion and invasion was abrogated by CXCR4 immunological blockade supporting a contribution of SDF-1alpha/CXCR4 to the metastatic process. E6 and E7 silencing using stable knock-down and the approved anti-viral agent, Cidofovir decreased CXCR4 gene expression as well as both, constitutive and SDF-1alpha-induced cell invasion. In addition, Cidofovir inhibited lung metastasis (both adhesion and invasion supporting contribution of E6 and E7 oncoproteins to the metastatic process. Finally, potential signals activated downstream SDF-1alpha/CXCR4 and involved in lung homing of E6/E7-expressing tumor cells were investigated. The contribution of the Rho/ROCK pathway was suggested by the inhibitory effect triggered by Cidofovir and further confirmed using Y-27632 (a small molecule ROCK inhibitor. These data suggest a novel and highly translatable therapeutic approach to cervix cancer, by inhibition of adhesion and invasion of circulating HPV-positive tumor cells, using Cidofovir and/or ROCK inhibition.

  7. The CXCR4/CXCR7/CXCL12 Axis Is Involved in a Secondary but Complex Control of Neuroblastoma Metastatic Cell Homing.

    Directory of Open Access Journals (Sweden)

    Annick Mühlethaler-Mottet

    Full Text Available Neuroblastoma (NB is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8, the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.

  8. A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart.

    Science.gov (United States)

    Cheng, Min; Huang, Kai; Zhou, Junlan; Yan, Dewen; Tang, Yao-Liang; Zhao, Ting C; Miller, Richard J; Kishore, Raj; Losordo, Douglas W; Qin, Gangjian

    2015-04-01

    The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.

  9. Nuclear Pattern of CXCR4 Expression Is Associated with a Better Overall Survival in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Bahram Nikkhoo

    2014-01-01

    Full Text Available Introduction. Previous studies have shown that stromal-derived factor-1 (CXCL12 and its receptor, CXCR4, play a crucial role in metastasis of various tumors. Similarly, it has been cleared that CXCR4 is expressed on the cell surface of gastric cancers. However, nuclear expression of CXCR4 and its clinical importance have not been yet studied. Materials and Methods. Herein, we studied the expression of CXCR4 in gastric samples from patients with gastric adenocarcinoma as well as human gastric carcinoma cell line, AGS, by employing RT-PCR, immunohistochemistry, and flow cytometry techniques. Results. RT-PCR data showed that CXCR4 is highly expressed on AGS cells. This was confirmed by IHC and FACS as CXCR4 was detected on cell membrane, in cytoplasm, and in nucleus of AGS cells. Moreover, we found that both cytoplasmic and nuclear CXCR4 are strongly expressed in primary gastric cancer and the cytoplasmic pattern of CXCR4 tends to be associated with a shorter overall survival than nuclear staining. In conclusion, we present evidence for the first time that both cytoplasmic and nuclear expression of CXCR4 are detectable in gastric cancer tissues. However, the role of both cytoplasmic and nuclear CXCR4 needs to be further elucidated.

  10. Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation.

    Science.gov (United States)

    Lai, Chen-Yi; Yamazaki, Satoshi; Okabe, Motohito; Suzuki, Sachie; Maeyama, Yoshihiro; Iimura, Yasuaki; Onodera, Masafumi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Otsu, Makoto; Nakauchi, Hiromitsu

    2014-07-01

    Hematopoietic cell transplantation has proven beneficial for various intractable diseases, but it remains unclear how hematopoietic stem/progenitor cells (HSPCs) home to the bone marrow (BM) microenvironment, initiate hematopoietic reconstitution, and maintain life-long hematopoiesis. The use of newly elucidated molecular determinants for overall HSPC engraftment should benefit patients. Here, we report that modification of C-X-C chemokine receptor type 4 (Cxcr4) signaling in murine HSPCs does not significantly affect initial homing/lodging events, but leads to alteration in subsequent BM repopulation kinetics, with observations confirmed by both gain- and loss-of-function approaches. By using C-terminal truncated Cxcr4 as a gain-of-function effector, we demonstrated that signal augmentation likely led to favorable in vivo repopulation of primitive cell populations in BM. These improved features were correlated with enhanced seeding efficiencies in stromal cell cocultures and altered ligand-mediated phosphorylation kinetics of extracellular signal-regulated kinases observed in Cxcr4 signal-augmented HSPCs in vitro. Unexpectedly, however, sustained signal enhancement even with wild-type Cxcr4 overexpression resulted in impaired peripheral blood (PB) reconstitution, most likely by preventing release of donor hematopoietic cells from the marrow environment. We thus conclude that timely regulation of Cxcr4/CXCR4 signaling is key in providing donor HSPCs with enhanced repopulation potential following transplantation, whilst preserving the ability to release HSPC progeny into PB for improved transplantation outcomes.

  11. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ayse G Kayali

    Full Text Available The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3, a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1 was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets.

  12. Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice.

    Science.gov (United States)

    Brennecke, Patrick; Arlt, Matthias J E; Muff, Roman; Campanile, Carmen; Gvozdenovic, Ana; Husmann, Knut; Holzwarth, Nathalie; Cameroni, Elisabetta; Ehrensperger, Felix; Thelen, Marcus; Born, Walter; Fuchs, Bruno

    2013-01-01

    More effective treatment of metastasizing osteosarcoma with a current mean 5-year survival rate of less than 20% requires more detailed knowledge on mechanisms and key regulatory molecules of the complex metastatic process. CXCR4, the receptor of the chemokine CXCL12, has been reported to promote tumor progression and metastasis in osteosarcoma. CXCR7 is a recently deorphanized CXCL12-scavenging receptor with so far not well-defined functions in tumor biology. The present study focused on a potential malignancy enhancing function of CXCR7 in interaction with CXCR4 in osteosarcoma, which was investigated in an intratibial osteosarcoma model in SCID mice, making use of the human 143B osteosarcoma cell line that spontaneously metastasizes to the lung and expresses endogenous CXCR4. 143B osteosarcoma cells stably expressing LacZ (143B-LacZ cells) were retrovirally transduced with a gene encoding HA-tagged CXCR7 (143B-LacZ-X7-HA cells). 143B-LacZ-X7-HA cells co-expressing CXCR7 and CXCR4 exhibited CXCL12 scavenging and enhanced adhesion to IL-1β-activated HUVEC cells compared to 143B-LacZ cells expressing CXCR4 alone. SCID mice intratibially injected with 143B-LacZ-X7-HA cells had significantly (plung metastases than mice injected with 143B-LacZ cells. Unexpectedly, 143B-LacZ-X7-HA cells, unlike 143B-LacZ cells, also metastasized with high incidence to the auriculum cordis. In conclusion, expression of the CXCL12 scavenging receptor CXCR7 in the CXCR4-expressing human 143B osteosarcoma cell line enhances its metastatic activity in intratibial primary tumors in SCID mice that predominantly metastasize to the lung and thereby closely mimic the human disease. These findings point to CXCR7 as a target, complementary to previously proposed CXCR4, for more effective metastasis-suppressive treatment in osteosarcoma.

  13. CXCL12 and CXCR4, but not CXCR7, are primarily expressed by the stroma in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Clatot, Florian; Cornic, Marie; Berghian, Anca; Marchand, Vinciane; Choussy, Olivier; El Ouakif, Faissal; François, Arnaud; Ruminy, Philippe; Laberge-Le-Couteulx, Sophie; Picquenot, Jean-Michel; Jardin, Fabrice

    2015-01-01

    The CXCL12/CXCR4 axis is involved in numerous models of metastatic dissemination, including head and neck squamous cell carcinoma (HNSCC). We assessed the relative expressions of CXCL12, CXCR4 and CXCR7 in the stroma and the tumour of HNSCC, and evaluated the methylation status of the CXCL12 promoter.Snap-frozen, HPV negative HNSCC samples were micro-dissected to isolate the tumoural and stromal compartments. The expression levels of CXCL12, CXCR4 and CXCR7 were assessed by qRT-PCR, and the methylation level of the CXCL12 promoter was evaluated by pyrosequencing.In total, 23 matched tumour/stroma samples were analysed. Higher expressions of CXCR4 and CXCL12 were observed in the stroma (p = 0.012 and p 40%) of the CXCL12 promoter was observed in only a few tumoural samples (5/23) and was associated with a lower expression of the gene (p = 0.03).Stromal cells, rather than the tumour itself, are mainly responsible for the expression of both CXCL12 and CXCR4 expression in HNSCC. CXCR7 expression did not differ between the two compartments and was not related to CXCL12 or CXCR4 expression. Finally, the methylation of the CXCL12 promoter could only explain the low intra-tumoural expression of this gene in 20% of cases.

  14. The targeted inhibitory effects of human amniotic fluid stem cells carrying CXCR4 promoter and DAL-1 on non-small cell lung carcinoma growth.

    Science.gov (United States)

    Li, L; Li, S; Cai, T; Wang, H; Xie, X; Liu, Z; Zhang, Y

    2016-02-01

    The differentially expressed in adenocarcinoma of the lung-1 (DAL-1) protein has been demonstrated to be suppressive to various types of tumors including lung cancer. This study aimed to determine the targeted effects of human amniotic fluid stem cells (hAFS cells) carrying CXCR4 promoter driven conditionally replicable adenovirus vector overexpressing DAL-1 (Ad-CXCR4-DAL-1) on non-small cell lung carcinoma (NSCLC) growth. The apoptotic effects of virus vectors were assessed using flow cytometry, and the cytotoxicity analyzed by CCK-8 assay. In vivo imaging system was used to determine the homing capability of hAFS cells. A549 cell xenograft mouse model was created to assess the in vivo effect of DAL-1 overexpression on NSCLC growth. We found that infection of Ad-CXCR4-DAL-1 increased the apoptosis of A549 NSCLC cells but not 16HBE normal human bronchial epithelial cells. Ad-CXCR4-DAL-1 administered via intratumoral injection led to significant reduced growth and greater necrosis of A549 xenograft tumors comparing to null vector treated animals. When infused via tail vein, hAFS cells carrying Ad-CXCR4-DAL-1 homed to lung cancer xenografts, caused virus replication and DAL-1 overexpression, and led to significant lower growth and greater necrosis of A549 cell xenografts comparing to non-treatment control. In conclusion, hAFS cells are capable of carrying Ad-CXCR4-DAL-1 vectors, specifically targeting to lung cancer, and causing oncolytic effects when administered in vivo.

  15. Analysis of SDF-1/CXCR4 pathway function in osteosarcoma and the regulating effect of exogenous SDF-1 on osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    Ding-Tian Liang; Quan-Wang Li

    2016-01-01

    Objective:To study SDF-1/CXCR4 pathway function in osteosarcoma and the regulating effect of exogenous SDF-1 on osteosarcoma cells.Methods: Osteosarcoma tissue and adjacent tissue were collected to detect mRNA contents of SDF-1, CXCR4, Wnt,β-catenin, TCF and LEF; osteosarcoma MG63 cell lines were cultured, treated with SDF-1 and transfected with CXCR4-siRNA, and cell migration rate, number of invasive cells as well as mRNA contents of Wnt,β-catenin, TCF, LEF, c-myc, cyclinD1, MMP2, MMP9 and VEGF were detected. Results:mRNA contents of SDF-1, CXCR4, Wnt,β-catenin, TCF and LEF in osteosarcoma tissue were significantly higher than those in adjacent tissue; cell migration rate, number of invasive cells as well as mRNA contents of Wnt,β-catenin, TCF, LEF, c-myc, cyclinD1, MMP2, MMP9 and VEGF of SDF-1 treatment group were higher than those of control group; cell migration rate, number of invasive cells as well as mRNA contents of Wnt,β-catenin, TCF, LEF, c-myc, cyclinD1, MMP2, MMP9 and VEGF of SDF-1+CXCR4 interference group were lower than those of SDF-1 treatment group.Conclusion:SDF-1/CXCR4 pathway function in osteosarcoma is enhanced, and exogenous SDF-1 can promote osteosarcoma cell migration and invasion and activate Wnt/β-catenin pathway through CXCR4.

  16. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal.

    Science.gov (United States)

    Chaix, Julie; Nish, Simone A; Lin, Wen-Hsuan W; Rothman, Nyanza J; Ding, Lei; Wherry, E John; Reiner, Steven L

    2014-08-01

    Central memory (CM) CD8(+) T cells "remember" prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal), as well as reproduce the CM fate while manufacturing effector cells during secondary Ag encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8(+) T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the CM pool while producing secondary effector cells. The critical bone marrow-derived signals essential for CD8(+) T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge.

  17. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Antoine Boudot

    Full Text Available CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2 in estrogen receptor (ER-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20-250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors.

  18. Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells' homing.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Matin, Maryam M; Heirani-Tabasi, Asieh; Mirahmadi, Mahdi; Irfan-Maqsood, Muhammad; Edalatmanesh, Mohmmad Amin; Shahriyari, Mina; Ahmadiankia, Naghmeh; Moussavi, Nasser Sanjar; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-07-01

    Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target injury tissues for the long term. However, their homing efficiency has been observed to be very poor because of the lack or modifications of homing factors SDF-1α and CXCR4 receptors. Hence, this study was designed to investigate the homing and retention of pretreated human adipose tissue-derived MSCs (hASCs) from three different delivery routes in response to SDF-1α, released from chitosan-based injectable hydrogels. After stimulation of ASCs with a hypoxia mimicking agent, the expression level and functionality of CXCR4 were analyzed by flowcytometric analysis (FACS), transwell migration assay and qPCR. Then, the homing/retention of pretreated DiI-labeled hASCs were compared through three different in vivo delivery routes, 2 weeks after transplantation in Wistar rats. The cells were tracked histologically by fluorescent microscope and by PCR for human-specific CXCR4 gene. Results showed CXCR4 has dynamic expression pattern and pretreatment of hASCs significantly up-regulates CXCR4, leading to an increase in migration capacity toward 100 ng/mL SDF-1α in vitro and homing into the subcutaneously implanted hydrogel releasing SDF-1α in vivo. Furthermore, it seems that SDF-1α is particularly important in the retention of ASCs, in addition to its chemoattraction role. In summary, the delivery route in which the ASCs were mixed with the hydrogel rather than systemic delivery and local injection and preconditioning undertaken to increase CXCR4 expression concomitant with SDF-1α delivery by the injectable hydrogel, allowed for further homing/retention of ASCs. This might be a promising way to get better therapeutic outcomes in stem cell therapy.

  19. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Struckmann, K; Mertz, Kd; Steu, S;

    2008-01-01

    Loss of pVHL function, characteristic for clear-cell renal cell carcinoma (ccRCC), causes increased expression of CXCR4 chemokine receptor, which triggers expression of metastasis-associated MMP2/MMP9 in different human cancers. The impact of pVHL on MMP2/MMP9 expression and their relationship...

  20. X4 Human immunodeficiency virus type 1 gp120 promotes human hepatic stellate cell activation and collagen I expression through interactions with CXCR4.

    Directory of Open Access Journals (Sweden)

    Feng Hong

    Full Text Available BACKGROUND & AIMS: Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the in vitro impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the in vivo expression of gp120 in HIV/HCV coinfected livers. METHODS: Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/- either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies. RESULTS: X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers. CONCLUSIONS: X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.

  1. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non-small cell lung cancer.

    Science.gov (United States)

    Fahham, Duha; Weiss, Ido D; Abraham, Michal; Beider, Katia; Hanna, Wald; Shlomai, Zippora; Eizenberg, Orly; Zamir, Gideon; Izhar, Uzi; Shapira, Oz M; Peled, Amnon; Wald, Ori

    2012-11-01

    CXCR4/CXCL12 interactions promote non-small cell lung cancer (NSCLC) growth and dissemination. Furthermore, this axis might promote NSCLC resistance to chemotherapy and/or radiotherapy. Therefore, the CXCR4/CXCL12 axis constitutes an attractive therapeutic target for the treatment of NSCLC. We aimed to characterize the therapeutic efficacy of the novel CXCR4 antagonist BKT140 against human NSCLC. We determined the CXCR4 expression in 5 NSCLC cell lines (H358, A549, H460, H1299, and L4). We then tested the colony-forming capacity and proliferation of these cells in the presence of CXCL12 and BKT140. Next, we measured the in vivo growth of A549 and H460 xenografts with or without BKT140 treatment. Finally, we examined, in vitro, the potential antiproliferative effect of BKT140 combined with cisplatin or paclitaxel and after irradiation of NSCLC cells. All tested cell lines expressed CXCR4 and showed increased colony formation in response to CXCL12 stimulation. BKT140 reduced the colony-forming capacity of NSCLC cells. Proliferation assays demonstrated both cytotoxic and cytostatic properties for this peptide. H460 cells were the most sensitive to BKT140 and A549 cells the least. Subcutaneous administration of BKT140 significantly delayed the development of H460 xenografts and showed a similar trend for A549 xenografts. Finally, the antiproliferative effects of BKT140 appears to be additive to those of chemotherapeutic drugs and radiotherapy. Targeting the CXCL12/CXCR4 axis with BKT140 attenuated NSCLC cells tumor growth and augmented the effects of chemotherapy and radiotherapy. Future research will benefit from delineating the downstream mechanism of BKT140 action and defining BKT140 susceptibility markers. Crown Copyright © 2012. Published by Mosby, Inc. All rights reserved.

  2. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  3. The Establishment of HepG2 Cell Line with TALEN-mediated Knockout of CXCR4%TALEN介导的CXCR4敲除肝癌细胞株的建立

    Institute of Scientific and Technical Information of China (English)

    张文美; 丁妍; 郭兴荣; 李东升; 赵万红; 王小莉

    2016-01-01

    通过TALEN打靶建立CXCR4的细胞株,旨在研究CXCR4对肝癌的影响.选用肝癌细胞株HepG2,采用转录激活样效应物核酸酶(TALEN)干扰细胞中CXCR4的表达.构建的CXCR4 TALEN质粒转入HepG2细胞,通过T7E1酶切确定打靶效率为40%,并通过测序筛选出了CXCR4敲除的单克隆细胞,免疫荧光和Western blot进一步证实CXCR4基因表达显著下调.

  4. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang C

    2015-06-01

    Full Text Available Changyuan Zhang,1,* Jie Li,2,* Yi Han,3 Jian Jiang4 1Department of Cardiothoracic Surgery, Inner Mongolia Autonomous Region People’s Hospital, Inner Mongolia; 2Department of Oncology, 3Department of Thoracic Surgery, Beijing Chest Hospital, 4Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Recent reports have shown that C-X-C chemokine receptor type 4 (CXCR4 is a candidate oncogene in several types of human tumors, including non-small cell lung cancer (NSCLC. However, the correlation between CXCR4 expression and clinicopathological characteristics of NSCLC remains controversial and has not been emphasized. The aim of this study is to quantitatively evaluate the association of CXCR4 expression with the incidence of NSCLC and clinicopathological characteristics by performing a meta-analysis.Methods: A detailed literature search was carried out for related research publications. Only articles in which CXCR4 expression was detected by immunohistochemical staining were included. Odds ratio (OR and hazard ratio (HR with 95% confidence intervals (CIs were calculated and summarized.Results: Final analysis of 1,872 NSCLC patients from 19 eligible studies was performed. We observed that CXCR4 expression was significantly higher in NSCLC than in normal lung tissue, based on the pooled OR from ten studies, including 678 NSCLCs and 189 normal lung tissues (OR =16.66, 95% CI =6.94–40.02, P<0.00001. CXCR4 expression was also significantly associated with clinical stages, metastatic status, and overall survival (OS in NSCLC patients. In addition, CXCR4 mRNA high expression was found to correlate with worse OS of all NSCLC patients followed for 20 years, HR =1.24, P=0.0047.Conclusion: The present meta-analysis indicated that CXCR4 protein expression is associated with an increased risk and worse survival in NSCLC patients

  5. The HIV-1 Gp120/CXCR4 Axis Promotes CCR7 Ligand-Dependent CD4 T Cell Migration: CCR7 Homo- and CCR7/CXCR4 Hetero-Oligomer Formation as a Possible Mechanism for Up-Regulation of Functional CCR7

    OpenAIRE

    Haruko Hayasaka; Daichi Kobayashi; Hiromi Yoshimura; Nakayama, Emi E.; Tatsuo Shioda; Masayuki Miyasaka

    2015-01-01

    During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in v...

  6. 胰腺癌及胰腺星状细胞中基质细胞衍生因子SDF-1及其受体CXCR4的表达%The expression of stromal cell-derived factor-1 and CXCR4 in pancreatic carcinoma tissues, cell lines and pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    高振军; 王兴鹏; 赵严; 吴恺

    2008-01-01

    目的 检测基质细胞衍生因子(SDF-1)及其受体CXCR4在胰腺癌组织、细胞株及星状细胞(PSC)中的表达.方法 采用免疫组织化学方法 检测37例胰腺癌及10例癌旁正常胰腺组织SDF-1、CXCR4、α-SMA蛋白表达以及细胞株AsPC-1、PSC的SDF-1、CXCR4蛋白表达.RT-PCR检测AsPC-1、BxPC3、SW1990及PSC的SDF-1、CXCR4 mRNA表达.结果 37例胰腺癌CXCR4表达(+)8例、(++)20例、(+++)9例;10例癌旁正常胰腺组织CXCR4表达(-)2例、(+)7例、(++)1例,两者差异显著(P<0.01).胰腺癌的间质组织SDF-1的表达高于癌旁间质组织(P<0.01),并随α-SMA表达的增加而增加.胰腺癌细胞株AsPC-1有CXCR4蛋白表达,而PSC有SDF-1蛋白表达.AsPC-1、BxPC3、SW1990细胞株均有CXCR4 mRNA的表达,而无SDF-1 mRNA的表达;PSC有SDF-1 mRNA表达,CXCR4 mRNA微弱表达.结论 胰腺癌组织及细胞系表达CXCR4,PSC表达SDF-1,PSC有可能通过SDF-1/CXCR4轴促进胰腺癌的侵袭转移.%Objective To investigate the expressions of stromal cell-derived factor1 (SDF-1) and its receptor CXCR4 in human pancreatic carcinoma tissues, cell lines and pancreatic stellate cells (PSCs). Methods SDF-1 /CXCR4 and α-SMA protein expression levels and SDF-1 and CXCR4 protein in AsPC-1 and PSCs were detected by immunohistochemical staining in 10 cases of peri-eareinoma tissues and 37 cases of pancreatic carcinoma tissues. The expression of SDF-1 and CXCR4 mRNA in pancreatic cell lines and PSCs were detected by RT-PCR. Results CXCR4 were positively expressed in all pancreatic carcinoma tissues [(+) 8 cases, (+ +) 20 cases, (+ + +) 9 cases]; and there were no CXCR4 expression in 2 cases of pori-careinoma tissues and CXCR4 were positively expressed in 8 cases [(+) 7 cases, (+ +) 1 cases]; with significant difference (P <0.01). And the expression of SDF-1 protein in carcinomatous stromal tissues was much higher than that in the stromal tissues of peri-carcinoma (P < 0.01), and it corresponded to the increase of

  7. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34⁺CXCR4cells in patients with type 2 diabetes.

    Science.gov (United States)

    Aso, Yoshimasa; Jojima, T; Iijima, T; Suzuki, K; Terasawa, T; Fukushima, M; Momobayashi, A; Hara, K; Takebayashi, K; Kasai, K; Inukai, T

    2015-12-01

    We investigated the effects of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on the number of circulating CD34(+)CXCR4(+)cells, a candidate for endothelial progenitor cells (EPCs), plasma levels of stromal cell-derived factor (SDF)-1α, a ligand for CXCR4 receptor and a substrate for DPP-4, and plasma levels of interferon-inducible protein (IP)-10, for a substrate for DPP-4, in patients with type 2 diabetes. We studied 30 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. Thirty diabetic patients were randomized in a 2:1 ratio into a sitagliptin (50 mg/day) treatment group or an active placebo group (glimepiride 1 mg/day) for 12 weeks. Both groups showed similar improvements in glycemic control. The number of circulating CD34(+)CXCR4(+) cells was increased from 30.5 (20.0, 47.0)/10(6) cells at baseline to 55.5 (31.5, 80.5)/10(6) cells at 12 weeks of treatment with 50 mg/day sitagliptin (P = 0.0014), while showing no significant changes in patients treated with glimepiride. Plasma levels of SDF-1α and IP-10, both physiological substrates of endogenous DPP-4 and chemokines, were significantly decreased at 12 weeks of sitagliptin treatment. In conclusion, treatment with sitagliptin increased the number of circulating CD34(+)CXCR4(+) cells by approximately 2-fold in patients with type 2 diabetes.

  8. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis.

    Science.gov (United States)

    Kowalski, Kamil; Kołodziejczyk, Aleksandra; Sikorska, Maria; Płaczkiewicz, Jagoda; Cichosz, Paulina; Kowalewska, Magdalena; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Koblowska, Marta; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Ciemerych, Maria A; Brzoska, Edyta

    2016-10-13

    The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor -1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.

  9. Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice.

    Directory of Open Access Journals (Sweden)

    Patrick Brennecke

    Full Text Available More effective treatment of metastasizing osteosarcoma with a current mean 5-year survival rate of less than 20% requires more detailed knowledge on mechanisms and key regulatory molecules of the complex metastatic process. CXCR4, the receptor of the chemokine CXCL12, has been reported to promote tumor progression and metastasis in osteosarcoma. CXCR7 is a recently deorphanized CXCL12-scavenging receptor with so far not well-defined functions in tumor biology. The present study focused on a potential malignancy enhancing function of CXCR7 in interaction with CXCR4 in osteosarcoma, which was investigated in an intratibial osteosarcoma model in SCID mice, making use of the human 143B osteosarcoma cell line that spontaneously metastasizes to the lung and expresses endogenous CXCR4. 143B osteosarcoma cells stably expressing LacZ (143B-LacZ cells were retrovirally transduced with a gene encoding HA-tagged CXCR7 (143B-LacZ-X7-HA cells. 143B-LacZ-X7-HA cells co-expressing CXCR7 and CXCR4 exhibited CXCL12 scavenging and enhanced adhesion to IL-1β-activated HUVEC cells compared to 143B-LacZ cells expressing CXCR4 alone. SCID mice intratibially injected with 143B-LacZ-X7-HA cells had significantly (p<0.05 smaller primary tumors, but significantly (p<0.05 higher numbers of lung metastases than mice injected with 143B-LacZ cells. Unexpectedly, 143B-LacZ-X7-HA cells, unlike 143B-LacZ cells, also metastasized with high incidence to the auriculum cordis. In conclusion, expression of the CXCL12 scavenging receptor CXCR7 in the CXCR4-expressing human 143B osteosarcoma cell line enhances its metastatic activity in intratibial primary tumors in SCID mice that predominantly metastasize to the lung and thereby closely mimic the human disease. These findings point to CXCR7 as a target, complementary to previously proposed CXCR4, for more effective metastasis-suppressive treatment in osteosarcoma.

  10. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways.

    Science.gov (United States)

    Li, Mingwei; Sun, Xuefei; Ma, Liang; Jin, Lu; Zhang, Wenfei; Xiao, Min; Yu, Qing

    2017-01-09

    SDF-1 (stromal cell derived factor-1) has been found to be widely expressed during dental pulp inflammation, while hDPSCs (human dental pulp stem cells) contribute to the repair of dental pulp. We showed that the migration of hDPSCs was induced by SDF-1 in a concentration-dependent manner and could be inhibited with siCXCR4 (C-X-C chemokine receptor type 4) and siCDC42 (cell division control protein 42), as well as drug inhibitors such as AMD3100 (antagonist of CXCR4), LY294002 (inhibitor of PI3K) and PF573228 (inhibitor of FAK). It was also confirmed that SDF-1 regulated the phosphorylation of FAK (focal adhesion kinases) on cell membranes and the translocation of β-catenin into the cell nucleus. Subsequent experiments confirmed that the expression of CXCR4 and β-catenin and the phosphorylation of FAK, PI3K (phosphoinositide 3-kinase), Akt and GSK3β (glycogen synthase kinase-3β) were altered significantly with SDF-1 stimulation. FAK and PI3K worked in coordination during this process. Our findings provide direct evidence that SDF-1/CXCR4 axis induces hDPSCs migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways, implicating a novel mechanism of dental pulp repair and a possible application of SDF-1 for the treatment of pulpitis.

  11. SiRNA-mediated silencing of the CXCR4 gene downregulates MMP-9 expression in EC-9706 cells%沉默CXCR4基因对食管鳞癌EC-9706细胞中MMP-9基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    刘剑; 王峰; 朱利楠; 何炜; 王留兴; 樊青霞

    2011-01-01

    目的:探讨在食管鳞癌EC-9706细胞中沉默CXCR4基因对MMP-9基因表达的影响,为阐明CXCR4基因在食管鳞癌侵袭转移中的作用提供实验依据.方法:化学合成2条靶向CXCR4基因的siRNA1和siRNA2,同时设立荧光标记阴性对照和空白对照.脂质体法转染入EC-9706细胞,荧光显微镜下观察转染效率.转染48 h后,半定量RT-PCR检测各组细胞CXCR4和MMP-9基因mRNA表达的变化,Western blot检测各组细胞CXCR4和MMP-9基因蛋白表达的变化,侵袭小室检测各组细胞穿膜细胞数的变化,MTT检测各组细胞的A值.结果:与阴性对照和空白对照相比,转染CXCR4siRNA1和siRNA2组细胞CXCR4 mRNA和蛋白的表达明显降低,差异具有统计学意义(P<0.05);同时与阴性对照和空白对照相比,转染CXCR4 siRNA1和siRNA2组细胞MMP-9mRNA和蛋白的表达同样明显降低,差异具有统计学意义(P<0.05);转染CXCR4 siRNA1和siRNA2组细胞穿膜细胞数与阴性对照和空白对照相比明显下降,差异具有统计学意义(P<0.05);MTT结果显示转染CXCR4siRNA1和siRNA2组细胞增殖能力下降,与阴性对照和空白对照相比差异具有统计学意义(P<0.05).结论:在食管鳞癌EC9706中存在CXCR4基因对MMP-9基因的调控作用,CXCR4基因有可能通过调控MMP-9基因的表达参与食管鳞癌细胞的浸润转移,CXCR4有可能成为食管鳞癌基因治疗的有效靶点.%AIM: To investigate the effect of small interfering RNA (siRNA)-mediated blockade of CXCR4 signaling on the expression of MMP-9 in human esophageal carcinoma cell line EC9706 and to provide an experimental foundation for further elucidating the role of CXCR4 in metastasis and invasion of esophageal carcinoma (ESCC).METHODS: Two siRNAs targeting the CXCR4 gene and one fluorescence-labeled negative control siRNA were chemically synthesized and transfected into EC9706 cells, Non-transfected EC9706 cells were used as blank controls. The transfection efficiency was

  12. Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization.

    Science.gov (United States)

    Benslimane-Ahmim, Zahia; Pereira, Jessica; Lokajczyk, Anna; Dizier, Blandine; Galy-Fauroux, Isabelle; Fischer, Anne-Marie; Heymann, Dominique; Boisson-Vidal, Catherine

    2017-06-01

    We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis.

  13. Physical exercise regulates neural stem cells proliferation and migration via SDF-1α/CXCR4 pathway in rats after ischemic stroke.

    Science.gov (United States)

    Luo, Jing; Hu, Xiquan; Zhang, Liying; Li, Lili; Zheng, Haiqing; Li, Menglin; Zhang, Qingjie

    2014-08-22

    Physical exercise is beneficial to functional recovery after stroke. But its underling mechanism is still unknown. It is reported that neural stem cells (NSCs) proliferation, migration and differentiation play an important role in recovery following stroke, furthermore, stromal cell derived factor-1α (SDF-1α) and its chemokine receptor type 4 (CXCR4) regulate NSCs migration. This study is aimed to examine whether physical exercise improves functional recovery by enhancing NSCs proliferation, migration and differentiation through SDF-1α/CXCR4 axis in rats after ischemic stroke. Rats that sustained transient middle cerebral artery occlusion (MCAO) were treated with physical exercise after MCAO. AMD3100 (an antagonist of CXCR4) was used to confirm the effect of SDF-1α/CXCR4 axis on exercise-mediated NSCs mobilization. We found that physical exercise improved functional recovery and reduced infarct volume. Moreover, 5-bromo-2'-deoxyuridine (BrdU), doublecortin (Dcx)-positive cells in the ipsilateral SVZ and BrdU/neuron-specific nuclear protein (NeuN)-positive cells in the ipsilateral striatum were increased by physical exercise. Simultaneously, SDF-1α-positive cells were significantly higher in physical exercise group than those in control group. Our results indicate that physical exercise improves functional recovery in ischemic rats possibly by enhancement of NSCs proliferation, migration in the SVZ and differentiation in the damaged striatum. Moreover, SDF-1α/CXCR4 pathway involves in exercise-mediated NSCs proliferation and migration but not differentiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Constitutive plasmacytoid dendritic cell migration to the splenic white pulp is cooperatively regulated by CCR7- and CXCR4-mediated signaling.

    Science.gov (United States)

    Umemoto, Eiji; Otani, Kazuhiro; Ikeno, Takashi; Verjan Garcia, Noel; Hayasaka, Haruko; Bai, Zhongbin; Jang, Myoung Ho; Tanaka, Toshiyuki; Nagasawa, Takashi; Ueda, Koichi; Miyasaka, Masayuki

    2012-07-01

    Although the spleen plays an important role in host defense against infection, the mechanism underlying the migration of the innate immune cells, plasmacytoid dendritic cells (pDCs), into the spleen remains ill defined. In this article, we report that pDCs constitutively migrate into the splenic white pulp (WP) in a manner dependent on the chemokine receptors CCR7 and CXCR4. In CCR7-deficient mice and CCR7 ligand-deficient mice, compared with wild-type (WT) mice, substantially fewer pDCs were found in the periarteriolar lymphoid sheath of the splenic WP under steady-state conditions. In addition, the migration of adoptively transferred CCR7-deficient pDCs into the WP was significantly worse than that of WT pDCs, supporting the idea that pDC trafficking to the splenic WP requires CCR7 signaling. WT pDCs responded to a CCR7 ligand with modest chemotaxis and ICAM-1 binding in vitro, and priming with the CCR7 ligand enabled the pDCs to migrate efficiently toward low concentrations of CXCL12 in a CXCR4-dependent manner, raising the possibility that CCR7 signaling enhances CXCR4-mediated pDC migration. In agreement with this hypothesis, CCL21 and CXCL12 were colocalized on fibroblastic reticular cells in the T cell zone and in the marginal zone bridging channels, through which pDCs appeared to enter the WP. Furthermore, functional blockage of CCR7 and CXCR4 abrogated pDC trafficking into the WP. Collectively, these results strongly suggest that pDCs employ both CCR7 and CXCR4 as critical chemokine receptors to migrate into the WP under steady-state conditions.

  15. The Sphingosine-1-Phosphate Modulator FTY720 Targets Multiple Myeloma via the CXCR4/CXCL12 Pathway.

    Science.gov (United States)

    Beider, Katia; Rosenberg, Evgenia; Bitner, Hanna; Shimoni, Avichai; Leiba, Merav; Koren-Michowitz, Maya; Ribakovsky, Elena; Klein, Shiri; Olam, Devorah; Weiss, Lola; Wald, Hanna; Abraham, Michal; Galun, Eithan; Peled, Amnon; Nagler, Arnon

    2017-04-01

    Purpose: To explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the sphingosine-1-phosphate (S1P) pathways in multiple myeloma (MM) cells and to evaluate the effect of S1P targeting with the FTY720 modulator as a potential anti-MM therapeutic strategy.Experimental Design and Results: S1P targeting with FTY720 induces MM cell apoptosis. The combination of FTY720 with the SPHK1 inhibitor SKI-II results in synergistic inhibition of MM growth. CXCR4/CXCL12-enhanced expression correlates with reduced MM cell sensitivity to both FTY720 and SKI-II inhibitors, and with SPHK1 coexpression in both cell lines and primary MM bone marrow (BM) samples, suggesting regulative cross-talk between the CXCR4/CXCL12 and SPHK1 pathways in MM cells. FTY720 was found to directly target CXCR4. FTY720 profoundly reduces CXCR4 cell-surface levels and abrogates the CXCR4-mediated functions of migration toward CXCL12 and signaling pathway activation. Moreover, FTY720 cooperates with bortezomib, inducing its cytotoxic activity and abrogating the bortezomib-mediated increase in CXCR4 expression. FTY720 effectively targets bortezomib-resistant cells and increases their sensitivity to bortezomib, promoting DNA damage. Finally, in a recently developed novel xenograft model of CXCR4-dependent systemic MM with BM involvement, FTY720 treatment effectively reduces tumor burden in the BM of MM-bearing mice. FTY720 in combination with bortezomib demonstrates superior tumor growth inhibition and abrogates bortezomib-induced CXCR4 increase on MM cells.Conclusions: Altogether, our work identifies a cross-talk between the S1P and CXCR4 pathways in MM cells and provides a preclinical rationale for the therapeutic application of FTY720 in combination with bortezomib in patients with MM. Clin Cancer Res; 23(7); 1733-47. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction

    Directory of Open Access Journals (Sweden)

    Zhang Huanle

    2010-06-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs and normal fibroblasts (NFs were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay was performed to investigate the production of stromal cell-derived factor 1 (SDF-1 in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA, exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.

  17. Analysis of SDF-1/CXCR4 pathway function in osteosarcoma and the regulating effect of ex-ogenous SDF-1 on osteosarcoma cells%骨肉瘤中 SDF-1/CXCR4通路功能分析及外源性给予 SDF-1对骨肉瘤细胞的调节作用

    Institute of Scientific and Technical Information of China (English)

    梁鼎天; 李泉旺

    2016-01-01

    [ABSTRACT]Objective:To study SDF-1/CXCR4 pathway function in osteosarcoma and the regulating effect of exogenous SDF-1 on osteosarcoma cells.Methods:Osteosarcoma tissue and adjacent tissue were collected to detect mRNA contents of SDF-1 (stromal cell-derived factor-1),CXCR4 (CXC chemokine receptor 4),Wnt,β-catenin,TCF and LEF;osteosarcoma MG63 cell lines were cultured,treated with SDF-1 and transfected with CXCR4-siRNA,and cell migration rate,number of in-vasive cells as well as mRNA contents of Wnt,β-catenin,TCF,LEF,c-myc,cyclinD1,MMP2,MMP9 and VEGF were de-tected.Results:The mRNA contents of SDF-1,CXCR4,Wnt,β-catenin,TCF and LEF in osteosarcoma tissue were signifi-cantly higher than those in adjacent tissue;cell migration rate,number of invasive cells as well as mRNA contents of Wnt,β-catenin,TCF,LEF,c-myc,cyclinD1,MMP2,MMP9 and VEGF in SDF-1 treatment group were higher than those in control group;cell migration rate,number of invasive cells as well as mRNA contents of Wnt,β-catenin,TCF,LEF,c-myc,cy-clinD1,MMP2,MMP9 and VEGF in SDF-1 +CXCR4 interference group were lower than those in SDF-1 treatment group. Conclusions:SDF-1/CXCR4 pathway function in osteosarcoma is enhanced,and exogenous SDF-1 can promote osteosarcoma cell migration and invasion and activate Wnt/β-catenin pathway through CXCR4.%目的::研究骨肉瘤中 SDF-1/CXCR4通路功能及外源性给予 SDF-1对骨肉瘤细胞的调节作用。方法:收集骨肉瘤组织和瘤旁组织,测定 SDF-1、CXCR4、Wnt、β-catenin、TCF、LEF 的 mRNA 含量;培养骨肉瘤 MG63细胞株,用 SDF-1处理、转染 CXCR4-siRNA,测定细胞迁移率、侵袭数目以及 Wnt、β-catenin、TCF、LEF、c-myc、cyclinD1、MMP2、MMP9、VEGF 的 mRNA 含量。结果:骨肉瘤组织中 SDF-1、CXCR4、Wnt、β-catenin、TCF、LEF 的 mRNA 含量均明显高于瘤旁组织;SDF-1处理组细胞的迁移率、侵袭数目以及 Wnt、β-catenin、TCF、LEF、c-myc、cyclinD1、MMP2、MMP9、VEGF 的 m

  18. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  19. CXCR4(+) CD45(-) Cells are Niche Forming for Osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 Signaling Pathways in Bone Marrow.

    Science.gov (United States)

    Goto, Yoh; Aoyama, Mineyoshi; Sekiya, Takeo; Kakita, Hiroki; Waguri-Nagaya, Yuko; Miyazawa, Ken; Asai, Kiyofumi; Goto, Shigemi

    2016-06-24

    Bone homeostasis comprises the balance between bone-forming osteoblasts and bone-resorbing osteoclasts (OCs), with an acceleration of osteoclastic bone resorption leading to osteoporosis. OCs can be generated from bone marrow cells (BMCs) under the tightly regulated local bone environment. However, it remained difficult to identify the critical cells responsible for providing an osteoclastogenesis niche. In this study, we used a fluorescence-activated cell sorting technique to determine the cell populations important for forming an appropriate microenvironment for osteoclastogenesis and to verify the associated interactions between osteoclast precursor cells and non-OCs. We isolated and removed a small cell population specific for osteoclastogenesis (CXCR4(+) CD45(-) ) from mouse BMCs and cultured the remaining cells with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage-colony stimulating factor. The resulting cultures showed significantly less large osteoclast formation. Quantitative RT-PCR analysis revealed that these CXCR4(+) CD45(-) cells expressed low levels of RANK and RANKL, but high levels of critical chemokines including stromal cell derived factor 1 (SDF-1), chemokine (C-X-C motif) ligand 7 (CXCL7), and chemokine (C-X3-C motif) ligand 1 (CX3CL1). Furthermore, an SDF-1-specific antibody strongly suppressed OC formation in RAW264.7 cells and antibodies against SDF-1, CXCL7, and CX3CL1 suppressed OC formation in BMCs. These results suggest that isolated CXCR4(+) CD45(-) cells support an appropriate microenvironment for osteoclastogenesis with a direct effect on the cells expressing SDF-1, CXCL7, and CX3CL1 receptors. The regulation of CXCR4(+) CD45(-) cell function might therefore inform therapeutic strategies for diseases involving loss of bone homeostasis. Stem Cells 2016.

  20. Study on the correlation between the expression levels of chemokine receptor CCR7,CXCR4 and prognosis of patients with non-small-cell lung cancer%CCR7蛋白和 CXCR4蛋白表达水平与非小细胞肺癌患者的预后及相关性研究

    Institute of Scientific and Technical Information of China (English)

    陈晓东; 任开明; 段琼玉; 宣莹; 吴荣

    2016-01-01

    Objective To observe the expression levels of chemokine receptor CCR7,CXCR4 in non-small-cell lung cancer(NSCLC)tissues,and to explore the correlation between the expression levels of CCR7,CXCR4 and prognosis of patients with non-small-cell lung cancer. Methods Seventy-two patients with NSCLC who were treated in our hospital from March 2012 to May 2013 were enrolled in the study. The expression levels of CCR7,CXCR4 were detected by immunohistochemistry(IHC)in 72 cases of NSCLC tissues and 36 cases of distal normal lung tissues of patients with NSCLC. The correlations between the expression levels of CCR7,CXCR4 and general clinical data of patients as well as between the expression levels of CCR7,CXCR4 and prognosis of patients with NSCLC were analyzed. Results There were significant differences in the expression levels of CCR7,CXCR4 between NSCLC tissues and distal normal lung tissues( P 0. 05). The prognosis of patients with high-expression of CCR7 or CXCR4 was poorer,as compared with that of patients with low-expression of CCR7 or CXCR4, moreover,the expression levels of CCR7 were positively correlated to those of CXCR4 in NSCLC. Conclusion The expression levels of CCR7,CXCR4 in NSCLC tissues are significantly higher than those in distal normal lung tissues,furthermore,the expression levels of CCR7,CXCR4 are closely correlated to clinical stagig and lymph node metastasis of NSCLC. The expression levels of CCR7 are positively related with those of CXCR4,moreover,the prognosis of patients with high-expression of CCR7 or CXCR4 is poorer,as compared with that of patients with low-expression of CCR7 or CXCR4.%目的:通过对比分析 CCR7蛋白、CXCR4蛋白在非小细胞肺癌组织中的表达水平探讨这两种趋化因子表达的相关性以及患者的预后与其相关性。方法选择2012年3月至2013年5月进行非小细胞肺癌治疗的患者72例,分别取每位患者的非小细胞肺癌组织,并且随机选择36例患者的正常组织,

  1. NF-κB2 Controls Migratory Activity of Memory T Cells by Regulating Expression of CXCR4 in A Mouse Model of Sjögren's Syndrome.

    Science.gov (United States)

    Kurosawa, Mie; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Sprent, Jonathan; Ishimaru, Naozumi

    2017-08-13

    Dysregulated chemokine signaling contributes to autoimmune diseases by facilitating aberrant T-cell infiltration into target tissues, but the specific chemokines, receptors, and T-cell populations remain largely unidentified. Role of the potent chemokine CXCL12 and its receptor CXCR4 in T-cell autoimmune response was examined using alymphoplasia (aly)/aly mice, a Sjögren's syndrome (SS) model. T-cell phenotypes in the salivary gland of aly/aly mice were evaluated using immunological analysis. In vitro migration assay was used to assess T-cell migratory activity toward several chemokines. Gene expression of chemokine receptors, and transforming growth factor (TGF)β receptors was measured with quantitative reverse transcription-polymerase chain reaction. The CXCR4 antagonist AMD3100 was administered to the aly/aly mice to evaluate its suppressive effect on autoimmune lesions. Effector memory T (TEM) cells derived from aly/aly mice demonstrated higher in vitro migratory activity toward CXCL12 than aly/+ TEM cells. CXCL12 expression was specifically upregulated in the SS target cells of aly/aly mice. TEM cells from RelB(-/-) mice, but not nuclear factor (NF)-κB1(-/-) mice, also showed high migratory activity toward CXCL12, implicating a nonclassical NF-κB2/RelB pathway in the regulation of TEM cell migration. TEM cells from aly/aly mice also overexpressed TGFβ receptors I and II. The CXCR4 antagonist AMD3100 suppressed autoimmune lesions in aly/aly mice by reducing TEM cell infiltration. Our results suggest that the NF-κB2/RelB pathway regulates T-cell migration to autoimmune targets through TGFβ/TGFβR-dependent regulation of CXCL12-CXCR4 signaling. This suggests that these signaling pathways are potential therapeutic targets for treating autoimmune diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Effect of CO2 pneumoperitoneum on the expression of the chemokine receptors CXCR4 and CCR7 in colorectal carcinoma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Chun-kang; LI Guo-dong; YING Min-gang; XU Ke

    2013-01-01

    Background The ability of pneumoperitoneum in laparoscopic surgery to promote proliferation and metastasis of colorectal cancer has become a focus of research in the field of minimally invasive surgery.The aim of this research was to investigate the effect of CO2 pneumoperitoneum under different pressures and exposed times on the expression of chemokine receptors in colorectal carcinoma cells.Methods We constructed an in vitro pneumoperitoneum model.SW480 colon carcinoma cells were exposed to CO2 pneumoperitoneum under different pressures (6,9,12,and 15 mmHg) for 1,2,and 4 hours.These cells were then cultivated under the same conditions as normal SW480 colon carcinoma cells without CO2 pneumoperitoneum (control group),treated at 37℃,and 5% CO2.The expression of the chemokine receptors CXC receptor 4 (CXCR4) and chemokine C receptor 7 (CCR7) was detected by immunocytochemistry and reverse transcriptase polymerase chain reaction after being cultivated for 0,24,48,and 72 hours.Results Immunocytochemistry showed that CXCR4 expression in SW480 cells was significantly decreased in the 6,9,12,and 15 mmHg CO2 pneumoperitoneum-treated groups for the same exposure times compared with controls (P<0.05).CCR7 expression in SW480 cells was significantly decreased in the 12 and 15 mmHg CO2 pneumoperitoneumtreated groups compared with controls (P <0.05).CXCR4 and CCR7 expression increased up to the level of the control group after 24 and 48 hours (P >0.05).If the CO2 pneumoperitoneum pressure increased,CXCR4 and CCR7 expression decreased at all exposure times.If the CO2 pneumoperitoneum exposure time prolonged,there were no significant differences in CXCR4 and CCR7 expression under the same pressure.Under all exposure times,CXCR4 and CCR7 mRNA expression was significantly decreased in the 6,9,12,and 15 mmHg CO2 pneumoperitoneum-treated groups (P<0.05) compared with controls,and it increased up to the level of controls after being cultivated for 48 hours (P >0.05).If

  3. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  4. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  5. Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway.

    Directory of Open Access Journals (Sweden)

    Kui Wang

    Full Text Available Cardiac stem cells (CSCs can home to the infarcted area and regenerate myocardium. Stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4 axis is pivotal in inducing CSCs migration. However, the mechanisms remain unclear. This study set out to detect if SDF-1α promotes migration and engraftment of CSCs through the CXCR4/PI3K (phosphatidylinositol 3-kinase pathway. In the in vitro experiment, c-kit+ cells were isolated from neonatal mouse heart fragment culture by magnetic cell sorting. Fluorescence-activated cell sorting results demonstrated that a few c-kit+ cells expressed CD45 (4.54% and Sca-1 (2.58%, the hematopoietic stem cell marker. Conditioned culture could induce c-kit+ cells multipotent differentiation, which was confirmed by cardiac troponin I (cTn-I, α-smooth muscle actin (α-SMA, and von Willebrand factor (vWF staining. In vitro chemotaxis assays were performed using Transwell cell chambers to detect CSCs migration. The results showed that the cardiomyocytes infected with rAAV1-SDF-1α-eGFP significantly increased SDF-1α concentration, 5-fold more in supernatant than that in the control group, and subsequently attracted more CSCs migration. This effect was diminished by administration of AMD3100 (10 µg/ml, CXCR4 antagonist or LY294002 (20 µmol/L, PI3K inhibitor. In myocardial infarction mice, overexpression of SDF-1α in the infarcted area by rAAV1-SDF-1α-eGFP infection resulted in more CSCs retention to the infarcted myocardium, a higher percentage of proliferation, and reduced infarcted area which was attenuated by AMD3100 or ly294002 pretreatment. These results indicated that overexpression of SDF-1α enhanced CSCs migration in vitro and engraftment of transplanted CSCs and reduced infarcted size via CXCR4/PI3K pathway.

  6. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  7. Innate Immunity Derived Factors as External Modulators of the CXCL12 - CXCR4 Axis and Their Role in Stem Cell Homing and Mobilization

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak, Karol Serwin, Gabriela Schneider

    2013-01-01

    Full Text Available The α-chemokine CXCL12 (stromal derived factor-1; SDF-1 and its corresponding GαI protein-coupled CXCR4 receptor axis play an important role in retention of hematopoietic stem progenitor cells (HSPCs in bone marrow (BM stem cell niches. CXCL12 has also been identified as a strong chemoattractant for HSPCs and implicated both in homing of HSPCs to BM after transplantation and in egress of these cells from BM into peripheral blood (PB. However, since CXCL12, as a peptide, is highly susceptible to degradation by proteolytic enzymes, its real biological availability in biological fluids may be somewhat limited. In this review, we will present data demonstrating that the CXCL12-CXCR4 axis is positively modulated by innate immunity-derived several external factors, ensuring that even low (near threshold doses of CXCL12 still exert a robust chemotactic influence on HSPCs.

  8. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype.

    Science.gov (United States)

    Beider, Katia; Bitner, Hanna; Leiba, Merav; Gutwein, Odit; Koren-Michowitz, Maya; Ostrovsky, Olga; Abraham, Michal; Wald, Hanna; Galun, Eithan; Peled, Amnon; Nagler, Arnon

    2014-11-30

    Multiple myeloma (MM) cells specifically attract peripheral-blood monocytes, while interaction of MM with bone marrow stromal cells (BMSCs) significantly increased monocyte recruitment (p<0.01). The CXCL12 chemokine, produced by both the MM and BMSCs, was found to be a critical regulator of monocyte migration. CXCL12 production was up-regulated under MM-BMSCs co-culture conditions, whereas blockage with anti-CXCR4 antibodies significantly abrogated monocyte recruitment toward a MM-derived conditioned medium (p<0.01). Furthermore, elevated levels of CXCL12 were detected in MM, but not in normal BM samples, whereas malignant MM cells often represented the source of increased CXCL12 in the BM. Blood-derived macrophages effectively supported MM cells proliferation and protected them from chemotherapy-induced apoptosis. Importantly, MM cells affected macrophage polarization, elevating the expression of M2-related scavenger receptor CD206 in macrophages and blocking LPS-induced TNFα secretion (a hallmark of M1 response). Of note, MM-educated macrophages suppressed T-cell proliferation and IFNγ production in response to activation. Finally, increased numbers of CXCR4-expressing CD163+CD206+ macrophages were detected in the BM of MM patients (n=25) in comparison to MGUS (n=11) and normal specimens (n=8). Taken together, these results identify macrophages as important players in MM tumorogenicity, and recognize the CXCR4/CXCL12 axis as a critical regulator of MM-stroma interactions and microenvironment formation.

  9. Hepatic stellate cell through SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma invasion%肝星状细胞通过SDF-1/CXCR4轴诱导肝癌细胞上皮间质转分化并促进其侵袭

    Institute of Scientific and Technical Information of China (English)

    李四光; 常远鸿; 刘凯歌

    2013-01-01

    Objective The aim of this study is to explore the impact of hepatic stellate cell in hepatocellular carcinoma invasion through SDF-1/CXCR4 axis.Methods The expression of SDF-1 and CXCR4 were examined in hepatic stellate cell LX02,four hepatocellular carcinoma cell lines by Western blot at protein levels and real-time RTPCR at mRNA level respectively.In addition,Transwell invasion assay was carried out to analyze the influence of hepatic stellate cell LX02 and SDF-1 on invasion of hepatocellular carcinoma cell HepG2 under normal condition or CXCR4 gene silence condition.Western blot was performed to evaluate the expression of epithelial marker E-cadherin and mesenchymal marker vimentin.Results The expression of SDF-1 was high in hepatic stellate cell LX02,and increased levels of expression of CXCR4 were found in all hepatocellular carcinoma cells.Co-culture with hepatic stellate cell LX02 or treatment with SDF-l both induced the epithelial-mesenchymal transition and increased the invasion of hepatocellular carcinoma cell HepG2.Furthermore,inhibition of CXCR4 by gene silence in HepG2 suppressed the enhanced invasion and epithelial-mesenchymal transition of HepG2 cells which induced by stellate cells or SDF-1.Conclusions Hepatic stellate cells promote hepatocellular carcinoma cell invasion through chemokine SDF-1/CXCR4 axis,the mechanism may involve the epithehal-mesenchymal transition of carcinoma cell.%目的 探讨肝星状细胞是否通过SDF-1/CXCR4轴促进肝癌细胞侵袭的作用和可能机制.方法 通过Westernblot和real time RT-PCR,检测肝星状细胞LX02和肝癌细胞系SDF-1、CXCR4表达.Transwell实验检测星状细胞LX02或外源性SDF-1干预对肝癌细胞HepG2以及CXCR4基因沉默后的HepG2侵袭的影响,Westem blot检测上皮标志E-cadherin和间质标志vimentin的表达变化.结果 肝星状细胞LX02中趋化因子SDF-1高表达,4株人肝细胞癌细胞系均有CXCR4高表达,其中HepG2细胞表达最强.星状细胞或SDF-1

  10. SDF-1/CXCR4生物轴对胆囊癌细胞增殖及迁移的影响%Effects of chemokine stromal cell-derived factor-1 and its receptor CXCR4 on the proliferation and migration of gallbladder carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    焦兴元; 胡以则

    2008-01-01

    目的 研究胆囊腺癌中趋化因子SDF-1及其受体CXCR4的表达情况,探讨其与胆囊腺癌临床病理特点及淋巴转移的关系.方法 采用免疫组化SP法检测41例胆囊腺癌中SDF-1及其受体CXCR4蛋白阳性表达情况,并分析其与临床病理参数的关系.结果 SDF-1在胆囊癌、胆囊炎、胆囊结石组和正常对照组胆囊黏膜中的表达率分别为68.3%(28/41)、6.7%(6/90)和5.0%(1/20),CXCR4的表达率分别为51.2%(21/41)、5.6%(5/90)和5.0%(1/20),SDF-1和CXCR4在胆囊癌与慢性胆囊炎、胆囊结石组胆囊黏膜、正常对照组胆囊黏膜中的阳性率比较,差异均有统计学意义(SDF-1:χ2=64.33,P<0.001;CXCR4:χ2=42.52,P<0.001),胆囊癌不同病理组织学分级、Nevin不同分期、组织学不同分化程度、有无淋巴结或远处转移组间的SDF-1和CXCR4的阳性率表达差异均有统计学意义(P均<0.05),而不同性别、年龄、有无伴发胆囊结石组、肿瘤大小间SDF-1和CXCR4的阳性率表达差异均无统计学意义(P均>0.05),胆囊癌组织中SDF-1阳性表达率(68.3%)与CX-CR4阳性表达率(51.2%)之间存在显著正相关(r=0.68,P<0.01).结论 本研究表明,SDF-1/CXCR4生物轴与胆囊癌关系密切,提示可以通过干预SDF-1/CXCR4生物轴来治疗胆囊癌.%Objective To study the expression of chemokine stromal cell-derived factor-1 and its receptor CXCR4 in gallbladder carcinoma and evaluate the relationship between the expression of SDF-1 and CXCR4 protein and the clinicopathology,and lymph node metastasis of gallbladder carcinoma.Methods The expression of SDF-1 and CXCR4 protein in 41 cases of gallbladder adenoma carcinoma was examined by immunohistochemical technique(SP),and the relation of SDF-1/CXCR4 biology axis to clinicopathological parameter was also analyzed.Results The positive expression rate of SDF-1 and CXCR4 in gallbladder carcinoma was 68.3%(28/41)and 51.2%(21/41)respectively,in normal gallbladder mucous was 5%(1/20)and

  11. SDF-1/CXCR4 Axis Regulates Cell Cycle Progression and Epithelial-Mesenchymal Transition via Up-regulation of Survivin in Glioblastoma.

    Science.gov (United States)

    Liao, Anyan; Shi, Ranran; Jiang, Yuliang; Tian, Suqing; Li, Panpan; Song, Fuxi; Qu, Yalan; Li, Jinna; Yun, Haiqin; Yang, Xiangshan

    2016-01-01

    Stromal cell-derived factor 1 (SDF-1)/CXCR4 ligand-receptor axis is widely recommended as an attractive target for cancer therapy. Meanwhile, epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. As one of inhibitors of apoptosis proteins, survivin is implicated in the onset and development of cancer. In the present study, we tried to determine the cause-effect associations between SDF-1/CXCR4 axis and survivin expression in glioblastoma U-251 cell line. Survivin activation and inhibition were induced with exogenous SDF-1 and survivin small interfering RNA (survivin siRNA), respectively. Western blot was used to detect relevant proteins in SDF-1/CXCR4 axis. Western blot analysis revealed that survivin expression in U-251 increased in a dose- and time-dependent manner in response to SDF-1 treatment. However, the interference with MEK/ERK and PI3K/AKT pathway prohibited SDF-1-induced survivin up-regulation. Importantly, survivin knockdown abrogated cell cycle progression and the expression of snail and N-cadherin, compared with non-transfectants. In conclusion, the present study shows that SDF-1 up-regulates survivin via MEK/ERK and PI3K/AKT pathway, leading to cell cycle progression and EMT occurrence dependent on survivin. The blockade of survivin will allow for the treatment of glioblastoma.

  12. Correlation between chemokine receptor CXCR4, CCR7 in gastric cell fines with different invasive potentials%趋化因子受体CXCR4、CCR7在胃癌细胞中的表达及其与胃癌细胞侵袭能力的关系

    Institute of Scientific and Technical Information of China (English)

    姜明; 郑毅雄; 唐湘莲; 孟立峰; 陈力

    2010-01-01

    目的 观察趋化因子受体CXCR4及CCR7在不同侵袭能力人胃癌细胞株中的差异表达.方法 逆转录-聚合酶链反应(RT-PCR)及Western blot分析CXCR4及CCR7在人胃癌细胞株MGC803、AGS、BGC823、SGC7901的表达;体外侵袭实验测定4株胃癌细胞的侵袭能力.结果 MGC803、AGS、BGC823、SGC7901中CXCR4 mRNA相对表达量分别为:1.2556±0.1384、0.7943±0.0913、0.4749±0.0744、0.2463±0.0344,CCR7 mRNA相对表达量分别为:0.6071±0.1404、0.5355±0.0750、0.2549±0.0522、0.2466±0.0342,CXCR4及CCR7蛋白表达趋势同其相对应的基因表达趋势基本一致.4株胃癌细胞侵袭实验测定的侵袭细胞数分别为:400.0±18.2、310.0±4.0、110.0±13.9、85.0±9.5.CXCR4在不同侵袭能力的胃癌细胞株中存在差异性表达(P<0.05).结论 CXCR4的表达与胃癌细胞侵袭能力成正相关,CCR7的表达与胃癌细胞侵袭能力无明显相关.%Objective To compare the differential expression of chemokine receptors CXCR4 and CCR7 in human gastric carcinoma cell lines with different invasion ability. Methods The expression of CXCR4 and CCR7 in MGC803, AGS, BGC823 and SGC7901 cells was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The invasion ability of gastric cancer cell lines was measured using transwell chamber with matrigle. Results The expression of CXCR4 mRNA in MGC803, AGS, BGC823 and SGC790 cells was 1. 2556 ±0. 1384, 0. 7943 ± 0. 0913, 0. 4749 ± 0. 0744, 0. 2463 ± 0. 0344, that of CCR7 mRNA was 0. 6071 ± 0. 1404, 0. 5355 ± 0. 0750, 0. 2549 ± 0. 0522, 0. 2466 ± 0. 0342, respectively. The protein expression of CXCR4 and CCR7 in four human gastric carcino-ma cell lines showed a good agreement with mRNA expression. The penetrating cell number of MGC803, AGS, BGC823 and SGC790 was 400. 0 ± 18. 2, 310. 0 ±4. 0, 110. 0 ±13.9, 85.0 ± 9. 5, respectively. The expression levels of CXCR4 in cancer cells showed a significant positive correlation

  13. SDF-1/CXCR4对脐血AC133+细胞趋化功能的影响%Effects of SDF-1/CXCR4 on the Chemotaxis of Cord Blood AC133+ Cells

    Institute of Scientific and Technical Information of China (English)

    马艳萍; 马兰; 赵邵懂; 杨薏蓉; 杨林花

    2009-01-01

    本研究探讨SDF1/CXCR4系统在脐血AC133+细胞趋化中的作用.用跨膜迁移实验(Transwell实验)确定SDF-1最佳趋化浓度,采用双色直接免疫荧光标记法和流式细胞仪测定脐血AC133+细胞表面CXCR4表达水平,并评价SDF-1最佳趋化浓度条件下细胞迁移率.结果发现,随着SDF-1浓度的增加,新鲜脐血AC133+细胞迁移率升高,但SDF-1浓度达到150 ng/ml时迁移率趋于平稳;当CXCR4阻断型抗体作用后,迁移率与未加SDF-1组无差异.重组人造血生长因子组合SCF、FL、TPO体外培养AC133+细胞时,在培养的早期趋化因子SDF-1受体CXCR4的表达升高,同时迁移率也升高,但随着培养时间的延长,CXCR4表达量渐渐降低,迁移率随之降低.结论:AC133+细胞趋化率与CXCR4表达量间存在相关性.

  14. Lack of estrogen down-regulates CXCR4 expression on Treg cells and reduces Treg cell population in bone marrow in OVX mice.

    Science.gov (United States)

    Fan, X-L; Duan, X-B; Chen, Z-H; Li, M; Xu, J-S; Ding, G-M

    2015-05-08

    Postmenopausal osteoporosis (PMO) is the most common metabolic bone disease in women after menopausal. Recent works focused on cross—talk between immune regulation and bone metabolism pathways and suggested Treg cells suppressed bone resorption and osteoclasts (OC) differentiation in bone marrow via cell—cell contact interaction and/or secreting of IL—10 and TGF—beta. In this study, we investigated the impact of estrogen on regulatory T cells (Treg cells) trafficking and staying in bone marrow and we found that a significant reduction of Treg cell population in bone marrow in estrogen deficiency ovariectomied (OVX) mice. We then studied the expressions of chemokines CXCL12/CXCR4 axes, which were critical to Treg cells migration and our data show the expression of CXCR4 on Treg cells was relative with oestrogen in vivo, however, the expression of CXCL12 was not. Furthermore, the loss of trafficking ability of Treg cells in OVX mice was recoverable in our system. These findings may mechanistically explain why Treg cells lose their suppressive functions on the regulation of OC cells and demonstrate a previously unappreciated role for estrogen, which may be critical to the novel therapy in clinical practice of PMO patients.

  15. Effect of SDF-1/CXCR4 on the hematopoietic-supporting activity of bone marrow mesenchymal stem cells%SDF-1/CXCR4增强骨髓间质干细胞的造血支持作用

    Institute of Scientific and Technical Information of China (English)

    陈东平; 张志坚; 吴秀丽; 林建华

    2008-01-01

    目的 探讨基质细胞衍生因子-1(SDF-1)/CXCR4在骨髓间质干细胞(MSCs)支持CD34+造血干/祖细胞(HSPCs)扩增中的作用.方法 在长期培养基(LTG)中,以大鼠骨髓MSCs作为饲养层体外扩增骨髓CD34+细胞,每周分别加入SDF-1、SDF-1抗体或CXCR4抗体至5周.计算CD34+细胞数和集落形成细胞(CFC)数,以评价造血支持功能.为评估SDF-1/CXCR4对CD34+细胞增殖周期的影响,进行了杀伤试验以计算增殖指数.流式细胞术检测MSCs和CD34+细胞中SDF-1与CXCR4的表达;ELISA检测MSCs和CD34+细胞培养基中SDF-1的含量.结果 CD34+细胞数、CFC数和增殖指数在加入SDF-1后明显增加(P<0.01),加入SDF-1抗体或CXCR4抗体后明显减少(分别为P<0.05,P<0.01).CD34+细胞表面表达CXCR4,MSCs则不表达;MSCs细胞内表达SDF-1,而CD34+细胞不表达.在MSCs培养基中检测到SDF-1,在CD34+细胞培养基中未发现.结论 SDF-1/CXCR4在骨髓MSCs支持HSPCs扩增中起重要作用.

  16. SDF-1/CXCR4信号通路对喉癌Hep-2细胞增殖的作用%The proliferation effect of SDF-1/CXCR4 signaling pathway in laryngeal cancer Hep-2 cell line

    Institute of Scientific and Technical Information of China (English)

    李文媛; 王莹; 刘艳翠; 张洋; 冯克俭; 赵微; 孙平

    2016-01-01

    目的:观察基质细胞衍生因子-1(SDF-1)/趋化因子受体4(CXCR4)信号通路对喉癌Hep-2细胞的增殖作用,并探讨其作用机制.方法:体外培养Hep-2细胞,SDF-1慢病毒(4μl,1×1010病毒颗粒)和同剂量siRNA SDF-1转染Hep-2细胞6d后,细胞分为对照组、siRNA SDF-1组和SDF-1组.MTT法检测各组Hep-2细胞增殖情况.实时荧光定量PC检测各组细胞SDF-1、CXCR4及血管内皮因子C(VEGF-C)mRNA相对表达.结果:镜下观察SDF-1组Hep-2细胞数量显著高于对照组和siRNA SDF-1组,MTT法显示SDF-1组Hep-2细胞在8d增殖显著高于对照组和siRNA SDF-1组(P<0.05),实时荧光定量PCR结果表明SDF-1转染组SDF-1、CXCR4和VEGF-C mRNA表达显著高于对照组和siRNA SDF-1组(P<0.05),而对照组和siRNA SDF-1组SDF-1、CXCR4和VEGF-C mRNA表达未见显著差异(P>0.05).SDF1与CXCR4及VEGF-C mRNA表达显著正相关(P<0.05).结论:SDF-1/CXCR4信号通路能够通过上调VEGF-C表达促进喉癌Hep-2细胞增殖,SDF-1/CXCR4信号通路可成为治疗喉癌新的靶点.

  17. Expression of chemokine receptor CXCR4 and CCR7 in oral squamous cell carcinoma and their relation to clinicopathological characteristics%口腔鳞癌中趋化因子受体CXCR4和CCR7表达及其与临床病理特征的关系

    Institute of Scientific and Technical Information of China (English)

    尹东; 刘静; 贾咏存; 赵桂治

    2013-01-01

    目的 检测CXC类趋化因子受体4(chemokine CXC motif receptor4,CXCR4)和CC类趋化因子受体7(chemokine CC motif receptor 7,CCR7)在口腔鳞癌(oral squamous cell carcinoma,OSCC)中表达,探讨其与OSCC临床病理特点及颈淋巴结转移的关系.方法 采用免疫组化和反转录聚合酶链反应(RT-PCR)检测64例OSCC组织原发灶、39例转移淋巴结组织和10例正常口腔黏膜组织中CXCR4及CCR7的表达,并分析其与临床病理参数的关系.结果 OSCC组织细胞中CXCR4、CCR7蛋白的阳性表达率分别为62.5%、65.6%,明显高于正常口腔黏膜组织细胞(P<0.01),其中有淋巴结转移组表达率分别为74.36%、84.62%,无淋巴结转移组表达率分别为44%、36%,差异均有统计学意义(P<0.05),而CXCR4、CCR7在淋巴结转移灶中的阳性表达率差异无统计学意义(P>0.05).RT-PCR检测结果也证实,CXCR4及CCR7在OSCC细胞中均有阳性表达.此外,CXCR4及CCR7的表达与肿瘤的分化程度、侵袭程度和TNM分期密切相关(P<0.05),而与年龄、性别和肿瘤大小无关(P>0.05).结论 趋化因子受体CXCR4、CCR7的表达与OSCC侵袭发展和淋巴结转移密切相关.CXCR4、CCR7有可能成为OSCC治疗的新靶点.

  18. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Cojoc M

    2013-09-01

    Full Text Available Monica Cojoc,1 Claudia Peitzsch,1 Franziska Trautmann,1 Leo Polishchuk,2 Gennady D Telegeev,2 Anna Dubrovska11OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; 2Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: The chemokine CXCL12 (SDF-1 and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs, plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.Keywords: epithelial-to-mesenchymal transition, cancer stem cells, metastasis

  19. Effects of anti-CXCR4 monoclonal antibody 12G5 on proliferation and apoptosis of human acute myelocytic leukemia cell line HL-60

    Institute of Scientific and Technical Information of China (English)

    WEI Li; KONG Pei-yan; SHI Zhan-zhong; ZENG Dong-feng; CHEN Xing-hua; CHANG Cheng; PENG Xian-gui; ZHANG Yi; LIU Hong

    2007-01-01

    Objective: To investigate the expression of CXCR4 on HL-60 cell line and the proliferation,apoptosis of HL-60 cell line cocultured with bone marrow stromal cells, so as to assess the possibility of 12G5, an anti-CXCR4 monoclonal antibody, in eradicating the minimal residual disease. Methods: The activity of SDF-1 was inhibited by 10 μg/ml 12G5. After treatment with 12G5, the status of adhesion was observed, and the adhesion rates, apoptosis and cell cycles were detected after 24 h of treatment. Cell growth rates were measured by trypan blue exclusion. Cell growth curve was plotted, and the expression of PCNA and apoptosis related protein including PCNA, Bcl-2 and Fas were detected with immunohistochemical technique. Results: (1) There was middling degree expression of CXCR4 on HL-60 membrane. From 0 h to 6 h, as the time of 12G5 incubation along, the expression of CXCR4 decreased gradually. (2)After treatment for 24 h, the adhesion rates in the experiment group and the control were (39.4±7.9)%and (51.4±5.9)%, respectively. (3)After treatment for 24 h, the percentage of HL-60 cells in G0/G1 phase were (55.21±4.9)%, and that in S phase and G2/M phase were (30.40±4.1)% and (14.39±5.2)%, respectively, with the corresponding proportions being (44.67±2.2)%, (45.30±3.7)%, and (10.03±2.6)% in the control. (4) The percentage of apoptotic HL-60 cells was (8.95±1.7)% in the experiment group, compared to (3.97±2.4)% in the control. (5)The survival rates of HL-60 cells decreased markedly at 48 h to 96 h, and the proliferation slowed down at this time duration. (6)The expression of PCNA and Bcl-2 down-regulated significantly, but the Fas protein expression was up-regulated. Conclusion: 12G5 could inhibit the capability of adhesion and proliferation of HL-60 cells and it can induce more cells to enter G0/G1 phase and promote apoptosis. It may be helpful by inhibiting the bioactivity of SDF-1 with 12G5 in the therapy of marrow residual disease.

  20. Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in non-small cell lung carcinoma cells.

    Science.gov (United States)

    Gu, Qing; He, Yan; Ji, Jianfeng; Yao, Yifan; Shen, Wenhao; Luo, Jialin; Zhu, Wei; Cao, Han; Geng, Yangyang; Xu, Jing; Zhang, Shuyu; Cao, Jianping; Ding, Wei-Qun

    2015-05-10

    Radiotherapy is an important procedure for the treatment of inoperable non-small cell lung cancer (NSCLC). However, recent evidence has shown that irradiation can promote the invasion and metastasis of several types of cancer, and the underlying mechanisms are not fully understood. This study aimed to investigate the molecular mechanism by which radiation enhances the invasiveness of NSCLC cells. We found that after irradiation, hypoxia-inducible factor 1α (HIF-1α) was increased and translocated into the nucleus, where it bound to the hypoxia response element (HRE) in the CXCR4 promoter and promoted the transcription of CXCR4. Furthermore, reactive oxygen species (ROS) also plays a role in the radiation-induced expression of CXCR4. Our results revealed that 2 Gy X-ray irradiation promoted the metastasis and invasiveness of H1299, A549 and H460 cells, which were significantly enhanced by SDF-1α treatment. Blocking the SDF-1α/CXCR4 interaction could suppress the radiation-induced invasiveness of NSCLC cells. The PI3K/pAkt and MAPK/pERK1/2 pathways were found to be involved in radiation-induced matrix metalloproteinase (MMP) expression. In vivo, irradiation promoted the colonization of H1299 cells in the liver and lung, which was mediated by CXCR4. Altogether, our findings have elucidated the underlying mechanisms of the irradiation-enhanced invasiveness of NSCLC cells.

  1. The Study of the Regulation of HIF-1α for SDF-1/CXCR4 in Mesenchymal Stem Cells%HIF-1α对间充质干细胞SDF-1/CXCR4的调控作用研究

    Institute of Scientific and Technical Information of China (English)

    周丽萍; 余勤; 刘丽珍; 刘伟; 胡韶君

    2014-01-01

    with the control siRNA transfected group, HIF-1α, SDF-1α and CXCR4 mRNA and protein expression decreased in the HIF-1α siRNA transfected normoxic group(P<0.05); Compared with the hypoxia group, HIF-1α, SDF-1α and CXCR4 mRNA and protein expression decreased in the HIF-1α siRNA transfected hypoxia group(P<0.05). [Conclusion] These results verified that the expressions of HIF-1α, SDF-1αand CXCR4 were increased in hypoxic environment. Inhibition of HIF-1αexpression decreased SDF-1αand CXCR4 expression both in normoxia and hypoxia. HIF-1αplays an important role in regulating SDF-1/CXCR4 in mesenchymal stem cells.

  2. Construction of pBIFC-VN173-CXCR4 and pBIFC-VC155-NT21MP eukaryotic expression plasmids and their interaction in living cells%pBIFC-VN173-CXCR4和pBIFC-VC155-NT21MP真核表达质粒的构建及其在活细胞内的作用

    Institute of Scientific and Technical Information of China (English)

    高艳军; 杨清玲; 陈昌杰; 丁勇兴

    2012-01-01

    目的:构建pBIFC-VN173-CXCR4和pBIFC-VC 155-NT21MP真核表达质粒,利用双分子荧光互补( BiFC)技术,在活细胞内直接观察趋化因子受体4(chemokine receptor 4、CXCR4和CD184)与CXCR4抑制性多肽的相互作用.方法:应用化学合成法获得巨噬细胞炎症蛋白Ⅱ(viral macrophage inflammatory protein-Ⅱ,vMIP-Ⅱ)N端21肽(N-terminal 21-mer peptide,NT21MP)编码的基因序列,克隆至经Kpn Ⅰ和EcoR Ⅰ酶切的pBiFC-VC155中,筛选含有目标基因的正确克隆.利用RT-PCR扩增人乳腺癌细胞株SKBR3的CXCR4全长基因后,T-A亚克隆至经Kpn Ⅰ和EcoR Ⅰ酶切的pBiFC-VN173载体中.然后,经酶切鉴定及DNA测序分析2个基因是否正确连接至真核表达载体中.应用脂质体转染的方法共转染pBiFC-VC155-NT21 MP和pBiFC-VC155-CXCR4至细胞株COS-7中,在荧光显微镜下观察NT21MP与CXCR4在胞内的相互作用.结果:经DNA测序及同源性对比,证实pBiFC-VC155-NT21MP和pBiFC-VN173-CXCR4重组栽体构建成功;基因片段与NCBI基因库vMIP-Ⅱ和CXCR4基因CDS序列同源性达99.9%.BiFC法观察NT21MP与CXCR4在细胞内结合出现的荧光信号,该信号分布细胞内.结论:本实验成功构建了应用BiFC技术的真核表达载体,并且在活细胞内检测到NT21MP与CXCR4的互相结合.%Objective: To construct pBIFC-VN173-CXCR4 and pBIFC-VC155-NT21MP eukaryotic expression plasmids and to investigate the interaction of chemokine receptor 4 ( CXCR4) and viral macrophage inflammatory protein-Ⅱ ( vMIP-Ⅱ ) N terminal 21 peptides (NT21MP) in living cells. Methods; DNA fragment encoding NT21MP was chemically synthesized and inserted into BiFC eukaryotic expression vector pBIFC-VC155. The full length of CXCR4 DNA fragment was amplified by RT-PCR from SKBR3 cells and inserted into BiFC eukaryotic expression plasmid pBIFC-VN173. Two recombinant vectors were identified by restriction enzyme digestion and DNA sequencing. The recombinant vectors were cotransfected into

  3. 基质细胞衍生因子1α及其受体CXCR4在牙本质-牙髓复合体损伤修复过程中的表达%The expression of stromal cell derived factor 1 a and its receptor CXCR4 in injured dentin-dental pulp

    Institute of Scientific and Technical Information of China (English)

    栗世洋; 张莹; 齐春子; 张云松; 余擎

    2011-01-01

    could be detected in a small number of dentin cells and in predentin.Meanwhile, positive staininS was found in fibroblasts and undifferentiated mesenchymal cells during ld to 7d.staining became significantly enhanced with the time course.RT-PCR revealed that SDF -1α and CXCR4 mRNA expression significantly increased time-dependently after pulp injury (P <0.05).CONCLUSION: After injury, SDF-1α and CXCR4 expression in rat dental pulp-dentin complex, including predentin, dentin cells,fihroblasts and undifferentiated mesenchymal cells , significantly increased during early phase of repair.The results indicated that SDF-Ia and CXCR4 might participate in the formabon of reparative dentin.

  4. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages.

    Science.gov (United States)

    Hoshino, Yoshihiko; Tse, Doris B; Rochford, Gemma; Prabhakar, Savita; Hoshino, Satomi; Chitkara, Nishay; Kuwabara, Kenichi; Ching, Elbert; Raju, Bindu; Gold, Jeffrey A; Borkowsky, William; Rom, William N; Pine, Richard; Weiden, Michael

    2004-05-15

    Opportunistic infections such as pulmonary tuberculosis (TB) increase local HIV-1 replication and mutation. As AIDS progresses, alteration of the HIV-1 gp120 V3 sequence is associated with a shift in viral coreceptor use from CCR5 (CD195) to CXCR4 (CD184). To better understand the effect of HIV/TB coinfection, we screened transcripts from bronchoalveolar lavage cells with high density cDNA arrays and found that CXCR4 mRNA is increased in patients with TB. Surprisingly, CXCR4 was predominately expressed on alveolar macrophages (AM). Mycobacterium tuberculosis infection of macrophages in vitro increased CXCR4 surface expression, whereas amelioration of disease reduced CXCR4 expression in vivo. Bronchoalveolar lavage fluid from TB patients had elevated levels of CCL4 (macrophage inflammatory protein-1beta), CCL5 (RANTES), and CX3CL1 (fractalkine), but not CXCL12 (stromal-derived factor-1alpha). We found that M. tuberculosis infection of macrophages in vitro increased viral entry and RT of CXCR4-using [corrected] HIV-1, but not of CCR5-using [corrected] HIV-1. Lastly, HIV-1 derived from the lung contains CD14, suggesting that they were produced in AM. Our results demonstrate that TB produces a permissive environment for replication of CXCR4-using virus by increasing CXCR4 expression in AM and for suppression of CCR5-using HIV-1 by increasing CC chemokine expression. These changes explain in part why TB accelerates the course of AIDS. CXCR4 inhibitors are a rational therapeutic approach in HIV/TB coinfection.

  5. [Extracellular HMGB1 promotes the migration of cord Blood CD34⁺ cells via SDF-1/CXCR-4 axis].

    Science.gov (United States)

    Yang, Lu-Lu; Sun, Zi-Min; Liu, Xin; Zhu, Xiao-Yu; Wang, Xing-Bing; Wang, Jian

    2014-10-01

    This study was aimed to investigate the effect of high mobility group box1(HMGB1) and/or stromal cell derived factor-1(SDF-1) on the migration of cord blood CD34⁺ cells, and to explore whether HMGB1 promotes cord blood CD34⁺ cell migration via SDF-1/CXCR4 axis. Cord blood mononuclear cells were isolated by Ficoll-Paque density centrifugation, CD34⁺ cells were collected by a positive immunoselection procedure (CD34 MicroBeads) according to the manufacturer's instructions, the purity of the isolated CD34⁺ cells was detected by flow cytometry. In vitro chemotaxis assays were performed using Transwell cell chambers to detect cells migration. 1 × 10⁵ cells/well cord blood CD34⁺ cells were added into the upper chambers. Different concentrations of HMGB1 and/or SDF-1 (0, 10, 25, 50, 100, 200 ng/ml) were used to detect the optimal concentrations of HMGB1 and/or SDF-1 for inducing migration of cord blood CD34⁺ cells. Freshly isolated cord blood CD34⁺ cells express CXCR4 (SDF-1 receptor), and HMGB1 receptor TLR-2,TLR-4 and RAGE. To explore which receptors were required for the synergy of HGMB1 and/or SDF-1 on cells migration, the anti-SDF-1, anti-CXCR4 and anti-RAGE antibodies were used to detect the effect of HGMB1 alone or with SDF-1 on cord blood CD34⁺ cells migration. The results showed that the purity of CD34⁺ cells isolated from cord blood mononuclear cells by magnetic cell sorting was 97.40 ± 1.26%, the 25 ng/ml SDF-1 did not induce migration of cord blood CD34⁺ cells, whereas the optimal migration was observed at 100 ng/ml. HMGB1 alone did not induce migration up to 100 ng/ml. The dose test found that the the best synergistic concentrations for cells migration were 100 ng/ml HMGB1 combined with 50 ng/ml SDF-1. The blocking test showed that both the anti-SDF-1 (4 µg/ml) and anti-CXCR4 (5 µg/ml) antibodies could block cell migration induced by HMGB1 or combined with SDF-1, but the cord blood CD34⁺ cells in the presence of anti-RAGE, anti

  6. Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway.

    Science.gov (United States)

    Xie, Tao; Ren, Hai-Yong; Lin, Hai-Qing; Mao, Jin-Ping; Zhu, Ting; Wang, Sheng-Dong; Ye, Zhao-Ming

    2016-05-01

    Osteosarcoma is the most common primary malignant tumor of the bone. The long-term survivals continue to be unsatisfactory for patients with metastatic and recurrent disease. Metastasis is still a severe challenge in osteosarcoma treatment. Sinomenine, an alkaloid from traditional Chinese medicine, has been proved to possess potent antitumor and anti-invasion effect on various cancers. However, the effect of sinomenine on human osteosarcoma and the underlying mechanisms remains unknown. We report here that sinomenine inhibited proliferation by inducing S phase arrest and suppressing the clone formation. Significant inhibitory effects were found in invasion and metastasis in osteosarcoma, but little cytotoxicity was observed in tested concentrations. Exposure to sinomenine resulted in suppression of invasion and migration in osteosarcoma cells as well as tube formation ability in the human umbilical vein endothelial cells (HUVEC) and U2OS cells. Furthermore, it demonstrated that CXCR4 played a key role contributing to invasion in osteosarcoma which is considered to be a core target site in sinomenine treatment. Sinomenine inhibited invasion by suppressing CXCR4 and STAT3 phosphorylation then downregulating the expression of MMP-2, MMP-9, RANKL, VEGF downstream. In addition, then RANKL-mediated bone destruction stimulated by osteoclastogenesis and VEGF-related neovascularization were restrained. Importantly, in vivo, sinomenine suppressed proliferation, osteoclastogenesis and bone destruction. Through these various comprehensive means, sinomenine inhibits metastasis in osteosarcoma. Taken together, our results revealed that sinomenine caused S phase arrest, inhibited invasion and metastasis via suppressing the CXCR4-STAT3 pathway and then osteoclastogenesis-mediated bone destruction and neovascularization in osteosarcoma. Sinomenine is therefore a promising adjuvant agent for metastasis control in osteosarcoma.

  7. The inhibitory effect of CCR5Delta32 protein on cell surface expression of the HIV-1 coreceptor CCR5 and CXCR4%人PBMCs内表达CCR5Delta32蛋白对HIV-1辅受体抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    李翠莹; 安群星; 甘新宇

    2010-01-01

    目的:在人PBMCs内表达CCR5Delta32蛋白,研究其对细胞表面HIV-1辅受体CCR5和CXCR4的抑制作用.方法:构建pLenti-CCR5Delta32慢病毒载体,包装后产生重组慢病毒.将其转染PBMCs,Western blot检测目的蛋白的表达.继续培养靶细胞,FACS分析细胞表面CCR5和CXCR4分子的变化.结果:成功构建了pLenti-CCR5Delta32慢病毒载体,包装后产生重组慢病毒.将其转染PBMCs,Western blot检测到目的蛋白的表达.FACS分析表明,靶细胞内目的蛋白的表达对靶细胞表面辅受体CCR5和CXCR4的产生起抑制作用,抑制率在转染后第6天达到高峰(CCR5的抑制率为51.69%,CXCR4的抑制率为61.05%).结论:靶细胞内目的蛋白的成功表达及其对靶细胞表面HIV-1辅受体CCR5和CXCR4产生的抑制作用,为后续的AIDS基因治疗研究奠定了基础.

  8. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  9. SDF-1/CXCR4/CXCR7 is pivotal for vascular smooth muscle cell proliferation and chronic allograft vasculopathy.

    Science.gov (United States)

    Thomas, Michael N; Kalnins, Aivars; Andrassy, Martin; Wagner, Anne; Klussmann, Sven; Rentsch, Markus; Habicht, Antje; Pratschke, Sebastian; Stangl, Manfred; Bazhin, Alexandr V; Meiser, Bruno; Fischereder, Michael; Werner, Jens; Guba, Markus; Andrassy, Joachim

    2015-12-01

    Chronic rejection remains a major obstacle in transplant medicine. Recent studies suggest a crucial role of the chemokine SDF-1 on neointima formation after injury. Here, we investigate the potential therapeutic effect of inhibiting the SDF-1/CXCR4/CXCR7 axis with an anti-SDF-1 Spiegelmer (NOX-A12) on the development of chronic allograft vasculopathy. Heterotopic heart transplants from H-2bm12 to B6 mice and aortic transplants from Balb/c to B6 were performed. Mice were treated with NOX-A12. Control animals received a nonfunctional Spiegelmer (revNOX-A12). Samples were retrieved at different time points and analysed by histology, RT-PCR and proliferation assay. Blockade of SDF-1 caused a significant decrease in neointima formation as measured by intima/media ratio (1.0 ± 0.1 vs. 1.8 ± 0.1, P SDF-1 inhibition (3.42 ± 0.37 vs. 1.67 ± 0.33, P SDF-1/CXCR4/CXCR7 plays a critical role in the development of chronic allograft vasculopathy (CAV). Therefore, pharmacological inhibition of SDF-1 with NOX-A12 may represent a therapeutic option to ameliorate chronic rejection changes.

  10. Clinical significance of nuclear factor κB and chemokine receptor CXCR4 expression in patients with diffuse large B-cell lymphoma who received rituximab-based therapy.

    Science.gov (United States)

    Shin, Ho Cheol; Seo, Jongwon; Kang, Byung Woog; Moon, Joon Ho; Chae, Yee Soo; Lee, Soo Jung; Lee, Yoo Jin; Han, Seoae; Seo, Sang Kyung; Kim, Jong Gwang; Sohn, Sang Kyun; Park, Tae-In

    2014-11-01

    This study investigated the expression of nuclear factor κB (NF-κB) and the chemokine receptor (CXCR4) in patients with diffuse large B-cell lymphoma (DLBCL) who received rituximab-based therapy. Seventy patients with DLBCL and treated with rituximab-CHOP (R-CHOP) were included, and immunohistochemistry was performed to determine the expression of NF-κB (IκB kinase α, p50, and p100/p52) and CXCR4. To classify DLBCL cases as germinal center B-cell-like (GCB) and non-GCB, additional immunohistochemical expression of CD10, bcl-6, or MUM1 was used in this study. The expression was divided into two groups according to the intensity score (negative, 0 or 1+; positive, 2+ or 3+). The median age of the patients was 66 years (range, 17 to 87), and 58.6% were male. Twenty-seven patients (38.6%) had stage III or IV disease at diagnosis. Twenty-three patients (32.9%) were categorized as high or high-intermediate risk according to their International Prognostic Indexs (IPIs). The overall incidence of bone marrow involvement was 5.7%. Rates of positive NF-κB and CXCR4 expression were 84.2% and 88.6%, respectively. High NF-κB expression was associated with CXCR4 expression (p = 0.002), and 56 patients (80.0%) showed coexpression. However, the expression of NF-κB or CXCR4 was not associated with overall survival and EFS. On multivariate analysis that included age, gender, performance status, stage, and the IPI, no significant association between the grade of NF-κB or CXCR4 expression and survival was observed. The current study suggests that the tissue expression of NF-κB and CXCR4 may not be an independent prognostic marker in DLBCL patients treated with R-CHOP.

  11. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair

    Science.gov (United States)

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi

    2016-01-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  12. Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans.

    Science.gov (United States)

    Besedovsky, Luciana; Linz, Barbara; Dimitrov, Stoyan; Groch, Sabine; Born, Jan; Lange, Tanja

    2014-06-01

    Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4(+) and CD8(+) subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3(+) and CD8(+) T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L(+) T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors.

  13. CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies.

    Science.gov (United States)

    Vaday, Gayle G; Hua, Shao-Bing; Peehl, Donna M; Pauling, Michelle H; Lin, Yu-Huei; Zhu, Li; Lawrence, Diana M; Foda, Hussein D; Zucker, Stanley

    2004-08-15

    Metastasis is a major cause of morbidity in prostate cancer (PCa). Several studies have shown that the chemokine receptor CXCR4 and its ligand, CXCL12 (stromal cell-derived factor-1), regulate tumor cell metastasis to specific organs. Recently, it was demonstrated that CXCL12 enhances PCa cell adhesion, migration, and invasion, implicating CXCR4 in PCa metastasis. In this study, we examined the inhibitory effects of anti-CXCR4 antibodies on CXCL12-mediated PCa cell activities. We developed fully human single chain Fv antibodies (scFv), Ab124 and Ab125, against CXCR4 using the yeast two-hybrid system. We performed immunofluorescent staining, flow cytometry, and ELISA-binding assays to measure scFv binding to PCa cells. We also examined the effects of scFv on CXCL12-mediated calcium mobilization, cell migration, and invasion. Our results confirmed that PCa cell lines express cell-surface CXCR4. Real-time quantitative reverse transcription-PCR and immunohistochemical staining also verified that CXCR4 is expressed in primary cultures of prostate epithelial cells from adenocarcinomas and in human prostate tissues. Ab124 and Ab125 demonstrated specific binding to PCa cell lines by flow cytometry and in binding assays. Preincubation with scFv resulted in significant reduction of CXCL12-induced calcium mobilization in PC-3 and LNCaP cells. Ab124 and Ab125 also inhibited PCa cell migration toward CXCL12, as well as invasion through extracellular matrix gels. Ab124 and Ab125 inhibit CXCL12-mediated cellular activities by binding the receptor CXCR4. Recombinant scFv are an efficient mode of targeting tumor antigens. Considering the high incidence of PCa, the development of fully human scFv may be a useful therapeutic approach in the prevention and treatment of PCa metastasis.

  14. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives.

    Science.gov (United States)

    Pawig, Lukas; Klasen, Christina; Weber, Christian; Bernhagen, Jürgen; Noels, Heidi

    2015-01-01

    CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific

  15. Inhibition of Human Immunodeficiency Virus Replication by a Dual CCR5/CXCR4 Antagonist

    Science.gov (United States)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt; Aquaro, Stefano; De Clercq, Erik; Gerlach, Lars-Ole; Rosenkilde, Mette; Schwartz, Thue W.; Skerlj, Renato; Bridger, Gary; Schols, Dominique

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC50] ranging from 1.2 to 26.5 μM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC50, 1.8 to 7.3 μM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca2+ signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca2+ flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca2+ signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca2+ signaling by itself at concentrations up to 400 μM. In freshly isolated monocytes, AMD3451 inhibited the Ca2+ flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction. PMID:15542651

  16. Influence of autologous bone marrow mononuclear cells transplantation on SDF-1-CXCR4%骨髓单个核细胞移植对心肌基质细胞衍生因子1-CXCR4轴的影响

    Institute of Scientific and Technical Information of China (English)

    张云强; 徐爱国; 齐向前

    2011-01-01

    背景:心脏干细胞移植后心肌基质细胞衍生因子1-CXCR4 轴表达及其作用越来越受到人们的关注.目的:观察经心外膜注骨髓单个核细胞对心衰犬心脏基质细胞衍生因子1-CXCR4 轴 mRNA 表达的影响.方法:16 只杂种犬随机数字表法均分为移植组和对照组,植入永久起搏器.右室快速起搏三四周后建立心衰模型.移植组犬经心外膜多点注射骨髓单个核细胞悬液,对照组注射等量生理盐水.结果与结论:快速起搏三四周后,各项超声参数及血流动力学参数较起搏前改变明显,差异有显著性意义.定量PCR 检测细胞移植组基质细胞衍生因子1 mRNA 及CXCR4 mRNA 表达水平高于对照组(P < 0.01).说明经心外膜注射的骨髓单个核细胞可提高心肌基质细胞衍生因子1 mRNA 及CXCR4 mRNA 表达水平.%BACKGROUND: Recently, the SDF-1-CXCR4 mRNA expression and the effect after stem cell transplantation have obtained more attention.OBJECTIVE: To observe the changes of SDF-1 mRNA and CXCR4 mRNA expression in the myocardium after bone marrow mononuclear cells (BM-MNCs) transplantation.METHODS: Sixteen mongrel dogs were randomly divided into the graft group and the control group. Each of dog was implanted a permanent pacemaker for rapid right ventricular pacing for 3 to 4 weeks. CM -DiI 1abled BM-MNCs or saline were transplanted into the myocardium via epicardium injection.RESULTS AND CONCLUSION: After 3-4 weeks of rapid pacing, the cardiac function of the dogs in both two groups significantly decreased in hemodynamic and in ultrasound parameters. The mRNA levels of SDF-1 and CXCR4 were higher in the graft group than those i n the control group (P < 0.01). Autologous BM-MNCs transplantation improves the mRNA level of SDF-1 and CXCR4.

  17. Effects and Significance of SDF-1/CXCR4 in Proliferation, Migration and Invasion of Colorectal Cancer Cell Line SW480%SDF-1/CXCR4对大肠癌细胞株SW480增殖、迁移及侵袭的影响及意义

    Institute of Scientific and Technical Information of China (English)

    袁丽倩; 郑淑芳

    2014-01-01

    目的:探讨基质细胞衍生因子-1(SDF-1)及其特异性受体CXC趋化因子受体4(CXCR4)对大肠癌细胞SW480增殖、迁移及侵袭能力的影响及意义。方法取对数生长期大肠癌细胞SW480分为对照组(未经任何处理)、SDF-1组(加入100μg/L SDF-1)、SDF-1+AMD3100混合组(向细胞中加入1 mg/L AMD3100,孵育2 h后加入100μg/L SDF-1)、AMD3100组(加入1 mg/L AMD3100)。免疫组化法检测SW480细胞中CXCR4蛋白表达情况;RT-PCR法检测SW480细胞中CXCR4 mRNA的表达情况,以及外源性SDF-1和AMD3100作用后CXCR4 mRNA表达水平的变化;MTT增殖实验、Transwell迁移及侵袭实验分别检测SDF-1以及AMD3100对SW480细胞增殖、迁移及侵袭能力的影响。结果 SW480细胞中CXCR4蛋白呈阳性表达(阳性率80%)。SW480细胞中有CXCR4 mRNA的表达,100μg/L SDF-1促使CXCR4 mRNA表达水平进一步上调,且能被1 mg/L AMD3100阻断。SDF-1组细胞增殖活性(0.847±0.039)高于对照组(0.624±0.011)和SDF-1+AMD3100混合组(0.607±0.016),AMD3100组(0.456±0.032)低于对照组和SDF-1+AMD3100混合组(F=108.030,P<0.05)。Transwell小室迁移及侵袭实验中SDF-1组穿膜细胞数(个:98.7±5.8、33.7±6.2)均多于对照组(21.0±2.2、6.1±2.3)、SDF-1+AMD3100混合组(18.5±8.4、8.5±2.8)和AMD3100组(12.1±3.2、2.1±1.0),后3组间比较差异无统计学意义。结论 SDF-1/CXCR4生物轴可促进大肠癌细胞SW480的增殖、迁移及侵袭。%Objective To discuss the influence and significance of stromal cell-derived factor 1 (SDF-1) and its specific receptor CXC chemokine receptor 4 (CXCR4) in proliferation, migration and invasion ability of SW480 colorectal cancer cells. Methods The colorectal cancer cell line SW480 in logarithmic phase was divided into four groups:control group (with no any processing), SDF-1 group (added 100μg/L SDF-1), SDF-1+1 mg/L AMD3100 mixed group (added 1 mg/L AMD3100 for 2 hours, then added 100

  18. Rational Design of CXCR4 Specific Antibodies with Elongated CDRs

    Science.gov (United States)

    2015-01-01

    The bovine antibody (BLV1H12) which has an ultralong heavy chain complementarity determining region 3 (CDRH3) provides a novel scaffold for antibody engineering. By substituting the extended CDRH3 of BLV1H12 with modified CXCR4 binding peptides that adopt a β-hairpin conformation, we generated antibodies specifically targeting the ligand binding pocket of CXCR4 receptor. These engineered antibodies selectively bind to CXCR4 expressing cells with binding affinities in the low nanomolar range. In addition, they inhibit SDF-1-dependent signal transduction and cell migration in a transwell assay. Finally, we also demonstrate that a similar strategy can be applied to other CDRs and show that a CDRH2-peptide fusion binds CXCR4 with a Kd of 0.9 nM. This work illustrates the versatility of scaffold-based antibody engineering and could greatly expand the antibody functional repertoire in the future. PMID:25041362

  19. White matter tracts for the trafficking of neural progenitor cells characterized by cellular MRI and immunohistology: the role of CXCL12/CXCR4 signaling.

    Science.gov (United States)

    Chen, Chiao-Chi V; Hsu, Yi-Hua; Jayaseema, D M; Chen, Jeou-Yuan Joanne; Hueng, Dueng-Yuan; Chang, Chen

    2015-07-01

    White matter tracts are important for the trafficking of neural progenitor cells (NPCs) in both normal and pathological conditions, but the underlying mechanism is not clear. The directionality of white matter is advantageous for molecules or cells to distribute over a long distance, but this feature is unlikely solely responsible for efficient migration. The present study hypothesizes that the efficient migration of NPCs into white matter is under the influences of neurochemical attraction—CXCL12/CXCR4 signaling, a major mechanism underlying the targeted migration of NPCs. To test this view, the present study investigated the effects of CXCL12 administration into the corpus callosum (CC) on the migratory behavior of transplanted NPCs. A living animal tracking platform based on MRI and a magnetic cell labeling technique was employed. The NPCs were magnetically labeled and then transplanted at the right end of the CC. CXCL12 was infused continuously at the left end. Migration of NPCs was monitored repeatedly over a 7-day course using 3D gradient echo T2*-weighted imaging. It was found that, CXCL12 induced NPCs to migrate up to 1,881 μm from the graft whereas the spontaneous migration was mere 200 μm. CXCL12 induced migration that was nine times as efficient in the speed. The results indicate that the CXCL12/CXCR4 signaling may be a mechanism via which NPCs efficiently migrate along the white matter tracts. The study also presents a potential strategy for facilitating the targeted migration in NPC therapy for brain disorders.

  20. Development of a unique small molecule modulator of CXCR4.

    Directory of Open Access Journals (Sweden)

    Zhongxing Liang

    Full Text Available BACKGROUND: Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4 and its ligand stromal cell-derived factor-1 (CXCL12 interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. METHODOLOGY/PRINCIPAL FINDINGS: We describe the actions of N,N'-(1,4-phenylenebis(methylenedipyrimidin-2-amine (designated MSX-122, a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using (18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. CONCLUSIONS/SIGNIFICANCE: We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can

  1. 房颤对外周血CD34+造血祖细胞的影响 及SDF-1/CXCR4在心房中的表达%Effect of atrial fibrillation on human CD34 + hematopoietic progenitor cells in circulation and expression of SDF-1/CXCR4 in atrium

    Institute of Scientific and Technical Information of China (English)

    李佳; 葛海龙; 陈光远; 高倩萍; 孙俊峰; 李元十; 富路

    2011-01-01

    目的:研究不同类型的房颤(AF)对人外周血CD34+造血祖细胞(CD34+ HPCs)的影响,以及持续心房快速起搏犬心肌基质细胞衍生因子-1(SDF-1)及其受体CXCR4的表达,初步探讨CD34+ HPCs及SDF-1/CXCR4在AF时心肌损伤修复中的作用.方法:应用流式细胞术测定阵发性AF患者组(a=35)、持续性AF患者组(n=35)及窦性心律者对照组(n=30)外周血中CD34+ HPCs的百分含量;并对持续性AF患者组中24例患者成功进行体外直流电复律后48 h,测定外周血中CD34+ HPCs的百分含量.另外,将成年健康杂种犬13条随机分为两组:即快速起搏组(n=7)和假手术组(n=6),均开胸后于右心耳缝植AOO型起搏器,快速起搏组以400次/min起搏6周,假手术组不起搏.应用RT-PCR测定左心耳和左心房CXCR4mRNA的表达水平,用蛋白质免疫印迹法检测左心房SDF-1蛋白的表达.结果:持续性AF患者组外周血中CD34+ HPCs的百分含量明显高于阵发性AF患者组和对照组(P<0.05);而后两组间无差别.持续性AF患者成功进行体外直流电复律后48 h,外周血中CD34+ HPCs的百分含量较复律前明显下降(P<0.05).快速起搏组犬左心耳和左心房CXCR4mRNA表达的水平明显高于假手术组(P<0.05),左心耳增高16.7%,左心房增高18.8%:SDF-1蛋白质表达的水平亦明显高于假手术组(P<0.01).结论:持续性AF患者外周血中CD34 HPCs的数量增加;心房快速起搏犬心房SDF-1/CXCR4的表达增加.CD34+ HPCs和SDF1/CXCR4可能参与了持续性AF患者心房损伤时心肌组织的修复过程.%AIM: To investigate the effect of different kinds of atrial fibrillation (AF) on human CD34 + hematopoietic cells ( HPCs) in circulation and on myocardial expression of SDF-1 and its receptor CXCR4 in canines with lasting rapid atrial pacing and to explore the role of CD34 + HPCs and SDF-1/ CXCR4 in repairing atrium during AF. METHODS; Included in our study were 100 subjects (35 with paroxysmal AF, 35

  2. Infection of Female BWF1 Lupus Mice with Malaria Parasite Attenuates B Cell Autoreactivity by Modulating the CXCL12/CXCR4 Axis and Its Downstream Signals PI3K/AKT, NFκB and ERK.

    Science.gov (United States)

    Badr, Gamal; Sayed, Ayat; Abdel-Maksoud, Mostafa A; Mohamed, Amany O; El-Amir, Azza; Abdel-Ghaffar, Fathy A; Al-Quraishy, Saleh; Mahmoud, Mohamed H

    2015-01-01

    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by abnormal autoreactivity in B cells. Lymphocytes and their soluble mediators contribute to the disease pathogenesis. We recently demonstrated that infecting lupus mice with malaria confers protection against lupus nephritis by attenuating oxidative stress in both liver and kidney tissues. In the current study, we further investigated B cell autoreactivity in female BWF1 lupus mice after infection with either live or gamma-irradiated malaria, using ELISA, flow cytometry and Western blot analysis. The lupus mice exhibited a significant elevation in plasma levels of IL-4, IL-6, IL-7, IL-12, IL-17, IFN-α, IFN-γ, TGF-β, BAFF and APRIL and a marked elevation of IgG2a, IgG3 and ant-dsDNA autoantibodies compared with normal healthy mice. Infecting lupus mice with live but not gamma-irradiated malaria parasite partially and significantly restored the levels of the soluble mediators that contribute to the progression of lupus. Furthermore, the B cells of lupus mice exhibited an increased proliferative capacity; aberrant overexpression of the chemokine receptor CXCR4; and a marked elevation in responsiveness to their cognate ligand (CXCL12) via aberrant activation of the PI3K/AKT, NFκB and ERK signaling pathways. Interestingly, infecting lupus mice with live but not gamma-irradiated malaria parasite restored a normal proliferative capacity, surface expression of CXCR4 and B cell response to CXCL-12. Taken together, our data present interesting findings that clarify, for the first time, the molecular mechanisms of how infection of lupus mice with malaria parasite controls B cell autoreactivity and thus confers protection against lupus severity.

  3. Up-Regulation of CCR5 and CXCR4 Expression on Human Monocytes by Interferon Gamma

    Institute of Scientific and Technical Information of China (English)

    陆韵; 刘祖强; 陈应华

    2003-01-01

    Chemokine receptors, mainly CCR5 and CXCR4, have been proved to be the important coreceptors in HIV-1 entry.HIV-1 disease progression is, in general, characterized by an initial predominance of CCR5 using macrophage tropic, non-syncytium-inducing (NSI) isolates, switching later to CXCR4 using T-cell tropic, syncytium-inducing (SI) isolates.How this shift occurs and how the shift can be controlled are still unclear.Since patients with rapid decline of T cell counts have constantly high levels of IFN-γ in the sera and lymphoid nodes, we investigated the influence of this cytokine on the expression of the HIV-1 coreceptors CCR5 and CXCR4 on the cell surfaces of human monocytic cell line U937 and promonocyte NB4.IFN-γ could intensively enhance the expression of both, while a low level of CCR5 expression was detected in two cell lines before stimulation.The results of semiquantitative RT-PCR also confirm the up-regulation.As the newly generated X4-strains have been demonstrated to be insensitive to chemokine in some reports, IFN-γ may play an important role in selecting CXCR4-used strains.

  4. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice.

    Science.gov (United States)

    Brennecke, Patrick; Arlt, Matthias J E; Campanile, Carmen; Husmann, Knut; Gvozdenovic, Ana; Apuzzo, Tiziana; Thelen, Marcus; Born, Walter; Fuchs, Bruno

    2014-03-01

    Current combined surgical and neo-adjuvant chemotherapy of primary metastatic osteosarcoma (OS) is ineffective, reflected by a 5-year survival rate of affected patients of less than 20 %. Studies in experimental OS metastasis models pointed to the CXCR4/CXCL12 homing axis as a novel target for OS metastasis-suppressive treatment. The present study investigated for the first time the CXCR4-blocking principle in a spontaneously metastasizing human 143B OS cell line-derived orthotopic xenograft mouse model. The highly metastatic 143B cells, unlike the parental non-metastatic HOS cells, express functional CXCR4 receptors at the cell surface, as revealed in this study by RT/PCR of gene transcripts, by FACS analysis with the monoclonal anti CXCR4 antibody 12G5 (mAb 12G5) and by CXCL12 time- and dose-dependent stimulation of AKT and ERK phosphorylation. A significantly (p lung metastasis. Repetitive treatment of mice with 143B cell-derived intratibial tumors given intravenous bolus injections of mAb12G5 indeed inhibited significantly (p lung micrometastases of lacZ-transduced 143B cells. Antibody treatment had also a mild inhibitory effect on primary tumor growth associated with remarkably less osteolysis, but it did not affect the number of developing lung macrometastases. In conclusion, these results demonstrate considerable potential of high-affinity CXCR4-blocking agents for OS tumor cell homing suppressive treatment in metastasizing OS complementary to current (neo)-adjuvant chemotherapy.

  5. Mobilization of human CD34+ CD133+ and CD34+ CD133(-) stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae--related to modulation of CXCR4 expression by an L-selectin ligand?

    Science.gov (United States)

    Jensen, Gitte S; Hart, Aaron N; Zaske, Lue A M; Drapeau, Christian; Gupta, Niraj; Schaeffer, David J; Cruickshank, J Alex

    2007-01-01

    The goal of this study was to evaluate effects on human stem cells in vitro and in vivo of an extract from the edible cyanobacterium Aphanizomenon flos-aquae (AFA) enriched for a novel ligand for human CD62L (L-selectin). Ligands for CD62L provide a mechanism for stem cell mobilization in conjunction with down-regulation of the CXCR4 chemokine receptor for stromal derived factor 1. Affinity immunoprecipitation was used to identify a novel ligand for CD62L from a water extract from AFA. The effects of AFA water extract on CD62L binding and CXCR4 expression was tested in vitro using human bone marrow CD34+ cells and the two progenitor cell lines, KG1a and K562. A double-blind randomized crossover study involving 12 healthy subjects evaluated the effects of consumption on stem cell mobilization in vivo. An AFA extract rich in the CD62L ligand reduced the fucoidan-mediated externalization of the CXCR4 chemokine receptor on bone marrow CD34+ cells by 30% and the CD62L+ CD34+ cell line KG1A by 50% but did not alter the CXCR4 expression levels on the CD34(-) cell line K562. A transient, 18% increase in numbers of circulating CD34+ stem cells maximized 1 hour after consumption (P<.0003). When 3 noncompliant volunteers were removed from analysis, the increase in CD34+ cells was 25% (P<.0001). AFA water extract contains a novel ligand for CD62L. It modulates CXCR4 expression on CD34+ bone marrow cells in vitro and triggers the mobilization of CD34+ CD133+ and CD34+ CD133(-) cells in vivo.

  6. CXCR4 expression accounts for clinical phenotype and outcome in acute myeloid leukemia.

    Science.gov (United States)

    Mannelli, Francesco; Cutini, Ilaria; Gianfaldoni, Giacomo; Bencini, Sara; Scappini, Barbara; Pancani, Fabiana; Ponziani, Vanessa; Bonetti, Maria Ida; Biagiotti, Caterina; Longo, Giovanni; Bosi, Alberto

    2014-09-01

    In acute myeloid leukemia (AML), CXCR4 expression has been correlated with leukocytosis and prognosis. We quantified CXCR4 expression by flow cytometry on leukemic cells in 142 AML patients. We confirm a correlation between high CXCR4 expression and leukemic burden. Furthermore, we documented a correlation with platelet count, dysplastic megakaryopoiesis, hepato-splenomegaly and extra-hematological disease. NPM1-mutated AML displayed a significantly higher intensity of CXCR4 compared to NPM1-wt cases: it is conceivable its clinical phenotype to be driven by high CXCR4 expression. CXCR4 expression resulted in an independent prognostic factor. Our data support CXCR4 targeting as a potential therapeutic strategy. © 2014 Clinical Cytometry Society.

  7. Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass.

    Science.gov (United States)

    Shi, Hai; Lu, Rujian; Wang, Shuo; Chen, Honglin; Wang, Fei; Liu, Kun

    2017-03-11

    Acute lung injury (ALI) is one of the most important complications after cardiopulmonary bypass (CPB) and the complex pathophysiology remains to be resolved incomplete. SDF-1/CXCR4 chemokine axis can chemotactically accumulate inflammatory cell to local tissue and regulate the release of inflammatory factors, and SDF-1 has a strong chemotaxis effect on neutrophils with CXCR4. Since CPB animal model was difficult to establish, there was still no report about the effect of SDF-1/CXCR4 on neutrophil chemotaxis in ALI after CPB. Here, a stable CPB rat model was constructed to clarify the role of SDF-1/CXCR4 axis in the CPB-induced ALI. Real-time quantitative PCR (RT-qPCR), Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to detect the changes of SDF-1 and CXCR4 in lung tissues, blood, bronchoalveolar lavage (BALF), and/or isolated neutrophils. SDF-1/CXCR4 was increased after CPB, both of that were increased in blood; CXCR4 was increased in neutrophils; SDF-1/CXCR4 was also increased in BALF of CPB model. Results indicated that SDF-1/CXCR4 axis played a key role in the process of early ALI after CPB, also showed that lung injury was significantly reduce after blocking SDF-1/CXCR4 axis, suggest that CXCR4 might be a new target for ALI treatment.

  8. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma.

    Science.gov (United States)

    Peled, Amnon; Abraham, Michal; Avivi, Irit; Rowe, Jacob M; Beider, Katia; Wald, Hanna; Tiomkin, Lena; Ribakovsky, Lena; Riback, Yossi; Ramati, Yaron; Aviel, Sigal; Galun, Eithan; Shaw, Howard Laurence; Eizenberg, Orly; Hardan, Izhar; Shimoni, Avichai; Nagler, Arnon

    2014-01-15

    CXCR4 plays an important role in the retention of stem cells within the bone marrow. BKT140 (4F-benzoyl-TN14003) is a 14-residue bio stable synthetic peptide, which binds CXCR4 with a greater affinity compared with plerixafor (4 vs. 84 nmol/L). Studies in mice demonstrated the efficient and superior mobilization and transplantation of stem cells collected with GCSF-BKT140, compared with those obtained when using stem cells obtained with each one of these mobilizing agent alone. These results have served as a platform for the present clinical phase I study. Eighteen patients with multiple myeloma who were preparing for their first autologous stem cell transplantation were included. Patients received a standard multiple myeloma mobilization regimen, consisting of 3 to 4 g/m(2) cyclophosphamide (day 0), followed by granulocyte colony-stimulating factor (G-CSF) at 5 μg/kg/d starting on day 5 and administered between 8 and 10 pm until the end of stem cell collection. A single injection of BKT140 (0.006, 0.03, 0.1, 0.3, and 0.9 mg/kg) was administered subcutaneously on day 10 in the early morning, followed by G-CSF 12 hours later. BKT140 was well tolerated at all concentrations, and none of the patients developed grade 3 and 4 toxicity. A single administration of BKT140 at the highest dose, 0.9 mg/kg, resulted in a robust mobilization and collection of CD34(+) cells (20.6 ± 6.9 × 10(6)/kg), which were obtained through a single apheresis. All transplanted patients received ∼5.3 × 10(6) CD34(+) cells/kg, which rapidly engrafted (n = 17). The median time to neutrophil and platelet recovery was 12 and 14 days, respectively, at the highest dose (0.9 mg/kg). When combined with G-CSF, BKT140 is a safe and efficient stem cell mobilizer that enabled the collection of a high number of CD34(+) cells in 1 and 2 aphaeresis procedures, resulting in successful engraftment. ©2013 AACR.

  9. The influence of CXCR4 inhibitor with Bortezomib on the proliferation of human lymphoma cell line Ramos%CXCR4抑制剂 AMD3100联合硼替佐米对人淋巴瘤细胞株 Ramos 增殖、凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    丁晓蓉; 喻晓娟; 李进; 于伟勇; 何敬东

    2016-01-01

    Objective To investigate the synergistic effects of CXCR4 inhibitors AMD3100 and Bortezomib on apoptosis of lymphoma cell lines Ramos. Methods ①The detection of CXCR4 and NF - κB on bone marrow mononuclear cells of lymphoma patients;②The cells were trea-ted with AMD3100,Bortezomib,AMD3100 combined with Bortezomib,respectively. The proliferation was estimated by CCK - 8,the cell apopto-sis was analysed by flow cytometry,the expression level of NF - κB,Bcl - 2,Bcl - xl,c - IAP1 and Caspase - 3 were measured by Western blot. Results ①The CXCR4 and NF - κB were both highly expressed in bone marrow mononuclear cells of lymphoma patients. ②Both AMD3100 and Bortezomib can inhibit the proliferation and promote apoptosis of Ramos cell,the effect showed dosage dependent manner,AMD3100 and Borte-zomib had the synergy effects( P ﹤ 0. 05). ③The expression level of NF - κB,Bcl - 2,Bcl - xl and c - IAP1 were lower in the single drug and combination groups,but the expression of Caspase - 3 was in the different way. Conclusion AMD3100 and Bortezomib has synergistic effect in the proliferation and apoptosis of Ramos cell line,the mechanism of the effects may be down - regulated the expression level of NF - κB,Bcl - 2, Bcl - xl,c - IAP1and up - regulated the expression of Caspase - 3.%目的:探讨 CXCR4抑制剂 AMD3100、硼替佐米对人淋巴瘤细胞株 Ramos 协同诱导凋亡作用。方法①检测淋巴瘤患者骨髓单个核细胞中 CXCR4及核因子κB(NF -κB)表达水平;②AMD3100、硼替佐米单用以及联合用药分别处理 Ramos 细胞,利用 CCK -8法检测细胞增殖;利用流式细胞术检测细胞凋亡;Wester blot 检测 NF -κB、Bcl -2、Bcl - xl、c - IAP1及 Caspase -3表达水平。结果①淋巴瘤患者骨髓单个核细胞中 CXCR4、NF -κB 表达增高;②AMD3100、硼替佐米作用 Ramos 细胞后,随着药物浓度的增加,对细胞增殖的抑制作用逐渐增强、凋亡增加

  10. SDF-1α及其受体CXCR4与HIF-1α、VEGF在脑动静脉畸形中的表达%Expressions of stromal-cell derived factor-1α and its receptor CXCR4, hypoxia inducible factor-1α and vascular endothelial growth factor in brain arteriovenous malformation

    Institute of Scientific and Technical Information of China (English)

    王凌雁; 郭少雷; 齐铁伟; 梁丰; 黄正松

    2014-01-01

    Objective To investigate the expressions ofstromal-cell derived factor-1α (SDF-1α)and its receptor CXCR4 in brain arteriovenous malformation (AVM) and to explore the relationships of SDF-1α with hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF).Methods Surgical specimens from 48 patients accepted brain AVM resection,collected in our hospital from January 2012 to December 2013,were studied for expressions ofSDF-1α,CXCR4,VEGF and HIF-1α by immunohistochemical staining.The relationships of SDF-1α with VEGF and HIF-1α were analyzed and influences of embolism,hemorrhage and Spetzer-Martin classification in SDF-1α expression were assessed.Results SDF-1α and CXCR4 expressed in 100% and 83.3% AVM specimens,respectively.The positive staining for SDF-1α was observed in the cytoplasm of vascular endothelium within the nidus and smooth muscle cells of vascular wall.CXCR4 expressed in vascular endothelium and perivascular cells located in the space between the abnormal vessels.SDF-1α expression was significantly associated with VEGF and HIF-1α (r=0.537 and 0.437,respectively,P<0.05).SDF-1α showed more intense expression in embolized patients than that in non-embolized patients (P< 0.05),while no significant difference was noted between patients with and without hemorrhage and between patients of different Spetzer-Martin classifications (P>0.05).Conclusion SDF-1α and its receptor CXCR4 highly express in brain AVM; preoperative embolization might induce expression of SDF-1α.%目的 观察脑动静脉畸形(AVM)病灶内间质细胞衍生因子-1α(SDF-1α)及其受体CXCR4的表达情况,以及SDF-1α与低氧诱导因子-1α(HIF-1α)和血管内皮生长因子(VEGF)表达的关系. 方法 选择中山大学附属第一医院神经外科自2012年1月至2013年12月经手术切除并经病理组织学证实的脑AVM标本共48例,应用免疫组化染色方法检测SDF-1α、CXCR4、HIF-1α和VEGF的表达情况,

  11. Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice.

    Science.gov (United States)

    Anstötz, Max; Cosgrove, Kathleen E; Hack, Iris; Mugnaini, Enrico; Maccaferri, Gianmaria; Lübke, Joachim H R

    2014-11-01

    Layer 1 (L1) neurons, in particular Cajal-Retzius (CR) cells are among the earliest generated neurons in the neocortex. However, their role and that of L1 GABAergic interneurons in the establishment of an early cortical microcircuit are still poorly understood. Thus, the morphology of whole-cell recorded and biocytin-filled CR cells was investigated in postnatal day (P) 7-11 old CXCR4-EGFP mice where CR cells can be easily identified by their fluorescent appearance. Confocal-, light- and subsequent electron microscopy was performed to investigate their developmental regulation, morphology, synaptic input-output relationships and electrophysiological properties. CR cells reached their peak in occurrence between P4 to P7 and from thereon declined to almost complete disappearance at P14 by undergoing selective cell death through apoptosis. CR cells formed a dense and long-range horizontal network in layer 1 with a remarkable high density of synaptic boutons along their axons. They received dense GABAergic and non-GABAergic synaptic input and in turn provided synaptic output preferentially with spines or shafts of terminal tuft dendrites of pyramidal neurons. Interestingly, no dye-coupling between CR cells with other cortical neurons was observed as reported for other species, however, biocytin-labeling of individual CR cells leads to co-staining of L1 end foot astrocytes. Electrophysiologically, CR cells are characterized by a high input resistance and a characteristic firing pattern. Increasing depolarizing currents lead to action potential of decreasing amplitude and increasing half width, often terminated by a depolarization block. The presence of membrane excitability, the high density of CR cells in layer 1, their long-range horizontal axonal projection together with a high density of synaptic boutons and their synaptic input-output relationship suggest that they are an integral part of an early cortical network important not only in layer 1 but also for the

  12. 大鼠CXCR4基因RNAi慢病毒载体的构建及其在骨髓间质干细胞中的表达%Construction of rat CXCR4 gene lentiviral RNA interference vector and its expression in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    陈东平; 张志坚; 吴秀丽; 张彦定

    2009-01-01

    为深入研究CXCR4在骨髓间质干细胞(MSCs)体内迁移中的作用,构建CXCR4基因RNA干扰(RNAi)慢病毒载体并实现其在大鼠MSCs(rMSCs)中表达.根据大鼠CXCR4 mRNA序列,设计并合成包含各靶序列的互补DNA链,插入pSUPER载体的H1 RNA启动子后面,产生pRiCXCR4,将其中的CXCR4 shRNA表达结构酶切插入慢病毒载体质粒pNL-EGFP,产生pNL-RiCXCR4一EGFP.在脂质体介导下与包装质粒pHELPER和包膜质粒pVSVG共转染293T细胞,包装生产慢病毒,测定慢病毒功能滴度.慢病毒转导rMSCs后,用Real-time RT-PCR、Western blotting和流式细胞术检测RNAi组(CXCR4a、CXCR4b和CXCR4c)、空载体组(Mock)和对照组(Control)中CXCR4表达情况.结果显示.酶切和测序证实pRiCXCR4质粒构建正确,产生能同时表达增强型绿色荧光蛋白(EGFP)和CXCR4 shRNA的慢病毒载体质粒pNL-RiCXCR4-EGFP,未浓缩和浓缩慢病毒悬液的功能滴度分别为6.4×104TU/mL和6.9×106TU/mL.慢病毒转导rMSCs 48 h后,与空载体组和空白组相比,3个RNAi组均不同程度抑制CXCR4表达,CXCR4b-MSC组在mRNA水平抑制了95.6%,抑制作用最明显.大鼠CXCR4基因RNAi慢病毒载体构建成功,为深入研究CXCR4在rMSCs向损伤组织定向迁移的作用奠定了基础.

  13. Single Dose of the CXCR4 Antagonist BL-8040 Induces Rapid Mobilization for the Collection of Human CD34+ Cells in Healthy Volunteers.

    Science.gov (United States)

    Abraham, Michal; Pereg, Yaron; Bulvik, Baruch; Klein, Shiri; Mishalian, Inbal; Wald, Hanna; Eizenberg, Orly; Beider, Katia; Nagler, Arnon; Golan, Rottem; Vainstein, Abi; Aharon, Arnon; Galun, Eithan; Caraco, Yoseph; Or, Reuven; Peled, Amnon

    2017-08-23

    The potential of the high affinity CXCR4 antagonist BL-8040 as a monotherapy mobilizing agent and its derived graft composition and quality were evaluated in a phase I clinical study in healthy volunteers (NCT02073019). The first part of the study was a randomized, double-blind, placebo-controlled dose escalation phase. The second part of the study was an open label phase, in which 8 subjects received a single injection of BL-8040 (1mg/kg) and approximately 4hrs later underwent a standard leukapheresis procedure. The engraftment potential of the purified mobilized CD34+ cells was further evaluated by transplanting the cells into NSG immune deficient mice. BL-8040 was found safe and well tolerated at all doses tested (0.5-1 mg/kg). The main treatment related AEs were mild to moderate. Transient injection site and systemic reactions were mitigated by methylprednisolone, paracetamol and promethazine pre-treatment. In the first part of the study BL-8040 triggered rapid and substantial mobilization of WBCs and CD34+ cells in all tested doses. 4hrs post dose, the count rose to a mean of 8, 37, 31 and 35cells/µL (placebo, 0.5, 0.75 and 1mg/kg, respectively). FACS analysis revealed substantial mobilization of immature dendritic, T, B and NK cells. In the second part the mean CD34+/kg collected were 11.6 x106 cells/kg. The graft composition was rich in immune cells. The current data demonstrate that BL-8040 is a safe and effective monotherapy strategy for the collection of large amounts of CD34+ cells and immune cells in a one-day procedure for allogeneic HSPC transplantation. Copyright ©2017, American Association for Cancer Research.

  14. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  15. Suppression of dualtropic human immunodeficiency virus type 1 by the CXCR4 antagonist AMD3100 is associated with efficiency of CXCR4 use and baseline virus composition.

    Science.gov (United States)

    Fransen, Signe; Bridger, Gary; Whitcomb, Jeannette M; Toma, Jonathan; Stawiski, Eric; Parkin, Neil; Petropoulos, Christos J; Huang, Wei

    2008-07-01

    In a phase I/II evaluation of the CXCR4 antagonist AMD3100, human immunodeficiency virus RNA levels were significantly reduced in a single study subject who harbored CXCR4 (X4)-tropic virus, but not in subjects who harbored either dual/mixed (DM)-tropic or CCR5 (R5)-tropic virus (C. W. Hendrix et al., J. Acquir. Immune Defic. Syndr. 37:1253-1262, 2004). In this study, we analyzed the envelope clones of DM-tropic virus in baseline and treated virus populations from 14 subjects. Ten subjects exhibited significant reductions in CXCR4-mediated infectivity after 10 days of AMD3100 therapy relative to baseline (X4 suppressor group), while four subjects had no reduction of CXCR4-mediated infectivity (X4 nonsuppressor group). The baseline viruses of the X4 suppressor group infected CXCR4-expressing cells less efficiently than those of the X4 nonsuppressor group. Clonal analysis indicated that the baseline viruses from the X4 suppressor group contained a higher proportion of R5-tropic variants mixed with CXCR4-using variants, while the X4 nonsuppressor group was enriched for CXCR4-using variants. AMD3100 suppressed X4-tropic variants in all subjects studied, but not all dualtropic variants. Furthermore, dualtropic variants that used CXCR4 efficiently were suppressed by AMD3100, while dualtropic variants that used CXCR4 poorly were not. This study demonstrated that AMD3100 has the ability to suppress both X4-tropic and certain dualtropic variants in vivo. The suppression of CXCR4-using variants by AMD3100 is dependent on both the tropism composition of the virus population and the efficiency of CXCR4 usage of individual variants.

  16. Expression of the chemokine receptor CXCR4 on lymphocytes of leprosy patients

    Directory of Open Access Journals (Sweden)

    V.A. Mendonça

    2011-12-01

    Full Text Available Leprosy is caused by Mycobacterium leprae, which induces chronic granulomatous infection of the skin and peripheral nerves. The disease ranges from the tuberculoid to the lepromatous forms, depending on the cellular immune response of the host. Chemokines are thought to be involved in the immunopathogenesis of leprosy, but few studies have investigated the expression of chemokine receptors on leukocytes of leprosy patients. In the present study, we evaluated 21 leprosy patients (M/F: 16/5 with a new diagnosis from the Dermatology Outpatient Clinic of the University Hospital, Federal University of Minas Gerais. The control group was composed of 20 healthy members (M/F: 15/5 of the community recruited by means of announcements. The expression of CCR2, CCR3, CCR5, and CXCR4 was investigated by flow cytometry on the surface of peripheral blood lymphocytes. There was a decrease in percentage of CD3+CXCR4+ and CD4+CXCR4+ lymphocytes in the peripheral blood of leprosy patients (median [range], 17.6 [2.7-41.9] and 65.3 [3.9-91.9], respectively compared to the control group (median [range], 43.0 [3.7-61.3] and 77.2 [43.6-93.5], respectively. The percentage of CD4+CXCR4+ was significantly lower in patients with the tuberculoid form (median [range], 45.7 [0.0-83.1] of the disease, but not in lepromatous patients (median [range], 81.5 [44.9-91.9]. The CXCR4 chemokine receptor may play a role in leprosy immunopathogenesis, probably directing cell migration to tissue lesions in tuberculoid leprosy patients.

  17. Stroke Induces Mesenchymal Stem Cell Migration to Infarcted Brain Areas Via CXCR4 and C-Met Signaling.

    Science.gov (United States)

    Bang, Oh Young; Moon, Gyeong Joon; Kim, Dong Hee; Lee, Ji Hyun; Kim, Sooyoon; Son, Jeong Pyo; Cho, Yeon Hee; Chang, Won Hyuk; Kim, Yun-Hee

    2017-05-25

    Mesenchymal stem cells circulate between organs to repair and maintain tissues. Mesenchymal stem cells cultured with fetal bovine serum have therapeutic effects when intravenously administered after stroke. However, only a small number of mesenchymal stem cells reach the brain. We hypothesized that the serum from stroke patients increases mesenchymal stem cells trophism toward the infarcted brain area. Mesenchymal stem cells were grown in fetal bovine serum, normal serum from normal rats, or stroke serum from ischemic stroke rats. Compared to the fetal bovine serum group, the stroke serum group but not the normal serum group showed significantly greater migration toward the infarcted brain area in the in vitro and in vivo models (p stroke serum group than the others. The enhanced mesenchymal stem cells migration of the stroke serum group was abolished by inhibition of signaling. Serum levels of chemokines, cytokines, matrix metalloproteinase, and growth factors were higher in stroke serum than in normal serum. Behavioral tests showed a significant improvement in the recovery after stroke in the stroke serum group than the others. Stroke induces mesenchymal stem cells migration to the infarcted brain area via C-X-C chemokine receptor type 4 and c-Met signaling. Culture expansion using the serum from stroke patients could constitute a novel preconditioning method to enhance the therapeutic efficiency of mesenchymal stem cells.

  18. CXCR4 inhibition ameliorates severe obliterative pulmonary hypertension and accumulation of C-kit⁺ cells in rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farkas

    Full Text Available Successful curative treatment of severe pulmonary arterial hypertension with luminal obliteration will require a thorough understanding of the mechanism underlying the development and progression of pulmonary vascular lesions. But the cells that obliterate the pulmonary arterial lumen in severe pulmonary arterial hypertension are incompletely characterized. The goal of our study was to evaluate whether inhibition of CXC chemokine receptor 4 will prevent the accumulation of c-kit⁺ cells and severe pulmonary arterial hypertension. We detected c-kit⁺⁻ cells expressing endothelial (von Willebrand Factor or smooth muscle cell/myofibroblast (α-smooth muscle actin markers in pulmonary arterial lesions of SU5416/chronic hypoxia rats. We found increased expression of CXC chemokine ligand 12 in the lung tissue of SU5416/chronic hypoxia rats. In our prevention study, AMD3100, an inhibitor of the CXC chemokine ligand 12 receptor, CXC chemokine receptor 4, only moderately decreased pulmonary arterial obliteration and pulmonary hypertension in SU5416/chronic hypoxia animals. AMD3100 treatment reduced the number of proliferating c-kit⁺ α-smooth muscle actin⁺ cells and pulmonary arterial muscularization and did not affect c-kit⁺ von Willebrand Factor⁺ cell numbers. Both c-kit⁺ cell types expressed CXC chemokine receptor 4. In conclusion, our data demonstrate that in the SU5416/chronic hypoxia model of severe pulmonary hypertension, the CXC chemokine receptor 4-expressing c-kit⁺ α-smooth muscle actin⁺ cells contribute to pulmonary arterial muscularization. In contrast, vascular lumen obliteration by c-kit⁺ von Willebrand Factor⁺ cells is largely independent of CXC chemokine receptor 4.

  19. The role of CXCL12-CXCR4 signaling pathway in pancreatic development

    DEFF Research Database (Denmark)

    Katsumoto, Keiichi; Kume, Shoen

    2013-01-01

    Chemokine (C-X-C motif) receptor 4 (CXCR4) is the receptor for chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal derived factor-1, Sdf1). CXCR4, a protein consisting 352 amino acids, is known to transduce various signals such as cell differentiation, cell survival, cell proliferation...

  20. Development of CXCR4 modulators by virtual HTS of a novel amide-sulfamide compound library.

    Science.gov (United States)

    Bai, Renren; Shi, Qi; Liang, Zhongxing; Yoon, Younghyoun; Han, Yiran; Feng, Amber; Liu, Shuangping; Oum, Yoonhyeun; Yun, C Chris; Shim, Hyunsuk

    2017-01-27

    CXCR4 plays a crucial role in recruitment of inflammatory cells to inflammation sites at the beginning of the disease process. Modulating CXCR4 functions presents a new avenue for anti-inflammatory strategies. However, using CXCR4 antagonists for a long term usage presents potential serious side effect due to their stem cell mobilizing property. We have been developing partial CXCR4 antagonists without such property. A new computer-aided drug design program, the FRESH workflow, was used for anti-CXCR4 lead compound discovery and optimization, which coupled both compound library building and CXCR4 docking screens in one campaign. Based on the designed parent framework, 30 prioritized amide-sulfamide structures were obtained after systemic filtering and docking screening. Twelve compounds were prepared from the top-30 list. Most synthesized compounds exhibited good to excellent binding affinity to CXCR4. Compounds Ig and Im demonstrated notable in vivo suppressive activity against xylene-induced mouse ear inflammation (with 56% and 54% inhibition). Western blot analyses revealed that Ig significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, Ig attenuated the amount of TNF-α secreted by pathogenic E. coli-infected macrophages. More importantly, Ig had no observable cytotoxicity. Our results demonstrated that FRESH virtual high throughput screening program of targeted chemical class could successfully find potent lead compounds, and the amide-sulfamide pharmacophore was a novel and effective framework blocking CXCR4 function.

  1. Controlled delivery of SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery.

    Science.gov (United States)

    Rybalko, Viktoriya Y; Pham, Chantal B; Hsieh, Pei-Ling; Hammers, David W; Merscham-Banda, Melissa; Suggs, Laura J; Farrar, Roger P

    2015-11-01

    Therapeutic delivery of regeneration-promoting biological factors directly to the site of injury has demonstrated its efficacy in various injury models. Several reports describe improved tissue regeneration following local injection of tissue specific growth factors, cytokines and chemokines. Evidence exists that combined cytokine/growth factor treatment is superior for optimizing tissue repair by targeting different aspects of the regeneration response. The purpose of this study was to evaluate the therapeutic potential of the controlled delivery of stromal cell-derived factor-1alpha (SDF-1α) alone or in combination with insulin-like growth factor-I (SDF-1α/IGF-I) for the treatment of tourniquet-induced ischemia/reperfusion injury (TK-I/R) of skeletal muscle. We hypothesized that SDF-1α will promote sustained stem cell recruitment to the site of muscle injury, while IGF-I will induce progenitor cell differentiation to effectively restore muscle contractile function after TK-I/R injury while concurrently reducing apoptosis. Utilizing a novel poly-ethylene glycol PEGylated fibrin gel matrix (PEG-Fib), we incorporated SDF-1α alone (PEG-Fib/SDF-1α) or in combination with IGF-I (PEG-Fib/SDF-1α/IGF-I) for controlled release at the site of acute muscle injury. Despite enhanced cell recruitment and revascularization of the regenerating muscle after SDF-1α treatment, functional analysis showed no benefit from PEG-Fib/SDF-1α therapy, while dual delivery of PEG-Fib/SDF-1α/IGF-I resulted in IGF-I-mediated improvement of maximal force recovery and SDF-1α-driven in vivo neovasculogenesis. Histological data supported functional data, as well as highlighted the important differences in the regeneration process among treatment groups. This study provides evidence that while revascularization may be necessary for maximizing muscle force recovery, without modulation of other effects of inflammation it is insufficient.

  2. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction.

    Science.gov (United States)

    Mayorga, Mari; Kiedrowski, Matthew; Shamhart, Patricia; Forudi, Farhad; Weber, Kristal; Chilian, William M; Penn, Marc S; Dong, Feng

    2016-01-01

    The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI.

  3. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells.

    Science.gov (United States)

    Wang, Guo-Dong; Liu, Yi-Xun; Wang, Xiao; Zhang, Yong-Le; Zhang, Ya-Dong; Xue, Feng

    2017-01-13

    This study aims to explore the role of the SDF-1/CXCR4 axis in mediating BMSCs and SCI recovery. BMSCs were collected and SCI rat models were established. Wistar rats were assigned into the blank control, sham, SCI, SCI + BMSCs, SCI + BMSCs + SDF-1, SCI + BMSCs + AMD3100 (an inhibitor of SDF-1/CXCR4 axis) and SCI + BMSCs + SDF-1 + AMD3100 groups. Hind limb motor function was measured 7, 14, 21 and 28 days after operation. qRT-PCR, western blotting and ELISA was performed to determine the expressions of SDF-1, CXCR4, NGF, BDNF, GFAP and GAP-43, TNF-α, IL-1β, L-6 and IFN-γ. Hind limb motor function scores 7 days after the operation were reduced in the SCI rats of the blank control and sham groups. Hind limb function was found to be better in the SCI + BMSCs and SCI + BMSCs + SDF-1 groups than in the SCI, SCI + BMSCs + AMD3100 and SCI + BMSCs + SDF-1 + AMD3100 groups 14, 21 and 28 days after operation. Furthermore, the SCI group had lower SDF-1, CXCR4, NGF, BDNF and GAP-43 expressions but higher GFAP, TNF-α, IL-1β, IL-6 and IFN-γ than the blank control and sham groups 28 days after operation. While, the SCI + BMSCs, SCI + BMSCs + SDF-1 and SCI + BMSCs + SDF-1 + AMD3100 groups displayed opposite trends to the SCI and SCI + BMSCs + AMD3100 groups. In conclusion, SDF-1/CXCR4 axis promotes recovery after SCI by mediating BMSCs.

  4. Construction and migration of rat bone marrow mesenchymal stem cells coexpressing EGFP and CXCR4%共表达EGFP和CXCR4的大鼠骨髓间充质干细胞的构建及其迁移能力

    Institute of Scientific and Technical Information of China (English)

    俞晓岚; 张志坚; 吴秀丽; 黄志新

    2010-01-01

    目的 构建携带增强绿色荧光蛋白(EGFP)及CXCR4慢病毒载体,并实现其在大鼠骨髓间充质干细胞(rMSCs)中的表达,观察转CXCR4基因后对rMSCs迁移能力的影响. 方法 RT-PCR扩增大鼠CXCR4编码区片段,将其插入慢病毒载体质粒PNL-IRES2-EGFP,获得的PNL-CXCR4-IRES2-EGFP与包装及包膜质粒用脂质体法共转染293T细胞,包装生产慢病毒.所获慢病毒转染rMSCs后,用RT-PCR、Western blot、细胞免疫荧光组织化学和流式细胞术检测转CXCR4基因rMSCs组、转空载体rMSCs组中CXCR4表达情况.利用Transwell方法检测两组rMSCs在SDF-1作用下的迁移能力. 结果 双酶切和测序证实,PNL-CXCR4-IRES2-EGFP构建正确,转CXCR4基因rMSCs组CXCR4表达明显增多,在SDF-1α作用下迁移能力明显增强. 结论 成功构建带有EGFP和大鼠CXCR4的慢病毒载体,并获得CXCR4-rMSCs基因工程细胞,为深入研究SDF/CXCR4轴在rMSCs向损伤组织定向迁移中的作用奠定了基础.

  5. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  6. Clinical significance of CXCR4 and CCR7 expression in Barrett's esophagus, esophageal adenocarcinoma and esophageal squamous cell carcinoma%CXCR4和CCR7在Barrett's食管、食管腺癌和食管鳞癌中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    唐慧; 张超; 李琳; 严新民; 郭强

    2010-01-01

    目的:探讨Barrett's食管(BE)、食管腺癌(EADC)和食管鳞癌(ESCC)中趋化因子受体4(CXCR4)和趋化因子受体7(CCR7)表达的临床意义.方法:应用免疫组织化学SP法对56例正常食管黏膜、80例BE(含22例BE伴多灶性非典型增生)、25例EADC和48例ESCC中的CXCR4和CCR7的表达进行检测,运用免疫组织化学图像分析加以定量,然后进行统计学分析.结果:CXCR4和CCR7在BE、EADC和ESCC中的表达均显著高于正常食管黏膜组织(CXCR4:78.75%,68.00%,83.33% vs 39.29%:CCR7:60.00%,60.00%,58.33%vs 30.36%:均P<0.01):CXCR4和CCR7的表达在BE、EADC和ESCC这3类食管病理类型中的表达无差异:CXCR4的表达在BE和ESCC中均显著高于CCR7(P<0.05,P<0.01).并且CXCR4和CCR7的表达差异与临床病理特征有一定关系:CXCR4和CCR7在BE、EADC和ESCC的表达与性别、年龄、病变发生位置均无关;CXCR4和CCR7的表达在BE无非典型增生和BE伴多灶性非典型增生这两类组织样本中无差异:CXCR4和CCR7在中-低分化EADC中的表达较高分化,以及有淋巴结转移较无淋巴结转移均显著升高(P<0.05);CXCR4和CCR7在ESCC中的表达水平在肿瘤TNM分期的Ⅲ-Ⅳ级较Ⅰ-Ⅱ级以及有淋巴结转移较无淋巴结转移均显著升高(P<0.05),中.低分化较高分化则极显著升高(P<0.01).BE无非典型增生、BE伴多灶性非典型增生和EADC组织中CXCR4的表达与CCR7的表达呈明显的正相关(r=0.456,r=0.652,r=0.490),而在ESCC中CXCR4的表达与CCR7的表达无相关性(r=0.076).结论:联合检测CXCR4和CCR7有助于更准确诊断BE、EADC和ESCC;CXCR4和CCR7高表达是EADC和ESCC具有较强浸润和转移潜能的重要标志:CXCR4和CCR7可能共同参与了从BE到EADC的发展过程.

  7. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    Science.gov (United States)

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  8. Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity.

    Science.gov (United States)

    Tadagaki, Kenjiro; Tudor, Daniela; Gbahou, Florence; Tschische, Pia; Waldhoer, Maria; Bomsel, Morgane; Jockers, Ralf; Kamal, Maud

    2012-05-24

    Human cytomegalovirus (HCMV) encodes four 7-transmembrane-spanning (7TM) proteins, US28, US27, UL33, and UL78, which present important sequence homology with human chemokine receptors. Whereas US28 binds a large range of chemokines and disturbs host cell signaling at different levels, the others are orphans with largely unknown functions. Assembly of 2 different 7TM proteins into hetero-oligomeric complexes may profoundly change their respective functional properties. We show that HCMV-encoded UL33 and UL78 form heteromers with CCR5 and CXCR4 chemokine receptors in transfected human embryonic kidney 293T cells and monocytic THP-1 cells. Expression of UL33 and UL78 had pleiotropic, predominantly negative, effects on CCR5 and CXCR4 cell surface expression, ligand-induced internalization, signal transduction, and migration without modifying the chemokine binding properties of CCR5 and CXCR4. Importantly, the coreceptor activity of CCR5 and CXCR4 for HIV was largely impaired in the presence of UL33 and UL78 without affecting expression of the primary HIV entry receptor CD4 and its interaction with CCR5 and CXCR4. Collectively, we identified the first molecular function for the HCMV-encoded orphan UL33 and UL78 7TM proteins, namely the regulation of cellular chemokine receptors through receptor heteromerization.

  9. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140.

    Science.gov (United States)

    Beider, Katia; Ribakovsky, Elena; Abraham, Michal; Wald, Hanna; Weiss, Lola; Rosenberg, Evgenia; Galun, Eithan; Avigdor, Abraham; Eizenberg, Orly; Peled, Amnon; Nagler, Arnon

    2013-07-01

    Chemokine axis CXCR4/CXCL12 is critically involved in the survival and trafficking of normal and malignant B lymphocytes. Here, we investigated the effect of high-affinity CXCR4 antagonist BKT140 on lymphoma cell growth and rituximab-induced cytotoxicity in vitro and in vivo. In vitro efficacy of BKT140 alone or in combination with rituximab was determined in non-Hodgkin lymphoma (NHL) cell lines and primary samples from bone marrow aspirates of patients with NHL. In vivo efficacy was evaluated in xenograft models of localized and disseminated NHL with bone marrow involvement. Antagonizing CXCR4 with BKT140 resulted in significant inhibition of CD20+ lymphoma cell growth and in the induction of cell death, respectively. Combination of BKT140 with rituximab significantly enhanced the apoptosis against the lymphoma cells in a dose-dependent manner. Moreover, rituximab induced CXCR4 expression in lymphoma cell lines and primary lymphoma cells, suggesting the possible interaction between CD20 and CXCR4 pathways in NHL. Primary bone marrow stromal cells (BMSC) further increased CXCR4 expression and protected NHL cells from rituximab-induced apoptosis, whereas BKT140 abrogated this protective effect. Furthermore, BKT140 showed efficient antilymphoma activity in vivo in the xenograft model of disseminated NHL with bone marrow involvement. BKT140 treatment inhibited the local tumor progression and significantly reduced the number of NHL cells in the bone marrow. Combined treatment of BKT140 with rituximab further decreased the number of viable lymphoma cells in the bone marrow, achieving 93% reduction. These findings suggest the possible role of CXCR4 in NHL progression and response to rituximab and provide the scientific basis for the development of novel CXCR4-targeted therapies for refractory NHL. ©2013 AACR.

  10. Effect of CXCR4/SDF-1α in Detected Migration and Proliferation of HeLa Cells%CXCR4/SDF-1α对宫颈癌HeLa细胞定向迁移及增殖的影响

    Institute of Scientific and Technical Information of China (English)

    张建平; 吕卫国; 谢幸

    2008-01-01

    目的 了解CXCR4在HeLa细胞的表达情况.并借助细胞培养评价CxCR4/SDF-1α对HeLa细胞定向迁移及增殖的影响.方法 CXCR4 mAb免疫染色HeLa细胞.用Transwell侵袭转移模型评价HeLa细胞的迁移情况,其中,上室中加入预先用(或不用)CXCR4单抗预孵育的HeLa细胞.下室中加入含0~100ng/ml SDF-1α的培养基.为评价CXCR4、SDF-1α对HeLa细胞增殖的影响,将HeLa细胞接种于有(无)SDF-1α和(或)CXCR4的低血清环境72 h.结果 CXCR4在所有HeLa细胞上均有表达.HeLa细胞能顺SDF-1α浓度差定向迁移,且这一作用可被CXCR4 mAb拮抗.SDF-1α能促进He-La细胞在低血清环境中增殖.结论 CXCR4/SDF-1α参与了HeLa细胞定向迁移的过程并影响其增殖.

  11. CXCR4 Inhibition with AMD3100 Sensitizes Prostate Cancer to Docetaxel Chemotherapy

    Directory of Open Access Journals (Sweden)

    Urszula M. Domanska

    2012-08-01

    Full Text Available Several in vitro and in vivo models have revealed the key role of CXCR4/CXCL12 axis in tumor-stroma interactions. Stromal cells present in the tumor microenvironment express high levels of CXCL12 protein, directly stimulating proliferation and migration of CXCR4-expressing cancer cells. This specific prosurvival influence of stromal cells on tumor cells is thought to protect them from cytotoxic chemotherapy and is postulated as a possible explanation for the minimal residual disease in hematological and solid cancers. Therefore, CXCR4/CXCL12 signaling is an attractive therapeutic target in cancer, as proven in preclinical leukemia mouse models, where CXCR4 inhibition sensitized cancer cells to conventional chemotherapy. This study investigates whether inhibition of CXCR4 with the specific inhibitor AMD3100 sensitizes human prostate cancer cells to docetaxel. We showed that both mouse and human stromal cell lines have a protective effect on PC3-luc cells by promoting their survival after chemotherapy. Furthermore, we demonstrated that AMD3100 sensitizes PC3-luc cells to docetaxel. In a subcutaneous xenograft mouse model of human prostate carcinoma, we showed that a combination of docetaxel and AMD3100 exerts increased antitumor effect compared with docetaxel alone. We concluded that CXCR4 inhibition chemosensitizes prostate cancer cells, both in vitro and in vivo. To explore the relevance of these findings, we analyzed CXCR4 expression levels in human prostate cancer samples. We found that cancer cells present in bone metastatic lesions express higher CXCR4 levels relative to the cells present in primary tumors and lymph node metastatic lesions. These findings underscore the potential of CXCR4 inhibitors as chemosensitizing agents.

  12. 非小细胞肺癌中SDF-1、CXCR4的表达及临床意义%The Expressions of Stromal-Cell Derived Factor 1 (SDF-1), CXC Chemokin Receptor 4 (CXCR4) and their Clinical Significances in Human Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    蔡永芳; 辛建保; 石新兰; 田淑君

    2006-01-01

    目的 探讨基质细胞衍生因子(SDF-1)及其受体CXCR4在非小细胞肺癌(NSCLC)中的表达及临床意义.方法 利用免疫组织化学方法在40例NSCLC和10例对照组肺组织中检测SDF-1、CXCR4的表达.结果 在NSCLC中,SDF-1、CXCR4的阳性表达率分别为65.00%(26/40)、45.00%(18/40),与对照组肺组织比较均有显著性差异(P<0.01,P<0.05).SDF-1、CXCR4的表达与肺癌细胞分化程度、淋巴结转移和组织学类型密切相关(P<0.01,P<0.05),而与性别、年龄无相关性(P>0.05),在NSCLC中,SDF-1和CXCR4表达之间无显著相关性(P>0.05).结论 SDF-1、CXCR4的表达与肺癌分化程度及转移有关,可作为临床预测肺癌患者预后的指标.

  13. Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study.

    Science.gov (United States)

    Li, Lu; Wu, Shengzheng; Li, Peijing; Zhuo, Lisha; Gao, Yunhua; Xu, Yali

    2015-12-01

    Our objective is to investigate the promoting effect of hypoxic preconditioning combined with microbubble (MB)-mediated ultrasound (US) on the SDF-1/CXCR4 expression and the migration ability of mesenchymal stem cells (MSCs). Based on the uniform design, the parameters of MB-mediated US, such as the total treatment time (T), acoustic intensity (Q), and the dosage of MBs, were optimized firstly. The results were assessed by regression analysis. Using the optimum irradiation parameters, the concentration of SDF-1 in the supernatant, the expression levels of membrane CXCR4, and the cell viability of hypoxic MSCs or normoxic MSCs were compared. The in vitro transwell migration assay was performed as well. The best combination of parameters for more SDF-1 secretion and less MSCs death was T = 30 s, A = 0.6 W/cm(2), and MB = 10(6)/ml. After 24 h of hypoxic preconditioning, the expression of SDF-1 and surface CXCR4 was increased in the hypoxic MSC group as compared to the normoxic MSC group (P SDF-1/CXCR4 with the optimum parameters (P SDF-1/CXCR4 expression and improve the migration ability in MSCs.

  14. Differential proteome analysis of the cell differentiation regulated by BCC, CRH, CXCR4, GnRH, GPCR, IL1 signaling pathways in Chinese fire-bellied newt limb regeneration.

    Science.gov (United States)

    Geng, Xiaofang; Xu, Tiantian; Niu, Zhipeng; Zhou, Xiaochun; Zhao, Lijun; Xie, Zhaohui; Xue, Deming; Zhang, Fuchun; Xu, Cunshuan

    2014-01-01

    Following amputation, the newt has the remarkable ability to regenerate its limb, and this process involves dedifferentiation, proliferation and differentiation. To investigate the potential proteome during a dynamic network of Chinese fire-bellied newt limb regeneration (CNLR), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrum (MS) were applied to examine changes in the proteome that occurred at 11 time points after amputation. Meanwhile, several proteins were selected to validate their expression levels by Western blot. The results revealed that 1476 proteins had significantly changed as compared to the control group. Gene Ontology annotation and protein network analysis by Ingenuity Pathway Analysis 9.0 (IPA) software suggested that the differentially expressed proteins were involved in 33 kinds of physiological activities including signal transduction, cell proliferation, cell differentiation, etc. Among these proteins, 407 proteins participated in cell differentiation with 212 proteins in the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte, and 37 proteins participated in signaling pathways of BCC, CRH, CXCR4, GnRH, GPCR and IL1 which regulated cell differentiation and redifferentiation. On the other hand, the signal transduction activity and cell differentiation activity were analyzed by IPA based on the changes in the expression of these proteins. The results showed that BCC, CRH, CXCR4, GnRH, GPCR and IL1 signaling pathways played an important role in regulating the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte during CNLR.

  15. Altered CXCL12 expression reveals a dual role of CXCR4 in osteosarcoma primary tumor growth and metastasis.

    Science.gov (United States)

    Neklyudova, Olga; Arlt, Matthias J E; Brennecke, Patrick; Thelen, Marcus; Gvozdenovic, Ana; Kuzmanov, Aleksandar; Robl, Bernhard; Botter, Sander M; Born, Walter; Fuchs, Bruno

    2016-08-01

    Better understanding of the molecular mechanisms of metastasis-the major cause of death in osteosarcoma (OS)-is a key for the development of more effective metastasis-suppressive therapy. Here, we investigated the biological relevance of the CXCL12/CXCR4 axis in OS. We interfered with CXCL12/CXCR4 signaling in CXCR4-expressing human 143-B OS cells through stable expression of CXCL12, of its competitive antagonist P2G, or of CXCL12-KDEL, designed to retain CXCR4 within the cell. Intratibial OS xenograft mouse model metastasizing to the lung was used to assess tumorigenic and metastatic potential of the manipulated cell lines. Constitutive expression of native CXCL12 promoted lung metastasis without affecting tumor growth. Stable expression of P2G or CXCL12-KDEL significantly accelerated tumor growth but diminished lung metastasis. Tumors grown from P2G- or CXCL12-KDEL-expressing cells contained higher levels of CXCR4-encoding mRNA going along with a higher percentage of CXCR4-expressing tumor cells. Lung metastases of all groups were predominantly enriched with CXCR4-expressing tumor cells. Higher abundance of CXCR4 possibly contributed to increased local retention of tumor cells by bone marrow-derived CXCL12, reflected in the increased primary tumor growth and decreased number of lung metastases in P2G and CXCL12-KDEL groups. Higher percentage of CXCR4-expressing lung metastatic cells compared to the corresponding primary tumors point to important functions of the CXCL12/CXCR4 axis in late steps of metastasis. In conclusion, based on the here reported results, local treatment of lung metastases with novel CXCR4-targeting therapeutics might be considered and favored over anti-CXCR4 systemic therapy.

  16. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL

    DEFF Research Database (Denmark)

    Staller, Peter; Sulitkova, Jitka; Lisztwan, Joanna

    2003-01-01

    Organ-specific metastasis is governed, in part, by interactions between chemokine receptors on cancer cells and matching chemokines in target organs. For example, malignant breast cancer cells express the chemokine receptor CXCR4 and commonly metastasize to organs that are an abundant source...... regulates CXCR4 expression owing to its capacity to target hypoxia-inducible factor (HIF) for degradation under normoxic conditions. This process is suppressed under hypoxic conditions, resulting in HIF-dependent CXCR4 activation. An analysis of clear cell renal carcinoma that manifests mutation of the VHL...

  17. Novel guanide-substituted compounds bind to CXCR4 and inhibit breast cancer metastasis.

    Science.gov (United States)

    Shepard, Joyce B; Wilkinson, Royce A; Starkey, Jean R; Teintze, Martin

    2014-01-01

    CXCR4 has been shown to be overexpressed on breast cancer cells including the human MDA-MB-231 cell line. Cancer cells overexpressing the CXCR4 receptor are capable of undergoing metastasis to organs expressing high levels of CXCL12. We have synthesized numerous guanide, biguanide, phenylguanide, and naphthylguanide compounds that bind to CXCR4 at the CXCL12-binding site and thus should prevent CXCR4-facilitated cancer metastasis. The novel compounds presented here were tested for CXCR4 affinity, toxicity, receptor activation, and for their ability to prevent breast cancer metastases. Three of the compounds bound to CXCR4 at IC50 values of 0.06-0.2 μmol/l, with no associated cell toxicity or receptor activation at these concentrations. These high CXCR4 affinity compounds also showed inhibition of in-vitro wound migration. They were then tested in an in-vivo mouse breast cancer lung colony model. All of these compounds showed reductions in the number of MDA-MB-231 lung metastases compared with mock-treated control mice without evidence of cardiac, liver, or kidney toxicity in treated mice.

  18. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia.

    Science.gov (United States)

    Treon, Steven P; Cao, Yang; Xu, Lian; Yang, Guang; Liu, Xia; Hunter, Zachary R

    2014-05-01

    Whole genome sequencing has revealed activating somatic mutations in MYD88 (L265P) and CXCR4 in Waldenström macroglobulinemia (WM). CXCR4 somatic mutations in WM are the first ever reported in human cancer and are similar to nonsense (NS) and frameshift (FS) germline mutations found in warts, hypogammaglobulinemia, infections and myelokathexis (WHIM) syndrome. We genotyped lymphoplasmacytic cells from 175 WM patients and observed significantly higher bone marrow (BM) disease involvement, serum immunoglobulin-M levels, and symptomatic disease requiring therapy, including hyperviscosity syndrome in those patients with MYD88(L265P)CXCR4(WHIM/NS) mutations (P < .03). Patients with MYD88(L265P)CXCR4(WHIM/FS) or MYD88(L265P)CXCR4(WILDTYPE (WT)) had intermediate BM and serum immunoglobulin-M levels; those with MYD88(WT)CXCR4(WT) showed lowest BM disease burden. Fewer patients with MYD88(L265P) and CXCR4(WHIM/FS or NS) vs MYD88(L265P)CXCR4(WT) presented with adenopathy (P < .01), further delineating differences in disease tropism based on CXCR4 status. Neither MYD88 nor CXCR4 mutations correlated with SDF-1a (RS1801157) polymorphisms in 54 patients who were genotyped for these variants. Unexpectedly, risk of death was not impacted by CXCR4 mutation status, but by MYD88(WT) status (hazard ratio 10.54; 95% confidence interval 2.4-46.2, P = .0018). Somatic mutations in MYD88 and CXCR4 are important determinants of clinical presentation and impact overall survival in WM. Targeted therapies directed against MYD88 and/or CXCR4 signaling may provide a personalized treatment approach to WM.

  19. 趋化因子受体CXCR4及CCR5真核表达载体的构建及其在卵巢癌细胞中的表达%Construction and expression of vectors carrying chemokine receptors CXCR4/CCR5 in SKOV3 cells

    Institute of Scientific and Technical Information of China (English)

    谢婷婷; 魏莉; 宋辉; 于月成

    2010-01-01

    目的:构建人CXCR4及CCR5真核表达重组质粒,转染人卵巢癌细胞SKOV3,建立稳定转染细胞系并观察其表达效果.方法:从人外周血单个核细胞中提取RNA,采用反转录PCR技术扩增CXCR4及CCR5的基因编码序列,将序列克隆至真核表达载体pEGFP,经酶切和测序鉴定后,应用脂质体转染技术将质粒cancer.pEGFP-CXCR4和pEGFP-CCR5分别导入不表达CXCR4及CCR5蛋白的SKOV3细胞,经G418抗性筛选得到阳性细胞克隆并扩大培养成系.分别采用免疫荧光染色和流式细胞术方法(FCM)检测稳定转染细胞株CXCR4和CCR5的表达.结果:构建了真核表达载体pEG-FP-CXCR4和pEGFP-CCR5;得到了抗G418阳性细胞克隆;免疫荧光染色和FCM检测结果显示,转染质粒的SKOV3细胞表达CXCR4和CCR5.结论:成功建立稳定表达趋化因子受体CXCR4和CCR5的卵巢癌细胞株,为CXCR4和CCR5在卵巢癌中的研究工作提供依据及平台.

  20. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Abedini F

    2012-07-01

    Full Text Available Fatemeh Abedini,1 Hossein Hosseinkhani,2 Maznah Ismail,1,3 Abraham J Domb,4 Abdul Rahman Omar,1,5 Pei Pei Chong,1,2 Po-Da Hong,3 Dah-Shyong Yu,6 Ira-Yudovin Farber41Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 3Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel, 5Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia, 6Nanomedicine Research Center, National Defense Medical Center, Taipei, TaiwanPurpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles.Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was

  1. Interaction between CXCR4 and CCL20 pathways regulates tumor growth.

    Directory of Open Access Journals (Sweden)

    Katia Beider

    Full Text Available The chemokine receptor CXCR4 and its ligand CXCL12 is overexpressed in the majority of tumors and is critically involved in the development and metastasis of these tumors. CXCR4 is expressed in malignant tumor cells whereas its ligand SDF-1 (CXCL12 is expressed mainly by cancer associated fibroblasts (CAF. Similarly to CXCR4, the chemokine CCL20 is overexpressed in variety of tumors; however its role and regulation in tumors is not fully clear. Here, we show that the chemokine receptor CXCR4 stimulates the production of the chemokine CCL20 and that CCL20 stimulates the proliferation and adhesion to collagen of various tumor cells. Furthermore, overexpression of CCL20 in tumor cells promotes growth and adhesion in vitro and increased tumor growth and invasiveness in vivo. Moreover, neutralizing antibodies to CCL20 inhibit the in vivo growth of tumors that either overexpress CXCR4 or CCL20 or naturally express CCL20. These results reveal a role for CCL20 in CXCR4-dependent and -independent tumor growth and suggest a therapeutic potential for CCL20 and CCR6 antagonists in the treatment of CXCR4- and CCL20-dependent malignancies.

  2. Interaction between CXCR4 and CCL20 pathways regulates tumor growth.

    Science.gov (United States)

    Beider, Katia; Abraham, Michal; Begin, Michal; Wald, Hanna; Weiss, Ido D; Wald, Ori; Pikarsky, Eli; Abramovitch, Rinat; Zeira, Evelyne; Galun, Eithan; Nagler, Arnon; Peled, Amnon

    2009-01-01

    The chemokine receptor CXCR4 and its ligand CXCL12 is overexpressed in the majority of tumors and is critically involved in the development and metastasis of these tumors. CXCR4 is expressed in malignant tumor cells whereas its ligand SDF-1 (CXCL12) is expressed mainly by cancer associated fibroblasts (CAF). Similarly to CXCR4, the chemokine CCL20 is overexpressed in variety of tumors; however its role and regulation in tumors is not fully clear. Here, we show that the chemokine receptor CXCR4 stimulates the production of the chemokine CCL20 and that CCL20 stimulates the proliferation and adhesion to collagen of various tumor cells. Furthermore, overexpression of CCL20 in tumor cells promotes growth and adhesion in vitro and increased tumor growth and invasiveness in vivo. Moreover, neutralizing antibodies to CCL20 inhibit the in vivo growth of tumors that either overexpress CXCR4 or CCL20 or naturally express CCL20. These results reveal a role for CCL20 in CXCR4-dependent and -independent tumor growth and suggest a therapeutic potential for CCL20 and CCR6 antagonists in the treatment of CXCR4- and CCL20-dependent malignancies.

  3. Notch pathway promotes ovarian cancer growth and migration via CXCR4/SDF1α chemokine system.

    Science.gov (United States)

    Chiaramonte, R; Colombo, M; Bulfamante, G; Falleni, M; Tosi, D; Garavelli, S; De Simone, D; Vigolo, E; Todoerti, K; Neri, A; Platonova, N

    2015-09-01

    Ovarian cancer is the most deadly gynecological malignancy. Understanding the molecular pathogenesis of ovarian cancer is critical to provide new targeted therapeutic strategies. Recent evidence supports a role for Notch in ovarian cancer progression and associates its dysregulation to poor overall survival. Similarly, CXCR4/SDF1α signalling correlates with ovarian cancer progression and metastasis. Recent findings indicate that Notch promotes CXCR4/SDF1α signalling and its effect on cell growth and migration; nonetheless, up to now, the association between Notch and CXCR4/SDFα in ovarian cancer has not been reported. Thereby, the aim of this study was to investigate if Notch and CXCR4/SDF1α cooperate in determining ovarian cancer growth, survival and migration. To address this issue, Notch signalling was inhibited by using γ-secretase inhibitors, or upregulated by forcing of Notch1 expression in ovarian cancer cell lines. Our results indicated that Notch activity influenced tumour cell growth and survival and positively regulated CXCR4 and SDF1α expression. CXCR4/SDF1α signalling mediated the effect of Notch pathway on ovarian cancer cell growth and SDF1α-driven migration. Additionally, for the first time, we demonstrated that Notch signalling activation can be detected in ovarian cancer specimens by immunohistochemistry analysis of the Notch transcriptional target, HES6 and is positively correlated with high expression levels of CXCR4 and SDF1α. Our results demonstrate that Notch affects ovarian cancer cell biology through the modulation of CXCR4/SDF1α signalling and suggest that Notch inhibition may be a rationale therapeutic approach to hamper ovarian cancer progression mediated by the CXCR4/SDF1α axis.

  4. Loss of C-terminal α-helix decreased SDF-1α-mediated signaling and chemotaxis without influencing CXCR4 internalization

    Institute of Scientific and Technical Information of China (English)

    Shao-hui CAI; Yi TAN; Xian-da REN; Xiao-hong LI; Shao-xi CAI; Jun DU

    2004-01-01

    AIM: To investigate the possibility that a novel α-helix-defective mutant of stromal cell-derived factor-1α (SDF-1α) (SDF-1/54R) acts as an antagonist of CXC chemokine receptor 4 (CXCR4). METHODS: According to the genetic sequence of natural SDF- 1 α, a recombinant α-helix-defective mutant of SDF- 1 α was designed and some biologic characteristics of this mutant were demonstrated. The migration of Jurkat cells was assessed with chemotactic assay. ERK phosphorylation was analyzed by Western blot with a specific anti-phospho-ERK 1/2 antibody.Intracellular calcium influx was examined by flow cytometer with a calcium indicator dye Fluo-3AM. The CXCR4 on the cell surface was detected by flow cytometer with a PE conjoined anti-human CXCR4 antibody. RESULTS:Compared with native SDF-1α, SDF-1/54R displayed apparent decrease in chemotactic ability, ERK 1/2 activation,and intracellular calcium influx in Jurkat cells. However, the binding to CXCR4 and inducing CXCR4 internalization of SDF-1/54R did not change outstandingly. Moreover, a competitive inhibitory effect of SDF-1/54R on the migration of Jurkat cells induced by native SDF-1 α was confirmed. CONCLUSION: α-helix-defective mutant of SDF-1 α, SDF-1/54R that remained both the N-terminus and the central β-sheet region, decreased SDF-1 α-mediated signaling and chemotaxis but did not influence CXCR4 internalization, which suggested that SDF-1/54R might be developed as an anti-CHIV inhibitor with high biological potency and low side-effect.

  5. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  6. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  7. Vascular CXCR4 expression - a novel antiangiogenic target in gastric cancer?

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available BACKGROUND: G-protein-coupled receptors (GPCRs are prime candidates for novel cancer prevention and treatment strategies. We searched for differentially expressed GPCRs in node positive gastric carcinomas. METHODOLOGY/PRINCIPAL FINDINGS: Differential expression of GPCRs in three node positive vs. three node negative intestinal type gastric carcinomas was analyzed by gene array technology. The candidate genes CXCL12 and its receptor CXCR4 were validated by real-time reverse-transcription polymerase chain reaction in an independent set of 37 gastric carcinomas. Translation was studied by immunohistochemistry in 347 gastric carcinomas using tissue microarrays as well as in 61 matching lymph node metastases. Protein expression was correlated with clinicopathological patient characteristics and survival. 52 GPCRs and GPCR-related genes were up- or down-regulated in node positive gastric cancer, including CXCL12. Differential expression of CXCL12 was confirmed by RT-PCR and correlated with local tumour growth. CXCL12 immunopositivity was negatively associated with distant metastases and tumour grade. Only 17% of gastric carcinomas showed CXCR4 immunopositive tumour cells, which was associated with higher local tumour extent. 29% of gastric carcinomas showed CXCR4 positive tumour microvessels. Vascular CXCR4 expression was significantly associated with higher local tumour extent as well as higher UICC-stages. When expressing both, CXCL12 in tumour cells and CXCR4 in tumour microvessels, these tumours also were highly significantly associated with higher T- and UICC-stages. Three lymph node metastases revealed vascular CXCR4 expression while tumour cells completely lacked CXCR4 in all cases. The expression of CXCL12 and CXCR4 had no impact on patient survival. CONCLUSIONS/SIGNIFICANCE: Our results substantiate the significance of GPCRs on the biology of gastric carcinomas and provide evidence that the CXCL12-CXCR4 pathway might be a novel promising

  8. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis.

    Science.gov (United States)

    Rivière, C; Subra, F; Cohen-Solal, K; Cordette-Lagarde, V; Letestu, R; Auclair, C; Vainchenker, W; Louache, F

    1999-03-01

    The identification of stromal cell-derived factor (SDF)-1alpha as a chemoattractant for human progenitor cells suggests that this chemokine and its receptor might represent critical determinants for the homing, retention, and exit of precursor cells from hematopoietic organs. In this study, we investigated the expression profile of CXCR4 receptor and the biological activity of SDF-1alpha during megakaryocytopoiesis. CD34(+) cells from bone marrow and cord blood were purified and induced to differentiate toward the megakaryocyte lineage by a combination of stem-cell factor (SCF) and recombinant human pegylated megakaryocyte growth and development factor (PEG-rhuMGDF). After 6 days of culture, a time where mature and immature megakaryocytes were present, CD41(+) cells were immunopurified and CXCR4mRNA expression was studied. High transcript levels were detected by a RNase protection assay in cultured megakaryocytes derived from cord blood CD34(+) cells as well as in peripheral blood platelets. The transcript levels were about equivalent to that found in activated T cells. By flow cytometry, a large fraction (ranging from 30% to 100%) of CD41(+) cells showed high levels of CXCR4 antigen on their surface, its expression increasing in parallel with the CD41 antigen during megakaryocytic differentiation. CXCR4 protein was also detected on peripheral blood platelets. SDF-1alpha acts on megakaryocytes by inducing intracellular calcium mobilization and actin polymerization. In addition, in in vitro transmigration experiments, a significant proportion of megakaryocytes was observed to respond to this chemokine. This cell migration was inhibited by pertussis toxin, indicating coupling of this signal to heterotrimeric guanine nucleotide binding proteins. Although a close correlation between CD41a and CXCR4 expession was observed, cell surface markers as well as morphological criteria indicate a preferential attraction of immature megakaryocytes (low level of CD41a and CD42a

  9. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus

    2009-01-01

    Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface int...

  10. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging.

    Science.gov (United States)

    Wester, Hans Jürgen; Keller, Ulrich; Schottelius, Margret; Beer, Ambros; Philipp-Abbrederis, Kathrin; Hoffmann, Frauke; Šimeček, Jakub; Gerngross, Carlos; Lassmann, Michael; Herrmann, Ken; Pellegata, Natalia; Rudelius, Martina; Kessler, Horst; Schwaiger, Markus

    2015-01-01

    Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [(68)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [(68)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [(68)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [(68)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders.

  11. CXCR4-PI3KⅢ-自噬轴与结肠癌LoVo细胞转移潜能相关性研究%Relationship of CXCR4-PI3KⅢ-autophagy axis and LoVo cell migration and invasion

    Institute of Scientific and Technical Information of China (English)

    王天宝; 石汉平; 韩方海; 董文广

    2013-01-01

    目的:探讨调控CXCR4-PI3KⅢ-自噬轴对结直肠癌LoVo细胞迁移和侵袭能力的影响.方法:实验分为正常LoVo细胞组、介导CXCR4-RNAi慢病毒转染LoVo细胞组(CXCR4-RNAi组)和无意义慢病毒转染LoVo细胞组(NC组).采用Q-PCR检测PI3KⅢmRNA表达,蛋白质印迹法检测PI3KⅢ、LC3-Ⅱ及Beclin l的表达,激光共聚焦显微镜观察绿色荧光颗粒,透射电镜观察自噬溶酶体,Transwell小室评价LoVo细胞迁移与侵袭能力.结果:PI3KⅢmRNA表达量正常LoVo细胞组为1.09±0.11,NC组为1.07±0.25,CXCR4-RNAi组为0.86±0.06.PI3KⅢ相对表达量CXCR4-RNAi组为0.227±0.023,低于正常LoVo细胞组的0.607±0.012(P<0.001)和NC组的0.667±0.040(P<0.001),正常LoVo细胞组和NC组差异无统计学意义,P=0.310.LC3-Ⅱ相对表达量CXCR4-RNAi组为0.083±0.012,低于正常LoVo细胞组的0.233±0.015(P<0.001)和NC组的0.253±0.020(P<0.001),正常LoVo细胞组和NC组差异无统计学意义,P=0.184.Beclin 1相对表达量CXCR4-RNAi组为0.207±0.012,低于正常LoVo细胞组的0.440±0.053(P=0.134)和NC组的0.650±0.252,P=0.011.绿色荧光颗粒和自噬溶酶体数量正常LoVo细胞组和NC组明显多于CXCR4-RNAi组.CXCR4-RNAi组迁移实验细胞计数(87.7±9.1)低于正常LoVo细胞组的126.3±4.9(P=0.009)和NC组的115.0±18.7(P=0.035).CXCR4-RNAi组侵袭实验细胞计数(88.7±10.5)低于正常LoVo细胞组的109.7±4.7 (P=0.019)和NC组的107.7±8.1,P=0.029.结论:CXCR4 PI3KⅢ自噬轴可调控结肠癌Lo-Vo细胞自噬状态,影响肿瘤细胞迁移和浸润,可能是恶性肿瘤浸润转移的机制之一.

  12. Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors.

    Directory of Open Access Journals (Sweden)

    Nilgun Isik

    Full Text Available BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET imaging method, we investigated the formation of CCR5 and CXCR4 heterodimers on the plasma membrane of live cells. We found that CCR5 and CXCR4 exist as constitutive heterodimers and ligands of CCR5 and CXCR4 promote different conformational changes within these preexisting heterodimers. Ligands of CCR5, in contrast to a ligand of CXCR4, induced a clear increase in FRET efficiency, indicating that selective ligands promote and stabilize a distinct conformation of the heterodimers. We also found that mutations at C-terminus of CCR5 reduced its ability to form heterodimers with CXCR4. In addition, ligands induce different conformational transitions of heterodimers of CXCR4 and CCR5 or CCR5(STA and CCR5(Delta4. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest a model in which CXCR4 and CCR5 spontaneously form heterodimers and ligand-binding to CXCR4 or CCR5 causes different conformational changes affecting heterodimerization, indicating the complexity of regulation of dimerization/function of these chemokine receptors by ligand binding.

  13. The role of SDF-1/CXCR4 in the vasculogenesis and remodeling of cerebral arteriovenous malformation

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-09-01

    Full Text Available Lingyan Wang,1 Shaolei Guo,2 Nu Zhang,2 Yuqian Tao,3 Heng Zhang,1 Tiewei Qi,2 Feng Liang,2 Zhengsong Huang2 1Department of Neurosurgery ICU, 2Department of Neurosurgery, 3Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China Background: Cerebral arteriovenous malformation (AVM involves the vasculogenesis of cerebral blood vessels and can cause severe intracranial hemorrhage. Stromal cell-derived factor-1 (SDF-1 and its receptor, CXCR4, are believed to exert multiple physiological functions including angiogenesis. Thus, we investigated the role of SDF-1/CXCR4 in the vasculogenesis of cerebral AVM.Methods: Brain AVM lesions from surgical resections were analyzed for the expression of SDF-1, CXCR4, VEGF-A, and HIF-1 by using immunohistochemical staining. Flow cytometry was used to quantify the level of circulating endothelial progenitor cells (EPCs. Further, in an animal study, chronic cerebral hypoperfusion model rats were analyzed for the expression of SDF-1 and HIF-1. CXCR4 antagonist, AMD3100, was also used to detect its effects on cerebral vasculogenesis and SDF-1 expression.Results: Large amounts of CXCR4-positive CD45+ cells were found in brain AVM lesion blood vessel walls, which also have higher SDF-1 expression. Cerebral AVM patients also had higher level of EPCs and SDF-1. In chronic cerebral hypoperfusion rats, SDF-1, HIF-1, and CD45 expressions were elevated. The application of AMD3100 effectively suppressed angiogenesis and infiltration of CXCR4-positive CD45+ cells in hypoperfusion rats compared to controls.Conclusion: The SDF-1/CXCR4 axis plays an important role in the vasculogenesis and migration of inflammatory cells in cerebral AVM lesions, possibly via the recruitment of bone marrow EPCs. Keywords: cerebral arteriovenous malformation, SDF-1/CXCR4, chronic cerebral hypoperfusion, endothelial progenitor cells

  14. EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas.

    Science.gov (United States)

    Li, Rong-Hui; Huang, Wen-He; Wu, Jun-Dong; Du, Cai-Wen; Zhang, Guo-Jun

    2017-02-01

    The purpose of the present study was to investigate the significance of C-X-C motif chemokine receptor type 4 (CXCR4) and epidermal growth factor receptors (EGFRs) in triple-negative breast cancer (TNBC). CXCR4 and EGFR expression levels were immunohistochemically determined in 207 primary breast cancer specimens. The associations between receptor expression and clinicopathological characteristics were analyzed, and receptor expression was also assessed as a prognostic factor. In the human MDA-MB-231 TNBC cell line, CXCR4 or EGFR was stably knocked down by short hairpin RNA, and the biological behavior of the cells, including migration, invasion and tumorigenesis, was investigated. The results revealed that TNBC was associated with younger age, higher histological grade and an aggressive phenotype. CXCR4 and EGFR were highly expressed in patients with TNBC, and those with high CXCR4 or EGFR expression exhibited an unfavorable prognosis in terms of disease-free survival and overall survival. In MDA-MB-231 cells, the expression of CXCR4 protein was decreased following EGFR silencing, while CXCR4 knockdown also caused a decrease in EGFR protein levels. The migratory and invasive capabilities of MDA-MB-231 cells were decreased following the knockdown of CXCR4 or EGFR expression. A strong correlation between CXCR4 and EGFR expression was identified in patients with TNBC. The results suggest that elevated expression levels of these two receptors may serve as predictive factors for poor prognosis in patients with TNBC. In addition, tumor proliferation, migration, invasion and tumorigenesis are weakened in MDA-MB-231 cells following suppression of CXCR4 or EGFR expression. Therefore, EGFR and CXCR4 may be potential therapeutic targets for TNBC.

  15. Immunohistochemical Expression of CXCR4 on Breast Cancer and Its Clinical Significance

    Directory of Open Access Journals (Sweden)

    Marina Okuyama Kishima

    2015-01-01

    Full Text Available Many tumor cells express chemokines and chemokine receptors, and, for this reason, these molecules can affect the tumor progression. It is known that breast cancer is a complex and heterogeneous neoplasia comprising distinct diseases, histological characteristics, and clinical outcomes. The most studied role for CXCL12 chemokine and its receptor CXCR4 in breast cancer pathogenesis is the metastasis event, although several reports have demonstrated its involvement in other processes, such as angiogenesis and tumor growth. It has been found that CXCR4 is required for breast cancer cell migration to other sites such as lung, bone, and lymph nodes, which express high levels of CXCL12 chemokine. Therefore, CXCR4 is being considered a prognostic marker in breast cancer. Within this context, this review summarizes established studies involving expression of CXCR4 on breast cancer, focusing on its clinical significance.

  16. Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer.

    Directory of Open Access Journals (Sweden)

    Edneia A S Ramos

    Full Text Available Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%. Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a

  17. PGK1 as Predictor of CXCR4 Expression, Bone Marrow Metastases and Survival in Neuroblastoma

    Science.gov (United States)

    von Loga, Katharina; Escherich, Gabriele; Wenke, Katharina; Izbicki, Jakob R.; Reinshagen, Konrad; Gros, Stephanie J.

    2013-01-01

    Background and Aim A close relationship between phosphoglycerate kinase 1 (PGK1) and the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1) has been shown for several cancers. However, the role of PGK1 has not been investigated for neuroblastoma, and PGK1 might be a therapeutic target for this tumor entity. The aim of the current study was to evaluate the role of PGK1 expression in neuroblastoma patients, to determine the impact of PGK1 expression levels on survival, and to correlate PGK1 expression with CXCR4 expression and bone marrow dissemination. Materials and Methods Samples from 22 patients with neuroblastoma that were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated for expression of PGK1 and CXCR4 using immunohistochemistry. Results were correlated with clinical parameters, metastases and outcome of patients. Immunocytochemistry, proliferation and expression analysis of CXCR4 and PGK1 were performed in neuroblastoma cell lines. Results PGK1 is expressed in neuroblastoma cells. PGK1 expression is significantly positively correlated with CXCR4 expression and tumor dissemination to the bone marrow. Moreover the expression of PGK1 is significantly associated with a negative impact on survival in patients with neuroblastoma. PGK1 is downregulated by inhibition of CXCR4 in neuroblastoma cells. Conclusion PGK1 appears to play an important role for neuroblastoma, predicting survival and tumor dissemination. Further in vivo studies outstanding, it is a candidate target for novel therapeutic strategies. PMID:24376734

  18. PGK1 as predictor of CXCR4 expression, bone marrow metastases and survival in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Helen M Ameis

    Full Text Available BACKGROUND AND AIM: A close relationship between phosphoglycerate kinase 1 (PGK1 and the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1 has been shown for several cancers. However, the role of PGK1 has not been investigated for neuroblastoma, and PGK1 might be a therapeutic target for this tumor entity. The aim of the current study was to evaluate the role of PGK1 expression in neuroblastoma patients, to determine the impact of PGK1 expression levels on survival, and to correlate PGK1 expression with CXCR4 expression and bone marrow dissemination. MATERIALS AND METHODS: Samples from 22 patients with neuroblastoma that were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated for expression of PGK1 and CXCR4 using immunohistochemistry. Results were correlated with clinical parameters, metastases and outcome of patients. Immunocytochemistry, proliferation and expression analysis of CXCR4 and PGK1 were performed in neuroblastoma cell lines. RESULTS: PGK1 is expressed in neuroblastoma cells. PGK1 expression is significantly positively correlated with CXCR4 expression and tumor dissemination to the bone marrow. Moreover the expression of PGK1 is significantly associated with a negative impact on survival in patients with neuroblastoma. PGK1 is downregulated by inhibition of CXCR4 in neuroblastoma cells. CONCLUSION: PGK1 appears to play an important role for neuroblastoma, predicting survival and tumor dissemination. Further in vivo studies outstanding, it is a candidate target for novel therapeutic strategies.

  19. The role of SDF-1/CXCR4 interaction and electron microscopic study of hepatic oval cells in rat%大鼠肝卵圆细胞的电镜观察及SDF-1/CXCR4轴作用研究

    Institute of Scientific and Technical Information of China (English)

    曾三平; 焦兴元; 黄晓明; 胡以则; 杜军

    2007-01-01

    目的 本研究通过应用AMD3100封闭卵圆细胞表面CXCR4受体,从而起到抑制趋化因子SDF-1的生物活性,观察大鼠肝卵圆细胞的生长及SDF-1,CXCR4 mRNA表达情况,探讨SDF-1/CXCR4轴在肝卵圆细胞激活、增殖、分化中所起的作用.方法 建立卵圆细胞增殖模型,分为四组,分别为:2-AAF/PH组,AMD3100/PH组,2-AAF/AMD3100/PH组,PH组,重(150±20)g的Wistar大鼠予2-AAF灌喂,联合2/3肝切除,制作卵圆细胞模型,并通过尾静脉注射AMD3100阻断SDF-1的生物学作用,分别在术后的第3、5、7、10、14、21天6个时间点各处死6只大鼠,取肝脏标本行CXCR4和SDF-1 RT-PCR,检测卵圆细胞CXCR4及SDF-1 mRNA的表达情况,并取第10天肝脏透射电镜检查,观察卵圆细胞的超微结构.结果 给予AMD3100抑制SDF-1作用后,肝脏卵圆细胞数量减少,细胞膜受体CXCR4表达下调,同时SDF-1表达也呈下调趋势.结论 抑制SDF-1活性可以在一定程度上减少卵圆细胞的增殖,SDF-1可以通过自分泌或旁分泌途径激活并促进肝卵圆细胞增殖.

  20. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Directory of Open Access Journals (Sweden)

    Cédric de Poorter

    Full Text Available Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  1. The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons

    Science.gov (United States)

    Merino, José Joaquín; Garcimartín, Alba; López-Oliva, María Elvira; Benedí, Juana; González, María Pilar

    2016-01-01

    Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). Methods: For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. Results: CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. Conclusion: CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult. PMID:27916896

  2. The ligands of CXCR4 in vascularization

    OpenAIRE

    Tuchscheerer, Nancy

    2012-01-01

    The formation of a functional and integrated vascular network is a basic process in the growth and maintenance of tissues and can be established by two forms of blood vessel growth in adults: angiogenesis and arteriogenesis. In this study, the ligands of the chemokine receptor CXCR4 and its role in angiogenesis (represented by the experimental myocardial infarction) and arteriogenesis (represented by the murine hind limb ischemia model) was investigated. The first approach identified the CXCL...

  3. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats

    Directory of Open Access Journals (Sweden)

    Hales Charles A

    2011-02-01

    Full Text Available Abstract Background CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood. Methods In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats. Results We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP, ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats. Conclusions The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.

  4. Role of CXCR4 in the Pathogenesis of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Amnon Peled, Sigal Tavor

    2013-01-01

    Full Text Available The Chemokine receptor CXCR4 and its ligand stromal derived factor-1 (SDF-1/CXCL12 are important players involved in cross-talk between leukemia cells and the bone marrow (BM microenvironment. CXCR4 expression is associated with poor prognosis in AML patients with and without the mutated FLT3 gene.CXCL12 which is constrictively secreted from the BM stroma and AML cells is critical for the survival and retention of AML cells within the BM. In vitro, CXCR4 antagonists were shown to inhibit the migration of AML cells in response to CXCL12. In addition, such antagonists were shown to inhibit the survival and colony forming potential of AML cells and abrogate the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. In vivo, using immune deficient mouse models, CXCR4 antagonists were found to induce the mobilization of AML cells and progenitor cells into the circulation and enhance anti leukemic effects of chemotherapy. The hypothesis that CXCL12/CXCR4 interactions contribute to the resistance of AML cells to signal transduction inhibitor- and chemotherapy-induced apoptosis is currently being tested in a series of Phase I/II studies in humans.

  5. X4-tropic human immunodeficiency virus IIIB utilizes CXCR4 as coreceptor, as distinct from R5X4-tropic viruses.

    Science.gov (United States)

    Islam, Salequl; Hoque, Sheikh Ariful; Adnan, Nihad; Tanaka, Atsushi; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2013-06-01

    Human immunodeficiency viruses initiate infections via CCR5 coreceptors and then change their tropism to C-X-C chemokine receptor type 4 (CXCR4), this change being associated with rapid disease progression. HIV-1IIIB, a widely described pure X4-tropic strain, is distinct from R5X4-tropic viruses. In this study, the requirement for amino terminal regions (NTRs) of CXCR4 for entry of HIV-1IIIB virus into host cells was examined and compared to that of R5X4-tropic viruses. CXCR4 and its deletion mutant (CXCR4ΔNTR23; first 23 amino acids removed from NTR) were amplified to examine their coreceptor activities. NP-2/CD4/CXCR4 and NP-2/CD4/CXCR4ΔNTR23 cell lines were prepared accordingly. Indirect immune fluorescence assay (IFA), PCR, and reverse transcriptase (RT) activity were used to compare the process of infection of host cells by HIV-1IIIB virus, one R5-tropic and five other R5X4-tropic viruses. All the R5X4-tropic HIVs were found to utilize both CCR5 and CXCR4 but unable to use CXCR4ΔNTR23 as coreceptors. In contrast, X4-tropic HIV-1IIIB was found to preferentially infect through CXCR4ΔNTR23. Viral antigens in infected NP-2/CD4/CXCR4ΔNTR23 cells were detected by IFA and confirmed by detection of proviral DNA and by performing RT assays on the spent cell-supernatants. In dual tropic viruses, deletion of 23 amino acids from NTR abrogates the coreceptor activity of CXCR4. This observation demonstrates that NTR of CXCR4 have an obligatory coreceptor role for dual tropic viruses. However, HIV-1IIIB may have different requirements for NTR than R5X4 viruses or may infect host cells independent of NTR of CXCR4.

  6. Viral Entry through CXCR4 Is a Pathogenic Factor and Therapeutic Target in Human Immunodeficiency Virus Type 1 Disease

    Science.gov (United States)

    Schramm, Birgit; Penn, Michael L.; Speck, Roberto F.; Chan, Stephen Y.; De Clercq, Erik; Schols, Dominique; Connor, Ruth I.; Goldsmith, Mark A.

    2000-01-01

    The chemokine receptors CCR5 and CXCR4 function as the principal coreceptors for human immunodeficiency virus type 1 (HIV-1). Coreceptor function has also been demonstrated for a variety of related receptors in vitro. The relative contributions of CCR5, CXCR4, and other putative coreceptors to HIV-1 disease in vivo have yet to be defined. In this study, we used sequential primary isolates and recombinant strains of HIV-1 to demonstrate that CXCR4-using (X4) viruses emerging in association with disease progression are highly pathogenic in ex vivo lymphoid tissues compared to CXCR4-independent viruses. Furthermore, synthetic receptor antagonists that specifically block CXCR4-mediated entry dramatically suppressed the depletion of CD4+ T cells by recombinant and clinically derived X4 HIV-1 isolates. Moreover, in vitro specificity for the additional coreceptors CCR3, CCR8, BOB, and Bonzo did not augment cytopathicity or diminish sensitivity toward CXCR4 antagonists in lymphoid tissues. These data provide strong evidence to support the concept that adaptation to CXCR4 specificity in vivo accelerates HIV-1 disease progression. Thus, therapeutic intervention targeting the interaction of HIV-1 gp120 with CXCR4 may be highly valuable for suppressing the pathogenic effects of late-stage viruses. PMID:10590105

  7. Chemokine receptor CXCR4-prognostic factor for gastrointestinal tumors

    Institute of Scientific and Technical Information of China (English)

    Carl C Schimanski; Peter R Galle; Markus Moehler

    2008-01-01

    To review the implication of CXCR4 for gastrointestinal cancer,a "Pubmed" analysis was performed in order to evaluate the relevance of CXCR4 and its ligands for gastrointestinal cancers.Search terms applied were "cancer,malignoma,esophageal,gastric,colon,colorectal,hepatic,pancreatic,CXCR4,SDF-1α,and SDF-1β"; CXCR4 expression correlated with dissemination of diverse gastrointestinal malignomas.The CXCR4 ligand SDF-1α might act as "chemorepellent"while SDF-1β might act as "chemorepellent" for CTLs,inducing tumor rejection.The paracrine expression of SDF-1α was furthermore closely associated with neoangiogenesis.CXCR4 and its ligands influence the dissemination,immune rejection,and neoangiogenesis of human gastrointestinal cancers.Inhibition of CXCR4 might be an interesting therapeutic option.

  8. Role of CXCR4 expression in progress and prognosis of breast cancer%CXCR4表达对乳腺癌进展及预后的意义

    Institute of Scientific and Technical Information of China (English)

    陈宏武; 吴国英; 张国君

    2011-01-01

    CXCR4 是编码352个氨基酸且高度保守的G蛋白耦联七次跨膜受体,可介导肿瘤细胞增殖、迁移、浸润及转移,在乳腺癌发生发展及转移过程中起着关键作用.CXCR4表达是乳腺癌发生的早期分子事件,可能为预测乳腺癌发生及早期诊断乳腺癌提供新的方法.CXCR4高表达与乳腺癌转移有着密切关系,是乳腺癌预后不良的重要指标.抑制CXCR4表达或阻断CXCR4信号通路,可抑制肿瘤细胞生长、增殖及转移,CXCR4 拮抗剂可能成为乳腺癌新的靶向治疗药物.%CXCR4, a receptor for stromal cell-derived factor-1 (SDF-1, also know as CXCL12) and a member of the chemokine receptor family, has been shown to play an important role in the proliferation, migration, invasion and metastasis of breast cancer cells. CXCR4 expression is an early event in breast cancer development and may serve as a biomarker for early detection and diagnosis of breast cancer. Expression of CXCR4 has been demonstrated to correlate with metastasis and poor prognosis in breast cancer. Inhibition of CXCR4 expression may be a potential target of breast cancer treatment.

  9. The chemokine CXCL12 and its receptor CXCR4 are implicated in human seminoma metastasis.

    Science.gov (United States)

    McIver, S C; Loveland, K L; Roman, S D; Nixon, B; Kitazawa, R; McLaughlin, E A

    2013-05-01

    Seminoma and non-seminoma tumours increasingly occur within the western population. These tumours originate from carcinoma in situ (CIS) cells, which arise from dysfunctional gonocytes. CXCL12 and its receptors, CXCR4 and CXCR7, have been implicated in migration, proliferation and survival of gonocytes and their precursors and progeny, primordial germ cells and spermatogonial stem cells respectively. We previously found evidence that several miRNA molecules predicted to modulate CXCR4 signalling are differentially expressed during the differentiation of gonocytes into spermatogonia in mice. Bioinformatic analysis predicted these miRNA to modulate CXCR4 signalling, leading us to hypothesize that CXCL12-mediated CXCR4 signalling is involved in the disrupted differentiation of gonocytes that underpins CIS formation. Indeed, we detected CXCL12 in Sertoli cells of normal human testis, and relatively high expression in tumour stroma with concomitant weak staining in dispersed tumour cells. In contrast, CXCR4 was expressed in spermatogonial and meiotic germ cells of normal testis and in the majority of tumour cells. Quantitative RT-PCR identified elevated CXCR4 transcript levels in seminoma compared with normal testis and to non-seminoma, potentially reflecting the higher proportion of dysfunctional germ cells within seminomas. In the normal testis, expression of CXCR4 downstream signalling molecules phospho-MEK1/2 and phospho-ERK1/2 correlated with CXCR4/CXCL12 expression. Strikingly, this correlation was absent in seminoma and non-seminoma samples, suggesting that CXCL12 signalling is disrupted. Proliferation rate and cell survival were not altered by CXCL12 in either seminoma (TCam-2) or non-seminoma (833ke) cell lines. However, CXCL12 exposure induced TCam-2 cell invasion though simulated basement membrane, while in contrast, we provide the novel evidence that CXCR4-expressing non-seminoma cell lines 833ke and NTera2/D1 do not invade in response to CXCL12. These

  10. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    Science.gov (United States)

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  11. PET imaging of CXCR4 using copper-64 labeled peptide antagonist.

    Science.gov (United States)

    Jacobson, Orit; Weiss, Ido D; Szajek, Lawrence P; Niu, Gang; Ma, Ying; Kiesewetter, Dale O; Farber, Joshua M; Chen, Xiaoyuan

    2011-01-01

    Expression of CXCR4 in cancer has been found to correlate with poor prognosis and resistance to chemotherapy. In this study we developed a derivative of the CXCR4 peptide antagonist, T140-2D, that can be labeled easily with the PET isotope copper-64, and thereby enable in vivo visualization of CXCR4 in tumors. T140 was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxysuccinimide ester) (DOTA-NHS) to give T140-2D, which contains a DOTA molecule on each of the two lysine residues. (64)Cu-T140-2D was evaluated in vitro by migration and binding experiments, and in vivo by microPET imaging and biodistribution, in mice bearing CXCR4-positive and CXCR4-negative tumor xenografts. T140-2D was labeled with copper-64 to give (64)Cu-T140-2D in a high radiochemical yield of 86 ± 3% (not decay-corrected) and a specific activity of 0.28 - 0.30 mCi/µg (10.36 - 11.1 MBq/µg). (64)Cu-T140-2D had antagonistic and binding characteristics to CXCR4 that were similar to those of T140. In vivo, (64)Cu-T140-2D tended to bind to red blood cells and had to be used in a low specific activity form. In this new form (64)Cu-T140-2D enabled specific imaging of CXCR4-positive, but not CXCR4-negative tumors. Undesirably, however, (64)Cu-T140-2D also displayed high accumulation in the liver and kidneys. In conclusion, (64)Cu-T140-2D was easily labeled and, in its low activity form, enabled imaging of CXCR4 in tumors. It had high uptake, however, in metabolic organs. Further research with imaging tracers targeting CXCR4 is required.

  12. PET imaging of CXCR4 using copper-64 labeled peptide antagonist

    Directory of Open Access Journals (Sweden)

    Orit Jacobson, Ido D. Weiss, Lawrence P. Szajek, Gang Niu, Ying Ma, Dale O. Kiesewetter, Joshua M. Farber, Xiaoyuan Chen

    2011-01-01

    Full Text Available Expression of CXCR4 in cancer has been found to correlate with poor prognosis and resistance to chemotherapy. In this study we developed a derivative of the CXCR4 peptide antagonist, T140-2D, that can be labeled easily with the PET isotope copper-64, and thereby enable in vivo visualization of CXCR4 in tumors. T140 was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxysuccinimide ester (DOTA-NHS to give T140-2D, which contains a DOTA molecule on each of the two lysine residues. 64Cu-T140-2D was evaluated in vitro by migration and binding experiments, and in vivo by microPET imaging and biodistribution, in mice bearing CXCR4-positive and CXCR4-negative tumor xenografts. T140-2D was labeled with copper-64 to give 64Cu-T140-2D in a high radiochemical yield of 86 ± 3% (not decay-corrected and a specific activity of 0.28 - 0.30 mCi/µg (10.36 - 11.1 MBq/µg. 64Cu-T140-2D had antagonistic and binding characteristics to CXCR4 that were similar to those of T140. In vivo, 64Cu-T140-2D tended to bind to red blood cells and had to be used in a low specific activity form. In this new form 64Cu-T140-2D enabled specific imaging of CXCR4-positive, but not CXCR4-negative tumors. Undesirably, however, 64Cu-T140-2D also displayed high accumulation in the liver and kidneys. In conclusion, 64Cu-T140-2D was easily labeled and, in its low activity form, enabled imaging of CXCR4 in tumors. It had high uptake, however, in metabolic organs. Further research with imaging tracers targeting CXCR4 is required.

  13. Phenotypic Knockout of CXCR4 on Molt-4 with SDF-1α/54 Attached with KDEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective :To investigate the mechanism of phenotypic knockout of CXCR4 on T-cell leukemia cell line Molt-4 via SDF-1α/54/KDEL intrakine technology, which the mutant SDF-1α/54, human stromal cell-derived Faceor-1 (SDF-1α) was deleted its Cterminal α-helix and attached with a endoplasimc reticulum retention signal 4-peptide-KDEL encoding gene, so that retain the newly synthesized receptor CXCR4 within the Molt-4 cells endoplasmic reticulum. Methods: The recombinant vector pEGFP-C3/SDF-1α/54/KDEL were transfected into Cos-7 cells by liposome, SDF-1α/54/KDEL fusion protein was confirmed with western blot. The recombinant plasmids were transfected transiently into Molt-4 by electroporation. Results:Western blot confirmed SDF-1α/54/KDEL expression in Cos-7. A dramatic downregulation of CXCR4 expression on Molt-4 was demonstrated by flow cytometric (FCM) analysis. Conclusion:SDF-1α/54/KDEL and SDF-1αKDEL have no significant deviation for phenotypic knockout of CXCR4. These suggest that the phenotypic knockout effects of SDF-1α/54 against CXCR4 are not influenced by deleting of SDF-1α helix in the C-terminal.

  14. Drug Design Targeting the CXCR4/CXCR7/CXCL12 Pathway.

    Science.gov (United States)

    Xu, Dongsheng; Li, Rongshi; Wu, Jianguo; Jiang, Li; Zhong, Haizhen A

    2016-01-01

    Under physiological conditions, CXCL12 modulates cell proliferation, survival, angiogenesis, and migration mainly through CXCR4. Interestingly, the newly discovered receptor CXCR7 for CXCL12 is highly expressed in many tumor cells as well as tumor-associated blood vessels, although the level of CXCR7 in normal blood cells is low. Recently, many studies have suggested that CXCR7 promotes cell growth and metastasis in various cancers, including lymphoma and leukemia, hepatocecullar, ovarian, colorectal, breast and lung cancer. Compared to CXCR4, CXCR7 is a non-classical GPCR that is unable to activate G proteins. The function of CXCR7 is generally considered to be mediated by: (a) recruiting β-arrestin-2; (b) heterodimerizing with CXCR4; and (c) acting as a "scavenger" of CXCL12, thus lowering the level of CXCL12 to weaken the activity of CXCR4. However, the crosstalk between CXCL12/CXCR7/CXCR4 and other signaling pathways (such as the p38 MAPK pathway, the PI3K/mTOR pathway, the STAT3 signaling, and metalloproteinases MMP-9 and MMP-2) is more complicated. The function of CXCR7 is also involved in modulating tumor microenvironment, tumor cell migration and apoptosis. Understanding these complex interactions will provide insight in drug design targeting the CXCR7 as potential anticancer therapy.

  15. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    Science.gov (United States)

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  16. CXCR4启动子的条件复制型腺病毒对肺癌细胞的靶向杀伤作用%Conditionally replicating adenovirus activated by CXCR4 promoter in lung cancer

    Institute of Scientific and Technical Information of China (English)

    李龙光; 李书华; 王红艳; 龙捷; 谢晓斌; 张雅洁

    2015-01-01

    [ ABSTRACT] AIM:To construct a conditionally replicating adenovirus vector activated by CXCR4 promoter and to evaluate its ability of lysing the lung cancer cells specifically.METHODS:Human CXCR4-E1A gene amplified by PCR was cloned into the shuttle plasmid pDC316-GFP to construct the recombinant shuttle plasmid pDC316-CXCR4-GFP.The recombinat shuttle plasmid and adenovirus genomic plasmid pBHG-lox-E1, 3Cre were transfected into 293 cells to construct the recombinant adenovirus CRAd-CXCR4-GFP.PCR was used to detect the target gene fragments, and the viral titer was determined.A549 cells with the highest mRNA expression of CXCR4 were screened out from 5 kinds of lung cancer cell lines by real-time PCR.CXCR4 promoter activity and adenovirus replication numbers were detected in A549 cells after transfection of CRAd-CXCR4-GFP and Ad-NULL.CRAd-CXCR4-GFP and Ad-NULL were transfected into A549 cells and 16HBE cells, the apoptotic rates were detected by flow cytometry and the viability was analyzed by CCK-8 assay.RE-SULTS:The recombinant plasmid pDC316-CXCR4-GFP was constructed successfully.Green fluorescence was observed in 293 cells under fluorescent microscope after co-transfection of pDC316-CXCR4-GFP and pBHG-lox-E1, 3Cre at 11 d. Green fluorescence was observed in 293 cells after infection of amplified 3rd generational adenovirus.PCR showed that the purpose gene was successfully integrated in recombinant adenovirus genome.The virus in the supernatant reached a titer of 1 ×1013 PFU/L.The mRNA expression of E1A and E4 in the A549 cells after transfection of CRAd-CXCR4-GFP was markedly increased compared with Ad-NULL group.Compared with Ad-NULL group and empty control group, the apoptotic rate and the viability of A549 cells in CRAd-CXCR4-GFP group had no significant difference in the first 4 d, the apoptotic rate increased significantly at 5 d, and the cell viability declined significantly at 5 d, but the apoptotic rate and the viability of 16HBE cells in each group

  17. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.

  18. Baclofen and other GABAB receptor agents are allosteric modulators of the CXCL12 chemokine receptor CXCR4.

    Science.gov (United States)

    Guyon, Alice; Kussrow, Amanda; Olmsted, Ian Roys; Sandoz, Guillaume; Bornhop, Darryl J; Nahon, Jean-Louis

    2013-07-10

    CXCR4, a receptor for the chemokine CXCL12 (stromal-cell derived factor-1α), is a G-protein-coupled receptor (GPCR), expressed in the immune and CNS and integrally involved in various neurological disorders. The GABAB receptor is also a GPCR that mediates metabotropic action of the inhibitory neurotransmitter GABA and is located on neurons and immune cells as well. Using diverse approaches, we report novel interaction between GABAB receptor agents and CXCR4 and demonstrate allosteric binding of these agents to CXCR4. First, both GABAB antagonists and agonists block CXCL12-elicited chemotaxis in human breast cancer cells. Second, a GABAB antagonist blocks the potentiation by CXCL12 of high-threshold Ca(2+) channels in rat neurons. Third, electrophysiology in Xenopus oocytes and human embryonic kidney cell line 293 cells in which we coexpressed rat CXCR4 and the G-protein inward rectifier K(+) (GIRK) channel showed that GABAB antagonist and agonist modified CXCL12-evoked activation of GIRK channels. To investigate whether GABAB ligands bind to CXCR4, we expressed this receptor in heterologous systems lacking GABAB receptors and performed competition binding experiments. Our fluorescent resonance energy transfer experiments suggest that GABAB ligands do not bind CXCR4 at the CXCL12 binding pocket suggesting allosteric modulation, in accordance with our electrophysiology experiments. Finally, using backscattering interferometry and lipoparticles containing only the CXCR4 receptor, we quantified the binding affinity for the GABAB ligands, confirming a direct interaction with the CXCR4 receptor. The effect of GABAergic agents on CXCR4 suggests new therapeutic potentials for neurological and immune diseases.

  19. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    Science.gov (United States)

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  20. CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome

    Directory of Open Access Journals (Sweden)

    Françoise Bachelerie

    2010-01-01

    Full Text Available The WHIM syndrome features susceptibility to human Papillomavirus infection-induced warts and carcinomas, hypogammaglobulinemia, recurrent bacterial infections, B and T-cell lymphopenia, and neutropenia associated with retention of senescent neutrophils in the bone marrow (i.e. myelokathexis. This rare disorder is mostly linked to inherited heterozygous autosomal dominant mutations in the gene encoding CXCR4, a G protein coupled receptor with a unique ligand, the chemokine CXCL12/SDF-1. Some individuals who have full clinical forms of the syndrome carry a wild type CXCR4 gene. In spite of this genetic heterogeneity, leukocytes from WHIM patients share in common dysfunctions of the CXCR4-mediated signaling pathway upon exposure to CXCL12. Dysfunctions are characterized by impaired desensitization and receptor internalization, which are associated with enhanced responses to the chemokine. Our increasing understanding of the mechanisms that account for the aberrant CXCL12/CXCR4-mediated responses is beginning to provide insight into the pathogenesis of the disorder. As a result we can expect to identify markers of the WHIM syndrome, as well as other disorders with WHIM-like features that are associated with dysfunctions of the CXCL12/CXCR4 axis.

  1. Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4.

    Science.gov (United States)

    Zhang, Chongqian; Du, Chunmiao; Feng, Zhiwei; Zhu, Jingyu; Li, Youyong

    2015-02-01

    CXCR4 plays a crucial role as a co-receptor with CCR5 for HIV-1 anchoring to mammalian cell membrane and is implicated in cancer metastasis and inflammation. In the current work, we study the relationship of structure and activity of AMD11070 derivatives and other inhibitors of CXCR4 using HQSAR, docking and molecular dynamics (MD) simulations. We obtain an HQSAR model (q(2) = 0.779), and the HQSAR result illustrates that AMD11070 shows a high antiretroviral activity. As HQSAR only provides 2D information, we perform docking and MD to study the interaction of It1t, AMD3100, and AMD3465 with CXCR4. Our results illustrate that the binding are affected by two crucial residues Asp97 and Glu288. The butyl amine moiety of AMD11070 contributes to its high antiretroviral activity. Without a butyl amine moiety, (2,7a-Dihydro-1H-benzoimidazol-2-ylmethyl)-methyl-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (compound 5a) shows low antiretroviral activity. Our results provide structural details about the interactions between the inhibitors and CXCR4, which are useful for rational drug design of CXCR4.

  2. Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease.

    Science.gov (United States)

    Talvani, Andre; Rocha, Manoel O C; Ribeiro, Antonio L; Correa-Oliveira, Rodrigo; Teixeira, Mauro M

    2004-01-15

    We evaluated the expression of chemokine receptors (CCR1, CCR2, CCR5, and CXCR4) on the surface of peripheral blood mononuclear cells obtained from patients with chronic chagasic cardiomyopathy (CCC) and noninfected individuals. Only CCR5 and CXCR4 expression was different on the surface of the subsets (CD4, CD8, and CD14) evaluated. Patients with mild CCC had elevated leukocyte expression of CCR5, compared with noninfected individuals or those with severe disease. CXCR4 expression was lower on leukocytes from patients with severe CCC. The differential expression of both receptors on leukocytes of patients with CCC was consistent and clearly correlated with the degree of heart function such that the lower the heart function, the lower the expression of either CCR5 or CXCR4. These results highlight the possible participation of the chemokine system in early forms of chagasic cardiomyopathy and the relevance of heart failure-induced remodeling in modifying immune parameters in infected individuals.

  3. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients.

    Science.gov (United States)

    Lefort, S; Thuleau, A; Kieffer, Y; Sirven, P; Bieche, I; Marangoni, E; Vincent-Salomon, A; Mechta-Grigoriou, F

    2017-03-02

    The CXCR4 receptor and its ligand CXCL12 (also named stromal cell-derived factor 1, SDF1) have a critical role in chemotaxis and homing, key steps in cancer metastasis. Although myofibroblasts expressing CXCL12 are associated with the presence of axillary metastases in HER2 breast cancers (BC), the therapeutic interest of targeting CXCR4/CXCL12 axis in the different BC subtypes remains unclear. Here, we investigate this question by testing antitumor activity of CXCR4 inhibitors in patient-derived xenografts (PDX), which faithfully reproduce human tumor properties. We observed that two CXCR4 inhibitors, AMD3100 and TN14003, efficiently impair tumor growth and metastasis dissemination in both Herceptin-sensitive and Herceptin-resistant HER2 BC. Conversely, blocking CXCR4/CXCL12 pathway in triple-negative (TN) BC does not reduce tumor growth, and can even increase metastatic spread. Moreover, although CXCR4 inhibitors significantly reduce myofibroblast content in all BC subtypes, they decrease angiogenesis only in HER2 BC. Thus, our findings suggest that targeting CXCR4 could provide some therapeutic interest for HER2 BC patients, whereas it has no impact or could even be detrimental for TN BC patients.

  4. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients

    Science.gov (United States)

    Lefort, S; Thuleau, A; Kieffer, Y; Sirven, P; Bieche, I; Marangoni, E; Vincent-Salomon, A; Mechta-Grigoriou, F

    2017-01-01

    The CXCR4 receptor and its ligand CXCL12 (also named stromal cell-derived factor 1, SDF1) have a critical role in chemotaxis and homing, key steps in cancer metastasis. Although myofibroblasts expressing CXCL12 are associated with the presence of axillary metastases in HER2 breast cancers (BC), the therapeutic interest of targeting CXCR4/CXCL12 axis in the different BC subtypes remains unclear. Here, we investigate this question by testing antitumor activity of CXCR4 inhibitors in patient-derived xenografts (PDX), which faithfully reproduce human tumor properties. We observed that two CXCR4 inhibitors, AMD3100 and TN14003, efficiently impair tumor growth and metastasis dissemination in both Herceptin-sensitive and Herceptin-resistant HER2 BC. Conversely, blocking CXCR4/CXCL12 pathway in triple-negative (TN) BC does not reduce tumor growth, and can even increase metastatic spread. Moreover, although CXCR4 inhibitors significantly reduce myofibroblast content in all BC subtypes, they decrease angiogenesis only in HER2 BC. Thus, our findings suggest that targeting CXCR4 could provide some therapeutic interest for HER2 BC patients, whereas it has no impact or could even be detrimental for TN BC patients. PMID:27669438

  5. Relationship of Circulating CXCR4+ EPC with Prognosis of Mild Traumatic Brain Injury Patients

    Science.gov (United States)

    Lin, Yunpeng; Luo, Lan Lan; Sun, Jian; Gao, Weiwei; Tian, Ye; Park, Eugene; Baker, Andrew; Chen, Jieli; Jiang, Rongcai; Zhang, Jianning

    2017-01-01

    To investigate the changes of circulating endothelial progenitor cells (EPCs) and stromal cell-derived factor-1α (SDF-1α)/CXCR4 expression in patients with mild traumatic brain injury (TBI) and the correlation between EPC level and the prognosis of mild TBI. 72 TBI patients (57 mild TBI, 15 moderate TBI patients) and 25 healthy subjects (control) were included. The number of circulating EPCs, CD34+, and CD133+ cells and the percentage of CXCR4+ cells in each cell population at 1,4,7,14,21 days after TBI were counted by flow cytometer. SDF-1α levels in serum were detected by ELISA assay. The patients were divided into poor and good prognosis groups based on Extended Glasgow Outcome Scale and Activity of Daily Living Scale at 3 months after TBI. Correlation analysis between each detected index and prognosis of mild TBI was performed. Moderate TBI patients have higher levels of SDF-1α and CXCR4 expression than mild TBI patients (P < 0.05). The percentage of CXCR4+ EPCs at day 7 post-TBI was significantly higher in mild TBI patients with poor prognosis than the ones with good prognosis (P < 0.05). HAMA and HAMD scores in mild TBI patients were significantly lower than moderate TBI patients (P < 0.05) in early term. The percentage of CXCR4+ EPCs at day 7 after TBI was significantly correlated with the prognosis outcome at 3 months. The mobilization of circulating EPCs can be induced in mild TBI. The expression of CXCR4+ in EPCs at 7 days after TBI reflects the short-term prognosis of brain injury, and could be a potential biological marker for prognosis prediction of mild TBI. PMID:28203485

  6. Thermal stability of the human immunodeficiency virus type 1 (HIV-1 receptors, CD4 and CXCR4, reconstituted in proteoliposomes.

    Directory of Open Access Journals (Sweden)

    Mikhail A Zhukovsky

    Full Text Available BACKGROUND: The entry of human immunodeficiency virus (HIV-1 into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS: We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a of 269 kJ/mol (64.3 kcal/mol and an inactivation temperature (T(i of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a of 278 kJ/mol (66.5 kcal/mol, and a T(i of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE: Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors.

  7. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Directory of Open Access Journals (Sweden)

    Victoria Vinader

    Full Text Available Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds.

  8. CXCR4-specific Nanobodies as potential therapeutics for WHIM syndrome

    DEFF Research Database (Denmark)

    de Wit, Raymond H; Heukers, Raimond; Brink, Hendrik

    2017-01-01

    WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: Warts, Hypogammaglobulinemia, Infections and Myelokathexis. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4. Consequently, these CXCR4-WHIM...

  9. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy.

    Science.gov (United States)

    Mishan, Mohammad Amir; Ahmadiankia, Naghmeh; Bahrami, Ahmad Reza

    2016-09-01

    Cancer is one of the most common cause of death in the world with high negative emotional, economic, and social impacts. Conventional therapeutic methods, including chemotherapy and radiotherapy, have not proven satisfactory and relapse is common in most cases. Recent studies have focused on targeted therapy with more precise identification and targeted attacks to the cancer cells. For this purpose, chemokine receptors are proper targets and among them, CXCR4 and CCR7, with a crucial role in cancer metastasis, are being considered as desired candidates for investigation. In this review paper, the most important experimental results are highlighted on the potential targeted therapies based on CXCR4 and CCR7 chemokine receptors.

  10. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis.

    Science.gov (United States)

    Mehrad, Borna; Burdick, Marie D; Strieter, Robert M

    2009-01-01

    Fibrotic interstitial lung diseases are characterized by progressive decline in lung function and premature death from respiratory failure. Fibrocytes are circulating bone marrow-derived progenitor cells that traffic to the lungs and contribute to fibrosis and may represent novel therapeutic targets in these diseases. We have previously found the recruitment of fibrocytes to the lung to be dependent on the chemokine ligand CXCL12. Given that the expression of the CXCL12 receptor, CXCR4, can be modulated pharmacologically in other cell types, we tested the hypotheses that the regulation of CXCR4 expression on fibrocytes mediates their influx to the lung in the context of pulmonary fibrosis and that pharmacologic inhibition of this process results in attenuated disease severity. CXCR4 was the predominant chemokine receptor on human fibrocytes, and its expression on fibrocytes was enhanced by hypoxia and by growth factors including platelet-derived growth factor. Both hypoxia-induced and growth factor-induced CXCR4 expressions were attenuated by specific inhibition of PI3-kinase and mTOR. Finally, in the mouse model of bleomycin-induced pulmonary fibrosis, treatment with the mTOR inhibitor rapamycin resulted in reduced numbers of CXCR4-expressing fibrocytes in the peripheral blood and lung as well as reduced lung collagen deposition. Taken together, these experiments support the notion that pharmacologic inhibition of the CXCR4/CXCL12 biological axis is achievable in human fibrocytes and reduces the magnitude of pulmonary fibrosis in an animal model. This approach may hold promise in human fibrotic lung diseases.

  11. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  12. White matter tracts for the trafficking of neural progenitor cells characterized by cellular MRI and immunohistology: the role of CXCL12/CXCR4 signaling

    OpenAIRE

    Chen, Chiao-Chi V.; Hsu, Yi-Hua; Jayaseema, D. M.; Chen, Jeou-Yuan Joanne; Hueng, Dueng-Yuan; Chang, Chen

    2014-01-01

    White matter tracts are important for the trafficking of neural progenitor cells (NPCs) in both normal and pathological conditions, but the underlying mechanism is not clear. The directionality of white matter is advantageous for molecules or cells to distribute over a long distance, but this feature is unlikely solely responsible for efficient migration. The present study hypothesizes that the efficient migration of NPCs into white matter is under the influences of neurochemical attraction—C...

  13. Progress of SDF-1/CXCR4 and Hypertensive Disorder Complicating Pregnancy%SDF-1/CXCR4与妊娠期高血压疾病关系的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱小华; 罗新

    2015-01-01

    Stromal cell derived factor 1 (SDF-1) is only physiological ligand of CXC chemokine receptor 4 (CXCR4). CXCR4 can specifically bind to SDF-1 formed a SDF-1/CXCR4 biological axis, thus completing the corresponding biological effects. SDF-1 and its receptor CXCR4 plays an important role in physiological and pathological processes in the body. A large number of studies show that the roles of SDF-1/CXCR4 in immunity and inflammation, embryo development, activation of anti-apoptotic pathways, hematopoietic stem cell migration, homing, regulation of angiogenesis, hypertensive disorder complicating pregnancy (HDCP), preeclampsia and other biological processes have become a hot spot in biological research. In normal pregnancy, the formed of placenta played a decisive role, so the study on the expression of SDF-1/CXCR4 in the placental bed HDCP will provide a way to explore the possible pathogenesis of HDCP. Bad blood vessel formation process of erosion in trophoblast cells and bad remodeling of the spiral arteries in cell and irregular anti-apoptosis ability exceptions are the key causes of HDCP. Research shows that the decreased of SDF-1/CXCR4 in pregnant women with preeclampsia′s placenta bed has a significant incidence of hypertensive disorder complicating pregnancy. This article reviews SDF-1 and CXCR4′s research progress in hypertensive disorders in pregnancy.%基质细胞衍生因子1(SDF-1)是CXC族趋化因子受体4(CXCR4)的唯一生理学配体,CXCR4可与SDF-1特异性结合形成SDF-1/CXCR4生物轴,从而完成相应的生物学效应。 SDF-1与其受体CXCR4在机体的生理和病理过程中发挥着重要的作用。 SDF-1/CXCR4在机体的免疫炎症、胚胎发育、激活抗调亡途径、造血干细胞迁移、归巢、调控血管生成及妊娠期高血压疾病(HDCP)、子痫前期等多种生物学过程中的作用受到关注,已成为当今生物学研究的热点之一。在正常的妊娠过程中,胎盘形成起

  14. SDF-1/CXCR4与中枢神经系统损伤的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭昱; 李生辉

    2013-01-01

    基质细胞衍生因子-1(Stromal cell-derived factor 1,SDF-1)是由骨髓基质细胞产生的具有趋化活性的细胞因子。SDF-1与其特异性受体CXC族细胞因子受体4(CXCR4)构成SDF-1/CXCR4轴。

  15. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  16. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer.

    Science.gov (United States)

    Xu, Qinhong; Wang, Zheng; Chen, Xin; Duan, Wanxing; Lei, Jianjun; Zong, Liang; Li, Xuqi; Sheng, Liang; Ma, Jiguang; Han, Liang; Li, Wei; Zhang, Lun; Guo, Kun; Ma, Zhenhua; Wu, Zheng; Wu, Erxi; Ma, Qingyong

    2015-03-10

    Perineural invasion (PNI) is considered as an alternative route for the metastatic spread of pancreatic cancer cells; however, the molecular changes leading to PNI are still poorly understood. In this study, we show that the CXCL12/CXCR4 axis plays a pivotal role in the neurotropism of pancreatic cancer cells to local peripheral nerves. Immunohistochemical staining results revealed that CXCR4 elevation correlated with PNI in 78 pancreatic cancer samples. Both in vitro and in vivo PNI models were applied to investigate the function of the CXCL12/CXCR4 signaling in PNI progression and pathogenesis. The results showed that the activation of the CXCL12/CXCR4 axis significantly increased pancreatic cancer cells invasion and promoted the outgrowth of the dorsal root ganglia. CXCL12 derived from the peripheral nerves stimulated the invasion and chemotactic migration of CXCR4-positive cancer cells in a paracrine manner, eventually leading to PNI. In vivo analyses revealed that the abrogation of the activated signaling inhibited tumor growth and invasion of the sciatic nerve toward the spinal cord. These data indicate that the CXCL12/CXCR4 axis may be a novel therapeutic target to prevent the perineural dissemination of pancreatic cancer.

  17. CXCR4, CXCL12 and the relative CXCL12-CXCR4 expression as prognostic factors in colon cancer.

    Science.gov (United States)

    Stanisavljević, Luka; Aßmus, Jörg; Storli, Kristian Eeg; Leh, Sabine Maria; Dahl, Olav; Myklebust, Mette Pernille

    2016-06-01

    The CXCL12-CXCR4 axis is proposed to mediate metastasis formation. In this study, we examined CXCL12, CXCR4 and the relative CXCL12-CXCR4 expression as prognostic factors in two cohorts of colon cancer patients. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to study CXCR4, CXCL12 and relative CXCL12-CXCR4 expression in tissue microarrays. Our study included totally 596 patients, 290 in cohort 1 and 306 in cohort 2. For tumour, node, metastasis (TNM) stage III, low nuclear expression of CXCR4 was a positive prognostic factor for 5-year disease-free survival (DFS) in cohort 1 (P = 0.007) and cohort 2 (P = 0.023). In multivariate analysis for stage III, nuclear expression of CXCR4 in cohort 1 was confirmed as a prognostic factor for DFS (hazard ratio (HR), 0.27; 95 % CI, 0.09 to 0.77). For TNM stage III, high cytoplasmic expression of CXCL12 was associated with better 5-year DFS in both cohorts (P = 0.006 and P = 0.006, respectively). We further validated the positive prognostic value of CXCL12 expression for 5-year DFS in stage III with ISH (P = 0.022). For TNM stage III, the relative CXCL12-CXCR4 expression (CXCL12 > CXCR4 vs CXCL12 = CXCR4 vs CXCL12 TNM stage III colon cancer.

  18. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  19. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth.

    Science.gov (United States)

    Beider, Katia; Begin, Michal; Abraham, Michal; Wald, Hanna; Weiss, Ido D; Wald, Ori; Pikarsky, Eli; Zeira, Evelyne; Eizenberg, Orly; Galun, Eithan; Hardan, Izhar; Engelhard, Dan; Nagler, Arnon; Peled, Amnon

    2011-03-01

    The chemokine receptor CXCR4 and its ligand CXCL12 are involved in the progression and dissemination of a diverse number of solid and hematological malignancies. Binding CXCL12 to CXCR4 activates a variety of intracellular signal transduction pathways that regulate cell chemotaxis, adhesion, survival, proliferation, and apoptosis. Here, we demonstrate that the CXCR4 antagonist, 4F-benzoyl-TN14003 (BKT140), but not AMD3100, exhibits a CXCR4-dependent preferential cytotoxicity toward malignant cells of hematopoietic origin. BKT140 significantly and preferentially stimulated multiple myeloma apoptotic cell death. BKT140 treatment induced morphological changes, phosphatidylserine externalization, decreased mitochondrial membrane potential, caspase-3 activation, sub-G1 arrest, and DNA double-stranded breaks. In vivo, subcutaneous injections of BKT140 significantly reduced, in a dose-dependent manner, the growth of human acute myeloid leukemia and multiple myeloma xenografts. Tumors from animals treated with BKT140 were smaller in size and weights, had larger necrotic areas and high apoptotic scores. Taken together, these results suggest a potential therapeutic use for BKT140 in multiple myeloma and leukemia patients. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  20. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Marina Okuyama Kishima

    2015-01-01

    Full Text Available CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status. Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p=0.301. In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p=0.757; however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p<0.01. All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis.

  1. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    Science.gov (United States)

    Okuyama Kishima, Marina; Brajão de Oliveira, Karen; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; de Almeida, Felipe Campos; Vitiello, Glauco Akelinghton Freire; Trugilo, Kleber Paiva; Guembarovski, Alda Fiorina Maria Losi; Jorge Sobrinho, Walter; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara

    2015-01-01

    CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337

  2. Spatiotemporal presentation of exogenous SDF-1 with PLGA nanoparticles modulates SDF-1/CXCR4 signaling axis in the rodent cortex.

    Science.gov (United States)

    Dutta, D; Hickey, K; Salifu, M; Fauer, C; Willingham, C; Stabenfeldt, S E

    2017-07-25

    Stromal cell-derived factor-1 (SDF-1) and its key receptor CXCR4 have been implicated in directing cellular recruitment for several pathological/disease conditions thus also gained considerable attention for regenerative medicine. One regenerative approach includes sustained release of SDF-1 to stimulate prolonged stem cell recruitment. However, the impact of SDF-1 sustained release on the endogenous SDF-1/CXCR4 signaling axis is largely unknown as auto-regulatory mechanisms typically dictate cytokine/receptor signaling. We hypothesize that spatiotemporal presentation of exogenous SDF-1 is a key factor in achieving long-term manipulation of endogenous SDF-1/CXCR4 signaling. Here in the present study, we sought to probe our hypothesis using a transgenic mouse model to contrast the spatial activation of endogenous SDF-1 and CXCR4 in response to exogenous SDF-1 injected in bolus or controlled release (PLGA nanoparticles) form in the adult rodent cortex. Our data suggests that the manner of SDF-1 presentation significantly affected initial CXCR4 cellular activation/recruitment despite having similar protein payloads over the first 24 h (∼30 ng for both bolus and sustained release groups). Yet, one week post-injection, this response was negligible. Therefore, the transient nature CXCR4 recruitment/activation in response to bolus or controlled release SDF-1 indicated that cytokine/receptor auto-regulatory mechanisms may demand more complex release profiles (i.e. delayed and/or pulsed release) to achieve sustained cellular response.

  3. 骨肉瘤血行转移与CXCR4、VEGF相关性研究%Expression levels of CXCR4 and VEGF correlate with blood-borne metastatic progression and outcome in patients with osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    Feng Lin; Shuier Zheng; Zan Shen; Lina Tang; Ping Chen; Yuan jueSun; Hui Zhao; Yang Yao

    2009-01-01

    Objective:We determine whether chemokine receptor CXCR4 and vascular endothelial growth factor (VEGF) expression related to the metastasis and survival outcome of patients with osteosarcoma. Methods:Tissue microarray (TMA) was used to detect the expression of CXCR4 and VEGF in 56 osteosarcoma patient samples. Two-year follow-up was per-formed to observe the metastatic behavior and overall survival of osteosarcema patients. Results:There was a significant correlation between the expression levels of CXCR4 and VEGF in 56 osteosarcoma patient samples (P=0.002). Univariate analysis revealed the expression of CXCR4 and VEGF was not associated with age, gender and the level of ALP but as-sociated with clinical stage. Conclusion:These data raises the possibility that VEGF could regulate the levels of CXCR4 to promote the migration of tumor cells to target organs. CXCR4 and VEGF expression are highly correlated with metastatic progression in patients with osteosarcoma and their immunohistochemical expression have predictive value for the metastatic development.

  4. Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5.

    Science.gov (United States)

    Zhukovsky, Mikhail A; Lee, Po-Hsien; Ott, Albrecht; Helms, Volkhard

    2013-04-01

    Using molecular docking, we identified a cholesterol-binding site in the groove between transmembrane helices 1 and 7 near the inner membrane-water interface of the G protein-coupled receptor CXCR4, a coreceptor for HIV entry into cells. In this docking pose, the amino group of lysine K67 establishes a hydrogen bond with the hydroxyl group of cholesterol, whereas tyrosine Y302 stacks with cholesterol by its aromatic side chain, and a number of residues form hydrophobic contacts with cholesterol. Sequence alignment showed that a similar putative cholesterol-binding site is also present in CCR5, another HIV coreceptor. We suggest that the interaction of cholesterol with these putative cholesterol-binding sites in CXCR4 and CCR5 is responsible for the presence of these receptors in lipid rafts, for the effect of cholesterol on their conformational stability and function, and for the role that cell cholesterol plays in the cell entry of HIV strains that use these membrane proteins as coreceptors. We propose that mutations of residues that are involved in cholesterol binding will make CXCR4 and CCR5 insensitive to membrane cholesterol content. Cholesterol-binding sites in HIV coreceptors are potential targets for steroid drugs that bind to CXCR4 and CCR5 with higher binding affinity than cholesterol, but do not stabilize the native conformation of these proteins.

  5. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4.

    Science.gov (United States)

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael

    2016-06-10

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.

  6. Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy

    Directory of Open Access Journals (Sweden)

    Marcin P Komorowski

    2016-01-01

    Full Text Available Ovarian cancer remains the most lethal gynecologic malignancy owing to late detection, intrinsic and acquired chemoresistance, and remarkable heterogeneity. Here, we explored approaches to inhibit metastatic growth of murine and human ovarian tumor variants resistant to paclitaxel and carboplatin by oncolytic vaccinia virus expressing a CXCR4 antagonist to target the CXCL12 chemokine/CXCR4 receptor signaling axis alone or in combination with doxorubicin. The resistant variants exhibited augmented expression of the hyaluronan receptor CD44 and CXCR4 along with elevated Akt and ERK1/2 activation and displayed an increased susceptibility to viral infection compared with the parental counterparts. The infected cultures were more sensitive to doxorubicin-mediated killing both in vitro and in tumor-challenged mice. Mechanistically, the combination treatment increased apoptosis and phagocytosis of tumor material by dendritic cells associated with induction of antitumor immunity. Targeting syngeneic tumors with this regimen increased intratumoral infiltration of antitumor CD8+ T cells. This was further enhanced by reducing the immunosuppressive network by the virally-delivered CXCR4 antagonist, which augmented antitumor immune responses and led to tumor-free survival. Our results define novel strategies for treatment of drug-resistant ovarian cancer that increase immunogenic cell death and reverse the immunosuppressive tumor microenvironment, culminating in antitumor immune responses that control metastatic tumor growth.

  7. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Julie Liberman

    Full Text Available Neuroblastoma (NB is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a

  8. Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling.

    Science.gov (United States)

    Masyuk, Maryna; Abduelmula, Aisha; Morosan-Puopolo, Gabriela; Ödemis, Veysel; Rehimi, Rizwan; Khalida, Nargis; Yusuf, Faisal; Engele, Jürgen; Tamamura, Hirokazu; Theiss, Carsten; Brand-Saberi, Beate

    2014-11-01

    In vertebrates, muscles of the pectoral girdle connect the forelimbs with the thorax. During development, the myogenic precursor cells migrate from the somites into the limb buds. Whereas most of the myogenic precursors remain in the limb bud to form the forelimb muscles, several cells migrate back toward the trunk to give rise to the superficial pectoral girdle muscles, such as the large pectoral muscle, the latissimus dorsi and the deltoid. Recently, this developing mode has been referred to as the "In-Out" mechanism. The present study focuses on the mechanisms of the "In-Out" migration during formation of the pectoral girdle muscles. Combining in ovo electroporation, tissue slice-cultures and confocal laser scanning microscopy, we visualize live in detail the retrograde migration of myogenic precursors from the forelimb bud into the trunk region by live imaging. Furthermore, we present for the first time evidence for the involvement of the chemokine receptor CXCR4 and its ligand SDF-1 during these processes. After microsurgical implantations of CXCR4 inhibitor beads in the proximal forelimb region of chicken embryos, we demonstrate with the aid of in situ hybridization and live-cell imaging that CXCR4/SDF-1 signaling is crucial for the retrograde migration of pectoral girdle muscle precursors. Moreover, we analyzed the MyoD expression in CXCR4-mutant mouse embryos and observed a considerable decrease in pectoral girdle musculature. We thus demonstrate the importance of the CXCR4/SDF-1 axis for the pectoral girdle muscle formation in avians and mammals.

  9. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis.

    Science.gov (United States)

    Hunter, Zachary R; Xu, Lian; Yang, Guang; Zhou, Yangsheng; Liu, Xia; Cao, Yang; Manning, Robert J; Tripsas, Christina; Patterson, Christopher J; Sheehy, Patricia; Treon, Steven P

    2014-03-13

    The genetic basis for Waldenström macroglobulinemia (WM) remains to be clarified. Although 6q losses are commonly present, recurring gene losses in this region remain to be defined. We therefore performed whole genome sequencing (WGS) in 30 WM patients, which included germline/tumor sequencing for 10 patients. Validated somatic mutations occurring in >10% of patients included MYD88, CXCR4, and ARID1A that were present in 90%, 27%, and 17% of patients, respectively, and included the activating mutation L265P in MYD88 and warts, hypogammaglobulinemia, infection, and myelokathexis-syndrome-like mutations in CXCR4 that previously have only been described in the germline. WGS also delineated copy number alterations (CNAs) and structural variants in the 10 paired patients. The CXCR4 and CNA findings were validated in independent expansion cohorts of 147 and 30 WM patients, respectively. Validated gene losses due to CNAs involved PRDM2 (93%), BTG1 (87%), HIVEP2 (77%), MKLN1 (77%), PLEKHG1 (70%), LYN (60%), ARID1B (50%), and FOXP1 (37%). Losses in PLEKHG1, HIVEP2, ARID1B, and BCLAF1 constituted the most common deletions within chromosome 6. Although no recurrent translocations were observed, in 2 patients deletions in 6q corresponded with translocation events. These studies evidence highly recurring somatic events, and provide a genomic basis for understanding the pathogenesis of WM.

  10. Shared usage of the chemokine receptor CXCR4 by primary and laboratory-adapted strains of feline immunodeficiency virus.

    Science.gov (United States)

    Richardson, J; Pancino, G; Merat, R; Leste-Lasserre, T; Moraillon, A; Schneider-Mergener, J; Alizon, M; Sonigo, P; Heveker, N

    1999-05-01

    Strains of the feline immunodeficiency virus (FIV) presently under investigation exhibit distinct patterns of in vitro tropism. In particular, the adaptation of FIV for propagation in Crandell feline kidney (CrFK) cells results in the selection of strains capable of forming syncytia with cell lines of diverse species origin. The infection of CrFK cells by CrFK-adapted strains appears to require the chemokine receptor CXCR4 and is inhibited by its natural ligand, stromal cell-derived factor 1alpha (SDF-1alpha). Here we found that inhibitors of CXCR4-mediated infection by human immunodeficiency virus type I (HIV-1), such as the bicyclam AMD3100 and short peptides derived from the amino-terminal region of SDF-1alpha, also blocked infection of CrFK by FIV. Nevertheless, we observed differences in the ranking order of the peptides as inhibitors of FIV and HIV-1 and showed that such differences are related to the species origin of CXCR4 and not that of the viral envelope. These results suggest that, although the envelope glycoproteins of FIV and HIV-1 are substantially divergent, FIV and HIV-1 interact with CXCR4 in a highly similar manner. We have also addressed the role of CXCR4 in the life cycle of primary isolates of FIV. Various CXCR4 ligands inhibited infection of feline peripheral blood mononuclear cells (PBMC) by primary FIV isolates in a concentration-dependent manner. These ligands also blocked the viral transduction of feline PBMC by pseudotyped viral particles when infection was mediated by the envelope glycoprotein of a primary FIV isolate but not by the G protein of vesicular stomatitis virus, indicating that they act at an envelope-mediated step and presumably at viral entry. These findings strongly suggest that primary and CrFK-adapted strains of FIV, despite disparate in vitro tropisms, share usage of CXCR4.

  11. SDF-1/CXCR4轴与髓外白血病%SDF-1/CXCR4 Axis and Extramedullary Leukemia

    Institute of Scientific and Technical Information of China (English)

    章大谦; 吴广胜

    2009-01-01

    基质细胞衍生因子1(SDF-1)及其受体CXCR4所构成的SDF-1/CXCR4轴生物效应的研究近些年来进展迅速,其在肿瘤发生及发展中起重要作用,并与髓外白血病密切相关.本文就SDF-1及其受体CXCR4在白血病细胞中的表达,SDF-1/CXCR4轴与髓外自血病的关系的研究进展加以综述.

  12. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.

    Science.gov (United States)

    Walsh, Tony G; Harper, Matthew T; Poole, Alastair W

    2015-01-01

    Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20-100 ng/mL(-1) could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca2+ mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway.

  13. The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas (Review).

    Science.gov (United States)

    Liao, Yu-Xin; Zhou, Cheng-Hao; Zeng, Hui; Zuo, Dong-Qing; Wang, Zhuo-Ying; Yin, Fei; Hua, Ying-Qing; Cai, Zheng-Dong

    2013-12-01

    Bone sarcomas, which comprise less than 1% of all human malignancies, are a group of relatively rare mesenchymal-derived tumors. They are mainly composed of osteosarcoma, chondrosarcoma and Ewing's sarcoma. In spite of advances in adjuvant chemotherapy and wide surgical resection, prognosis remains poor due to the high propensity for lung metastasis, which is the leading cause of mortality in patients with bone sarcomas. Chemokines are a superfamily of small pro-inflammatory chemoattractant cytokines which can bind to specific G protein-coupled seven-span transmembrane receptors. Chemokine 12 (CXCL12), also designated as stromal cell-derived factor-1 (SDF-1), is able to bind to its cognate receptors, chemokine receptor 4 (CXCR4) and chemokine receptor 7 (CXCR7), with high affinity. The binding of CXCL12 to CXCR4/CXCR7 stimulates the activation of several downstream signaling pathways that regulate tumor progression and metastasis. In this review, the structure and function of CXCL12 and its receptors, CXCR4 and CXCR7, as well as many factors affecting their expression are discussed. Phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways are the two most important downstream pathways regulated by the CXCL12-CXCR4/CXCR7 interaction. CXCR4 expression in bone sarcomas, including tumor cells and samples and the correlation between CXCR4/CXCR7 expression and the survival of patients with bone sarcomas are also discussed. In addition, we review the involvement of the CXCL12‑CXCR4/CXCR7 axis in the growth and metastasis of bone sarcomas and the targeting of this axis in preclinical studies.

  14. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt;

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5...... at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did...

  15. SDF-1 signaling via the CXCR4-TCR heterodimer requires PLC-β3 and PLC-γ1 for distinct cellular responses 1

    Science.gov (United States)

    Kremer, Kimberly N.; Clift, Ian C.; Miamen, Alexander G.; Bamidele, Adebowale O.; Qian, Nan-Xin; Humphreys, Troy D.; Hedin, Karen E.

    2011-01-01

    The CXCR4 chemokine receptor is a G protein-coupled receptor (GPCR) that signals in T lymphocytes by forming a heterodimer with the T cell antigen receptor (TCR). CXCR4 and TCR functions are consequently highly cross-regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAP kinase and downstream AP-1-dependent cytokine transcription in response to SDF-1, the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP-70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate GPCR-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. Here, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular Ca2+ concentrations, while PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1-mediated migration, via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors in order to distinctly regulate migration versus other signaling functions. PMID:21705626

  16. 苦参碱对人肾母细胞瘤SK-NEP-1细胞趋化因子受体4表达的影响%The effect of matrine on CXCR4 expression in SK-NEP-1 cells

    Institute of Scientific and Technical Information of China (English)

    毛玲; 薛天阳; 许伟

    2014-01-01

    Objectives To investigate the effects of matrine on the proliferation and apoptosis of SK-NEP-1 cells in vitro, and its possible mechanism. Methods Trials were divided into following groups:control group, 0.5, 1.0 and 1.5mg/ml of ma-trine intervention groups. The inhibition rate of SK-NEP-1 cells treated with different concentration of Matrine was detected by MTT colorimetric assay. Apoptosis rate was detected by flow cytometry (FCM). RT-PCR analysis was employed to measure the PDCD4 mRNA expression. Results Matrine (final concentrations=0.5, 1.0 and 1.5mg/ml) could induce apoptosis and inhibit the growth of SK-NEP-1 cells. Compared with the controls without matrine treatment (8.81±3.71)%, the inhibition rates of SK-NEP-1 cells were (20.79 ± 6.20)%, (31.25 ± 5.07)%, and (51.15 ± 12.70)%, respectively;the apoptotic rates of SK-NEP-1 cells treated with different concentration of matrine were (13.67±0.78)%,(17.43±1.65)%and (20.80±1.54)%, respectively. Significant difference in the inhibition and apoptotic rates of SK-NEP-1 cells between each drug group and control group was observed(P<0.05), and the inhibition and apoptotic rates of SK-NEP-1 cells increased gradually with increased matrine concentration, thus exhibiting a dose-dependent effect(P<0.05). To the expression of CXCR4 mRNA,the grey levels of SK-NEP-1 cells treated with matrine intervention group (final concentrations=0.5, 1.0 and 1.5 mg/ml) were (0.720 ± 0.058), (0.540 ± 0.095) and (0.307 ± 0.050), respectively. The mRNA expression of CXCR4 was seen in SK-NEP-1 cells. Compared with control group, the expres-sion of CXCR4 mRNA was decreased significantly in matrine intervention group (P<0.01).There were significant difference in CXCR4 mRNA level among the SK-NEP-1 cells treated with 0.5,1.0,1.5mg/mL of matrine (P<0.01). Conclusions Matrine could induce apoptosis and inhibit the growth of SK-NEP-1 cells in a dose-dependent way which may be associated with the down-regulated CXCR4 expression in SK

  17. CXCR4特异性拮抗剂SDF-1P2G54的构建及活性评价%Construction of SDF-1P2G54, a specific antagonist of CXCR4

    Institute of Scientific and Technical Information of China (English)

    杨飞华; 龙北国; 谭毅; 龚雅; 马伟峰

    2012-01-01

    目的 对SDF-1进行遗传改造,将其第2位氨基酸由脯氨酸(P)突变为甘氨酸(G),且缺失其C-端α螺旋结构,以获得一种CXCR4特异性拮抗剂SDF- 1P2G54.方法 将PCR扩增的SDF-1突变体SDF-1p2g54的基因插入表达载体pET-30a(+),并转化BL21(DE3)菌株.IPTG诱导表达的重组蛋白SDF-1P2G54在变性条件下采用镍柱亲和层析纯化,并通过梯度稀释和超滤方法得以复性.利用趋化实验鉴定SDF-1P2G54对Jurkat细胞的趋化活性及对SDF-1趋化活性的抑制效应,流式细胞仪检测SDF-1P2G54诱导MOLT4细胞钙内流及细胞表面CXCR4内在化的能力.结果 SDF-1P2G54完全丧失激活CXCR4、趋化Jurkat细胞跨膜迁移和诱导MOLT4细胞钙内流的能力,却保持了与CXCR4的高亲和性,能有效抑制野生型SDF-1对Jurkat的趋化效应、诱导MOLT4细胞表面CXCR4的快速内在化.结论 SDF-1P2G54是一种新型的CXCR4特异性拮抗剂,具有开发成抑制HIV-1感染和癌细胞转移等重大疾病特效药物的潜在应用价值.%Objective To obtain a specific antagonist of CXCR4, SDF-1P2G54 by mutating SDF-1 second proline (P) into glycin (G) and removing the a-helix of its C-terminal. Methods SDF-lp2g54 gene amplified by PCR was inserted into the vector pET-30a (+) and transformed into Escherichia coli (E. Coli) strain BL21. After IPTG induction of E. Coli, the expressed recombinant protein was purified with nickel-affinity chromatography column under denaturing conditions and refolded with gradient dilution and ultra-filtration. The chemotactic effect of SDF-1P2G54 on Jurkat cells and its antagonistic effect against SDF-1 were determined by transwell assay; flow cytometry was used to assay the ability of SDF-1 P2G54 to induce calcium influx and CXCR4 internalization in MOLT4 cells. Results The recombinant protein SDF-1P2G54 completely lost the functions to activate CXCR4 or to induce transmembrane migration of Jurkat cells and calcium influx in MOLT4 cells, but maintained a

  18. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    Science.gov (United States)

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  19. CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer

    Science.gov (United States)

    Yu, Xinfeng; Shi, Wenna; Zhang, Yuhang; Wang, Xiaohui; Sun, Shiyue; Song, Zhiyu; Liu, Man; Zeng, Qiao; Cui, Shuxiang; Qu, Xianjun

    2017-01-01

    The activation of CXCL12/CXCR4 axis is associated with potential progression of cancer, such as invasion, metastasis and chemoresistance. However, the underlying mechanisms of CXCL12/CXCR4 axis and cancer progression have been poorly explored. We hypothesized that miRNAs might be critical downstream mediators of CXCL12/CXCR4 axis involved in cancer invasion and chemoresistance in CRC. In human CRC cells, we found that the activation of CXCL12/CXCR4 axis promoted epithelial-mesenchymal transition (EMT) and concurrent upregulation of miR-125b. Overexpression of miR-125b robustly triggered EMT and cancer invasion, which in turn enhanced the expression of CXCR4. Importantly, the reciprocal positive feedback loop between CXCR4 and miR-125b further activated the Wnt/β-catenin signaling by targeting Adenomatous polyposis coli (APC) gene. There was a negative correlation of the expression of miR-125b with APC mRNA in paired human colorectal tissue specimens. Further experiments indicated a role of miR-125b in conferring 5-fluorouracil (5-FU) resistance in CRC probably through increasing autophagy both in vitro and in vivo. MiR-125b functions as an important downstream mediator upon the activation of CXCL12/CXCR4 axis that involved in EMT, invasion and 5-FU resistance of CRC. These findings shed a new insight into the role of miR-125b and provide a potential therapeutic target in CRC. PMID:28176874

  20. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation.

    Science.gov (United States)

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-10-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation.

  1. SDF-1/CXCR4在女性生殖系统肿瘤及胚胎着床中的作用%Role of SDF-1/CXCR4 on tumours of human female reproductive system and embryo implantation

    Institute of Scientific and Technical Information of China (English)

    徐楗荧; 朱伟杰

    2010-01-01

    基质细胞衍生因子-1(stromal cell-derived factor 1,SDF-1)是CXC趋化因子家族的成员,CXCR4是目前已知SDF-1的唯一受体.SDF-1/CXCR4在调控胚胎着床,诱导胎盘血管生成,肿瘤细胞趋向性侵袭、转移等方面发挥作用.本文综述SDF-1/CXCR4在女性生殖系统肿瘤中的研究现状,及其在胚胎着床过程中的作用.

  2. 趋化因子SDF-1与受体CXCR4的研究进展%The research progress in the chemokine SDF-1 and the chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    杨志峰; 杨清玲; 陈昌杰

    2011-01-01

    趋化因子SDF-1(stromal cell-derived factor-1)与其受体CXCR4( CXC chemokine receptor 4 )分别属于CXC类趋化因子和CXCR类G蛋白偶联受体超家族.功能研究表明,SDF-1/CXCR4轴在机体的免疫、炎症、胚胎发育、器官发生、肿瘤、HIV病、WHIM综合征等多种生物学过程中发挥着重要的作用,已成为当今生物学研究的热点之一.本文对SDF-1及CXCR4的结构、信号转导、生物学意义就当前研究的进展情况进行了综述.

  3. Effect of SDF-1/Cxcr4 Signaling Antagonist AMD3100 on Bone Mineralization in Distraction Osteogenesis.

    Science.gov (United States)

    Xu, Jia; Chen, Yuanfeng; Liu, Yang; Zhang, Jinfang; Kang, Qinglin; Ho, Kiwai; Chai, Yimin; Li, Gang

    2017-03-16

    Distraction osteogenesis (DO) is a widely applied technique in orthopedics surgery, which involves rapid stem cell migration, homing, and differentiation. Interactions between the chemokine receptor Cxcr4 and its ligand, stromal derived factor-1 (SDF-1), regulate hematopoietic stem cell trafficking to the ischemic area and induce their subsequent differentiation. Here, we examined SDF-1 expression and further investigated the role of SDF-1/Cxcr4 signaling antagonist AMD3100 during bone regeneration in rat DO model. The results showed that expression levels of SDF-1 and osteogenic genes were higher in DO zones than in the fracture zones, and SDF-1 expression level was the highest at the termination of the distraction phase. Radiological, mechanical, and histological analyses demonstrated that the local administration of AMD3100 (400 μM) to DO rats significantly inhibited new bone formation. In the rat bone marrow mesenchymal stem cells culture, comparing to the group treated with osteogenic induction medium, AMD3100 supplement led to a considerable decrease in the expression of alkaline phosphatase and early osteogenic marker genes. However, the amount of calcium deposits in rat MSCs did not differ between the groups. Therefore, our study demonstrated that the DO process induced higher expression of SDF-1, which collated to rapid induction of callus formation. Local application of SDF-1/Cxcr4 signaling antagonist AMD3100 significantly inhibited bone mineralization and osteogenesis in DO, which may represent a potential therapeutic approach to the enhancement of bone consolidation in patients undergoing DO.

  4. Structure-activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists

    DEFF Research Database (Denmark)

    Mungalpara, Jignesh; Zachariassen, Zack G; Thiele, Stefanie

    2013-01-01

    The cyclopentapeptide CXCR4 antagonist FC131 (cyclo(-Arg(1)-Arg(2)-2-Nal(3)-Gly(4)-D-Tyr(5)-), 2; 2-Nal = 3-(2-naphthyl)alanine) represents an excellent starting point for development of novel drug-like ligands with therapeutic potential in HIV, cancer, stem-cell mobilization, inflammation......, and autoimmune diseases. While the structure-activity relationships for Arg(1), Arg(2), and Gly(4) are well established, less is understood about the roles of the aromatic residues 2-Nal(3) and D-Tyr(5). Here we report further structure-activity relationship studies of these two positions, which showed that (i...... potent than 2, which means that the D-Tyr(5) side chain is dispensable. These findings were rationalized based on molecular docking, and the collective structure-activity data for the cyclopentapeptides suggest that appropriately designed Arg(2)-2-Nal(3) dipeptidomimetics have potential as CXCR4...

  5. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  6. Expression of CD134 and CXCR4 mRNA in term placentas from FIV-infected and control cats.

    Science.gov (United States)

    Scott, Veronica L; Burgess, Shane C; Shack, Leslie A; Lockett, Nikki N; Coats, Karen S

    2008-05-15

    Feline immunodeficiency virus (FIV) causes a natural infection of domestic cats that resembles HIV-1 in pathogenesis and disease progression. Feline AIDS is characterized by depression of the CD4+ T cell population and fatal opportunistic infections. Maternal-fetal transmission of FIV readily occurs under experimental conditions, resulting in infected viable kittens and resorbed or arrested fetal tissues. Although both FIV and HIV use the chemokine receptor CXCR4 as a co-receptor, FIV does not utilize CD4 as the primary receptor. Rather, CD134 (OX40), a T cell activation antigen and co-stimulatory molecule, is the primary receptor for FIV. We hypothesized that placental expression of CD134 and CXCR4 may render the placenta vulnerable to FIV infection, possibly facilitating efficient vertical transmission of FIV, and impact pregnancy outcome. The purpose of this project was to quantify the relative expression of CD134 and CXCR4 mRNA from the term placentas of three groups of cats: uninfected queens producing viable offspring, experimentally-infected queens producing only viable offspring, and experimentally-infected queens producing viable offspring among mostly non-viable fetuses. Total RNA was extracted from term placental tissues from all groups of cats. Real-time one-step reverse transcriptase-PCR was used to measure gene expression. The FIV receptors CD134 and CXCR4 were expressed in all late term feline placental tissues. Placentas from FIV-infected queens producing litters of only viable offspring expressed more CD134 and CXCR4 mRNA than those from uninfected queens, suggesting that infection may cause upregulation of the receptors. On the other hand, placentas from FIV-infected cats with non-successful pregnancies expressed similar levels of CD134 mRNA and slightly less CXCR4 mRNA than those from uninfected queens. Thus, it appears that cells expressing these receptors may play a role in pregnancy maintenance.

  7. Design, synthesis, and biological evaluation of CXCR4 ligands.

    Science.gov (United States)

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-11-02

    A combination of the CXCR4 inverse agonist T140 with N-terminal CXCL12 oligopeptides has produced the first nanomolar synthetic CXCR4 agonists. In these agonists, the inverse agonistic portion provides affinity whereas the N-terminal CXCL12 sequence induces receptor activation. Several CXCR4 crystal structures exist with either CVX15, an inverse agonist closely related to T140 and IT1t, a small molecule; we therefore attempted to produce another CXCL12 oligopeptide combination with IT1t. For this purpose, a primary amino group was introduced by total synthesis into one of the methyl groups of IT1t, serving as an anchoring point for the oligopeptide graft. The introduction of the oligopeptides on this analog however yielded antagonists, one compound displaying high affinity. On the other hand, the amino-substituted analogue itself proved to be an inverse agonist with a binding affinity of 2.6 nM compared to 11.5 nM for IT1t. This IT1t-like analog is hitherto one of the most potent non-peptidic CXCR4 inverse agonists reported.

  8. Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4.

    Science.gov (United States)

    Alevizos, Leonidas; Kataki, Agapi; Derventzi, Anastasia; Gomatos, Ilias; Loutraris, Christos; Gloustianou, Georgia; Manouras, Andreas; Konstadoulakis, Manousos M; Zografos, George

    2014-06-01

    DNA methylation is the best characterised epigenetic change so far. However, its role in breast cancer metastasis has not as yet been elucidated. The aim of this study was to investigate the differences between the methylation profiles characterising primary tumours and their corresponding positive or negative for metastasis lymph nodes (LN) and correlate these with tumour metastatic potential. Methylation signatures of Caveolin-1, CXCR4, RAR-β, Cyclin D2 and Twist gene promoters were studied in 30 breast cancer primary lesions and their corresponding metastasis-free and tumour-infiltrated LN with Methylation-Specific PCR. CXCR4 and Caveolin-1 expression was further studied by immunohistochemistry. Tumours were typified by methylation of RAR-β and hypermethylation of Cyclin-D2 and Twist gene promoters. Tumour patterns were highly conserved in tumour-infiltrated LN. CXCR4 and Caveolin-1 promoter methylation patterns differentiated between node-negative and metastatic tumours. Nodal metastasis was associated with tumour and lymph node profiles of extended methylation of Caveolin-1 and lack of CXCR4 hypermethylation. Immunodetection studies verified CXCR4 and Caveolin-1 hypermethylation as gene silencing mechanism. Absence of Caveolin-1 expression in stromal cells associated with tumour aggressiveness while strong Caveolin-1 expression in tumour cells correlated with decreased 7-year disease-free survival. Methylation-mediated activation of CXCR4 and inactivation of Caveolin-1 was linked with nodal metastasis while intratumoral Caveolin-1 expression heterogeneity correlated with disease progression. This evidence contributes to the better understanding and, thereby, therapeutic management of breast cancer metastasis process.

  9. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.

    Science.gov (United States)

    Barrero-Villar, Marta; Cabrero, José Román; Gordón-Alonso, Mónica; Barroso-González, Jonathan; Alvarez-Losada, Susana; Muñoz-Fernández, M Angeles; Sánchez-Madrid, Francisco; Valenzuela-Fernández, Agustín

    2009-01-01

    The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.

  10. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    Science.gov (United States)

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  11. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  12. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain.

    Science.gov (United States)

    González, Silvia A; Affranchino, José L

    2016-07-01

    The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.

  13. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt

    2003-01-01

    different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance...... of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4....

  14. Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo.

    Science.gov (United States)

    Beider, Katia; Darash-Yahana, Merav; Blaier, Orly; Koren-Michowitz, Maya; Abraham, Michal; Wald, Hanna; Wald, Ori; Galun, Eithan; Eizenberg, Orly; Peled, Amnon; Nagler, Arnon

    2014-05-01

    Functional role of CXCR4 in chronic myelogenous leukemia (CML) progression was evaluated. Elevated CXCR4 significantly increased the in vitro survival and proliferation in response to CXCL12. CXCR4 stimulation resulted in activation of extracellular signal-regulated kinase (Erk)-1/2, Akt, S6K, STAT3, and STAT5 prosurvival signaling pathways. In accordance, we found that in vitro treatment with CXCR4 antagonist BKT140 directly inhibited the cell growth and induced cell death of CML cells. Combination of BKT140 with suboptimal concentrations of imatinib significantly increased the anti-CML effect. BKT140 induced apoptotic cell death, decreasing the levels of HSP70 and HSP90 chaperones and antiapoptotic proteins BCL-2 and BCL-XL, subsequently promoting the release of mitochondrial factors cytochrome c and SMAC/Diablo. Bone marrow (BM) stromal cells (BMSC) markedly increased the proliferation of CML cells and protected them from imatinib-induced apoptosis. Furthermore, BMSCs elevated proto-oncogene BCL6 expression in the CML cells in response to imatinib treatment, suggesting the possible role of BCL6 in stroma-mediated TKI resistance. BKT140 reversed the protective effect of the stroma, effectively promoted apoptosis, and decreased BCL6 levels in CML cells cocultured with BMSCs. BKT140 administration in vivo effectively reduced the growth of subcutaneous K562-produced xenografts. Moreover, the combination of BKT140 with low-dose imatinib markedly inhibited tumor growth, achieving 95% suppression. Taken together, our data indicate the importance of CXCR4/CXCL12 axis in CML growth and CML-BM stroma interaction. CXCR4 inhibition with BKT140 antagonist efficiently cooperated with imatinib in vitro and in vivo. These results provide the rational basis for CXCR4-targeted therapy in combination with TKI to override drug resistance and suppress residual disease.

  15. SDF-1α和CXCR4在低氧缺糖海马脑片中的表达变化%Expressional changes of SDF-1α and CXCR4 proteins in oxygen-glucose deprivation hippocampal organotypic slice culture of rat

    Institute of Scientific and Technical Information of China (English)

    王玉兰; 徐红; 李爱娜

    2011-01-01

    To investigate expressional changes of SDF-1 α and CXCR4 proteins in oxygen-glucose dep-rivation( OGD ) hippocampal slice. Methods Western blot and immunohistochemistry analyses were used to detect SDF-1 α and CXCR4 proteins expression in hippocampal slice of HOTC group and OGD group. Results Immunohistochemistry showed that the SDF-1 α and CXCR4 proteins were expressed in hippocampal slice both HOTC group and OGD group, its hyalomitome was stained, and the CXCR4 protein expression was detected in the axon hillock of pyramidal cells. Western blot results showed that the expressions of SDF-1 α and CXCR4 proteins increased after OGD, and the expression of SDF-1 a proteins had significantly increased( P <0. 01 ). Conclusion The expressional changes of SDF-1 α and CXCR4 proteins indicate that SDF-1 a is associated with the OGD of hippocampal slice.%目的 研究海马脑片低氧缺糖损伤后SDF-1α和CXCR4蛋白的表达变化情况.方法 运用脑片培养技术建立低氧缺糖海马脑片模型,用免疫组化法和Western blot法检测SDF-1α和CXCR4的表达变化.结果 低氧缺糖损伤前后海马脑片中均可见SDF-1α和CXCR4表达的阳性细胞,其胞膜和胞质呈棕黄色着色,其中部分轴丘可见CXCR4阳性蛋白表达.Western blot发现,损伤后在分子量为11 ku和43 ku处分别检测到SDF-1α、CXCR4阳性条带;与正常对照组相比,OGD组SDF-1α和CXCR4表达均增加,其中SDF-1α表达增加差异有统计学意义(P<0.01).结论 海马脑片缺氧缺糖损伤后SDF-1α蛋白表达增加,提示SDF-1α可能与海马脑片低氧缺糖损伤密切相关.

  16. Mimicking protein-protein interactions through peptide-peptide interactions: HIV-1 gp120 and CXCR4

    Directory of Open Access Journals (Sweden)

    Andrea eGross

    2013-09-01

    Full Text Available We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1. Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.

  17. Combined Wnt/β-Catenin, Met, and CXCL12/CXCR4 Signals Characterize Basal Breast Cancer and Predict Disease Outcome

    Directory of Open Access Journals (Sweden)

    Jane D. Holland

    2013-12-01

    Full Text Available Prognosis for patients with estrogen-receptor (ER-negative basal breast cancer is poor, and chemotherapy is currently the best therapeutic option. We have generated a compound-mutant mouse model combining the activation of β-catenin and HGF (Wnt-Met signaling, which produced rapidly growing basal mammary gland tumors. We identified the chemokine system CXCL12/CXCR4 as a crucial driver of Wnt-Met tumors, given that compound-mutant mice also deficient in the CXCR4 gene were tumor resistant. Wnt-Met activation rapidly expanded a population of cancer-propagating cells, in which the two signaling systems control different functions, self-renewal and differentiation. Molecular therapy targeting Wnt, Met, and CXCR4 in mice significantly delayed tumor development. The expression of a Wnt-Met 322 gene signature was found to be predictive of poor survival of human patients with ER-negative breast cancers. Thus, targeting CXCR4 and its upstream activators, Wnt and Met, might provide an efficient strategy for breast cancer treatment.

  18. Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome.

    Science.gov (United States)

    Holland, Jane D; Györffy, Balázs; Vogel, Regina; Eckert, Klaus; Valenti, Giovanni; Fang, Liang; Lohneis, Philipp; Elezkurtaj, Sefer; Ziebold, Ulrike; Birchmeier, Walter

    2013-12-12

    Prognosis for patients with estrogen-receptor (ER)-negative basal breast cancer is poor, and chemotherapy is currently the best therapeutic option. We have generated a compound-mutant mouse model combining the activation of β-catenin and HGF (Wnt-Met signaling), which produced rapidly growing basal mammary gland tumors. We identified the chemokine system CXCL12/CXCR4 as a crucial driver of Wnt-Met tumors, given that compound-mutant mice also deficient in the CXCR4 gene were tumor resistant. Wnt-Met activation rapidly expanded a population of cancer-propagating cells, in which the two signaling systems control different functions, self-renewal and differentiation. Molecular therapy targeting Wnt, Met, and CXCR4 in mice significantly delayed tumor development. The expression of a Wnt-Met 322 gene signature was found to be predictive of poor survival of human patients with ER-negative breast cancers. Thus, targeting CXCR4 and its upstream activators, Wnt and Met, might provide an efficient strategy for breast cancer treatment.

  19. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    Directory of Open Access Journals (Sweden)

    Abedini F

    2011-09-01

    Full Text Available Fatemeh Abedini1, Maznah Ismail1,4, Hossein Hosseinkhani2, Tengku Azmi Tengku Ibrahim1,3, Abdul Rahman Omar1,3, Pei Pei Chong4, Mohd Hair Bejo3, Abraham J Domb51Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 3Faculty of Veterinary Medicine, 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University-Hadassah Medical School, Jerusalem, IsraelAbstract: Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4

  20. A novel approach to block HIV-1 coreceptor CXCR4 in non-toxic manner.

    Science.gov (United States)

    Liu, Ye; Zhou, Jieqiong; Pan, Ji-An; Mabiala, Prudence; Guo, Deyin

    2014-10-01

    The chemokine receptor CXCR4 is one of the major coreceptors for human immunodeficiency virus type 1 (HIV-1) and considered as an important therapeutic target. Knockdown of CXCR4 by RNA interference has emerged as a promising strategy for combating HIV-1 infection. However, there is a potential drawback to this strategy as undesired side effects may occur due to the loss of natural function of CXCR4. In this study, we developed a novel approach using a single lentiviral vector to express simultaneously CXCR4 dual-shRNAs and an shRNA-resistant CXCR4 mutant possessing the most possible natural functions of CXCR4 and reduced HIV-1 coreceptor activity. Via this approach we achieved the replacement of endogenous CXCR4 by CXCR4 mutant P191A that could compensate the functional loss of endogenous CXCR4 and significant reduction of HIV-1 replication by 59.2 %. Besides, we demonstrated that construction of recombinant lentiviral vector using 2A peptide-based strategy has significant advantages over using additional promoter-based strategy, including increase of lentivirus titer and avoidance of promoter competition. Therefore, the novel approach to block HIV-1 coreceptor CXCR4 without impairing its normal function provides a new strategy for CXCR4-targeted therapeutics for HIV-1 infection and potential universal applications to knock down a cellular protein in non-toxic manner.

  1. Molecular cloning, characterization, and expression analysis of the CXCR4 gene from Turbot: Scophthalmus maximus.

    Science.gov (United States)

    Jia, Airong; Zhang, Xiao-Hua

    2009-01-01

    Chemokine receptor 4 (CXCR4) belongs to the large superfamily of G protein-coupled receptors. The EST sequence of CXCR4 from turbot (Scophthalmus maximus L.) was obtained from a subtractive cDNA library. In the present study, the full-length cDNA sequence of turbot CXCR4 was obtained, and sequence analysis indicated that its primary structure was highly similar to CXCR4 from other vertebrates. Quantitative real-time PCR demonstrated that the highest expression level of turbot CXCR4 was in the spleen following injection with physiological saline (PS). After turbot were challenged with Vibrio harveyi, the lowest expression level of CXCR4 was detected at 8 hours in the spleen and 12 hours in the head kidney, and then increased gradually to 36 hours. These findings suggested that CXCR4 may play a significant role in the immune response of turbot.

  2. Molecular Cloning, Characterization, and Expression Analysis of the CXCR4 Gene from Turbot: Scophthalmus maximus

    Directory of Open Access Journals (Sweden)

    Airong Jia

    2009-01-01

    Full Text Available Chemokine receptor 4 (CXCR4 belongs to the large superfamily of G protein-coupled receptors. The EST sequence of CXCR4 from turbot (Scophthalmus maximus L. was obtained from a subtractive cDNA library. In the present study, the full-length cDNA sequence of turbot CXCR4 was obtained, and sequence analysis indicated that its primary structure was highly similar to CXCR4 from other vertebrates. Quantitative real-time PCR demonstrated that the highest expression level of turbot CXCR4 was in the spleen following injection with physiological saline (PS. After turbot were challenged with Vibrio harveyi, the lowest expression level of CXCR4 was detected at 8 hours in the spleen and 12 hours in the head kidney, and then increased gradually to 36 hours. These findings suggested that CXCR4 may play a significant role in the immune response of turbot.

  3. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina.

    Science.gov (United States)

    Aparicio, J G; Hopp, H; Choi, A; Mandayam Comar, J; Liao, V C; Harutyunyan, N; Lee, T C

    2016-11-17

    Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.

  4. CXCL12/CXCR4 chemokine signaling in spinal glia induces pain hypersensitivity through MAPKs-mediated neuroinflammation in bone cancer rats.

    Science.gov (United States)

    Hu, Xue-Ming; Liu, Yan-Nan; Zhang, Hai-Long; Cao, Shou-Bin; Zhang, Ting; Chen, Li-Ping; Shen, Wen

    2015-02-01

    The activation of MAPK pathways in spinal cord and subsequent production of proinflammatory cytokines in glial cells contribute to the development of spinal central sensitization, the basic mechanism underlying bone cancer pain (BCP). Our previous study showed that spinal CXCL12 from astrocytes mediates BCP generation by binding to CXCR4 in both astrocyters and microglia. Here, we verified that CXCL12/CXCR4 signaling contributed to BCP through a MAPK-mediated mechanism. In naïve rats, a single intrathecal administration of CXCL12 considerably induced pain hyperalgesia and phosphorylation expression of spinal MAPK members (including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase), which could be partially prevented by pre-treatment with CXCR4 inhibitor AMD3100. This CXCL12-induced hyperalgesia was also reduced by MAPK inhibitors. In bone cancer rats, tumor cell inoculation into the tibial cavity caused prominent and persistent pain hyperalgesia, and associated with up-regulation of CXCL12 and CXCR4, activation of glial cells, phosphorylation of MAPKs, and production of proinflammatory cytokines in the spinal cord. These tumor cell inoculation-induced behavioral and neurochemical alterations were all suppressed by blocking CXCL12/CXCR4 signaling or MAPK pathways. Taken together, these results demonstrate that spinal MAPK pathways mediated CXCL12/CXCR4-induced pain hypersensitivity in bone cancer rats, which could be druggable targets for alleviating BCP and glia-derived neuroinflammation. Following tumor cell inoculation, chemokine CXCL12 from astrocytes spreads around the spinal environment, resulting in functional activation of CXCR4-expressing astrocytes and microglia. Once glia are activated, they may initiate MAPK (mitogen-activated protein kinase) pathways, and subsequently produce proinflammatory cytokines and chemokines. Among them, CXCL12 could reinforce the astrocytic and microglial activation in autocrine and paracrine manners

  5. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor.

    Science.gov (United States)

    Kasina, Sathish; Macoska, Jill A

    2012-04-01

    The molecular mechanisms responsible for the transition of some prostate cancers from androgen ligand-dependent to androgen ligand-independent are incompletely established. Molecules that are ligands for G protein coupled receptors (GPCRs) have been implicated in ligand-independent androgen receptor (AR) activation. The purpose of this study was to examine whether CXCL12, the ligand for the GPCR, CXCR4, might mediate prostate cancer cell proliferation through AR-dependent mechanisms involving functional transactivation of the AR in the absence of androgen. The results of these studies showed that activation of the CXCL12/CXCR4 axis promoted: The nuclear accumulation of both wild-type and mutant AR in several prostate epithelial cell lines; AR-dependent proliferative responses; nuclear accumulation of the AR co-regulator SRC-1 protein; SRC-1:AR protein:protein association; co-localization of AR and SRC-1 on the promoters of AR-regulated genes; AR- and SRC-1 dependent transcription of AR-regulated genes; AR-dependent secretion of the AR-regulated PSA protein; P13K-dependent phosphorylation of AR; MAPK-dependent phosphorylation of SRC-1, and both MAPK- and P13K-dependent secretion of the PSA protein, in the absence of androgen. Taken together, these studies identify CXCL12 as a novel, non-steroidal growth factor that promotes the growth of prostate epithelial cells through AR-dependent mechanisms in the absence of steroid hormones. These findings support the development of novel therapeutics targeting the CXCL12/CXCR4 axis as an ancillary to those targeting the androgen/AR axis to effectively treat castration resistant/recurrent prostate tumors.

  6. CXCR4 antagonist AMD3100 attenuates colonic damage in mice with experimental colitis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the effects of the chemokine stromal cell-derived factor-1(CXCL12) receptor(CXCR4) antagonist AMD3100 on colonic inflammation and epithelial barrier in dextran sulfate sodium(DSS)-induced colitis in mice.METHODS:Experimental colitis was induced by administration of 5% DSS for 7 d,and assays performed on intestinal segments from the ileocecal valve to the anus.Colonic morphology was examined by hematoxylin and eosin staining.Colonic cytokines were determined by enzyme-linked immunosorbent ...

  7. Expression and significance of SDF-1/CXCR4 in alkali-burned cornealtissue in mouse%碱烧伤小鼠角膜组织中SDF-1/CXCR4的表达及意义

    Institute of Scientific and Technical Information of China (English)

    彭亮红; 柳林

    2010-01-01

    目的 探讨基质细胞衍生因子-1(SDF-1)和CXCR4在小鼠角膜碱烧伤新生血管形成中的作用.方法 应用在角膜中央放置NaOH滤纸片的方法 构建C57/BL小鼠角膜碱烧伤角膜新生血管动物模型,通过免疫组织化学、RT-PCR、Western blot法检测碱烧伤后不同时间点角膜组织中SDF-1和CXCR4 mRNA及蛋白的表达情况.结果 免疫组织化学检测显示,正常小鼠角膜基质层无明显SDF-1的阳性表达,CXCR4仅在角膜上皮层呈弱阳性表达.RT-PCR检测显示,与正常对照组相比,碱烧伤后各时间点SDF-1和CXCR4 mRNA表达均明显升高(P<0.05);Western blot检测显示SDF-1和CXCR4蛋白的表达也可见相似的变化趋势(P<0.05).SDF-1和CXCR4在角膜中的表达于第7天达高峰,第14天开始下降,但仍高于正常.结论 SDF-1/CXCR4在碱烧伤后小鼠角膜组织中的表达增加,在角膜碱烧伤的炎症和新生血管的形成和发展过程中可能发挥重要作用.%Background Recent research showed that stromal cell-derived factor-1 (SDF-1) plays critical role in mediating inflammation,metastasis of tumour and neovascularization of tumour.However,There is still no report about the research of the effects of SDF-1 on alkali-burn-induced corneal neovascularization (CNV).Objective The aim of this study attempts to investigate the role of SDF-1 and chemokine receptor CXCR4 in alkali-induced corneal neovascularization in mice.Methods Alkali-induced-corneal neovascularization animal models were constructed of in 15 eyes of 15 clean C57/BL mice by placing the filter paper with 1 mol/L NaOH to the central cornea for 10 seconds.The animals were sacrificed and specimens of cornea were obtained in 3,7,14 days after alkali burn of cornea.The expression of SDF-1/CXCR4 protein in the corneal tissues was detected by immunohistochemistry and Western blot,and expression of SDF-1/CXCR4 mRNA was detected by reverse transcription PCR (RT-PCR).Results SDF-1 was absent expressed and

  8. SDF-1/CXCR4的表达与喉癌组织VEGF-C表达、淋巴管生成及预后的相关性%Correlation between SDF-1, CXCR4 and VEGF-C, Lymphangiogenesis, Prognosis in Laryngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    王莹; 李文媛; 梁金花; 丁利; 赵斯达

    2012-01-01

    Objective To investigate the relationship between the expression of SDF - 1 ,CXCR4 and VEGF - C, lymphangiogenesis , prognosis significance in patients with laryngeal cancer. Methods The expressions of SDF - 1, CXCR4 and VEGF-C in 45 specimens of the laryngeal cancer and 20 specimens of polyp of vocal cord tissues were observed by immunohistochemistry. Lymphatic mi-crovessed density( LVD) was evaluated by 5' - Nase staining, and the correlation analysis was made between SDF-1, CXCR4 and VEGF -C, clinical characteristics, and judged SDF - 1 and CXCR4 roles in laryngeal cancer prognosis by using Kaplan - Meier method. Results The expression of SDF - 1 , CXCR4, VEGF - C protein were higher in laryngeal cancer tissue than in the polyp of vocal cord tissue. The expression of SDF-1 and CXCR4 were significantly correlated with TNM stage, lymph node metastasis, lymphovascular invasion. VEGF-C was correlated with lymph node metastasis, lymphovascular invasion. The expression of the SDF-1, CXCR4 and VEGF -C protein in laryngeal cancer has directly correlation. SDF-1 , CXCR4, VEGF-C were significantly correlated with peritumoral and in-tratumoral LVD. The expression of SDF-1 had effect on survival ratio. Conclusion SDF-1/CXCR4 axis might stimulate VEGF - C up-regulation and promote lymphangiogenesis, lymphatic metastasis in laryngeal cell carcinoma. The expression of SDF - 1 may be helpful for judging prognosis in laryngeal cancer.%目的 探讨趋化因子SDF -1及其受体CXCR4在喉癌组织中的表达与喉癌中VEGF-C表达、淋巴管生成及预后的相关性.方法 应用免疫组化法检测SDF -1、CXCR4和VEGF-C在45例喉癌和20例声带息肉组织中的表达,应用5′-核苷酸酶染色法(5′- Nase)计数淋巴管密度,并结合临床病理特征进行相关分析,应用Kaplan -Meier法评估SDF -1和CXCR4表达对喉癌预后的影响.结果 喉癌组织中SDF -1、CXCR4和VEGF -C表达较声带息肉组显著增加(P<0.05),SDF -1、CXCR4表达与TNM

  9. Inhibition of SDF-1/CXCR4-induced epithelial-mesenchymal transition by kisspeptin-10.

    Science.gov (United States)

    Gründker, Carsten; Bauerschmitz, Gerd; Knapp, Juliane; Schmidt, Elena; Olbrich, Theresa; Emons, Günter

    2015-07-01

    , induction of EMT was inhibited. Furthermore, protein expression of the binding site of SDF-1, CXC-motive-chemokine receptor 4 (CXCR-4), was reduced by KP-10. Treatment of MCF-7-EMT cells with KP-10 resulted in a significant drop of cell invasion and CXCR-4 protein expression. Our findings suggest that SDF-1 plays a major role in breast cancer invasion and EMT. SDF-1-induced invasion and EMT can be inhibited by KP-10 treatment by down-regulating CXCR-4 expression.

  10. Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy.

    Science.gov (United States)

    Philpott, S; Weiser, B; Anastos, K; Kitchen, C M; Robison, E; Meyer, W A; Sacks, H S; Mathur-Wagh, U; Brunner, C; Burger, H

    2001-02-01

    To initiate infection, HIV-1 requires a primary receptor, CD4, and a secondary receptor, principally the chemokine receptor CCR5 or CXCR4. Coreceptor usage plays a critical role in HIV-1 disease progression. HIV-1 transmitted in vivo generally uses CCR5 (R5), but later CXCR4 (X4) strains may emerge; this shift heralds CD4+ cell depletion and clinical deterioration. We asked whether antiretroviral therapy can shift HIV-1 populations back to R5 viruses after X4 strains have emerged, in part because treatment has been successful in slowing disease progression without uniformly suppressing plasma viremia. We analyzed the coreceptor usage of serial primary isolates from 15 women with advanced disease who demonstrated X4 viruses. Coreceptor usage was determined by using a HOS-CD4+ cell system, biological and molecular cloning, and sequencing the envelope gene V3 region. By constructing a mathematical model to measure the proportion of virus in a specimen using each coreceptor, we demonstrated that the predominant viral population shifted from X4 at baseline to R5 strains after treatment. Multivariate analyses showed that the shift was independent of changes in plasma HIV-1 RNA level and CD4+ cell count. Hence, combination therapy may lead to a change in phenotypic character as well as in the quantity of HIV-1. Shifts in coreceptor usage may thereby contribute to the clinical efficacy of anti-HIV drugs.

  11. SDF-1及受体CXCR4与糖尿病血管病变的研究概述

    Institute of Scientific and Technical Information of China (English)

    朱晓津; 方朝晖

    2011-01-01

    基质细胞衍生因子-1(Stromal cell derived factor 1,SDF-1)是趋化因子家族的新成员,与其特异性受体CX-C1R4广泛地表达于许多组织和器官.近来研究发现,糖尿病患者外周血中SDF-1/CXCR4水平下降,合并血管病变患者下降更明显.SDF-1/CXCR4水平下降则外周血中内皮祖细胞(endothelial progenitor cells,EPC)数量下降,血管修复能力受损,同时也提高了血管壁与血中SDF-1/CXCR4的浓度梯度,加快动脉粥样硬化进展.可见SDF-1/CXCR4在糖尿病血管病变发生发展中起到重要的作用.本文就SDF-1/CXCR4与糖尿病血管病变的研究进展进行综述.

  12. 基质细胞衍生因子-1及其受体CXCR4在进展期胃癌中的表达及意义%Expression of SDF-1 and CXCR4 in gastric carcinoma and its clinical significances

    Institute of Scientific and Technical Information of China (English)

    陈友权; 于燕妮

    2012-01-01

    目的 研究趋化因子基质细胞衍生因子-1(SDF-1)及其受体CXCR4与胃癌生物学行为的关系,探讨SDF-1/CXCR4轴在胃癌侵袭、转移中的生物学意义.方法 应用免疫组化EnVision两步法检测58例胃癌组织中SDF-1、CXCR4的表达.结果 (1)SDF-1、CXCR4在胃癌组的阳性表达率分别为87.9%、56.9%,显著高于切缘对照组的47.8%、30.4%,差异有显著性(P<0.05);(2)SDF-1和CXCR4的表达在淋巴结转移组高于无转移组(P<0.05),SDF-1、CXCR4表达程度与淋巴结转移、浆膜侵犯、临床分期指标相关(P<0.05);(3)SDF-1与CXCR4的表达呈正相关(P<0.05).结论 胃癌细胞SDF-1、CXCR的表达水平与胃癌的发生、侵袭及淋巴结转移密切相关,可作为预测胃癌淋巴结转移及预后的免疫病理学指标;胃癌细胞可能通过SDF-1/CXCR4生物轴促进肿瘤的浸润和转移,提示SDF-1可能是药物靶向治疗的重要靶点.%Objective To study the expression of stromal cell derived factor l( SDF-1 ),CXCR4,and their association with clinic pathological features and lymph node metastasis in gastric carcinoma. Methods The expression of SDF-1 and CXCR4 was detected by immunohistochemistry in 58 cases of the gastric carcinoma. The correlation with various clinicopathologic parameters was analyzed. Results The positive rates of SDF-1 and CXCR4 were 87. 9% ,56. 9% in gastric carcinoma, which were much higher than those in cutting edge of the control group ( 47. 8% ,30. 4% ). There was significant difference between the two groups( P < 0. 05 ). The expression of SDF-1 and CXCR4 in lymph node-metastasis group was higher than that without lymph node-metastasis( P < 0. 05 ). The expression of SDF-1 and CXCR4 was correlated positively to lymph node metastasis, clinic tumor stage and serosal invasion ( P < 0.05 ). The expression of SDF-1 was significantly correlated with CXCR4 ( P < 0.05 ). Conclusions The expression of SDF-1 and CXCR in gastric carcinoma was involved in tumorigenesis

  13. SDF-1/CXCR4与胃癌相关性研究进展%Study make progress on SDF-1/CXCR4 and gastric cancer

    Institute of Scientific and Technical Information of China (English)

    莫日根苏都

    2015-01-01

    CXCL12(又称基质细胞衍生因子-1 SDF-1)及其受体CXCR4共同构成SDF-1/CXCR4轴在肿瘤发生、发展、浸润及转移过程中发挥重要作用.其对胃癌生长、侵袭过程的作用机制可能成为胃癌治疗的靶点,本文章对SDF-1/CXCR4与胃癌相关性研究进展进行综述.

  14. Coexpression of EGFR and CXCR4 predicts poor prognosis in resected pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Huanwen Wu

    Full Text Available Epidermal growth factor receptor (EGFR is highly expressed in pancreatic ductal adenocarcinoma (PDAC and is involved in tumorigenesis and development. However, EGFR expression alone has limited clinical and prognostic significance. Recently, the cross-talk between EGFR and G-protein-coupled chemokine receptor CXCR4 has become increasingly recognized.In the present study, immunohistochemical staining of EGFR and CXCR4 was performed on paraffin-embedded specimens from 131 patients with surgically resected PDAC. Subsequently, the associations between EGFR expression, CXCR4 expression, EGFR/CXCR4 coexpression and clinicopathologic factors were assessed, and survival analyses were performed.In total, 64 (48.9% patients expressed EGFR, 68 (51.9% expressed CXCR4, and 33 (25.2% coexpressed EGFR and CXCR4. No significant association between EGFR and CXCR4 expression was observed (P = 0.938. EGFR expression significantly correlated with tumor differentiation (P = 0.031, whereas CXCR4 expression significantly correlated with lymph node metastasis (P = 0.001. EGFR/CXCR4 coexpression was significantly associated with lymph node metastasis (P = 0.026, TNM stage (P = 0.048, and poor tumor differentiation (P = 0.004. By univariate survival analysis, both CXCR4 expression and EGFR/CXCR4 coexpression were significant prognostic factors for poor disease-free survival (DFS and overall survival (OS. Moreover, EGFR/CXCR4 coexpression significantly increased the hazard ratio for both recurrence and death compared with EGFR or CXCR4 protein expression alone. Multivariate survival analysis demonstrated that EGFR/CXCR4 coexpression was an independent prognostic factor for DFS (HR = 2.33, P<0.001 and OS (HR = 2.48, P = 0.001.In conclusion, our data indicate that although EGFR expression alone has limited clinical and prognostic significance, EGFR/CXCR4 coexpression identified a subset of PDAC patients with more aggressive tumor characteristics and a significantly worse

  15. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4.

    Directory of Open Access Journals (Sweden)

    Cédric Laguri

    Full Text Available BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4 and heparan sulfate (HS. The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM, and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS

  16. Fluorescence Resonance Energy Transfer Imaging Reveals that Chemokine-Binding Modulates Heterodimers of CXCR4 and CCR5 Receptors

    OpenAIRE

    2008-01-01

    BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET) imaging ...

  17. Prevalence of CXCR4-tropic viruses in clustered transmission chains at the time of primary HIV-1 infection.

    Science.gov (United States)

    Frange, P; Meyer, L; Ghosn, J; Deveau, C; Goujard, C; Duvivier, C; Tubiana, R; Rouzioux, C; Chaix, M-L

    2013-05-01

    During 2003-2010, 555 strains isolated from sexually-infected patients at the time of primary HIV-1 infection (PHI) were characterized. Tree topology revealed that 11.7% of PHIs segregated into transmission clusters. CXCR4-usage was identified in 27 strains (4.9%) and was significantly associated with subtype B (p 0.003) and low CD4 cell count (p 0.01). In clustered and unique PHIs, the prevalence of CXCR4-tropic strains was 1.5% and 5.3%, respectively (p 0.35). Our results are in line with the hypothesis of a mucosal bottleneck contributing to the high prevalence of CCR5 variants during PHI.

  18. Biological Behavior of SDF-1/CXCR4 in Patients with Myelodysplastic Syndrome%SDF-1/CXCR4在骨髓增生异常综合征患者中的生物学作用

    Institute of Scientific and Technical Information of China (English)

    杨瑞; 李晓; 浦杰; 郭娟; 许峰; 张征; 赵佑山; 张曦; 顾树程; 常春康

    2011-01-01

    The purpose of this study was to evaluate the biological behavior of stromal cell-derived factor-l( SDF-1) in migration, adhesion and apoptosis as well as the related signaling transduction pathways in patients with myelodysplastic syndrome(MDS) and acute myeloid leukemia (AML). 37 patients with MDS, 10 patients with de novo AML and 14 patients with non-clonal cytopenia diseases were chosen for this study. The expression level of CXCR4 on CD34 + cells and apoptosis of CD34 + cells in bone marrow were detected by flow cytometry; the chemotaxis of SDF-1 on bone marrow mononuclear cells in 4 patients with low risk MDS (IPSS score≤ 1.0) and S patients with high risk MDS (IPSS score ≥ 1. 5) was assayed by transwell migration test of cells. The effect of SDF-1 on cell adhesion capability was measured by using CCK-8 method. The results indicated that the apoptosis rate of CD34 * cells was significantly higher in MDS patients with low risk (IPPS score < 1.0) than that in MDS patients with high risk (IPSS score ≥1.5) (21.55% vs 7.52% , p<0.001); as well, the apoptosis rate of CD34+ cells was significantly higher in MDS patients with low risk than that in de novo AML patients (21.55% vs 7.33% , p <0.001), no relation of CD34 * cell apoptosis with age and sex of patients was found. SDF-1 could promote the cells of patients with CXCR4 high expression to adhere to the stroma cells, and induce migration of these cells, as well as, SDF-1 could trigger the polarization of the cells which highly expressed CXCR4. After addition of pertussis toxin, wortmannin and AMD3100, the ability of adhersion and migration of the cells with highly expressed CXCR4 decreased, but there was no above-mentioned pheno-menon in patients who lowly expressed CXCR4. It is concluded that the SDF-1/CXCR4 axis enhances the ability of cell adhesion and nigration through PDK signaling pathway, thereby plays antiapoptosis role, moreover the above-mentioned effects can be blocked by PDK pathway inhibitor

  19. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes

    NARCIS (Netherlands)

    Watts, A. O.; van Lipzig, M. M. H.; Jaeger, W. C.; Seeber, R. M.; van Zwam, M.; Vinet, J.; van der Lee, M. M. C.; Siderius, M.; Zaman, G. J. R.; Boddeke, H. W. G. M.; Smit, M. J.; Pfleger, K. D. G.; Leurs, R.; Vischer, H. F.

    2013-01-01

    Background and Purpose The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heter

  20. Peptide-Functionalized Luminescent Iridium Complexes for Lifetime Imaging of CXCR4 Expression

    NARCIS (Netherlands)

    Kuil, J.; Steunenberg, P.; Chin, P.T.K.; Oldenburg, J.; Jalink, K.; Velders, A.H.; Leeuwen, F.W.B. van

    2011-01-01

    The chemokine receptor 4 (CXCR4) is over-expressed in 23 types of cancer in which it plays a role in, among others, the metastatic spread. For this reason it is a potential biomarker for the field of diagnostic oncology. The antagonistic Ac-TZ14011 peptide, which binds to CXCR4, has been conjugated

  1. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis.

    Science.gov (United States)

    Dong, Yonghui; Liu, Hui; Zhang, Xuejun; Xu, Fei; Qin, Liang; Cheng, Peng; Huang, Hui; Guo, Fengjing; Yang, Qing; Chen, Anmin

    2016-06-16

    Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA). Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA) mice models were prepared by transecting the anterior cruciate ligament (ACLT), or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS) or AMD3100 (an inhibitor of CXCR4) and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT). Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I) were quantified by ELISA. Bone marrow mononuclear cells (BMMCs) were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP), cathepsin K (CK), and matrix metalloproteinase (MMP)-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage degeneration in

  2. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Yu Huang; Jia Zhang; Zhu-Mei Cui; Jing Zhao; Ye Zheng

    2013-01-01

    The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread.Recent evidence suggests that CXCL16,a novel chemokine,is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer.We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN) and cervical cancer and further assessed their association with clinicopathologic features and outcomes.Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12,CXCR4,CXCL16,and CXCR6 in healthy cervical tissue (21 cases),CIN (65 cases),and cervical carcinoma (60 cases).The association of protein expression with clinicopathologic features and overall survival was analyzed.These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells,and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1,CIN2,and CIN3 to invasive cancer.Furthermore,the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma,whereas the expression of CXCR6 was associated significantly with lymph node metastasis.In Kaplan-Meier analysis,patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression.The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development.Moreover,CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer.

  3. Evaluating the methylation status of CXCR4 promoter: A cost-effective and sensitive two-step PCR method.

    Science.gov (United States)

    Bianchessi, Valentina; Lauri, Andrea; Vigorelli, Vera; Toia, Martina; Vinci, Maria Cristina

    2017-02-15

    The chemokine receptor CXCR4 plays a key role in the bone marrow microenvironment maintenance and in the hematopoietic stem and progenitor cells migration. In addition, CXCR4 is expressed in a broad spectrum of solid tumors where its methylation state has been recently proposed as a biomarker for cancer prognosis. To evaluate methylation status of CXCR4 promoter we developed a sensitive, accurate, specific and cost-effective two-step PCR method that does not require any specific equipment other than a conventional real-time PCR instrument. The principle of the technique relies on a novel normalization strategy which allows the detection and quantification of small methylation differences among pre-amplified DNA samples deriving from low amount of starting material. In addition, the analysis of melting curve profiles of PCR products provides additional information about the methylation status of CpG sites in between the primers. Finally, the principle of this technique can potentially be adapted for the investigation of the methylation status of any other DNA region.

  4. BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis.

    Science.gov (United States)

    Bielen, Holger; Houart, Corinne

    2012-10-16

    Depletion of Wnt signaling is a major requirement for the induction of the anterior prosencephalon. However, the molecular events driving the differential regionalization of this area into eye-field and telencephalon fates are still unknown. Here we show that the BMP pathway is active in the anterior neural ectoderm during late blastula to early gastrula stage in zebrafish. Bmp2b mutants and mosaic loss-of-function experiments reveal that BMP acts as a repressor of eye-field fate through inhibition of its key transcription factor Rx3, thereby protecting the future telencephalon from acquiring eye identity. This BMP-driven mechanism initiates the establishment of the telencephalon prior to the involvement of Wnt antagonists from the anterior neural border. Furthermore, we demonstrate that Rx3 and BMP are respectively required to maintain and restrict the chemokine receptor cxcr4a, which in turn contributes to the morphogenetic separation of eye-field and telencephalic cells during early neurulation.

  5. Expression of SDF-1 and CXCR4 in triple negative breast cancer tissues and its relationship with prognosis%SDF-1、CXCR4在三阴性乳腺癌组织中的表达及其与患者预后的相关性

    Institute of Scientific and Technical Information of China (English)

    孔令禹; 傅勤烨

    2014-01-01

    目的:探讨基质细胞衍生因子-1(SDF-1)及基质细胞衍生因子受体-4(CXCR4)在三阴性乳腺癌(TNBC)组织中的表达和临床意义。方法用免疫组化法检测77例TNBC组织中SDF-1和CXCR4的表达,分析SDF-1和CXCR4与TNBC临床病理特征及患者预后的关系。结果 SDF-1和CXCR4在TNBC中高表达率分别为41.6%、64.9%,且二者表达呈显著正相关(P=0.041);SDF-1和CXCR4高表达与患者年龄、肿瘤大小、临床分期及组织学分级不相关(P>0.05),与淋巴结转移及无瘤生存呈显著正相关;多因素分析结果表明:SDF-1是TNBC患者无瘤生存的独立预后因素( OR=2.318,95%CI=1.028~5.230)。生存分析显示SDF-1和CXCR4高表达者无瘤生存时间短于低表达者(P均<0.05)。结论 TNBC中SDF-1/CXCR4表达可作为判断TNBC预后的重要生物学指标。%Objective To investigate the expression and clinical significance of stromal cell derived factor-1 ( SDF-1) and its receptor stromal cell derived factor receptor-4 ( CXCR4) in triple negative breast cancer( TNBC) tissue.Methods The expression of SDF-1 and CXCR4 of 77 TNBC cases were detected by using immunohistochemistry.The correlation between SDF-1/CXCR and clinical pathological features and prognosis were assessed.Results The expression rate of SDF-1 and CXCR4 in TNBC tissues was 41.6%, 64.9%, respectively.The expression rate of SDF-1 and CXCR4 in TN-BC tissues were significantly correlated (P=0.041).The high expression of SDF-1 and CXCR4 were not correlated with age, tumor size, clinical stage and histological grade(P>0.05), but obviously correlated with lymph node metastasis(PS-DF-1=0.021,PCXCR4=0.010) and disease free survival(PSDF-1=0.023,PCXCR4=0.015).COX regression multi-variate analysis showed that SDF-1 was an independent prognostic factor of disease free survival in TNBC(OR=2.318, 95%CI=1.028-5.230).Kaplan-Meier survival analysis indicated that

  6. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord

    Science.gov (United States)

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  7. Study on CCR5, CXCR4, HLA-Dr and CD38 expression and its correlation with disease progression in 50 HIV/AIDS patients in Beijing%北京市50例HIV/AIDS病人CCR5CXCR4HLA-DR 和CD38表达与疾病进展关系

    Institute of Scientific and Technical Information of China (English)

    叶景荣; 辛若雷; 卢红艳; 白立石; 曾毅

    2011-01-01

    Objective To investigate the CCR5,CXCR4,HLA-Dr and CD38 expression on T lymphocytes and to study its association with disease progression. Methods Fifty HIV/AIDS patients and 14 normal controls were selected and flow-cytometry was used to detect the CCR5、XCR4、HLA-Dr and CD38 expression in whole blood samples taken from the patients and the controls. Results There was significant difference in CCR5/CD4,CXCR4/CD4, CD38/CD4,CCR5/CD8,CD38/CD8 and HLA-Dr/CD8 expression among AIDS patients, HIV infectors and normal controls. The expression on CXCR4/CD4,CD38/CD4,CCR5/CD8 and CD38/CD8 among HIV / AIDS patients was significantly correlated with CD+4 T cell percent. Conclusion The expression of CCR5,CXCR4 and CD38 is significantly correlated with immune system reaction toward HIV and disease progression in HIV/AIDS patients.%目的 了解艾滋病病毒(HIV)感染者/艾滋病(AIDS)病人(HIV/AIDS病人)淋巴细胞表面CCR5、CXCR4、HLA-DR和CD38表达,分析其与疾病进展的关系,探讨HIV感染的免疫学基础.方法 收集50例HIV/AIDS病人及14例健康对照的抗凝全血,用流式细胞仪检测CCR5、CXCR4、HLA-DR和CD38表达,并分析其与疾病进展情况的相关性.结果 艾滋病组、HIV感染者和正常对照CCR5/CD4,CXCR4/CD4,CD38/CD4,CCR5/CD8,CD38/CD8和HLA-Dr/CD8表达有显著性差异,CXCR4/CD4和CD38/CD4与疾病进程呈明显正相关,CCR5/CD8和CD38/CD8与疾病进程呈明显负相关.结论 HIV/AIDS病人淋巴细胞表面CCR5、CXCR4和CD38表达与疾病进展密切相关.

  8. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  9. Cloning of Encoding Sequences for Chemokine Receptors CXCR4 and CCR5 from a Chinese Lymphocyte cDNAs

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ It has been known recently that cofactors, which belong to the family of seven-transmembrane GTP-binding protein-coupled receptors, are necessary for the entry of HIV-1 into CD4+cells. The CXC chemokine receptor 4(CXCR4) was first found to act as the coreceptor for the infection of T cell line-tropic HIV-1 strains to T helper cells in 1996. Keeping in step with this find the CC chemokine receptor 5(CCR5)was also identified as a coreceptor for macrophage-tropic virus. Both of the coreceptors could be used in basic research and application design for AIDS.

  10. Imaging CXCL12-CXCR4 Signaling and Inhibition in Ovarian Cancer

    Science.gov (United States)

    2013-10-01

    CBRN) (Promega), we amplified CXCR4 by PCR and cloned the product into the XhoI and AgeI sites of EGFP-N1 (Clontech). We used PCR to amplify the DNA ...the EGFP-N1 backbone to lentiviral vector FUW, we used PCR to amplify the target DNA sequence and add XbaI sites for cloning. Constructs used for...Gordon Mills, MD Anderson Cancer Center) were stably transduced with recombi - nant lentiviruses for CXCR4-CBRN and Ar-CBC (HeyA8- CXCR4-CBRN/Ar-CBC) [17

  11. SDF-1/CXCR4轴与血管新生的研究进展%Advance in research on SDF-1/CXCR4 axis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    肖庆; 曾军

    2007-01-01

    近年来研究表明,基质细胞衍生因子(SDF-1)与它的特异性受体CXCR4作用形成的反应轴.在调节免疫,调控造血,血管形成,神经发育,肿瘤发生发展,防治HIV感染及精子游动等方面发挥重要作用.SDF-1/CXCR4轴的新作用愈来愈受到人们的关注.本文就SDF-1/CXCR4轴与新生血管之间密切联系的相关研究进行简要的综述.

  12. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H‑2h⁴ mice.

    Science.gov (United States)

    Liu, Xin; Mao, Jinyuan; Han, Cheng; Peng, Shiqiao; Li, Chenyan; Jin, Ting; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4), are upregulated in mice with autoimmune thyroid diseases. However, whether this interaction is involved in the pathophysiology of autoimmune thyroiditis (AIT) remains to be elucidated. In the present study, the effects of the CXCR4 antagonist, AMD3100, in an iodine‑induced autoimmune thyroiditis model were investigated. NOD.H‑2h4 mice were randomly separated into a control, AIT and AIT+AMD3100 groups. The mice were fed with 0.05% sodium iodide water for 8 weeks to induce AIT. The AMD3100‑treated mice were administered with the CXCR4 antagonist at a dose of 10 mg/kg intraperitoneally three times a week during the experimental period. The percentages of CD19+interleukin (IL)10+ B cells and CD4+IL10+ T cells, and the mRNA expression levels of IL10 in the splenocytes were reduced in the AIT group, compared with the control group, however, they increased following AMD3100 treatment, compared with the untreated AIT group. The percentages of CD4+ T cells, CD8+ T cells, CD19+ B cells and CD8+ interferon (IFN)γ+ T cells, and the mRNA expression levels of IFNγ increased in the AIT group, compared with the control group, however, these were reduced in the AMD3100 group, compared with the AIT group. The AMD3100‑treated mice also had lower serum thyroglobulin antibody titers and reduced lymphocytic infiltration in the thyroid, compared with the untreated AIT mice. These results suggested that inhibition of this chemokine axis may offer potential as a therapeutic target for the treatment of AIT.

  13. AMD3100 reduces CXCR4-mediated survival and metastasis of osteosarcoma by inhibiting JNK and Akt, but not p38 or Erk1/2, pathways in in vitro and mouse experiments.

    Science.gov (United States)

    Liao, Yu-Xin; Fu, Ze-Ze; Zhou, Cheng-Hao; Shan, Lian-Cheng; Wang, Zhuo-Ying; Yin, Fei; Zheng, Long-Po; Hua, Ying-Qi; Cai, Zheng-Dong

    2015-07-01

    Osteosarcoma (OS) has an unfavorable prognosis and tends to metastasize to lung tissue. Although the CXCL12-CXCR4 axis appears to affect progression and metastasis in numerous tumors, its mechanism and downstream pathways in OS remain unclear. We used western blotting and flow cytometry to detect CXCR4 and CXCR7 expression in two OS cell lines (LM8 and Dunn). An MTT assay was used to evaluate the effects of CXCL12 and AMD3100, a specific CXCR4 antagonist, on cell viability. Flow cytometry was utilized to analyze changes in apoptosis induced by serum deprivation following treatment with CXCL12 and AMD3100. A Transwell assay was used to assess cell migration in response to CXCL12 and AMD3100. Western blotting was performed to identify the phosphorylation of signaling molecules (JNK, c-Jun, Akt, p38 and Erk1/2) and expression of caspase-3 and -8, and PARP. Mouse models were employed to evaluate AMD3100 inhibition of primary OS growth and lung metastasis in vivo. CXCR4 expression was detected in LM8 but not Dunn cells, and neither cell line expressed CXCR7. The addition of CXCL12 induced the survival and migration of serum-starved CXCR4+ LM8 cells activating JNK and Akt pathways, which were abrogated by adding AMD3100. However, similar results were not observed in CXCR4- Dunn cells. CXCL12 protected LM8, but not Dunn cells, from apoptosis induced by serum deprivation by suppressing PARP cleavage, which was partly reversed by AMD3100. In a mouse model, AMD3100 reduced primary tumor growth and lung metastasis compared with the controls. Thus, the CXCL12-CXCR4 axis regulated OS survival and metastasis through the JNK and Akt pathways, and blocking them with AMD3100 was found to be a potential OS treatment.

  14. SDF-1/CXCR4与乳腺癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱超

    2011-01-01

    基质细胞衍生因子-1(SDF-1)及其受体CXCR4 所构成的SDF-1/CXCR4 生物轴与乳腺癌的血管新生、远处转移及激素替代作用等方面发挥着重要的作用,促进了乳腺癌的进展,其SDF-1/CXCR4阻滞剂,如 AMD3100和siRNAs干扰技术的研究在抑制乳腺癌血管新生、远处转移等方面取得了一定的效果,为乳腺癌的治疗提供了一个新的策略.文章就SDF-1/CXCR4轴与乳腺癌的关系进行简要综述.

  15. SDF-1/CXCR4与血液系统恶性疾病

    Institute of Scientific and Technical Information of China (English)

    张晓慧; 傅晋翔

    2004-01-01

    基质细胞衍生因子(SDF-1)属CXC类趋化因子,其唯一受体为CXCR4.近年研究表明,SDF-1/CXCR4与多种恶性血液病的发生、发展有关.SDF-1/CXCR4可维持恶性血细胞的存活并促其增殖,还可通过调节黏附分子的功能参与恶性血液细胞在骨髓、淋巴结等器官的浸润.以SDF-1/CXCR4为靶分子的治疗有潜在的临床应用前景.

  16. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  17. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging

    National Research Council Canada - National Science Library

    Wester, Hans Jürgen; Keller, Ulrich; Schottelius, Margret; Beer, Ambros; Philipp-Abbrederis, Kathrin; Hoffmann, Frauke; Šimeček, Jakub; Gerngross, Carlos; Lassmann, Michael; Herrmann, Ken; Pellegata, Natalia; Rudelius, Martina; Kessler, Horst; Schwaiger, Markus

    2015-01-01

    .... In addition to the preclinical evaluation of [(68)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [(68)Ga...

  18. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  19. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  20. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A

    2014-01-01

    pocket) respectively. Arg(1) forms charge-charge interactions with Asp(187) in ECL-2, while D-Tyr(5) points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu(288) via two water molecules. Intriguingly, Tyr(116) and Glu(288) form a H......BACKGROUND AND PURPOSE: The cyclopentapeptide FC131 (cyclo(-L-Arg(1) -L-Arg(2) -L-2-Nal(3) -Gly(4) -D-Tyr(5) -)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4...... activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. KEY RESULTS: The Arg(2) and 2-Nal(3) side chains of FC131 interact with residues in TM-3 (His(113) , Asp(171) ) and TM-5 (hydrophobic...

  1. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation.

    Science.gov (United States)

    Abraham, M; Beider, K; Wald, H; Weiss, I D; Zipori, D; Galun, E; Nagler, A; Eizenberg, O; Peled, A

    2009-08-01

    Cytopenia represents a significant complication after chemotherapy, irradiation before bone marrow (BM) transplantation or as a therapy for cancer. The mechanisms that determine the pace of BM recovery are not fully understood. During the recovery phase after chemotherapy or irradiation, the signals for retention of white blood cells within the BM increase significantly. This leads to a delay in the release of WBC, which can be overcome by targeting the CXCR4 axis with the antagonist 4F-benzoyl-TN14003 (T140). The delay in the release of WBC is also accompanied by suppression in the production of progenitor cells and mature cells by the BM stroma. Administration of T140 to mice transplanted with BM cells stimulates the production of all types of progenitors and mature cells, and increases the exit of mature cells to the periphery. Moreover, addition of T140, but not AMD3100, to BM stromal cultures stimulates the production of mature cells and progenitors from all lineages. The unique ability of the CXCR4 antagonist, T140 to stimulate the production and exit of WBC cells may be used as a novel therapeutic approach to overcome cytopenia associated with treatments for cancer and BM transplantation.

  2. Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6.

    Science.gov (United States)

    Grivel, J C; Ito, Y; Fagà, G; Santoro, F; Shaheen, F; Malnati, M S; Fitzgerald, W; Lusso, P; Margolis, L

    2001-11-01

    HIV-1 infects target cells via a receptor complex formed by CD4 and a chemokine receptor, primarily CCR5 or CXCR4 (ref. 1). Commonly, HIV-1 transmission is mediated by CCR5-tropic variants, also designated slow/low, non-syncytia-inducer or macrophage-tropic, which dominate the early stages of HIV-1 infection and frequently persist during the entire course of the disease. In contrast, HIV-1 variants that use CXCR4 are typically detected at the later stages, and are associated with a rapid decline in CD4+ T cells and progression to AIDS (refs. 2,7-11). Disease progression is also associated with the emergence of concurrent infections that may affect the course of HIV disease by unknown mechanisms. A lymphotropic agent frequently reactivated in HIV-infected patients is human herpesvirus 6 (HHV-6), which has been proposed as a cofactor in AIDS progression. Here we show that in human lymphoid tissue ex vivo, HHV-6 affects HIV-1 infection in a coreceptor-dependent manner, suppressing CCR5-tropic but not CXCR4-tropic HIV-1 replication, as shown with both uncloned viral isolates and isogenic molecular chimeras. Furthermore, we demonstrate that HHV-6 increases the production of the CCR5 ligand RANTES ('regulated upon activation, normal T-cell expressed and secreted'), the most potent HIV-inhibitory CC chemokine, and that exogenous RANTES mimics the effects of HHV-6 on HIV-1, providing a mechanism for the selective blockade of CCR5-tropic HIV-1. Our data suggest that HHV-6 may profoundly influence the course of HIV-1 infection.

  3. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  4. Coexpression of CXCR4 and MMP9 predicts lung metastasis and poor prognosis in resected osteosarcoma.

    Science.gov (United States)

    Ren, Zhiwu; Liang, Shoulei; Yang, Jilong; Han, Xiuxin; Shan, Luling; Wang, Biying; Mu, Tianyang; Zhang, Yanqin; Yang, Xueli; Xiong, Shunbin; Wang, Guowen

    2016-04-01

    Osteosarcoma is a highly aggressive bone disease with a tendency to metastasize to the lung. The 5-year survival of patients with metastatic osteosarcoma is only 20 %. Many studies have demonstrated SDF-1/CXCR4 and MMP9 play important roles in the metastasis of malignant tumors, including osteosarcoma. The aim of this study was to investigate the association of CXCR4 and MMP9 expression with clinicopathological features and pulmonary metastasis in osteosarcoma. Using tumor tissue microarrays, we analyzed the expression of CXCR4 and MMP9 among 34 primary osteosarcomas with pulmonary metastasis and 62 primary osteosarcomas without metastasis. A median time of 57.5 months (range: 6 to 171 months) follow-up was performed to evaluate tumor metastasis and the patient survival. The prognostic values were determined by univariate Kaplan-Meier survival analysis and multivariate Cox proportional hazard model analysis. The accuracy of oncologic outcome prediction was evaluated by receiver-operating characteristics (ROC) curves (AUC). The expression of CXCR4 and MMP9 was significantly correlated in tumor tissues (P = 0.026). Both CXCR4 and MMP9 were independent predictors for overall survival and metastasis-free survival by Cox multivariate analysis, and high expression for both CXCR4 and MMP9 were even more significant and better biomarkers for osteosarcoma metastasis and survival. The combination of CXCR4 and MMP9 high expression is very likely to be a valuable independent predictor of lung metastasis and survival in osteosarcoma patients.

  5. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    Science.gov (United States)

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.

  6. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yonghui Dong

    2016-06-01

    Full Text Available Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA. Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA mice models were prepared by transecting the anterior cruciate ligament (ACLT, or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS or AMD3100 (an inhibitor of CXCR4 and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT. Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I were quantified by ELISA. Bone marrow mononuclear cells (BMMCs were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP, cathepsin K (CK, and matrix metalloproteinase (MMP-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage

  7. SDF-1/CXCR4轴与白血病血管新生研究进展%Advance of Research on SDF-1/CXCR4 Axis and Angiogenesis in Leukemia——Review

    Institute of Scientific and Technical Information of China (English)

    包萃华; 贺其图

    2008-01-01

    基质细胞衍生因子-1(SDF-1)及其受体CXCR4所构成的SDF-1/CXCR4轴生物效应的研究近些年来进展迅速,其在肿瘤发生及发展中起重要作用,并与肿瘤血管新生密切相关,本文就SDF-1及其受体CXCR4,SDF-1/CXCR4轴在白血病细胞中的表达,SDF-1/CXCR4轴与白血病血管新生的关系,抗SDF-1/CXCR4抑制剂在血管新生治疗中的应用的研究进展加以综述.

  8. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    Science.gov (United States)

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  9. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    Science.gov (United States)

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  10. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease.

    Science.gov (United States)

    Herrmann, Ken; Schottelius, Margret; Lapa, Constantin; Osl, Theresa; Poschenrieder, Andreas; Hänscheid, Heribert; Lückerath, Katharina; Schreder, Martin; Bluemel, Christina; Knott, Markus; Keller, Ulrich; Schirbel, Andreas; Samnick, Samuel; Lassmann, Michael; Kropf, Saskia; Buck, Andreas K; Einsele, Hermann; Wester, Hans-Juergen; Knop, Stefan

    2016-02-01

    Chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. Based on promising experiences with a radiolabeled CXCR4 ligand ((68)Ga-pentixafor) for diagnostic receptor targeting, (177)Lu- and (90)Y-pentixather were recently developed as endoradiotherapeutic vectors. Here, we summarize the first-in-human experience in 3 heavily pretreated patients with intramedullary and extensive extramedullary manifestations of multiple myeloma undergoing CXCR4-directed endoradiotherapy. CXCR4 target expression was demonstrated by baseline (68)Ga-pentixafor PET. Each treatment was approved by the clinical ethics committee. Pretherapeutic (177)Lu-pentixather dosimetry was performed before (177)Lu-pentixather or (90)Y-pentixather treatment. Subsequently, patients underwent additional chemotherapy and autologous stem cell transplantation for bone marrow rescue. A remarkable therapeutic effect was visualized in 2 patients, who showed a significant reduction in (18)F-FDG uptake. CXCR4-targeted radiotherapy with pentixather appears to be a promising novel treatment option in combination with cytotoxic chemotherapy and autologous stem cell transplantation, especially for patients with advanced multiple myeloma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Rational design of conformationally constrained cyclopentapeptide antagonists for C-x-C chemokine receptor 4 (CXCR4)

    DEFF Research Database (Denmark)

    Mungalpara, Jignesh; Thiele, Stefanie; Eriksen, Øystein;

    2012-01-01

    In the absence of an experimentally determined binding mode for the cyclopentapeptide CXCR4 antagonists, we have rationally designed conformationally constrained analogues to further probe the small peptide binding pocket of CXCR4. Two different rigidification strategies were employed, both...... resulting in highly potent ligands (9 and 13). The information provided by this cyclopentapeptide ligand series will be very valuable in the development of novel peptidomimetic CXCR4 antagonists....

  12. Expressions of chemokine receptor CXCR4 and its ligand CXCL12 in salivary adenoid cystic carcinoma

    Institute of Scientific and Technical Information of China (English)

    徐晓刚; 吕春堂; 周中华

    2004-01-01

    Objective: To examine expressions of chemokine receptor CXCR4 and its ligand CXCL12 in primary focus and lymphogenous metastasis of salivary adenoid cystic carcinoma (ACC) with lung metastasis. Methods: Using immunohistochemical hypersensitivity catalyzed signal amplification (CSA), expressions of chemokine receptor CXCR4 and ligand CXCL12 were detected in tissue specimens from 20 cases of primary cancer focus and lymphogenous metastasis of salivary adenoid cystic carcinoma, of which 7 cases were associated with lung metastasis and 3 with lympogenons metastasis. Twenty cases of tongue carcinoma (including 10 cases with lymphogenous metastasis) and 15 cases of mucoepidermoid carcinoma (including 5 cases with lymphogenous metastasis) were used as the malignant control group; and salivary mixed tumor ( n =10), tongue leukoceratosis ( n = 10) and cervical lymph node reactive hyperplasia ( n = 10) were used as the benign control group. Results: Expression of CXCR4 in the tissues and lymph metastases of oral and maxillofacial salivary ACC, mucoepidermoid carcinoma and tongue carcinoma was significantly higher than that of the benign control group ( P < 0.05); expression of CXCR4 in the primary focus of ACC was significantly higher than that of the malignant control group; and expression of CXCR4 in the ACC with lung metastasis was 87.1% (6/7), significantly higher than that without lung metastasis( P <0.01 ). There was evident positive expression of CXCL12 in endotheliocytes of microvessels within cancer and paracancer tissues and significantly high expression of CXCL12 in lymphogenous metastasis( P < 0.05). Conclusion: Chemokine receptor CXCR4 and its ligand CXCL12 may be associated with local invasion and lymphogenous metastasis of oral and maxillofacial cancer, especially with lung metastasis of salivary ACC.

  13. 胃癌中SDF-1、CXCR4、MMP-2和MMP-9的表达及意义%Expression of SDF-1,CXCR4,MMP-2 and MMP-9 in tissues of gastric carcinoma and their significances

    Institute of Scientific and Technical Information of China (English)

    陈友权; 于燕妮

    2012-01-01

    Purpose To study the expression of stromal cell derived factor l( SDF-1 ), CXCR4, MMP-2 and MMP-9 and their association with clinic pathological features and lymph node metastasis in gastric carcinoma. Methods The expression of SDF-1, CXCR4, MMP-2 and MMP-9 was detected by immunohistochemistry in 109 cases of the gastric carcinoma. The correlation with various clinico-pathologic parameters was analyzed. Results The positive rates of SDF-1, CXCR4, MMP-2 and MMP-9 were 87. 9% , 56. 9% , 77. 6% and 81. 0% in gastric carcinoma, respectively, which were much higher than those 47. 8% , 30. 4% , 47. 8% and 43. 4% in cutting edge of the control group. There existed significant different between two groups( P <0. 05 ). SDF-1 and CXCR4 expression in lymph node-metastasis group was higher than that without lymph node metastasis( P <0. 05 ). The expression of SDF-1 and CXCR4 was correlated positively to lymph node metastasis,clinic tumor stage,histologic grade,and serosal invasion( P <0. 05 ). The expression of CXCR4 and MMP-2 was positively correlated to lymph node metastasis, serosal invasion and clinical stage( P <0. 05 ). The expression of SDF-1 was significantly correlated with CXCR4、MMP-2 and MMP-9( P <0. 05 ). Conclusions The expression of SDF-1, CXCR4, MMP-2 and MMP-9 of tumor is involved in tumorgenesis and associated with invasion and lymphnode metastasis of gastric carcinoma, which can serve as biomarkers for diagnosis and prediction of lymph node metastasis. Furthermore, the expression of SDF-1 in gastric carcinoma may promote the tumor invasion and metastasis through the secretion of MMP-2 and MMP-9, suggesting that SDF-1 may be an important target for targeted therapy.%目的 研究趋化因子SDF-1及其受体CXCR4以及MMP-2和MMP-9在胃癌中的表达,探讨SDF-1对MMP-2和MMP-9表达的影响.方法 应用免疫组化EnVision两步法检测109例胃癌组织中SDF-1、CXCR4、MMP-2和MMP-9的表达.结果 (1)SDF-1、CXCR4、MMP-2、MMP-9在胃癌组

  14. The chemokine receptors CXCR4/CXCR7 and their primary heterodimeric ligands CXCL12 and CXCL12/high mobility group box 1 in pancreatic cancer growth and development: finding flow.

    Science.gov (United States)

    Shakir, Murtaza; Tang, Daolin; Zeh, Herbert J; Tang, Siu Wah; Anderson, Carolyn J; Bahary, Nathan; Lotze, Michael T

    2015-05-01

    Novel therapies need to be developed for patients with pancreatic cancer because of the poor outcomes of current regimens. Pancreatic cancer cells respond to the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C chemokine receptor type 7 (CXCR7)/C-X-C motif chemokine 12 (CXCL12)/high-mobility group box 1 signaling axis and this axis presents a novel target for therapy. C-X-C motif chemokine 12 stimulates CXCR4/CXCR7-bearing cells in a paracrine manner. C-X-C chemokine receptor type 4 and CXCR7 are transmembrane G protein-coupled receptors that, upon interaction with ligand CXCL12, activate downstream protein kinases that promote a more aggressive behavior. C-X-C chemokine receptor type 4 is expressed on most pancreatic cancer cells, whereas CXCR7 is primarily expressed on tumor-associated endothelium. High-mobility group box 1 promotes the CXCR4 and CXCL12 interaction, promoting angiogenesis and lymphangiogenesis. Hypoxia-inducible factor 1 is a potent stimulator of CXCR4 and CXCL12 expression, promoting more aggressive behavior. This receptor/ligand interaction can be disrupted by CXCR4 antagonists available and in clinical use to harvest bone marrow stem cells. Novel imaging strategies are now being developed at several centers to evaluate response to therapy and identify early recurrence. Thus, the CXCR4/CXCR7/CXCL12 interaction plays a critical role in cancer cell progression, proliferation, invasion, as well as metastasis and is a suitable target for therapy, imaging, as well as development of novel diagnostics.

  15. Therapeutic effect of Rhizoma Dioscoreae Nipponicae on gouty arthritis based on the SDF-1/CXCR 4 and p38 MAPK pathway: an in vivo and in vitro study.

    Science.gov (United States)

    Lu, Fang; Liu, Lei; Yu, Dong-hua; Li, Xu-zhao; Zhou, Qi; Liu, Shu-min

    2014-02-01

    Rhizoma Dioscoreae Nipponicae (RDN) is a widely used traditional Chinese herb, which is used to treat arthroncus, arthrodynia and arthritis. As is known to us, inflammatory mechanisms have played an important role in the occurrence, course and prognosis of gouty arthritis (GA). The aim of this study was to determine the characteristic expressed proteins of synovium in GA rat and synovial cell. The rat model of GA was induced by monosodium urate (MSU) crystal. Tissue samples were assayed by immunohistochemical method. The effects of RDN on Stromal cell-derived factor 1 (SDF-1), CXCR 4 and p38 mitogen-activated protein kinase (MAPK) were investigated in MSU crystal-induced rat. The levels of SDF-1 and mitogen-activated kinase kinase (MKK) 3/6 were measured by Western Blot in interleukin-1β (IL-1β) incubated fibroblast-like synoviocytes (FLS). A significant increase in the levels of SDF-1, CXCR 4 and p38 MAPK were observed in MSU crystal-induced rat. The increased SDF-1 and MKK 3/6 levels were observed in IL-1β incubated FLS. With the treatment of RDN, the above changes were reverted back to near normal levels. RDN might have some therapeutic effects on GA through SDF-1/CXCR 4 and p38 MAPK pathway, and dioscin may be the active compound in RDN to exert therapeutic effect on GA.

  16. 愛滋病毒的輔助受體CCR5和CXCR4%The Role of Chemokine Receptors CCR5 and CXCR4 in HIV-1 Infection

    Institute of Scientific and Technical Information of China (English)

    周燁; 樂影穎; Pablo IRIBARREN; 龔望華; 張廈; 王吉民

    2004-01-01

    化學趨化因子介導白細胞遷移,淋巴器官生成、炎症、過敏、動脈粥樣硬化以及惡性腫瘤生長轉移等多種病理生理過程.這些因子結合位於細胞表面的島苷蛋白耦聯受體,從而促進細胞遊走並活化.近年來,化學趨化因子及其受體受到生物醫學界高度重視,原因之一是有些受體被人類免疫缺陷(愛滋)病毒利用作為侵襲細胞的關鍵性輔助受體.在這些受體中,CXCR4和CCR5分別被噬淋巴細胞病毒株或噬巨噬特異細胞病毒株所識別利用.為此,這些受體的配體由於能夠與病毒競爭受體結合位點,成為人體内天然的抗病毒蛋白.生物醫學界和製藥業也正在研究開發能特異地抑制這些受體的分子作為新一代抗人類免疫缺陷病毒的藥物.%Chemokines are key mediators of a variety of pathophysiological responses, including leukocyte trafficking, lymphoid tissue organogenesis, inflammation, allergy, atherosclerosis and malignancy.Chemokines bind and activate a group of G protein-coupled receptors, which, upon ligand binding, transmit a cascade of signaling events culminating in cell migration and activation. For the past few years, chemokines and their receptors have received particular attention due to the discoveries that some of the chemokine receptors are utilized by human immunodeficiency virus type 1 (HIV-1) as coreceptors for cellular entry. Although a number of chemokine and orphan receptors also exhibit coreceptor activity for different strains of HIV-1, CXCR4 and CCR5 are the two essential coreceptors for T-cell line tropic (X4) and macrophage tropic (R5) viruses, respectively.Consequently, chemokine ligands for CXCR4 or CCR5 are potent host-derived anti-HIV-1 agents based on their competitive receptor binding activity and down-regulation of the viral coreceptors. It is recognized that agents targeting HIV-1 coreceptors may have important therapeutic potential.

  17. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evalua

  18. SDF-1/CXCR4与乳腺癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱超(综述); 刘红光(审校)

    2011-01-01

    基质细胞衍生因子-1(SDF-1)及其受体CXCR4所构成的SDF-1/CXCR4生物轴与乳腺癌的血管新生、远处转移及激素替代作用等方面发挥着重要的作用,促进了乳腺癌的进展,其SDF-1/CXCR4阻滞剂,如AMD3100和siRNAs干扰技术的研究在抑制乳腺癌血管新生、远处转移等方面取得了一定的效果,为乳腺癌的治疗提供了一个新的策略。文章就SDF-1/CXCR4轴与乳腺癌的关系进行简要综述。

  19. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik;

    2005-01-01

    and selective anti-HIV activity against CXCR4-using (X4) viruses and showed antiviral efficacy in X4 HIV-1-infected persons in a phase II clinical trial. However, AMD3100 lacks oral bioavailability due to its high overall positive charge. Initial structure-activity relationship studies with bicyclam analogues...

  20. Sequential administration of the high affinity CXCR4 antagonist BKT140 promotes megakaryopoiesis and platelet production.

    Science.gov (United States)

    Abraham, Michal; Weiss, Ido D; Wald, Hanna; Wald, Ori; Nagler, Arnon; Beider, Katia; Eizenberg, Orly; Peled, Amnon

    2013-10-01

    Platelets are the terminal differentiation product of megakaryocytes (MKs). Cytokines, such as thrombopoietin (TPO), are known to influence different steps in MK development; however, the complex differentiation and platelet localization processes are not fully understood. MKs express the receptor CXCR4 and have been shown to migrate in response to CXCL12 and to increase their platelet production. In this study, we studied the role of CXCR4 in platelet production with the high affinity CXCR4 antagonist, BKT140. Single and sequential administration of BKT140 significantly increased the number of MKs and haematopoietic progenitors (HPCs) within the bone marrow (BM). Increased megakaryopoiesis was associated with increased platelet production. Single and sequential administration of BKT140 also increased the number of HPCs in the blood. In a model of 5-fluorouracil-induced thrombocytopenia, BKT140 significantly reduced the severity and duration of thrombocytopenia and cytopenia when administered before and after chemotherapy. Our results demonstrated that the CXCR4 antagonist, BKT140, mediated unique beneficial effects by stimulating megakaryopoiesis and platelet production. These results provide evidence for the possible therapeutic use of BKT140 for modulating platelet numbers in thrombocytopenic conditions. © 2013 John Wiley & Sons Ltd.

  1. The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time--an ultra-deep approach.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available Large-scale parallel pyrosequencing produces unprecedented quantities of sequence data. However, when generated from viral populations current mapping software is inadequate for dealing with the high levels of variation present, resulting in the potential for biased data loss. In order to apply the 454 Life Sciences' pyrosequencing system to the study of viral populations, we have developed software for the processing of highly variable sequence data. Here we demonstrate our software by analyzing two temporally sampled HIV-1 intra-patient datasets from a clinical study of maraviroc. This drug binds the CCR5 coreceptor, thus preventing HIV-1 infection of the cell. The objective is to determine viral tropism (CCR5 versus CXCR4 usage and track the evolution of minority CXCR4-using variants that may limit the response to a maraviroc-containing treatment regimen. Five time points (two prior to treatment were available from each patient. We first quantify the effects of divergence on initial read k-mer mapping and demonstrate the importance of utilizing population-specific template sequences in relation to the analysis of next-generation sequence data. Then, in conjunction with coreceptor prediction algorithms that infer HIV tropism, our software was used to quantify the viral population structure pre- and post-treatment. In both cases, low frequency CXCR4-using variants (2.5-15% were detected prior to treatment. Following phylogenetic inference, these variants were observed to exist as distinct lineages that were maintained through time. Our analysis, thus confirms the role of pre-existing CXCR4-using virus in the emergence of maraviroc-insensitive HIV. The software will have utility for the study of intra-host viral diversity and evolution of other fast evolving viruses, and is available from http://www.bioinf.manchester.ac.uk/segminator/.

  2. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy.

    Science.gov (United States)

    Zhou, Zhike; Liu, Tingting; Sun, Xiaoyu; Mu, Xiaopeng; Zhu, Gang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2017-03-30

    It has been showed that enriched environment (EE) enhances the hippocampal neurogenesis and improves the cognitive impairments, accompanied by the increased expressions of stromal cell-derived factor-1 (SDF-1) in adult rats of temporal lobe epilepsy (TLE). We examined whether the enhanced neurogenesis and improved cognitive functions induced by EE following seizures were mediated by SDF-1/CXCR4 pathway. Therefore, we investigated the effects of the EE combined with CXCR4 antagonist AMD3100 on neurogenesis, cognitive functions and the long-term seizure activity in the TLE model. Adult rats were randomly assigned as control rats, rats treated with EE, rats subjected to status epilepticus (SE), post-SE rats treated with EE, AMD3100 or EE combined with AMD3100 respectively. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the frequency and mean duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze test. EE treatment significantly, as well as improved cognitive impairments and decreased long-term seizure activity, and that these effects might be mediated through SDF-1/CXCR4 pathway during the chronic stage of TLE. Although AMD3100 reversed the effect