WorldWideScience

Sample records for cell stress marker

  1. Embryonic Stem Cell Markers

    OpenAIRE

    Lan Ma; Liang Li; Wenxiu Zhao; Xiang Ji; Fangfang Zhang

    2012-01-01

    Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other type...

  2. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  3. Relationships between oxidative stress markers and red blood cell characteristics in renal azotemic dogs.

    Science.gov (United States)

    Buranakarl, C; Trisiriroj, M; Pondeenana, S; Tungjitpeanpong, T; Jarutakanon, P; Penchome, R

    2009-04-01

    Oxidative stress parameters and erythrocyte characteristics were studied in 15 normal healthy dogs and 33 renal azotaemic dogs from Small Animal Hospital, Faculty of Veterinary Science, Chulalongkorn University. Dogs with renal azotaemia had reduced mean corpuscular volume (MCV) (PDogs with severe renal azotaemia had higher intraerythrocytic sodium contents (RBC-Na) (Pred blood cell catalase activity and glutathione and plasma malondialdehyde were unaltered while urinary malondialdehyde-creatinine ratio (U-MDA/Cr) increased significantly (Pdogs. Moreover, the U-MDA/Cr is a sensitive biochemical parameter which increased along with degree of renal dysfunction.

  4. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects.

    Science.gov (United States)

    Gubert, Carolina; Stertz, Laura; Pfaffenseller, Bianca; Panizzutti, Bruna Schilling; Rezin, Gislaine Tezza; Massuda, Raffael; Streck, Emilio Luiz; Gama, Clarissa Severino; Kapczinski, Flávio; Kunz, Maurício

    2013-10-01

    Evidence suggests that mitochondrial dysfunction is involved in the pathophysiology of psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD). However, the exact mechanisms underlying this dysfunction are not well understood. Impaired activity of electron transport chain (ETC) complexes has been described in these disorders and may reflect changes in mitochondrial metabolism and oxidative stress markers. The objective of this study was to compare ETC complex activity and protein and lipid oxidation markers in 12 euthymic patients with BD type I, in 18 patients with stable chronic SZ, and in 30 matched healthy volunteers. Activity of complexes I, II, and III was determined by enzyme kinetics of mitochondria isolated from peripheral blood mononuclear cells (PBMCs). Protein oxidation was evaluated using the protein carbonyl content (PCC) method, and lipid peroxidation, the thiobarbituric acid reactive substances (TBARS) assay kit. A significant decrease in complex I activity was observed (p = 0.02), as well as an increase in plasma levels of TBARS (p = 0.00617) in patients with SZ when compared to matched controls. Conversely, no significant differences were found in complex I activity (p = 0.17) or in plasma TBARS levels (p = 0.26) in patients with BD vs. matched controls. Our results suggest that mitochondrial complex I dysfunction and oxidative stress play important roles in the pathophysiology of SZ and may be used in potential novel adjunctive therapy for SZ, focusing primarily on cognitive impairment and disorder progression. PMID:23870796

  5. Association of Oxidative Stress Markers with Atherogenic Index of Plasma in Adult Sickle Cell Nephropathy

    Directory of Open Access Journals (Sweden)

    M. A. Emokpae

    2012-01-01

    Full Text Available This paper evaluates the association of oxidative stress and atherogenic index of plasma in order to assess the cardiovascular risk in Sickle cell nephropathy especially as lipoprotein levels are lower in SCD than non-SCD patients. Antioxidant enzymes, malondialdehyde(MDA, urea, creatinine, and glomerular filtration rate were evaluated in 110 confirmed sickle cell disease patients: 65 males in steady state, aged 21.1±6.0 years, 30 males with macroalbuminuria, aged 24.5±7.0, years and 15 with chronic kidney disease (CKD, aged 31.8±2.0 years. The mean activity levels of glutathione peroxidase (GPx, superoxide dismutase (Cu/ZnSOD, and catalase (CAT were significantly lower (P<0.001 in SCD with macroalbuminuria and CKD while MDA was higher (P<0.001 in SCD with macroalbuminuria and CKD compared with controls. There was negative correlation between GPx (P<0.001, Cu/ZnSOD (P<0.02, and Atherogenic index of plasma in SCD with CKD, while MDA shows a positive correlation (P<0.001 with AIP in SCD with CKD. There was however no correlation between CAT and AIP. Decreased activity levels of antioxidant enzymes and low HDL-cholesterol concentration were confirmed in adult SCD with CKD in Nigerians. The increase oxidative stress and high atherogenic index in CKD may accelerate the process of cardiovascular complications in adult SCD patients. Atherogenic index of plasma was negatively correlated with antioxidant enzymes and positively with MDA.

  6. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Science.gov (United States)

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  7. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Directory of Open Access Journals (Sweden)

    Gongbo Li

    Full Text Available The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  8. INCREASED URINARY NEOPTERIN: CREATININE RATIO AS A MARKER OF ACTIVATION OF CELL-MEDIATED IMMUNITY AND OXIDATIVE STRESS IN THE IRANIAN PATIENTS WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    H. Khorami

    2003-09-01

    Full Text Available Neopterin, apyrazinopyrimidine compound, is produced by macrophages after induction by interferon gamma (IFN-y and serves as a marker of cellular immune system activation followed by oxidative stress. The aim of this study was to determine urinary neopterin to creatinine ratio (UNCR as a surrogate marker of cell-mediated immune activation in multiple sclerosis (MS. Three weekly early morning urine samples were collected from 27 patients with MS and 31 age- and sex-matched apparently healthy subjects. Urinary neopterin and creatinine were determined using reversed phase high-performance liquid chromatography and Jaffe reaction, respectively. UNCR was significantly higher in patients than in healthy controls indicating IFN-y-induced cellular immunity activation and oxidative stress in multiple sclerosis. As a non-invasive method, UNCR determination may be helpful in monitoring disease progression and the effects of therapies, as well.

  9. Selective Modulation of Endoplasmic Reticulum Stress Markers in Prostate Cancer Cells by a Standardized Mangosteen Fruit Extract

    OpenAIRE

    Gongbo Li; Petiwala, Sakina M.; Dana R Pierce; Larisa Nonn; Jeremy J Johnson

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating...

  10. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats.

    Science.gov (United States)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. PMID:23732081

  11. What makes cancer stem cell markers different?

    OpenAIRE

    Karsten, Uwe; Goletz, Steffen

    2013-01-01

    Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve t...

  12. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H2O2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  13. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  14. Workplace Re-organization and Changes in Physiological Stress Markers

    DEFF Research Database (Denmark)

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper;

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms......, perceived stress) and the mediating effect of these factors on changes in physiological stress markers. We used data from a longitudinal study that studied the health consequences of a major reorganization of non-state public offices executed in Denmark on 1 January 2007. Collection of clinical...... and questionnaire data was in 2006 and 2008, and in this sub-study we included 359 participants. To reflect stress reactions of the autonomic nervous system, the endocrine system and the immune system, we included 13 physiological markers. We observed significant change in several physiological stress markers...

  15. A simple and objective marker for stress

    DEFF Research Database (Denmark)

    Ballegaard, Soeren; Karpatschof, Benny; Trojaborg, Werner;

    2009-01-01

    To examine the association between pressure pain sensitivity (PPS) at sternum and various well established physiological stress measures among opera singers during a performance as a measure for transitional stress, and resting values in out-clinic patients as a measure for persistent stress....

  16. Salivary markers of oxidative stress in oral diseases

    Directory of Open Access Journals (Sweden)

    Ľubomíra eTóthová

    2015-10-01

    Full Text Available Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis.

  17. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice.

    Science.gov (United States)

    Schiavon, Angélica Pupin; Bonato, Jéssica Mendes; Milani, Humberto; Guimarães, Francisco Silveira; Weffort de Oliveira, Rúbia Maria

    2016-01-01

    Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice. PMID:26187374

  18. A meta-analysis of oxidative stress markers in schizophrenia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Oxidative stress has been identified as a possible element in the neuropathological processes of schizophrenia(SCZ).Alteration of oxidative stress markers has been reported in SCZ studies,but with inconsistent results.To evaluate the risk of oxidative stress to schizophrenia,a meta-analysis was conducted,including five markers of oxidative stress [thiobarbituric reactive substances(TBARS),nitric oxide(NO),catalase(CAT),glutathione peroxidase(GP) and superoxide dismutase(SOD)] in SCZ patients versus healthy controls.This study showed that TBARS and NO significantly increased in SCZ,while SOD activity significantly decreased in the disorganized type of SCZ patients.No significant effect size was found for the activities of GP and CAT in SCZ patients(P>0.05).Egger’s regression test observed no significant publication bias across the oxidative stress markers,but found high heterogeneities in all the 5 markers.The subgroup analysis suggested that the ethnicity,sample size of patients and sample sources may contribute to the heterogeneity of the results for TBARS,NO and SOD.The result further demonstrated the involvement of oxidative stress in the pathophysiology of schizophrenia.

  19. Nitric oxide-induced expression of C-reactive protein in islet cells as a very early marker for islet stress in the rat pancreas.

    Science.gov (United States)

    Fehsel, K; Plewe, D; Kolb-Bachofen, V

    1997-06-01

    In searches for marker molecules specifically expressed in nitric oxide-treated islet cells as a means to recognize early events in islet destruction, we now establish the presence of neo-C-reactive protein (neoCRP) in rat islet cells as early as 2 hr after treatment. We detected this altered molecular form of the acute-phase-reactant C-reactive protein (CRP) using immunocytochemistry with an anti-neoCRP-specific monoclonal antibody as well as reverse transcription-polymerase chain reaction with CRP-specific primers and in situ hybridization to demonstrate the presence of CRP-specific mRNA. After induction of a generalized inflammatory reaction in rats with heat-inactivated Corynebacterium parvum in vivo, neoCRP expression in islets is also found and within the pancreas restricted to pancreatic islet cells only. Our findings suggest an early heat-shock-like expression of this molecule in response to local nitrite oxide production or to exogeneously added nitric oxide in islet cells. PMID:9704587

  20. Increased Serum Oxidative Stress Markers in Women with Uterine Leiomyoma

    OpenAIRE

    Santulli, Pietro; Borghese, Bruno; Lemaréchal, Herve; Leconte, Mahaut; Millischer, Anne-Elodie; Batteux, Frédéric; Chapron, Charles; Borderie, Didier

    2013-01-01

    Background Uterine leiomyomas (fibroids) are the most common gynaecological benign tumors in premenopausal women. Evidences support the role of oxidative stress in the development of uterine leiomyoma. We have analysed oxidative stress markers (thiols, advanced oxidized protein products (AOPP), protein carbonyls and nitrates/nitrites) in preoperative sera from women with histologically proven uterine leiomyoma. Methodology/Principal Findings We conducted a laboratory study in a tertiary-care ...

  1. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    Directory of Open Access Journals (Sweden)

    Haitong Su

    Full Text Available The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a severe stress and (b drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS and human antigen R protein (HuR are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that

  2. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    Science.gov (United States)

    Su, Haitong; Kodiha, Mohamed; Lee, Sunghoon; Stochaj, Ursula

    2013-01-01

    The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with

  3. Novel Biochemical Markers of Psychosocial Stress in Women

    OpenAIRE

    Marie Asberg; Ake Nygren; Rosario Leopardi; Gunnar Rylander; Ulla Peterson; Lukas Wilczek; Håkan Källmén; Mirjam Ekstedt; Torbjörn Akerstedt; Mats Lekander; Rolf Ekman

    2009-01-01

    BACKGROUND: Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women. METHODS: Plasma concentrations of interleukin (IL) 1-alpha, IL1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (INF-gamma), tumor necrosis factor-alpha (TNF-alpha), monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), thyroid stimulating hormone (T...

  4. Markers of stress as predictors of wellbeing and workability

    OpenAIRE

    Aili, Katarina

    2015-01-01

    In order to prevent sickness absence and to maintain a safe and sound work climate, interventions may be needed in the workplace. Occupational Health Services (OHS) are special advisers, with the opportunity to suggest/perform interventions at individual and group level. The use of methods for evaluating changes in health is a precondition when assessing that such interventions are meaningful and successful. The aim of this thesis is to study markers of general stress as indicators of changes...

  5. Diagnostic markers for germ cell neoplasms

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E;

    2015-01-01

    -genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNAs (miRs). Testicular GCTs display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are currently under development and hold a great promise......This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCTs), with focus on the most common testicular GCTs (TGCTs). GCTs are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic...... to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative markers for GCT, except teratoma, are genes expressed in primordial germ cell/gonocyte and embryonic pluripotency...

  6. Novel biochemical markers of psychosocial stress in women.

    Directory of Open Access Journals (Sweden)

    Marie Asberg

    Full Text Available BACKGROUND: Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women. METHODS: Plasma concentrations of interleukin (IL 1-alpha, IL1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (INF-gamma, tumor necrosis factor-alpha (TNF-alpha, monocyte chemotactic protein-1 (MCP-1, epidermal growth factor (EGF, vascular endothelial growth factor (VEGF, thyroid stimulating hormone (TSH, total tri-iodothyronine (TT3, total thyroxine (TT4, prolactin, and testosterone were measured in: 195 women on long-term sick-leave for a stress-related affective disorder, 45 women at risk for professional burnout, and 84 healthy women. RESULTS: We found significantly increased levels of MCP-1, VEGF and EGF in women exposed to prolonged psychosocial stress. Statistical analysis indicates that they independently associate with a significant risk for being classified as ill. CONCLUSIONS: MCP-1, EGF, and VEGF are potential markers for screening and early intervention in women under prolonged psychosocial stress.

  7. Markers of small cell lung cancer

    OpenAIRE

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  8. Isoprostanes – A novel major group of oxidative stress markers

    Directory of Open Access Journals (Sweden)

    Marta Czerska

    2016-04-01

    Full Text Available Isoprostanes are a recently discovered group of prostaglandin isomers. Results of previous studies suggest that they can be used as oxidative stress markers, because in a number of cardiovascular, pulmonary and neurological diseases their levels in biological samples considerably increase. It has been found that people suffering from diabetes, obesity, homozygous familial hypercholesterolemia, moderate hypercholesterolemia, and smokers have higher levels of isoprostanes in urine. The same refers to patients with asthma, Alzheimer disease and Down syndrome. This paper reviews the results of relevant studies.

  9. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mette; Daneshvar, Bahram; Hansen, Max;

    2003-01-01

    and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... concentrations were found only in women (p stress and increase RBCs in peripheral blood. Personal exposure...

  10. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mettte; Daneshvar, Bahram; Hansen, Max;

    2003-01-01

    and the involved mechanisms remain uncertain. We measured personal PM2.5 and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... found only in women (p stress and increase RBCs in peripheral blood. Personal exposure appears more...

  11. Markers of small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Sharma SK

    2004-05-01

    Full Text Available Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.

  12. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Veronica Sebastian

    Full Text Available GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ and post-synaptic density-95 (PSD-95 are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML of the dentate gyrus (DG, stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.

  13. Oxidative stress markers in preovulatory follicular fluid in humans.

    Science.gov (United States)

    Jozwik, M; Wolczynski, S; Jozwik, M; Szamatowicz, M

    1999-05-01

    Intensified peroxidation in the Graafian follicle may be a factor compromising the normal development of the oocyte. The aim of this study was to measure concentrations of three oxidative stress markers: conjugated dienes, lipid hydroperoxides and thiobarbituric acid-reactive substances, in preovulatory follicular fluids and sera of 145 women attending an in-vitro fertilization programme, and to correlate these concentrations with pregnancy outcome. Determinations were conducted either with or without an antioxidant (10 microM butylated hydroxytoluene) and an iron chelate (10 microM deferoxamine mesylate) to examine peroxidation associated with the methods used. Concentrations of conjugated dienes, lipid hydroperoxides and thiobarbituric acid-reactive substances in follicular fluid were all significantly lower than those in serum, both in the presence or absence of the antioxidant and iron chelate. These concentrations did not correlate with pregnancy outcome. In conclusion, the intensity of peroxidation in the Graafian follicle is much lower than that in serum. This gradient is the result of the lower rate of initiation of peroxidation in the follicular fluid, suggestive of the presence of efficient antioxidant defence systems in the direct milieu of the oocyte before ovulation. The concentrations of investigated oxidative stress markers in follicular fluid do not reflect the reproductive potential of oocytes. PMID:10338363

  14. Increased serum oxidative stress markers in women with uterine leiomyoma.

    Directory of Open Access Journals (Sweden)

    Pietro Santulli

    Full Text Available BACKGROUND: Uterine leiomyomas (fibroids are the most common gynaecological benign tumors in premenopausal women. Evidences support the role of oxidative stress in the development of uterine leiomyoma. We have analysed oxidative stress markers (thiols, advanced oxidized protein products (AOPP, protein carbonyls and nitrates/nitrites in preoperative sera from women with histologically proven uterine leiomyoma. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a laboratory study in a tertiary-care university hospital. Fifty-nine women with histologically proven uterine leiomyoma and ninety-two leiomyoma-free control women have been enrolled in this study. Complete surgical exploration of the abdominopelvic cavity was performed in each patient. Preoperative serum samples were obtained from all study participants to assay serum thiols, AOPP, protein carbonyls and nitrates/nitrites. Concentrations of serum protein carbonyl groups and AOPP were higher in leiomyoma patients than in the control group (p=0.005 and p<0.001, respectively. By contrast, serum thiol levels were lower in leiomyoma patients (p<0.001. We found positive correlations between serum AOPP concentrations and total fibroids weight (r=0.339; p=0.028, serum AOPP and serum protein carbonyls with duration of infertility (r=0.762; p=0.006 and r=0.683; p=0.021, respectively. CONCLUSIONS/SIGNIFICANCE: This study, for the first time, reveals a significant increase of protein oxidative stress status and reduced antioxidant capacity in sera from women with uterine leiomyoma.

  15. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients.

    Directory of Open Access Journals (Sweden)

    William H Yong

    Full Text Available Glioblastoma stem cells (GSC co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC, TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM patients using gene expression analysis with Probeset Analyzer (131 GBM and The Cancer Genome Atlas (TCGA data, and protein expression with a tissue microarray (50 GBM, yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11, RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01 and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01. Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT or wild-type isocitrate dehydrogenase 1 (IDH1 were associated with higher RPS11 expression levels [corr (IDH1, RPS11 = 0.64, p = 0.03; [corr (MGMT, RPS11 = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also

  16. Effects of yogurt containing Lactobacillus plantarum HOKKAIDO on immune function and stress markers.

    Science.gov (United States)

    Nishimura, Mie; Ohkawara, Tatsuya; Tetsuka, Kyohei; Kawasaki, Yo; Nakagawa, Ryoji; Satoh, Hiroki; Sato, Yuji; Nishihira, Jun

    2016-07-01

    Lactobacillus plantarum HOKKAIDO (HOKKAIDO strain) was isolated from well-pickled vegetables in Hokkaido, Japan. We report a randomized, double-blind, placebo-controlled study evaluating the effects of L. plantarum HOKKAIDO on immune function and stress markers in 171 adult subjects. Subjects were divided into three groups: the L. plantarum HOKKAIDO yogurt group, the placebo-1 group who ingested yogurt without the HOKKAIDO strain, and the placebo-2 group who ingested a yogurt-like dessert without the HOKKAIDO strain. Hematological tests and body composition measurements were performed before and after 4 and 8 weeks of blinded ingestion. Although no significant differences in natural killer cell activity were observed, it was found that neutrophil ratio significantly decreased and lymphocytes tended to increase in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. In addition, the neutrophil-to-lymphocyte ratio, a stress marker, tended to improve in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. These results suggest that the ingestion of HOKKAIDO strain yogurt tends to improve immune activity and decrease stress markers.

  17. Effects of yogurt containing Lactobacillus plantarum HOKKAIDO on immune function and stress markers.

    Science.gov (United States)

    Nishimura, Mie; Ohkawara, Tatsuya; Tetsuka, Kyohei; Kawasaki, Yo; Nakagawa, Ryoji; Satoh, Hiroki; Sato, Yuji; Nishihira, Jun

    2016-07-01

    Lactobacillus plantarum HOKKAIDO (HOKKAIDO strain) was isolated from well-pickled vegetables in Hokkaido, Japan. We report a randomized, double-blind, placebo-controlled study evaluating the effects of L. plantarum HOKKAIDO on immune function and stress markers in 171 adult subjects. Subjects were divided into three groups: the L. plantarum HOKKAIDO yogurt group, the placebo-1 group who ingested yogurt without the HOKKAIDO strain, and the placebo-2 group who ingested a yogurt-like dessert without the HOKKAIDO strain. Hematological tests and body composition measurements were performed before and after 4 and 8 weeks of blinded ingestion. Although no significant differences in natural killer cell activity were observed, it was found that neutrophil ratio significantly decreased and lymphocytes tended to increase in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. In addition, the neutrophil-to-lymphocyte ratio, a stress marker, tended to improve in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. These results suggest that the ingestion of HOKKAIDO strain yogurt tends to improve immune activity and decrease stress markers. PMID:27419093

  18. Cinnamaldehyde, Carvacrol and Organic Acids Affect Gene Expression of Selected Oxidative Stress and Inflammation Markers in IPEC-J2 Cells Exposed to Salmonella typhimurium

    DEFF Research Database (Denmark)

    Burt, Sara A; Adolfse, Simone J M; Ahad, Dina S A;

    2016-01-01

    Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects of cinn...... irrespective of the presence of organic acids or ST; exposure to carvacrol induced HSP70 only in the presence of propionic acid and ST. © 2016 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.......Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects......-inhibitory concentration (NIC) were determined and influence on the invasion capacity of ST was investigated. The structure of fimbriae and flagella was analysed by electron microscopy, and expression levels of HSP70, IkBa, IL-8 and IL-10 in the IPEC-J2 cells were carried out by q-PCR. Cinnamaldehyde, carvacrol...

  19. Urinary biopyrrins: A new marker of oxidative stress in psoriasis

    Directory of Open Access Journals (Sweden)

    Ola Ahmed Bakry

    2016-01-01

    Full Text Available Background: Psoriasis is a common chronic, relapsing, immune-mediated disease involving skin and joints of genetically predisposed individuals. Oxidative stress has been found to play many important roles in cellular damage and loss of function in a number of tissues and organs and is believed to contribute to the pathogenesis of a variety of diseases. Urinary biopyrrin levels have gained attention as an indicator of oxidative stress. Aim and Objective: To measure urinary biopyrrins excretion as a marker of oxidative stress in psoriasis. Patients and Methods: This case–control study was carried out on 85 subjects; 55 cases with chronic plaque psoriasis and 30 age, gender and body mass index-matched normal subjects as a control group. Urinary biopyrrin levels were measured using enzyme immunoassay. Results: There was a highly significant difference between cases and controls regarding urinary biopyrrins level (P < 0.001. There was significant positive correlation between biopyrrins level and both the age of cases (r = 0.28, P = 0.01 and psoriasis area and severity index score (r = 0.99, P < 0.001. Conclusion: Urinary biopyrrins are increased in patients with psoriasis, and the level is correlated with disease severity. Further large-scale studies involving different ages and different clinical varieties of the disease are needed to expand and validate current findings. The clinical usefulness of antioxidants in psoriasis treatment needs to be evaluated in future research. Furthermore, the value of biopyrrins as biomarkers for monitoring response to therapy needs to be evaluated.

  20. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  1. Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, raf) experimentally exposed to nanosilver.

    Science.gov (United States)

    Strużyński, Witold; Dąbrowska-Bouta, Beata; Grygorowicz, Tomasz; Ziemińska, Elżbieta; Strużyńska, Lidia

    2014-11-01

    Silver nanoparticles, chemically neutral particles in the size range of 1-100 nm, express strong antimicrobial activity and therefore have a broad range of applications. The increased use of consumer products with nanosilver (nanoAg) may result in its release into the environment, and may particularly affect aquatic systems. The mechanisms of the harmful effects of nanoAg against aquatic organisms are unclear. Therefore, in the present study we investigate the pro-oxidative potential of these nanoparticles in experimentally exposed crayfish Orconectes limosus. Markers of oxidative stress and parameters of the antioxidant cell defense system such as total glutathione, glutathione reductase and the level of sulfhydryl groups were examined in the hepatopancreas of both sexes of O. limosus collected seasonally from Białe Lake (Poland) and subsequently exposed to nanoAg particles for 2 weeks. Exposure to nanoAg led to a high concentration-dependent increase in the rate of lipid peroxidation and a decrease of protein-bound SH groups which indicates protein oxidation. These markers of oxidative stress were accompanied by decreased levels of thiols and reduced activity of glutathione reductase. These results indicate a deficiency of reduced glutathione and suggest that the exposed organisms have less efficient antioxidative mechanisms available to counter ROS-mediated cellular stress. Furthermore, we find that confocal microscopy is of limited utility in monitoring the presence of silver nanoparticles in tissues of exposed crayfish.

  2. Chromosome instability and oxidative stress markers in patients with ataxia telangiectasia and their parents.

    Science.gov (United States)

    Ludwig, Luciane Bitelo; Valiati, Victor Hugo; Palazzo, Roberta Passos; Jardim, Laura Bannach; da Rosa, Darlan Pase; Bona, Silvia; Rodrigues, Graziela; Marroni, Norma Possa; Prá, Daniel; Maluf, Sharbel Weidner

    2013-01-01

    Ataxia telangiectasia (AT) is a rare neurodegenerative disorder, inherited in an autosomal recessive manner. Total blood samples were collected from 20 patients with AT, 13 parents of patients, and 17 healthy volunteers. This study aimed at evaluating the frequency of chromosomal breaks in spontaneous cultures, induced by bleomycin and ionizing radiation, and further evaluated the rates of oxidative stress in AT patients and in their parents, compared to a control group. Three cell cultures were performed to each individual: the first culture did not receive induction to chromosomal instability, the second was exposed to bleomycin, and the last culture was exposed to ionizing radiation. To evaluate the rates of oxidative stress, the markers superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid (TBARS) were utilized. Significant differences were observed between the three kinds of culture treatments (spontaneous, bleomycin, and radiation induced) and the breaks and chromosomal aberrations in the different groups. The oxidative stress showed no significant differences between the markers. This study showed that techniques of chromosomal instability after the induction of ionizing radiation and bleomycin are efficient in the identification of syndrome patients, with the ionizing radiation being the most effective.

  3. Peripheral markers of oxidative stress in chronic mercuric chloride intoxication

    Directory of Open Access Journals (Sweden)

    Gutierrez L.L.P.

    2006-01-01

    Full Text Available The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1, and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO, total radical trapping antioxidant potential (TRAP, and superoxide dismutase (Cu,Zn-SOD, glutathione peroxidase (GPx, glutathione-S-transferase (GST, and catalase (CAT. HgCl2 administration induced a rise (by 26% in LPO compared to control (143 ± 10 cps/mg hemoglobin in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively in the Hg group, and Cu,Zn-SOD was lower (54% compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively. TRAP was lower (69% in the first week compared to control (43.8 ± 1.9 mM Trolox. These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.

  4. Secretory IgA in saliva can be a useful stress marker

    OpenAIRE

    Tsujita, Satoshi; Morimoto, Kanehisa

    1999-01-01

    To evaluate secretory immunoglobulin A (slgA) in saliva as an immunological stress marker, we reviewed the literature on slgA and its variation caused by psychosocial factors. Among the studies on the effect of academic stress on slgA secretion, we could distinguish two kinds of stress effects: the immediate stress effect which increases slgA secretion immediately after stress, and the delayed stress effect which decreases slgA secretion several days after stress. On the basis of production a...

  5. Pancreatic cancer stem cell markers and exosomes - the incentive push.

    Science.gov (United States)

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-07-14

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  6. Pancreatic cancer stem cell markers and exosomes - the incentive push

    Science.gov (United States)

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-01-01

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  7. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  8. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas.

    Science.gov (United States)

    Masai, Kyohei; Tsuta, Koji; Kawago, Mitsumasa; Tatsumori, Takahiro; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Asamura, Hisao; Tsuda, Hitoshi

    2013-07-01

    Recent clinical trials have revealed that accurate histologic typing of non-small cell lung cancer is essential. Until now, squamous cell carcinoma (SQC) and adenocarcinoma (ADC) markers have not been thoroughly analyzed for pulmonary neuroendocrine carcinomas (NECs). We analyzed the expression of 8 markers [p63, cytokeratin (CK) 5/6, SOX2, CK7, desmocollin 3, thyroid transcription factor-1 (8G7G3/1 and SPT24), and napsin A] in 224 NECs. SOX2 (76.2%) had the greatest expression for NECs. CK5/6 (1.4%), desmocollin 3 (0.5%), and napsin A (0%) were expressed less or not at all in NECs. Although our investigated markers have been reported useful for differentiating between SQC and ADC, some of them were also present in a portion of pulmonary NECs. In our study, CK5/6 and desmocollin 3 were highly specific markers for SQC, and napsin A was highly specific for ADC. These markers are recommended for diagnosis of poorly differentiated non-small cell lung cancer. PMID:23060301

  9. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas.

    Science.gov (United States)

    Masai, Kyohei; Tsuta, Koji; Kawago, Mitsumasa; Tatsumori, Takahiro; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Asamura, Hisao; Tsuda, Hitoshi

    2013-07-01

    Recent clinical trials have revealed that accurate histologic typing of non-small cell lung cancer is essential. Until now, squamous cell carcinoma (SQC) and adenocarcinoma (ADC) markers have not been thoroughly analyzed for pulmonary neuroendocrine carcinomas (NECs). We analyzed the expression of 8 markers [p63, cytokeratin (CK) 5/6, SOX2, CK7, desmocollin 3, thyroid transcription factor-1 (8G7G3/1 and SPT24), and napsin A] in 224 NECs. SOX2 (76.2%) had the greatest expression for NECs. CK5/6 (1.4%), desmocollin 3 (0.5%), and napsin A (0%) were expressed less or not at all in NECs. Although our investigated markers have been reported useful for differentiating between SQC and ADC, some of them were also present in a portion of pulmonary NECs. In our study, CK5/6 and desmocollin 3 were highly specific markers for SQC, and napsin A was highly specific for ADC. These markers are recommended for diagnosis of poorly differentiated non-small cell lung cancer.

  10. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers

    Directory of Open Access Journals (Sweden)

    Natália Kamodyová

    2015-01-01

    Full Text Available Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001–10%. Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p<0.01. Salivary AGEs were decreased in patients after microinjury (by 69.3%, p<0.001. Salivary antioxidant status markers were decreased in both control and patients after dental treatment (p<0.05 and p<0.01. One % blood contamination biased concentrations of salivary oxidative stress markers. Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  11. Acoustic Markers of Syllabic Stress in Spanish Excellent Oesophageal Speakers

    Science.gov (United States)

    Cuenca, Maria Heliodora; Barrio, Marina M.; Anaya, Pablo; Establier, Carmelo

    2012-01-01

    The purpose of this investigation is to explore the use by Spanish excellent oesophageal speakers of acoustic cues to mark syllabic stress. The speech material has consisted of five pairs of disyllabic words which only differed in stress position. Total 44 oesophageal and 9 laryngeal speakers were recorded and a computerised designed "ad hoc"…

  12. Lack of correlation of stem cell markers in breast cancer stem cells

    OpenAIRE

    Liu, Y; Nenutil, R; Appleyard, M V; Murray, K; Boylan, M; Thompson, A. M.; Coates, P J

    2014-01-01

    Background: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. Methods: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and t...

  13. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Susan, H; Picavet, J; van der Schouw, Yvonne T; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A; Monique Verschuren, W M

    2016-01-01

    OBJECTIVE: The prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were investigat

  14. Systemic Oxidative Stress markers in animal model for Depression

    DEFF Research Database (Denmark)

    Bouzinova, Elena

    Involvement of oxidative stress (OxS) in development of major depressive disorder has recently become evident, though mechanisms behind this remain elusive. We analyzed therefore OxS pathways in rat Chronic Mild Stress (CMS) model of depression. Rats are exposed to chronic unpredictable mild...... mg/kg/day). Saline injections were done to control the vehicle effect. Escitalopram treated rats were sub-divided into 2 groups: responders and non-responders, according to their hedonic state and compared to non-stressed rats, treated with either saline or Escitalopram. Measurement of total...... glutathione and malondialdehyde (MDA) in lungs, heart, skeletal muscles, liver, saphenous, mesenteric, and tail arteries were used as estimates for OxS. In heart, glutathione was increased in CMS rats in comparison with non-stressed vehicle group. Accordingly, an estimate for free radical activity, MDA...

  15. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine;

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues......, the last part of the review discusses future directions of this intriguing new research field in the context of new diagnostic and therapeutic opportunities....

  16. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  17. Stress Transmission within the Cell

    OpenAIRE

    Stamenović, Dimitrije; Wang, Ning

    2011-01-01

    An outstanding problem in cell biology is how cells sense mechanical forces and how those forces affect cellular functions. During past decades, it has become evident that the deformable cytoskeleton (CSK), an intracellular network of various filamentous biopolymers, provides a physical basis for transducing mechanical signals into biochemical responses. To understand how mechanical forces regulate cellular functions, it is necessary to first understand how the CSK develops mechanical stresse...

  18. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    Science.gov (United States)

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  19. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    Science.gov (United States)

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  20. Markers of Oxidative Stress and Neuroprogression in Depression Disorder.

    Science.gov (United States)

    Vaváková, Magdaléna; Ďuračková, Zdeňka; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  1. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H; Boersma-van Ek, Wytske; Terstappen, Leon W M M; Groen, Harry J M; Timens, Wim; Kruyt, Frank A E; Hiltermann, T Jeroen N

    2016-01-01

    BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epitheli

  2. Development of SCAR Marker Related to Summer Stress Tolerance in Tall Fescue (Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Xiaojun YUAN

    2014-06-01

    Full Text Available Summer stress tolerance (SST is one of the most important breeding objectives in tall fescue (Festuca arundinacea, an important perennial cool-season grass. However, breeding for better SST is generally complicated by the many environmental factors involved during the growing season. Utilizing the bulked segregant analysis (BSA, we were able to identify one marker related to SST from 100 inter-simple sequence repeat (ISSR markers and 800 random amplified polymorphic DNA (RAPD markers, and successfully developed a dominant sequence characterized amplified region (SCAR marker T_SC856 from the UBC856 sequence. Furthermore, the SCAR marker was tested in different clones of new populations, which were identified under complex summer stress (high temperature and humidity, Pythium blight, and brown patch, and it exhibited relatively high consistency (77% with the phenotype. We believe that with more markers obtained in the future, better efficiency is likely to be achieved in breeding for improved SST in tall fescue and possibly other species as well. Further studies that analyze the factors relating to the SCAR marker are needed.

  3. Markers for Characterization of Bone Marrow Multipotential Stromal Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Boxall

    2012-01-01

    Full Text Available Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs, in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native bone marrow (BM MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1 may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.

  4. Mechanisms of cell propulsion by active stresses

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A E, E-mail: aec@wustl.edu [Department of Physics, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130 (United States)

    2011-07-15

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored by using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that (i) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, (ii) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, (iii) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell and (iv) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed.

  5. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  6. Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kuetzing) W. Smith

    International Nuclear Information System (INIS)

    Human activities have been increasing the cadmium levels in soils and waters, disturbing many organisms in the primary trophic levels such as microalgae. Toxic metal pollution is a focus point of serious concern and the examination and monitoring water quality are becoming essential procedures. Diatoms are important bioindicators to monitor the metal concentrations in diverse habitats. The present study was planned to determine the biochemical mechanisms used by freshwater diatoms to cope with cadmium stress and to identify biomarkers of metal stress. For this, Nitzschia palea (Kuetzing) W. Smith was grown under different concentrations of Cd (0.01-0.1 mg l-1) and the IC50 determined. Three concentrations (0.1, 0.2 and 0.3 mg Cd l-1) and a control (no cadmium) were used to undergo the experimental assays which allowed the determination of cadmium accumulation and several biochemical markers currently used to assess metal stress. N. palea was sensitive to cadmium, as the IC50 calculated was 0.0276 mg Cd l-1. Cadmium accumulation increased sharply and was mainly associated to the frustule. Total protein content increased with cadmium exposure, inducing increases and decreases in polypeptide expression, indicating an attempt of N. palea cells to adjust to the new prevailing conditions induced by metal stress. In order to cope with cadmium stress, cells induced the synthesis of chelating molecules such as phytochelatins (PCs). The enzymatic (SOD and CAT) and non-enzymatic (glutathione and proline) ROS scavenging mechanisms were also induced. Our results indicate the existence of diverse metal stress-mediated mechanisms in order to lessen metal damages to the cell. PCs showed to be a suitable biomarker of metal stress; besides being metal specific and concentration respondent it also allows to infer about the level of stress imposed to cells, constituting a useful tool to complement the evaluation of diatom communities when accessing aquatic metal toxicity.

  7. Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kuetzing) W. Smith

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Diana; Lima, Ana [Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Almeida, Salome F.P. [GEOBIOTEC, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Figueira, Etelvina, E-mail: efigueira@ua.pt [Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2010-08-15

    Human activities have been increasing the cadmium levels in soils and waters, disturbing many organisms in the primary trophic levels such as microalgae. Toxic metal pollution is a focus point of serious concern and the examination and monitoring water quality are becoming essential procedures. Diatoms are important bioindicators to monitor the metal concentrations in diverse habitats. The present study was planned to determine the biochemical mechanisms used by freshwater diatoms to cope with cadmium stress and to identify biomarkers of metal stress. For this, Nitzschia palea (Kuetzing) W. Smith was grown under different concentrations of Cd (0.01-0.1 mg l{sup -1}) and the IC{sub 50} determined. Three concentrations (0.1, 0.2 and 0.3 mg Cd l{sup -1}) and a control (no cadmium) were used to undergo the experimental assays which allowed the determination of cadmium accumulation and several biochemical markers currently used to assess metal stress. N. palea was sensitive to cadmium, as the IC{sub 50} calculated was 0.0276 mg Cd l{sup -1}. Cadmium accumulation increased sharply and was mainly associated to the frustule. Total protein content increased with cadmium exposure, inducing increases and decreases in polypeptide expression, indicating an attempt of N. palea cells to adjust to the new prevailing conditions induced by metal stress. In order to cope with cadmium stress, cells induced the synthesis of chelating molecules such as phytochelatins (PCs). The enzymatic (SOD and CAT) and non-enzymatic (glutathione and proline) ROS scavenging mechanisms were also induced. Our results indicate the existence of diverse metal stress-mediated mechanisms in order to lessen metal damages to the cell. PCs showed to be a suitable biomarker of metal stress; besides being metal specific and concentration respondent it also allows to infer about the level of stress imposed to cells, constituting a useful tool to complement the evaluation of diatom communities when accessing

  8. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  9. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte;

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic and...

  10. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte;

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...

  11. Effects of obesity on inflammatory and oxidative stress markers in asthma

    Directory of Open Access Journals (Sweden)

    K. A. Chinkwo

    2016-06-01

    Full Text Available Asthma is influenced by environmental factors and obesity, which triggers inflammatory processes that affect airways and give rise to asthmatic condition. Obesity is been associated with low-grade inflammation with the potential of developing several complications including asthma. The origins of asthma and obesity are complex with genetics and environmental factors and among others implicated. The main constituent of obese tissue comprises fat which is chiefly adipocytes. Reactive adipocytes trigger inflammation that has an adverse effect on lung function. Consequently, airways are clogged with inflammatory components leading to asthma. The inflammatory state cause's macrophages to produce cytokines such as TNF- and #945; which subsequently affect lung function, trigger insulin resistant diabetes and other cardio vascular complications. The mechanism by which the lung changes are characterized by the inflammatory components which triggers oxidative stress markers and pro-inflammatory mediators such as IL-6 and C-reactive protein (CRP. The presence of high oxidative stress markers and pro-inflammatory products exacerbates asthmatic condition. Therefore asthma and obesity result in inflammation that gives rise to oxidative stress, thus these four pathophysiological phenomena are interrelated. This paper reviews the complex relationship between oxidative stress markers and inflammatory markers, especially with regard to evaluation and monitory of respiratory diseases by laboratory methods. [Int J Res Med Sci 2016; 4(6.000: 1794-1801

  12. Salivary alpha-amylase as a marker for stress response, caused by laryngoscopy and endotracheal intubation

    OpenAIRE

    Nataļja Jakušenko

    2011-01-01

    Salivary alpha-amylase as a marker for stress response, caused by laryngoscopy and endotracheal intubation Annotation Endotracheal intubation by the direct laryngoscopy during anaesthesia is the anaesthesiologists’ routine practice. Industries of medical technology are working at the manufacturing of alternative and much safer intubation appliances, for instance, firobronchoscope, videolaryngoscope, etc. In order to estimate various intubation appliances, one has to assess the pat...

  13. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers.

    Science.gov (United States)

    Kamodyová, Natália; Baňasová, Lenka; Janšáková, Katarína; Koborová, Ivana; Tóthová, Ľubomíra; Stanko, Peter; Celec, Peter

    2015-01-01

    Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001-10%). Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  14. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  15. Camellia Oil-Enriched Diet Attenuates Oxidative Stress and Inflammatory Markers in Hypercholesterolemic Subjects.

    Science.gov (United States)

    Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Kalpravidh, Ruchaneekorn W

    2016-09-01

    Camellia oil is commonly used as an adjuvant in medicine. It is rich in monounsaturated fatty acids, vitamin E, and phytochemicals. The objective of this study was to examine effects of camellia oil consumption on oxidative stress, low-density lipoprotein-cholesterol (LDL-C) oxidation, and inflammatory markers in hypercholesterolemic subjects. The study design was a randomized, single-blind controlled trial. Women with hypercholesterolemia (n = 50) were randomly divided into two groups. The treatment group (n = 25) was provided camellia oil-enriched diets and the control group (n = 25) was provided diets cooked with soybean oil three meals (45 mL oil) a day for 8 weeks. Biomarkers of oxidative stress and inflammatory cytokines were assessed before and the after intervention. Camellia oil consumption significantly decreased malondialdehyde (11.2%; P stress and inflammatory markers in hypercholesterolemic women. Therefore, camellia oil consumption may reduce cardiovascular disease risk factors. PMID:27627703

  16. Immunogold labels: cell-surface markers in atomic force microscopy

    OpenAIRE

    Putman, Constant A.J.; Grooth, de, B.G.; Hansma, Paul K.; Hulst, van der, R.W.M.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect immunolabeling method using the monoclonal antibody anti-CD3 and a secondary antibody (Goat-anti-Mouse) linked to 30 nm colloidal gold particles. Some of the samples were enhanced by silver deposition...

  17. The Effect of Experimental Thyroid Dysfunction on Markers of Oxidative Stress in Rat Pancreas.

    Science.gov (United States)

    Sajadian, Mojtaba; Hashemi, Mohammad; Salimi, Saeedeh; Nakhaee, Alireza

    2016-06-01

    Preclinical Research The aim of the present study was to evaluate the effects of thyroid dysfunction on markers of oxidative stress in rat pancreas. Hypothyroidism and hyperthyroidism were, respectively, induced in rats via administration of propylthiouracil (PTU) and L-thyroxine sodium salt in drinking water for 45 days. The activities of superoxide dismutase (SOD), catalase (CAT), glutathioen peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), xanthine oxidase (XO), and nonenzymatic markers of oxidative stress including malondialdehyde (MDA), protein carbonyl (PC), reduced glutathione (GSH), and total thiols (T-SH) were determined in the rat pancreas. In hyperthyroid rats, pancreatic CAT, SOD, GPx, GR, XO, G6PD activities were increased compared with those in hypothyroid and control groups. There were no differences in activities of antioxidant enzymes between hypothyroid and control rats. Pancreatic MDA and PC in hyperthyroid rats increased compared with hypothyroid and the control animals. Whereas, hyperthyroid rats had decreased levels of tissue GSH and T-SH compared with hypothyroid and the control groups. The findings showed that only GSH level has decreased significantly in the hypothyroid group compared with control groups. In conclusion, our results showed that experimental hyperthyroidism induces oxidative stress in pancreas of rats, but hypothyroidism has no major impact on oxidative stress markers. Drug Dev Res 77 : 199-205, 2016.   © 2016 Wiley Periodicals, Inc. PMID:27241437

  18. Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ömer Aydemir

    2014-12-01

    Full Text Available Objective: This study aimed to evaluate the relationship between oxidative stress markers and cognitive functions and domains of psychosocial functioning in bipolar disorder. Methods: Oxidative stress markers, cognitive functions, and domains of psychosocial functioning were evaluated in 51 patients with bipolar disorder who were in remission. Correlation analyses between these parameters were calculated with data controlled for duration of illness and number of episodes. Results: There was no statistically significant correlation between oxidative stress markers and cognitive functions. In terms of psychosocial functioning, significant correlations were found between malondialdehyde and sense of stigmatization (r = -0.502; household activities and superoxide dismutase (r = 0.501; participation in social activities and nitric oxide (r = 0.414; hobbies and leisure time activities and total glutathione (r = -0.567, superoxide dismutase (r = 0.667, and neurotrophin 4 (r = 0.450; and taking initiative and self-sufficiency and superoxide dismutase (r = 0.597. There was no correlation between other domains of psychosocial functioning and oxidative stress markers. Conclusion: These results imply that oxidative stress markers do not appear to correlate clearly with cognitive impairment and reduced psychosocial functioning. However, there were some associations between selected oxidative markers and activity-oriented functional markers. This may represent a true negative association, or may be an artifact of oxidative stress being a state rather than a trait marker.

  19. Fluid shear stress modulation of hepatocyte-like cell function.

    Science.gov (United States)

    Rashidi, Hassan; Alhaque, Sharmin; Szkolnicka, Dagmara; Flint, Oliver; Hay, David C

    2016-07-01

    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype. PMID:26979076

  20. Identification of cancer stem cell markers in human malignant mesothelioma cells

    International Nuclear Information System (INIS)

    Research highlights: → We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. → SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. → SP and CD24+ cells proliferated by asymmetric cell division-like manner. CD9+ and CD24+ cells have higher potential to generate spheroid colony. → The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24+ cells proliferated by asymmetric cell division-like manner. In addition, CD9+ and CD24+ cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  1. Identification of cancer stem cell markers in human malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke [Departments of Medical Oncology, Yamaguchi-Ube Medical Center, Yamaguchi (Japan); Fujimoto, Nobukazu; Kishimoto, Takumi [Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama (Japan); Yamada, Taketo [Department of Pathology, Keio University School of Medicine, Tokyo (Japan); Xu, C. Wilson [Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States)

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  2. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells

    Science.gov (United States)

    Gao, Shan; Mobley, Aaron; Miller, Claudia; Boklan, Jessica; Chandra, Joya

    2008-01-01

    Epigenetic modifiers are currently in clinical use for various tumor types. Recently, numerous studies supporting the combination of histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors have emerged, encouraging early clinical trials of these agents together. Here we show that MS-275, an HDACi, and 5-azacytidine, a methyltransferase inhibitor, display synergistic cytotoxicity and apoptosis in AML and ALL cells. Intracellular production of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, is a novel marker for this synergism in ALL cells. These data suggest that assessment of oxidative stress can serve as a marker of the concerted action of MS-275 and 5-azacytidine. PMID:18031811

  3. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts

    OpenAIRE

    Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Shigemoto, Taeko; Matsuse, Dai; Akashi, Hideo; Tanimura, Yukihiro; Tsuchiyama, Kenichiro; Kikuchi, Tomohiko; Goda, Makoto; Nakahata, Tatsutoshi; Fujiyoshi, Yoshinori; Dezawa, Mari

    2011-01-01

    The stochastic and elite models have been proposed for the mechanism of induced pluripotent stem (iPS) cell generation. In this study we report a system that supports the elite model. We previously identified multilineage-differentiating stress-enduring (Muse) cells in human dermal fibroblasts that are characterized by stress tolerance, expression of pluripotency markers, self-renewal, and the ability to differentiate into endodermal-, mesodermal-, and ectodermal-lineage cells from a single c...

  4. 8-isorpostanes – markers for oxidative stress in obstructive sleep apnea patients with systolic dysfunction

    Directory of Open Access Journals (Sweden)

    Cherneva RV

    2013-06-01

    Full Text Available Radostina Vlaeva Cherneva,1 Ognian Borisov Georgiev,1 Daniela Stoichkova Petrova,1 Emil Ivanov Manov,2 Sylvia Rumenova Ruseva,3 Vanio Ivanov Mitev,3 Julia Ivanova Petrova4 1Department of Internal Medicine, Division of Pulmonary Medicine, Medical University of Sofia, Sofia, Bulgaria; 2Department of Internal Medicine, Division of Cardiology, Medical University of Sofia, Sofia, Bulgaria; 3Department of Medical Chemistry and Biochemistry, Laboratory of Synthesis and Analysis of Bioactive Substances, Medical University of Sofia, Sofia, Bulgaria; 4Department of Neurology, Medical University of Sofia, Sofia, Bulgaria Objective: Increased oxidative stress is considered to be an independent risk factor for cardiovascular diseases, but remains disputed in obstructive sleep apnea (OSA. Among oxidative stress markers, isorpostanes are considered to be the most sensitive and specific. Aims: The aim of the study was to compare urinary isorpostanes in patients with OSA and systolic dysfunction to patients with OSA and preserved ejection fraction (EF and determine their role as markers for increased oxidative stress and early cardiac damage. Materials and methods: Urinary 8F2-isorpostanes were measured in 30 patients with OSA and mild systolic dysfunction (EF = 45.7% ± 6.17% and compared to 15 patients with OSA and normal EF (EF = 60.3% ± 6.3%. Univariate regression analysis was performed to find predictors of left systolic dysfunction. Correlations between 8-isorpostanes, anthropometric, metabolic, and sleep study characteristics were explored. In addition, in 19 patients the effect of bilevel positive airway pressure (BiPAP therapy was evaluated during a 3 month follow-up. Markers of hemodynamic stress, N-terminal prohormone of brain natriuretic peptide and oxidative stress, measured by 8-isorpostanes were compared before and after the follow-up. Results: Urinary levels of 8-isorpostanes were significantly higher in the group with mild systolic dysfunction

  5. Stress factor – dependent differences in molecular mechanisms of premature cell senescence

    Directory of Open Access Journals (Sweden)

    Petrova N. V.

    2015-10-01

    Full Text Available Cell senescence is an established cell stress response in the form of a permanent proliferation arrest accompanied by a complex phenotype. Senescent cells share several crucial features, such as lack of DNA synthesis, increased senescence-associated β-galactosidase activity and upregulation of cyclin-dependent kinase inhibitors. Most of these universal senescence markers are indicative not only for cell senescence but for other types of growth arrest as well. Along with ubiquitous markers, cell senescence has accessory characteristics, which mostly depend on senescence-inducing stimulus and/or cell type. Here, we review main markers and mechanisms involved in the induction of cell senescence with a focus on stress factor-dependent differences in signaling pathways activated in senescence.

  6. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  7. Novel and Stress Relevant EST Derived SSR Markers Developed and Validated in Peanut.

    Directory of Open Access Journals (Sweden)

    Tejas C Bosamia

    Full Text Available With the aim to increase the number of functional markers in resource poor crop like cultivated peanut (Arachis hypogaea, large numbers of available expressed sequence tags (ESTs in the public databases, were employed for the development of novel EST derived simple sequence repeat (SSR markers. From 16424 unigenes, 2784 (16.95% SSRs containing unigenes having 3373 SSR motifs were identified. Of these, 2027 (72.81% sequences were annotated and 4124 gene ontology terms were assigned. Among different SSR motif-classes, tri-nucleotide repeats (33.86% were the most abundant followed by di-nucleotide repeats (27.51% while AG/CT (20.7% and AAG/CTT (13.25% were the most abundant repeat-motifs. A total of 2456 EST-SSR novel primer pairs were designed, of which 366 unigenes having relevance to various stresses and other functions, were PCR validated using a set of 11 diverse peanut genotypes. Of these, 340 (92.62% primer pairs yielded clear and scorable PCR products and 39 (10.66% primer pairs exhibited polymorphisms. Overall, the number of alleles per marker ranged from 1-12 with an average of 3.77 and the PIC ranged from 0.028 to 0.375 with an average of 0.325. The identified EST-SSRs not only enriched the existing molecular markers kitty, but would also facilitate the targeted research in marker-trait association for various stresses, inter-specific studies and genetic diversity analysis in peanut.

  8. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    Directory of Open Access Journals (Sweden)

    Rie Miyata

    2016-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a genetic disorder in DNA nucleotide excision repair (NER with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA. The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  9. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    Science.gov (United States)

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm. PMID:27213030

  10. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    Directory of Open Access Journals (Sweden)

    Dimitrios Stagos

    2015-01-01

    Full Text Available The aim of the present study was to investigate the use of static (sORP and capacity ORP (cORP oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress.

  11. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  12. Tumour markers in germ cell tumours and thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mann, K.

    1988-02-01

    In patients with germ cell tumours of gonadal and extragonadal origin both markers, human chorionic gonadotropin (hCG) and alphafetoprotein (AFP) are madatory for diagnosis and control of treatment. In seminoma, we found preoperatively elevated levels of hCG(+hCG-..beta..) in 42/349 patients (12%) up to 1200 mlU/ml using a polyclonal radioimmunoassay (1. IRP hCG standard 75/537). Lactatedehydrogenase can be useful in marker negative patients. Serum levels reflect tumour burden even if not highly specific. Presently, placental alkaline phosphatase is under discussion for seminoma. However, commercial kits are not available. As a relatively high secretion of hCG/..beta../hCG was found in gestational trophoblastic diseases, this parameters may be useful for differential diagnosis in pregnancy. In the follow-up of patients with differentiated thyroid carcinoma the determination of thyroglobulin (Tg) in combination with ultrasound of the thyroid and X-ray of the chest is sufficient. For Tg-determination thyroid hormone replacement therapy must be discontinued only in rare single cases with borderline levels, which need radioiodtesting additionally. Calcitonin is the most important marker in medullary thyroid carcinoma. Pentagastrin stimulated calcitonin as screening test is necessary, if multiple endocrine adenomatosis or the familial forms are suspected. In single cases benefit came from new scintigraphic methods such as /sup 131/I-metaiodo-benzylguanidine or /sup 201/thallium-chloride.

  13. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  14. Acute and subchronic toxicity of inhaled toluene in male Long Evans rats: oxidative stress markers in brain

    Data.gov (United States)

    U.S. Environmental Protection Agency — Research interested in oxidative stress markers following exposure to VOCs This dataset is associated with the following publication: Kodavanti , P., J. Royland ,...

  15. STUDY OF BIOCHEMICAL MARKERS OF OXIDATIVE AND NITROSATIVE STRESS PATHWAYS IN MAJOR DEPRESSION

    Directory of Open Access Journals (Sweden)

    Rangaswamy

    2014-09-01

    Full Text Available BACKGROUND: Several investigators have implicated that major depression is characterized by decreased antioxidant status, an induction of the oxidative and nitrosative pathways. Abnormal levels of antioxidant enzymes and lipid peroxidation in major depression further substantiate the role of free radical in major depression. The objective of this study is to evaluate & compare serum levels of oxidative stress markers and peroxidation marker and nitrosative stress pathway markers (SOD, uric acid, MDA and NO levels. METHODOLOGY: The study included 100 subjects consisting of 50 healthy controls and 50 newly diagnosed patients of Major Depressive Disorder (MDD. Informed consent and institutional ethics committee approval was taken. Serum MDA levels was compared with parameters like SOD, Uric acid, NO. Clinical severity was diagnosed by trained psychiatrist using 21-items Hamilton Rating Scale for Depression (HRSD. RESULTS: Serum MDA, NO levels were significantly (p <0.05 increased and SOD, Uric acid were significantly decreased in MDD patients as compared to healthy controls. There was moderate positive correlation between MDA levels and clinical severity of depression as measured by 21-items Hamilton Rating Scale for Depression (HRSD score which was found to be statistically significant (r = 0.317, p value = 0.025. There was poor negative correlation between clinical severity and Uric acid levels. CONCLUSION: The study concluded that serum MDA, SOD, Uric acid and NO combined together provided fairly useful index of oxidative stress and nitrosative stress pathways in MDD. Evaluation of such critical biomarkers would certainly be useful and supportive for early diagnosis and treatment response.

  16. Sugar consumption produces effects similar to early life stress exposure on hippocampal markers of neurogenesis and stress response

    Directory of Open Access Journals (Sweden)

    Jayanthi eManiam

    2016-01-01

    Full Text Available Adverse early life experience is a known risk factor for psychiatric disorders. It is also known that stress influences food preference. We were interested in exploring whether the choice of diet following early life stress exerts long-lasting molecular changes in the brain, particularly the hippocampus, a region critically involved in stress regulation and behavioural outcomes. Here, we examined the impact of early life stress induced by limited nesting material (LN and chronic sucrose availability post-weaning on an array of hippocampal genes related to plasticity, neurogenesis, stress and inflammatory responses and mitochondrial biogenesis. To examine mechanisms underlying the impact of LN and sugar intake on hippocampal gene expression, we investigated the role of DNA methylation. As females are more likely to experience adverse life events, we studied female Sprague-Dawley rats. After mating LN was imposed from days 2-9 postpartum. From 3-15 weeks of age, female Control and LN siblings had unlimited to access to either chow and water, or chow, water and 25% sucrose solution. LN markedly reduced glucocorticoid receptor (GR and neurogenic differentiation 1 (Neurod1 mRNA, markers involved in stress and hippocampal plasticity respectively, by more than 40%, with a similar effect of sugar intake in control rats. However, no further impact was observed in LN rats consuming sugar. Hippocampal Akt3 mRNA expression was similarly affected by LN and sucrose consumption. Interestingly, DNA methylation across 4 CpG sites of the GR and Neurod1 promoters was similar in LN and control rats. In summary, early life stress and post-weaning sugar intake produced long-term effects on hippocampal GR and Neurod1 expression. Moreover we found no evidence of altered promoter DNA methylation. We demonstrate for the first time that chronic sucrose consumption alone produces similar detrimental effects on the expression of hippocampal genes as LN exposure.

  17. OXIDATIVE STRESS MARKERS AND ANTIOXIDANT POTENTIAL OF WHEAT TREATED WITH PHYTOHORMONES UNDER SALINITY STRESS

    OpenAIRE

    Barakat, Nasser A. M.

    2011-01-01

    The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root) grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl) were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected pa...

  18. Association of Inflammatory and Oxidative Stress Markers with Metabolic Syndrome in Asian Indians in India

    Directory of Open Access Journals (Sweden)

    Veena S. Rao

    2011-01-01

    Full Text Available Metabolic syndrome (MetS is a primary risk factor for cardiovascular disease and is associated with a proinflammatory state. Here, we assessed the contribution of inflammatory and oxidative stress markers towards prediction of MetS. A total of 2316 individuals were recruited in Phase I of the Indian Atherosclerosis Research Study (IARS. Modified ATPIII guidelines were used for classification of subjects with MetS. Among the inflammatory and oxidative stress markers studied, levels of hsCRP (P<.0001, Neopterin (P=.036, and oxLDL (P<.0001 were significantly higher among subjects with MetS. Among the markers we tested, oxLDL stood out as a robust predictor of MetS in the IARS population (OR 4.956 95% CI 2.504–9.810; P<.0001 followed by hsCRP (OR 1.324 95% CI 1.070–1.638; P=.010. In conclusion, oxLDL is a candidate predictor for MetS in the Asian Indian population.

  19. The Effect of Chronic Mild Stress and Imipramine on the Markers of Oxidative Stress and Antioxidant System in Rat Liver.

    Science.gov (United States)

    Duda, Weronika; Curzytek, Katarzyna; Kubera, Marta; Iciek, Małgorzata; Kowalczyk-Pachel, Danuta; Bilska-Wilkosz, Anna; Lorenc-Koci, Elżbieta; Leśkiewicz, Monika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława; Regulska, Magdalena; Ślusarczyk, Joanna; Gruca, Piotr; Papp, Mariusz; Maes, Michael; Lasoń, Władysław; Antkiewicz-Michaluk, Lucyna

    2016-08-01

    Liver abnormalities have been reported to occur in up to 20 % of patients on a long-term therapy with the tricyclic antidepressant drug imipramine (IMI). The mechanism involved in this IMI-induced process is unknown but a contribution of oxidative stress is highly likely. Chronic mild stress (CMS) is widely used for modeling depressive-like behavior in rats. In the present study, we examined the effects of CMS and chronic IMI treatment, applied alone or in combination, on the levels of oxidative stress markers, such as reactive oxygen species (ROS), malondialdehyde (MDA), non-protein sulfhydryl groups, and sulfane sulfur as well as on activities of key antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase in the rat liver. Administration of IMI for 5 weeks to rats subjected to CMS resulted in a gradual significant reduction of anhedonia measured by sucrose intake, in a majority of animals (CMS IMI-reactive, CMS IMI-R), although about 20 % of rats did not respond to the IMI treatment (CMS IMI non-reactive, CMS IMI-NR). CMS-induced hepatic oxidative stress, estimated by increased ROS and MDA concentrations, was not prevented by the IMI administration, moreover, in CMS IMI-NR animals, the level of the marker of lipid peroxidation, i.e., MDA was increased in comparison to CMS-subjected rats and activity of antioxidant enzymes (GPx and CAT) was decreased compared to IMI-treated rats. The clinical significance of this observation remains to be established. PMID:26961706

  20. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    Science.gov (United States)

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells. PMID:24973589

  1. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author)

  2. Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress

    Directory of Open Access Journals (Sweden)

    Nasser A.M. Barakat

    2011-12-01

    Full Text Available The interactive effects 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs (spike, shoot and root grown in pot experiment under different salinity levels (0, 50, 100, 150 and 200 mM NaCl were studied. The antioxidant enzymes as catalase, peroxidase and ascorbate peroxidase, photosynthetic pigments, reducing sugar, proteins, amino acids, and proline contents in spike, shoot and root of salinity stressed plants were the most affected parameters specially at high salinity levels (150-200 mM NaCl.Treatments with 0.5 mM indole acetic acid or 0.1 mM of salicylic acid as shoot spraying on NaCl wheat stressed plant organs mitigated the harmful effect of NaCl. To conclude the phytohormone indole acetic acid or salicylic acid improved salt tolerance in stressed wheat by significantly activated catalase, peroxidase, and ascorbate peroxidase, increased photosynthetic pigments and enhancing the accumulation of nontoxic metabolites (sugars, proteins, amino acid and free proline as a protective adaptation mechanism in different wheat organs. However, the magnitude of increase was more pronounced in salicylic acid treated plants than in indole acetic acid treated ones, and the spike was more accumulator organ of non toxic metabolites compared to shoot and root. Thus salicylic acid and/or indole acetic acid treatments prevents the deleterious effects of salinity stressed wheat and could be adopted as a potential growth regulator or antioxidant to improve growth particularly under moderate NaCl salinity levels, wheat plant respond positively to SA foliar application than IAA application.

  3. Targeting pancreatic progenitor cells in human embryonic stem cell differentiation for the identification of novel cell surface markers.

    Science.gov (United States)

    Fishman, Bettina; Segev, Hanna; Kopper, Oded; Nissenbaum, Jonathan; Schulman, Margarita; Benvenisty, Nissim; Itskovitz-Eldor, Joseph; Kitsberg, Danny

    2012-09-01

    New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.

  4. Camellia Oil-Enriched Diet Attenuates Oxidative Stress and Inflammatory Markers in Hypercholesterolemic Subjects.

    Science.gov (United States)

    Bumrungpert, Akkarach; Pavadhgul, Patcharanee; Kalpravidh, Ruchaneekorn W

    2016-09-01

    Camellia oil is commonly used as an adjuvant in medicine. It is rich in monounsaturated fatty acids, vitamin E, and phytochemicals. The objective of this study was to examine effects of camellia oil consumption on oxidative stress, low-density lipoprotein-cholesterol (LDL-C) oxidation, and inflammatory markers in hypercholesterolemic subjects. The study design was a randomized, single-blind controlled trial. Women with hypercholesterolemia (n = 50) were randomly divided into two groups. The treatment group (n = 25) was provided camellia oil-enriched diets and the control group (n = 25) was provided diets cooked with soybean oil three meals (45 mL oil) a day for 8 weeks. Biomarkers of oxidative stress and inflammatory cytokines were assessed before and the after intervention. Camellia oil consumption significantly decreased malondialdehyde (11.2%; P oil group exhibited a statistically significant decrease in oxidized LDL-C (8.7%; P oil consumption significantly decreased high-sensitivity C-reactive protein (12.3%; P oil-enriched diet could decrease oxidative stress and inflammatory markers in hypercholesterolemic women. Therefore, camellia oil consumption may reduce cardiovascular disease risk factors.

  5. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes.

    Science.gov (United States)

    Rhyu, Hyun-Seung; Cho, Su-Youn; Roh, Hee-Tae

    2014-12-01

    The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15-18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity.

  6. ICAM1 Is a Potential Cancer Stem Cell Marker of Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Sheng-Ta Tsai

    Full Text Available Esophageal squamous cell carcinoma (ESCC accounts for about 90% of esophageal cancer diagnosed in Asian countries, with its incidence on the rise. Cancer stem cell (CSC; also known as tumor-initiating cells, TIC is inherently resistant to cytotoxic chemotherapy and radiation and associates with poor prognosis and therapy failure. Targeting therapy against cancer stem cell has emerged as a potential therapeutic approach to develop effective regimens. However, the suitable CSC marker of ESCC for identification and targeting is still limited. In this study, we screened the novel CSC membrane protein markers using two distinct stemness characteristics of cancer cell lines by a comparative approach. After the validation of RT-PCR, qPCR and western blot analyses, intercellular adhesion molecule 1 (ICAM1 was identified as a potential CSC marker of ESCC. ICAM1 promotes cancer cell migration, invasion as well as increasing mesenchymal marker expression and attenuating epithelial marker expression. In addition, ICAM1 contributes to CSC properties, including sphere formation, drug resistance, and tumorigenesis in mouse xenotransplantation model. Based on the analysis of ICAM1-regulated proteins, we speculated that ICAM1 regulates CSC properties partly through an ICAM1-PTTG1IP-p53-DNMT1 pathway. Moreover, we observed that ICAM1 and CD44 could have a compensation effect on maintaining the stemness characteristics of ESCC, suggesting that the combination of multi-targeting therapies should be under serious consideration to acquire a more potent therapeutic effect on CSC of ESCC.

  7. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  8. Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer

    DEFF Research Database (Denmark)

    Axelsson, Christen K; Ballegaard, Søren; Karpatschof, Benny;

    2014-01-01

    employees was divided in a High Stress Group (HSG, n = 37) and a Low Stress Group (LSG, n = 128) to evaluate the association between PPS, questionnaire-related Quality of Life (QOL) and self-evaluated stress. (2) A PPS-guided stress management program (n = 40) was compared to a Psychosocial Group......OBJECTIVES: To validate (1) Pressure Pain Sensitivity (PPS) as a marker for stress and (2) a PPS-guided intervention in women with primary Breast Cancer (BC). METHODS: (1) A total of 58 women with BC were examined before and after 6 months of intervention. A control group of 165 women office...... scores: (all p stress scores (all p

  9. The Education and Evaluation of Vitamin Consumption Effects on Stress Markers Oxidative after Exercise

    Science.gov (United States)

    Sam, Cemil Tugrulhan

    2015-01-01

    The purpose of the research was to evaluate the effect of 4-week vitamin C and E supplementation on the markers of oxidative stress after exercise session in students. 30 non-athlete persons (25.21 ± 1.5 years, 173.42 ± 5.62 cm, 75.6±5.75 kg, VO[subscript 2] max of 42.26 ± 1.11 ml/kg/min, and waist-hip ratio of 0.91 ±0.02 cm) volunteered for the…

  10. Laser-guidance based cell detection for identifying malignant cancerous cells without any fluorescent markers

    OpenAIRE

    Ma, Zhen; Gao, Bruce Z.

    2011-01-01

    Laser guidance technique employs the optical forces generated from a focused Gaussian laser beam incident on a biological cell to trap and guide the cell along the laser propagation direction. The optical force, which determines the guidance speed, is dependent on the cellular characteristics of the cell being guided, such as size, shape, composition and morphology. Different cell populations or subpopulations can be detected without any fluorescent markers by measuring their guidance speeds....

  11. Using Live-Cell Markers in Maize to Analyze Cell Division Orientation and Timing.

    Science.gov (United States)

    Rasmussen, Carolyn G

    2016-01-01

    Recently developed live-cell markers provide an opportunity to explore the dynamics and localization of proteins in maize, an important crop and model for monocot development. A step-by-step method is outlined for observing and analyzing the process of division in maize cells. The steps include plant growth conditions, sample preparation, time-lapse setup, and calculation of division rates.

  12. [Multivariate quantification of acupuncture and moxibustion treatment in combination with questionnaire and salivary stress markers].

    Science.gov (United States)

    Matzno, Sumio; Ikeda, Chie; Watanabe, Kazuomi; Nakamura, Ryohei; Takamatsu, Hanae; Haginaka, Jun; Matsuyama, Kenji

    2014-01-01

    Pain and stress alleviation after acupuncture treatment was assessed in this study. Patients responded to a questionnaire designed to determine the amount of stress they were experiencing, and data were obtained for patient salivary amylase, cortisol, secretary IgA (s-IgA), and leptin receptor (OBRb). As a part of this study on acute pain, 6 factors were extracted from the questionnaire. The second factor (pain removal) was well correlated with salivary amylase activity in patients with cervico-omo-brachial syndrome. An evaluation of cumulative acupuncture treatments showed that salivary cortisol increased and s-IgA decreased. In addition, a decreased s-IgA level significantly correlated with chronic pain removal. The questionnaire correlated well with measurements of salivary markers suggesting that they can be taken as indices of therapeutic efficacy in acupuncture treatment. PMID:24790049

  13. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  14. Periarticular osteophytes as an appendicular joint stress marker (JSM: analysis in a contemporary Japanese skeletal collection.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tsurumoto

    Full Text Available OBJECTIVE: The aim of this study was to investigate the possibility that periarticular osteophytes plays a role as a appendicular joint stress marker (JSM which reflects the biomechanical stresses on individuals and populations. METHODS: A total of 366 contemporary Japanese skeletons (231 males, 135 females were examined closely to evaluate the periarticular osteophytes of six major joints, the shoulder, elbow, wrist, hip, knee, and ankle and osteophyte scores (OS were determined using an original grading system. These scores were aggregated and analyzed statistically from some viewpoints. RESULTS: All of the OS for the respective joints were correlated logarithmically with the age-at-death of the individuals. For 70 individuals, in whom both sides of all six joints were evaluated without missing values, the age-standardized OS were calculated. A right side dominancy was recognized in the joints of the upper extremities, shoulder and wrist joints, and the bilateral correlations were large in the three joints on the lower extremity. For the shoulder joint and the hip joint, it was inferred by some distinctions that systemic factors were relatively large. All of these six joints could be assorted by the extent of systemic and local factors on osteophytes formation. Moreover, when the age-standardized OS of all the joints was summed up, some individuals had significantly high total scores, and others had significantly low total scores; namely, all of the individuals varied greatly in their systemic predisposition for osteophytes formation. CONCLUSIONS: This study demonstrated the significance of periarticular osteophytes; the evaluating system for OS could be used to detect differences among joints and individuals. Periarticular osteophytes could be applied as an appendicular joint stress marker (JSM; by applying OS evaluating system for skeletal populations, intra-skeletal and inter-skeletal variations in biomechanical stresses throughout the

  15. Human lymphoma-lymphoma hybrids and lymphoma-leukemia hybrids. I. Isolation, characterization, cell surface markers, and B-cell markers.

    Science.gov (United States)

    Zeuthen, J; Klein, G; Ber, R; Masucci, G; Bisballe, S; Povey, S; Terasaki, P; Ralph, P

    1982-02-01

    Four new somatic cell hybrids were obtained by fusion of various Burkitt's lymphoma (BL)-derived cell lines that had different selective markers: Raji-P3HR-1, Daudi-Raji, and a P3HR-1-P3HR-1 "autohybrid" derived from two P3HR-1 sublines. In addition, a hybrid was obtained between the Daudi (BL) line and the human leukemia cell line K562. The hybrids were extensively characterized by means of chromosome, isozyme, and HLA surface markers. The phenotypic differences between the parent cell lines allowed some conclusions with respect to the expression of latent Epstein-Barr virus (EBV) genomes, C3 and EBV receptors, and of immunoglobulin and beta 2-microglobulin-HLA expression as well as the influence of the leukemia cell (K562) genome on B-cell properties in the Daudi-K562 hybrid. B-cell and differentiated markers of these hybrids were characterized. High-level expression dominated for the marker C3 and EBV receptors, which showed a good correlation coefficient of 0.84, as was true for Fc receptors and surface immunoglobulin. The Daudi-K562 hybrid showed loss of all B-cell markers but retention of the leukemia cell markers (e.g., hemoglobin synthesis).

  16. Plasma protein thiols: an early marker of oxidative stress in asthma and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Zinellu, Elisabetta; Bifulco, Fabiana; Pintus, Gianfranco; Mangoni, Arduino A; Carru, Ciriaco; Pirina, Pietro

    2016-02-01

    Chronic obstructive pulmonary disease (COPD) and asthma are both characterized by heterogeneous chronic airway inflammation and obstruction as well as oxidative stress (OS). However, it is unknown whether OS occurs in early disease and how to best assess its presence. Plasma OS markers (TBARS, PSH, taurine, GSH, ergothioneine and paraoxonase 1 activity) and lung function tests were measured in patients with mild stable asthma (n = 24) and mild stable COPD (n = 29) and in age- and sex-matched controls. Forced expiratory volume in 1 s (FEV1 ) was associated with age both in patients and control groups. By contrast, FEV1 was positively correlated with PSH only in COPD (ρ = 0·49, P = 0·007). In multiple logistic regression analysis, lower PSH was the only OS marker independently associated with increased odds of both asthma (OR = 0·32, 95% CI 0·13-0·78, P = 0·01) and COPD (OR = 0·50, 95% CI 0·26-0·95, P = 0·03). These findings suggest that proteins -SH are a sensitive OS marker in early COPD and asthma.

  17. Nourseothricin N-acetyl transferase: a positive selection marker for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Bose S Kochupurakkal

    Full Text Available Development of Nourseothricin N-acetyl transferase (NAT as a selection marker for mammalian cells is described. Mammalian cells are acutely susceptible to Nourseothricin, similar to the widely used drug Puromycin, and NAT allows for quick and robust selection of transfected/transduced cells in the presence of Nourseothricin. NAT is compatible with other selection markers puromycin, hygromycin, neomycin, blasticidin, and is a valuable addition to the repertoire of mammalian selection markers.

  18. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review.

    Science.gov (United States)

    Jürimäe, Jaak; Mäestu, Jarek; Jürimäe, Toivo; Mangus, Brent; von Duvillard, Serge P

    2011-03-01

    The importance of physical exercise in regulating energy balance and ultimately body mass is widely recognized. There have been several investigative efforts in describing the regulation of the energy homeostasis. Important in this regulatory system is the existence of several peripheral signals that communicate the status of body energy stores to the hypothalamus including leptin, adiponectin, ghrelin, interleukin-6, interleukin-1β, and tumor necrosis factor-α--different cytokines and other peptides that affect energy homeostasis. In certain circumstances, all these peripheral signals may be used to reveal the condition of the athlete as the result of several months of prolonged exercise training. These hormone and cytokine concentrations characterize a physical stress condition in which different hormone and cytokine responses are apparently linked to changes in physical performance. The possibility to use these peripheral signals as markers of training stress (and possible overreaching/overtraining) in elite athletes should be considered. These measured hormone and cytokine levels could also be used to characterize the physical stress of single exercise session, as the hormone and cytokine response to exercise may actually be a response to the concurrent energy deficit. In summary, different peripheral signals of energy homeostasis may be sensitive to changes in specific training stress and may be useful for predicting the onset of possible overreaching/overtraining in athletes.

  19. CD107a as a marker of activation in chicken cytotoxic T cells

    DEFF Research Database (Denmark)

    Wattrang, Eva; Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann;

    2015-01-01

    The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a mobilisat......The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a...

  20. Cell wall remodeling under abiotic stress

    OpenAIRE

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted a...

  1. 慢性复合应激对食管肿瘤大鼠模型细胞免疫及肿瘤标志物的影响%Effects of Chronic Composite Stress on Cell Immunity and Tumor Marker in Esophageal Neoplasia Model Rats

    Institute of Scientific and Technical Information of China (English)

    王继云; 张俊权; 张建伟; 王建军; 刘本刚; 李万刚

    2012-01-01

    each rat were measured. Four weeks stress was supplied for treated rats. Then above parameters were measured again in the control and treated rats. The data were analyzed between control and treated groups. Therefore,we could conclude the effects of stress on cellular immunity function and tumor markers. Results Values of CD3 + ,CD4 + ,CD4 + /CD8 + of 40 rats with oesophageal neoplasia before experiment were respectively (65.37±4.51)μg/L,(30. 68 ± 5. 40) μg/L and (1.37±0.22) μg/L,while they were (82.67 ± 5. 55) μg/L, (17. 81 ± 1. 53)μg/L and (0. 84 ± 0. 12) fig/L of the treated group after the stress. There were statistic significance before stress and after stress (P0. 05). There were statistic significance between the control and treatment (P0. 05). Conclusion Chronic stress affects the body cell immunity function resulting from immunity decline and impacts the development of tumor.

  2. Dexamethasone protects airway epithelial cell line NCI-H292 against lipopolysaccharide induced endoplasmic reticulum stress and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SHANG Yan; WANG Fang; BAI Chong; HUANG Yi; ZHAO Li-jun; YAO Xiao-peng; LI Qiang; SUN Shu-han

    2011-01-01

    Background Endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis were reported to be involved in the pathogenesis of several diseases. In a recent study, it was reported that the ER stress pathway was activated in the lungs of lipopolysaccharide (LPS)-treated mice. It was also found that the C/EBP homologous protein (CHOP), an apoptosis-related molecule, played a key role in LPS-induced lung damage. The aim of this study was to verify whether LPS could activate the ER stress response in airway epithelial cells and which molecule was involved in the pathway.This study was also aimed at finding new reagents to protect the airway epithelial cells during LPS injury.Methods ER stress markers were observed in LPS-incubated NCI-H292 cells. SiRNA-MUC5AC was transfected into NCI-H292 cells. The effects of dexamethasone and erythromycin were observed in LPS-induced NCI-H292 cells.Results LPS incubation increased the expression of ER stress markers at the protein and mRNA levels. The knockout of MUC5AC in cells attenuated the increase in ER stress markers after incubation with LPS. Dexamethasone and erythromycin decreased caspase-3 activity in LPS-induced NCI-H292 cells.Conclusions LPS may activate ER stress through the overexpression of MUC5AC. Dexamethasone may protect human airway epithelial cells against ER stress-related apoptosis by attenuating the overload of MUC5AC.

  3. Low zinc environment induces stress signaling, senescence and mixed cell death modalities in colon cancer cells.

    Science.gov (United States)

    Rudolf, Emil; Rudolf, Kamil

    2015-12-01

    Currently it is not clear what type of the final cellular response (i.e. cell death modality or senescence) is induced upon chronic intracellular zinc depletion in colon cancer cells. To address this question, isogenic colon cancer lines SW480 and SW620 exposed to low zinc environment were studied over the period of 6 weeks. Low zinc environment reduced total as well as free intracellular zinc content in both cell lines. Decreased intracellular zinc content resulted in changes in cellular proliferation, cell cycle distribution and activation of stress signaling. In addition, colonocytes with low zinc content displayed increased levels of oxidative stress, changes in mitochondrial activity but in the absence of significant DNA damage. Towards the end of treatment (4th-6th week), exposed cells started to change morphologically, and typical markers of senescence as well as cell death appeared. Of two examined colon cancer cell lines, SW480 cells proved to activate predominantly senescent phenotype, with frequent form of demise being necrosis and mixed cell death modality but not apoptosis. Conversely, SW620 cells activated mostly cell death, with relatively equal distribution of apoptosis and mixed types, while senescent phenotypes and necrosis were present only in a small fraction of cell populations. Addition of zinc at the beginning of 4th week of treatment significantly suppressed cell death phenotypes in both cell lines but had no significant effect on senescence. In conclusion, presented results demonstrate variability of responses to chronic zinc depletion in colon cancer as modeled in vitro.

  4. New serum markers for small-cell lung cancer. II. The neural cell adhesion molecule, NCAM

    DEFF Research Database (Denmark)

    Vangsted, A; Drivsholm, L; Andersen, E;

    1994-01-01

    The neural cell adhesion molecule (NCAM) was recently suggested as a marker for small-cell lung cancer (SCLC). Immunohistochemical analysis demonstrated the presence of the NCAM in 78% of SCLC patients and in 25% of patients with other cancer forms. NCAM was proposed to be the most sensitive marker...... for SCLC, and it may also be an important prognostic marker for SCLC. We used a competitive ELISA to analyze the concentrations of NCAM in sera from 96 SCLC patients, 16 patients with non-SCLC, 4 patients with other cancer forms, and 16 healthy controls. All sera were collected at the time of diagnosis...... between SCLC patients with localized and extensive disease. Serum from one patient with cancer of the thyroid, but no sera from non-SCLC patients or normal healthy controls, was positive. The expression of NCAM did not correlate to any of the clinical parameters, and no correlation was found to the other...

  5. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pmass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome

  6. Convoluted cells as a marker for maternal cell contamination in CVS cultures

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P K; Therkelsen, A J

    1987-01-01

    In order to identify cells of maternal origin in CVS cultures, tissue from 1st trimester abortions were cultivated and the cultures stained in situ for X-chromatin. Convoluted cells and maternal fibroblasts were found to be positive. By chromosome analysis of cultures from 105 diagnostic placenta...... biopsies, obtained by the transabdominal route, metaphases of maternal origin were found in nine cases. In eight of these cases colonies of convoluted cells were observed. We conclude that convoluted cells are of maternal origin and are a reliable marker for maternal cell contamination in CVS cultures....

  7. A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments

    OpenAIRE

    Mayhew, Michael B.; Joshua W. Robinson; Jung, Boyoun; Haase, Steven B.; Alexander J Hartemink

    2011-01-01

    Motivation: To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been develop...

  8. Serum adenosine deaminase as oxidative stress marker in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Shashikala Magadi Dasegowda

    2015-05-01

    Results: The study observed an increased level of serum adenosine deaminase, malondialdehyde and decreased levels of total antioxidant capacity in type 2 diabetes mellitus compared to controls. Serum adenosine deaminase levels in type 2 diabetics were 50.77 +/- 6.95 and in controls was 17.86 +/- 4.04. Serum Malondialdehyde levels in type 2 diabetics was 512.13 +/- 70.15 and in controls was 239.32 +/- 23.97. Serum total antioxidant levels in type 2 diabetics was 0.39+/-0.15 and in controls was 1.66+/-0.25. Positive correlation was seen between serum adenosine deaminase and malondialdehyde and it was statistically significant. Statistically significant negative correlation was seen between serum adenosine deaminase and total antioxidant capacity. Conclusion: Adenosine deaminase can be used as oxidative stress marker. Their increased levels indicate oxidative stress in type 2 diabetes mellitus. Therefore, estimation of serum adenosine deaminase levels help in early prediction and prevention of long term complications occurring due to oxidative stress in diabetics, thereby decreasing the mortality and morbidity in them. [Int J Res Med Sci 2015; 3(5.000: 1195-1198

  9. Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics

    Directory of Open Access Journals (Sweden)

    Akiibinu Moses O

    2012-03-01

    Full Text Available Abstract Background The relationship of oxidative stress to thyroid hormones has not been studied in the schizophrenics. The present study determined the status and interrelationship of plasma markers of oxidative stress, nitric oxide and thyroid hormones in thirty (17 males and 13 females newly diagnosed patients with acute schizophrenia before initiation of chemotherapy. Twenty five (13 males and 12 females mentally healthy individuals served as controls. Patients and controls with history of hard drugs (including alcohol and cigarette, pre-diagnosis medications (e.g. antiparkinsonian/antipsychotic drugs, chronic infections, liver disease and diabetes mellitus were excluded from the study. Plasma levels of total antioxidant potential (TAP, total plasma peroxides (TPP, nitric oxide (NO, malondialdehyde (MDA, thyroxine (T4, tri-iodothyronine (T3 and thyroid stimulating hormone (TSH were determined in all participants using spectrophotometric and enzyme linked immunosorbent assay (ELISA methods respectively. Oxidative stress index (OSI was calculated as the percent ratio of total plasma peroxides and total antioxidant potential. Findings Significantly higher plasma levels of MDA (p Conclusions Higher level of TPP may enhance thyroid hormogenesis in schizophrenics. Adjuvant antioxidant therapy may be a novel approach in the treatment of schizophrenic patients.

  10. Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels?

    Science.gov (United States)

    Su, Xiaojing; Theberge, Ashleigh B; January, Craig T; Beebe, David J

    2013-02-01

    Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) human ether-a-go-go related gene (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and

  11. Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells

    Directory of Open Access Journals (Sweden)

    H Niknejad

    2010-01-01

    Full Text Available The differentiation of neural cells from embryonic stem cells is influenced by several growth factors. Amniotic epithelial cells (AECs share many of the same characteristics as embryonic stem cells, and therefore those factors may similarly affect the derivation of neural cells from AECs. In this study, we examined the differentiation of neural cells in vitro from AECs following AECs treatment with retinoic acid (RA, basic fibroblast growth factor (bFGF as well as investigation of bFGF withdrawal on neuronal differentiation. We also studied whether blocking bone morphogenetic protein (BMP signaling using its antagonist, noggin, affects the derivation of neuronal cells from AECs. The effects of serum on the rate of neural markers expression were also examined. Analysis of AECs derived neurons was performed at some neural markers expression level by immunocytochemistry. All cultures treated with noggin showed the higher levels of neural markers expression than noggin free cultures. Combined treatment with bFGF and RA showed the highest level of neural markers in all treatment groups with or without noggin. bFGF withdrawal did not promote expression of neural markers, while its maintenance increased the expression of these markers. Serum-free condition decreased the viability of cells but increased the rate of neural markers expression. These results show the capability of AECs to express neural cell markers and this ability is affected by some factors including serum, noggin, bFGF and RA.

  12. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review.

    Science.gov (United States)

    Aldakheel, F M; Thomas, P S; Bourke, J E; Matheson, M C; Dharmage, S C; Lowe, A J

    2016-06-01

    Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.

  13. A new technique for the quantitative assessment of 8-oxoguanine in nuclear DNA as a marker of oxidative stress. Application to dystrophin-deficient DMD skeletal muscles.

    Science.gov (United States)

    Nakae, Yoshiko; Stoward, Peter J; Bespalov, Ivan A; Melamede, Robert J; Wallace, Susan S

    2005-09-01

    This is the first report on the development of an immunohistochemical technique, combined with quantitative image analysis, for the assessment of oxidative stress quantitatively in nuclear DNA in situ, and its application to measure DNA damage in Duchenne muscular dystrophic (DMD) muscles. Three sequential staining procedures for cell nuclei, a cell marker, and a product of oxidative DNA damage, 8-oxoguanine (8-oxoG), were performed. First, the nuclei in muscle sections were stained with Neutral Red followed by the capture of their images with an image analysis system used for absorbance measurements. Second, the same sections were then immunostained for laminin in basement membranes as the cell marker. Next, the sections were treated with 2 N HCl to remove the bound Neutral Red and to denature tissue DNA. Third, the sections were immunostained for 8-oxoG in DNA, using diaminobenzidine (DAB) to reveal the antibody complex. This was followed by capture of the images of the immunostained sections as previously. The absorbances at 451.2 nm of bound Neutral Red and DAB polymer oxides, the final product of 8-oxoG immunostaining, were measured in the same myonuclei in the sections. Analysis of these absorbances permitted indices of the 8-oxoG content, independent of the nuclear densities, to be determined in nuclear DNA in single myofibres and myosatellite cells surrounded by basement membranes. We found that the mean index for the myonuclei in biceps brachii muscles of 2- to 7-year-old patients was 14% higher than that in age-matched normal controls. This finding of the increased oxidative stress in the myonuclei in young DMD muscles agrees with the previous reports of increased oxidative stress in the cytoplasm in the DMD myofibres and myosatellite cells. The present technique for the quantitative assessment of oxidative stress in nuclear DNA in situ is applicable not only in biomedical research but also in the development of effective drugs for degenerative diseases

  14. Establishing quiescence in human bone marrow stem cells leads to enhanced osteoblast marker expression

    DEFF Research Database (Denmark)

    Harkness, Linda; Rumman, Mohammad; Kassem, Moustapha;

    expression profiling of the cells demonstrated down-regulation of cyclin (CCNA2, CCND1, CCNE1, CCNB1) and proliferation markers (Ki67) markers during G0 and up-regulation of the osteogenic genes RUNX2 and OPN. RT-PCR analysis of osteogenic differentiation of cells post G0 demonstrated an increase...

  15. Moesin and stress-induced phosphoprotein-1 are possible sero-diagnostic markers of psoriasis.

    Directory of Open Access Journals (Sweden)

    Hideki Maejima

    Full Text Available To identify diagnostic markers for psoriasis vulgaris and psoriatic arthritis, autoantibodies in sera from psoriasis vulgaris and psoriatic arthritis patients were screened by two-dimensional immunoblotting (2D-IB. Based on 2D-IB and MADLI TOF/TOF-MS analyses, eleven proteins each in psoriasis vulgaris and psoriatic arthritis were identified as autoantigens. Furthermore, serum levels of moesin, keratin 17 (K17, annexin A1 (ANXA1, and stress-induced phophoprotein-1 (STIP1, which were detected as autoantigens, were studied by dot blot analysis with psoriasis patients and healthy controls. The levels of moesin and STIP1 were significantly higher in sera from patients with psoriasis vulgaris than in the controls (moesin: P<0.05, STIP1: P<0.005. The area under the curve (AUC for moesin and STIP1 between patients with psoraisis vulgaris and controls was 0.747 and 0.792, respectively. STIP1 and K17 levels were significantly higher in sera from patients with psoriatic arthritis than in those with psoriasis vulgaris (P<0.05 each. The AUC for STIP1 and K17 between patients with psoriatic arthritis and psoriasis vulgaris was 0.69 and 0.72, respectively. The STIP1 or moesin, CK17 serum level was not correlated with disease activity of psoriasis patients. These data suggest that STIP1 and moesin may be novel and differential sero-diagnostic markers for psoriasis vulgaris and psoriatic arthritis.

  16. Expression pattern of drought stress marker genes in soybean roots under two water deficit systems

    Directory of Open Access Journals (Sweden)

    Anna Cristina Neves-Borges

    2012-01-01

    Full Text Available The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively, submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems.

  17. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    OpenAIRE

    Aki Takahashi, Shigeru Uchiyama, Yuya Kato, Teruko Yuhi, Hiromi Ushijima, Makoto Takezaki, Toshihiro Tominaga, Yoshiko Moriyama, Kunio Takeda, Toshiro Miyahara and Naoki Nagatani

    2009-01-01

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations...

  18. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pexosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy

  19. Proliferating cell nuclear antigen: a marker for hepatocellular proliferation in rodents.

    OpenAIRE

    Eldrige, S R; Butterworth, B E; Goldsworthy, T L

    1993-01-01

    Two different markers for quantitating cell proliferation were evaluated in livers of control and chemically treated mice and rats. Proliferating cell nuclear antigen (PCNA), an endogenous cell replication marker, and bromodeoxyuridine (BrdU), an exogenously administered DNA precursor label, were detected in formalin-fixed, paraffin-embedded tissues using immunohistochemical techniques. The percentage of cells in S phase (labeling indexes, LI) evaluated as PCNA- or BrdU-positive hepatocellula...

  20. Association between the stress fracture and bone metabolism/quality markers in lacrosse players

    Directory of Open Access Journals (Sweden)

    Wakamatsu K

    2012-07-01

    Full Text Available Kenta Wakamatsu,1 Keishoku Sakuraba,1 Yoshio Suzuki,2 Asako Maruyama,2 Yosuke Tsuchiya,3 Jiro Shikakura,2 Eisuke Ochi31Department of Sports Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan; 2School of Health and Sports Science, Juntendo University, Chiba, Japan; 3Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, JapanBackground: Overuse injury including stress fracture is a serious problem for athletes. Recently, the importance of bone metabolism and quality as factors preventing overuse injury has been increasingly recognized. Hence, we hypothesized that markers of bone metabolism and quality are related to overuse injuries.Methods: The subjects, which were elite university lacrosse players (male, n = 35; age, 19.8 ± 1.1; female, n = 49; age, 20.0 ± 1.0, were divided into a stress fracture group and a control group. We measured the subjects’ physical characteristics (height, weight, body mass index, and body fat and bone architecture was evaluated using quantitative ultrasound. Bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, tartrate-resistant acid phosphatase 5b (TRAP-5b, homocysteine, and pentosidine were measured from blood samples obtained from all subjects.Results: No significant difference was observed between groups with respect to height, weight, body mass index, and body fat, as well as quantitative ultrasound. Further, there were no significant differences in the levels of bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, or TRAP-5b between stress fracture and control groups in all subjects and in male subjects. However, a significant increase in TRAP-5b level was observed in the stress fracture group compared with the control in the female subjects (409.9 ± 209.3 and 318.6 ± 81.6 mU/dL, respectively; P < 0.05. Homocysteine and pentosidine did not differ between groups.Conclusion: These results suggest that osteoclast activity of

  1. Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers

    OpenAIRE

    Hwang-Verslues, Wendy W.; Wen-Hung Kuo; Po-Hao Chang; Chi-Chun Pan; Hsing-Hui Wang; Sheng-Ta Tsai; Yung-Ming Jeng; Jin-Yu Shew; Kung, John T.; Chung-Hsuan Chen; Lee, Eva Y-H. P.; King-Jen Chang; Wen-Hwa Lee

    2009-01-01

    Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vi...

  2. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    Science.gov (United States)

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F

    2015-10-01

    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity.

  3. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    International Nuclear Information System (INIS)

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers

  4. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Directory of Open Access Journals (Sweden)

    M.B. Aires

    2015-08-01

    Full Text Available The function of the visceral yolk sac (VYS is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g with induced diabetes (alloxan, 37 mg/kg on the 8th gestational day (gd 8. At gd 15, rats from control (n=5 and diabetic (n=5 groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05, CCR2 (P<0.001, and OCT3/4 (P<0.01, and significantly increased expression of CD90 (P<0.05, CD117 (P<0.01, and CD14 (P<0.05 were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  5. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Aires, M.B. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, J.R.A. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Souza, K.S.; Farias, P.S. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, A.C.V. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Fioretto, E.T. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Maria, D.A. [Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP (Brazil)

    2015-07-10

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  6. CD271 as a marker to identify mesenchymal stem cells fromdiverse sources before culture

    Institute of Scientific and Technical Information of China (English)

    María álvarez-Viejo; Yolanda Menéndez-Menéndez; Jesús Otero-Hernández

    2015-01-01

    Mesenchymal stem cells, due to their characteristicsare ideal candidates for cellular therapy. Currently,in culture these cells are defined by their adherenceto plastic, specific surface antigen expression andmultipotent differentiation potential. However, thein vivo identification of mesenchymal stem cells,before culture, is not so well established. Pre-cultureidentification markers would ensure higher purity thanthat obtained with selection based on adherence toplastic. Up until now, CD271 has been described asthe most specific marker for the characterization andpurification of human bone marrow mesenchymal stemcells. This marker has been shown to be specificallyexpressed by these cells. Thus, CD271 has beenproposed as a versatile marker to selectively isolatedand expand multipotent mesenchymal stem cells withboth immunosuppressive and lymphohematopoieticengraftment-promoting properties. This reviewfocuses on this marker, specifically on identificationof mesenchymal stem cells from different tissues.Literature revision suggests that CD271 should not bedefined as a universal marker to identify mesenchymalstem cells before culture from different sources. In thecase of bone marrow or adipose tissue, CD271 couldbe considered a quite suitable marker; however thismarker seems to be inadequate for the isolation ofmesenchymal stem cells from other tissues such asumbilical cord blood or wharton's jelly among others.

  7. Improvement of renal oxidative stress markers after ozone administrationin diabetic nephropathy in rats

    Directory of Open Access Journals (Sweden)

    Morsy Mohamed D

    2010-05-01

    Full Text Available Abstract Background Several complications of diabetes mellitus (DM e.g. nephropathy (DN have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN. Aim The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ-induced diabetic rats. Methods Six groups (n = 10 of male Sprague Dawley rats were used as follows: Group C: Control group. Group O: Ozone group, in which animals received ozone intraperitoneally (i.p. (1.1 mg/kg. Group D: Diabetic group, in which DM was induced by single i.p. injections of streptozotocin (STZ. Group DI: Similar to group D but animals also received subcutaneous (SC insulin (0.75 IU/100 gm BW.. Group DO: In which diabetic rats received the same dose of ozone, 48 h after induction of diabetes. Group DIO, in which diabetic rats received the same doses of insulin and ozone, respectively. All animals received daily treatment for six weeks. At the end of the study period (6 weeks, blood pressure, blood glycosylated hemoglobin (HbA1c, serum creatinine, blood urea nitrogen (BUN, kidney tissue levels of superoxide dismutase (SOD, catalase (CAT, glutathione peroxide (GPx, aldose reductase (AR activities and malondialdehyde (MDA concentration were measured. Results Induction of DM in rats significantly elevated blood pressure, HbA1c, BUN, creatinine and renal tissue levels of MDA and AR while significantly reducing SOD, CAT and GPx activities. Either Insulin or ozone therapy significantly reversed the effects of DM on all parameters; in combination (DIO group, they caused significant improvements in all parameters in comparison to each alone. Conclusions Ozone administration in conjunction with insulin in DM rats reduces oxidative stress markers and improves renal antioxidant enzyme activity which highlights its potential uses in the regimen for treatment of

  8. Identification of Ethanol and 4-Nitroquinoline-1-Oxide Induced Epigenetic and Oxidative Stress Markers During Oral Cavity Carcinogenesis

    Science.gov (United States)

    Urvalek, Alison M.; Osei-Sarfo, Kwame; Tang, Xiao-Han; Zhang, Tuo; Scognamiglio, Theresa; Gudas, Lorraine J.

    2015-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) is a cancer that is characterized by its high morbidity and mortality rates. While tobacco use and alcohol consumption are two major contributing factors for HNSCC carcinogenesis, how the combination of tobacco and alcohol increases HNSCC risk is not understood. Methods We combined the 4-nitroquinoline-1-oxide (4-NQO) oral carcinogenesis and Meadows-Cook alcohol mouse models to elucidate the molecular events and to identify novel biomarkers associated with oral cancer development. Results By genome-wide RNA-seq of tongue samples (three mice per group) we identified changes in transcripts that mediate alcohol metabolism and oxidative stress (Aldh2, Aldh1a3, Adh1, Adh7, and Cyp2a5) in mice treated with 4-NQO followed by ethanol (4-NQO/EtOH) as compared to the vehicle control/untreated samples (V.C./Untr.). We measured major, global increases in specific histone acetylation and methylation epigenetic marks (H3K27ac, H3K9/14ac, H3K27me3, and H3K9me3) in the oral cavities of V.C./EtOH, 4-NQO/Untr. and 4-NQO/EtOH treatment groups compared to the V.C./Untr. group. We detected changes in histone epigenetic marks near regulatory regions of genes involved in ethanol metabolism by chromatin immunoprecipitation (ChIP). For instance, the Aldh2 promoter showed increased H3K27me3 marks, and Aldh2 mRNA levels were reduced by 10-fold in 4NQO/EtOH vs. V.C./Untr. tongue samples. 4-NQO/EtOH treatment also caused increases in markers of oxidative stress, including 4-HNE, MCT4/Slc16a3, and TOM20, as measured by immunohistochemistry. Conclusions We delineate a mechanism by which 4-NQO and ethanol can regulate gene expression during the development of HNSCC, and suggest that histone epigenetic marks and oxidative stress markers could be novel biomarkers and targets for the prevention of HNSCC. PMID:26207766

  9. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: A surrogate marker for NK-cell clonality

    NARCIS (Netherlands)

    P. Bárcena (Paloma); M. Jara-Acevedo (M.); M.D. Tabernero; A. López (Antonio); M.-L. Sánchez (M.); A.C. García-Montero (Andrés); N. Muñoz-García (Noemí); M.B. Vidriales (M.); A. Paiva (Artur); Q. Lecrevisse (Quentin); M. Lima (Margarida); A.W. Langerak (Ton); S. Böttcher (Stephan); J.J.M. van Dongen (Jacques); A. Orfao (Alberto); J. Almeida (Julia)

    2015-01-01

    textabstractCurrently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for

  10. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  11. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers.

    Directory of Open Access Journals (Sweden)

    Wendy W Hwang-Verslues

    Full Text Available Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44(+/CD24(-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR(+/ESA(+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44(+/CD24(-/low, ESA(+, CD133(+, CXCR4(+ and PROCR(+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer.

  12. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts

    Institute of Scientific and Technical Information of China (English)

    Jian-de DONG; Yong-quan GU; Chun-min LI; Chun-ren WANG; Zeng-guo FENG; Rong-xin QIU; Bing CHEN; Jian-xin LI; Shu-wen ZHANG; Zhong-gao WANG; Jian ZHANG

    2009-01-01

    Aim: Recent studies have demonstrated that mesenchymal stem cells (MSCs) can differentiate into endothelial cells. The effect of shear stress on MSC differentiation is incompletely understood, and most studies have been based on two-dimen-sional systems. We used a model of tissue-engineered vascular grafts (TEVGs) to investigate the effects of shear stress on MSC differentiation.Methods: MSCs were isolated from canine bone marrow. The TEVG was constructed by seeding MSCs onto poly-ε-caprolactone and lactic acid (PCLA) scaffolds and subjecting them to shear stress provided by a pulsatile bioreactor for four days (two days at 1 dyne/cm2 to 15 dyne/cm2 and two days at 15 dyne/cm2).Results: Shear stress significantly increased the expression of endothelial cell markers, such as platelet-endothelial cell adhesion molecule-1 (PECAM-1), VE-cadherin, and CD34, at both the mRNA and protein levels as compared with static control cells. Protein levels of alpha-smooth muscle actin (α-SMA) and calponin were substantially reduced in shear stress-cultured cells. There was no significant change in the expression of α-SMA, smooth muscle myosin heavy chain (SMMHC)or calponin at the mRNA level.Conclusion: Shear stress upregulated the expression of endothelial cell-related markers and downregulated smooth muscle-related markers in canine MSCs. This study may serve as a basis for further investigation of the effects of shear stress on MSC differentiation in TEVGs.

  13. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tania Fleitas

    Full Text Available BACKGROUND: Circulating endothelial cells and microparticles have prognostic value in cancer, and might be predictors of response to chemotherapy and antiangiogenic treatments. We have investigated the prognostic value of circulating endothelial cells and microparticles in patients treated for advanced non-small cell lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood samples were obtained from 60 patients before first line, platinum-based chemotherapy +/- bevacizumab, and after the third cycle of treatment. Blood samples from 60 healthy volunteers were also obtained as controls. Circulating endothelial cells were measured by an immunomagnetic technique and immunofluorescence microscopy. Phosphatidylserine-positive microparticles were evaluated by flow cytometry. Microparticle-mediated procoagulant activity was measured by the endogen thrombin generation assay. RESULTS: pre- and posttreatment levels of markers were higher in patients than in controls (p<0.0001. Elevated levels of microparticles were associated with longer survival. Elevated pretreatment levels of circulating endothelial cells were associated with shorter survival. CONCLUSIONS/SIGNIFICANCE: Circulating levels of microparticles and circulating endothelial cells correlate with prognosis, and could be useful as prognostic markers in patients with advanced non-small cell lung cancer.

  14. Simultaneous detection of mRNA and protein stem cell markers in live cells

    Directory of Open Access Journals (Sweden)

    Bao Gang

    2009-04-01

    Full Text Available Abstract Background Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation. Results Quantification of Oct-4 mRNA and protein in P19 mouse carcinoma stem cells using respectively RT-PCR and immunocytochemistry confirmed that their levels drastically decreased after differentiation. To visualize Oct-4 mRNA in live stem cells, molecular beacons were designed, synthesized and validated, and the detection specificity was confirmed using control studies. We found that the fluorescence signal from Oct-4-targeting molecular beacons provides a clear discrimination between undifferentiated and retinoic acid-induced differentiated cells. Using deconvolution fluorescence microscopy, Oct-4 mRNAs were found to reside on one side of the cytosol. We demonstrated that, using a combination of Oct-4 mRNA-targeting molecular beacon with SSEA-1 antibody in flow cytometric analysis, undifferentiated stem cells can be clearly distinguished from differentiated cells. We revealed that Oct-4 targeting molecular beacons do not seem to affect stem cell biology. Conclusion Molecular beacons have the potential to provide a powerful tool for highly specific detection and isolation of stem cells, including cancer stem cells and induced pluripotent stem (iPS cells without disturbing cell physiology. It is advantageous to perform simultaneous detection of intracellular (mRNA and cell-surface (protein stem cell markers in flow cytometric analysis, which may lead to high detection sensitivity and efficiency.

  15. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Valvular interstitial cells (VICs are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%, NG2 (~5% or SSEA-4 (~7%, whereas another subpopulation (~5% expresses OB-CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB-CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2(+ cells were further characterized and found to deposit more calcified matrix than ABCG2(- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2(+ cells may participate in tissue repair and disease progression.

  16. EVALUATION OF OXIDATIVE STRESS MARKERS IN CHRONIC KIDNEY FAILURES OF SOUTH INDIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Kemidi Ilaiah

    2013-01-01

    Full Text Available Oxidative stress defines an imbalance between the formation of reactive oxygen species and antioxidants. The existence of oxidative stress and higher incidence of cardiovascular diseases (CVD in association with uraemia is proven from studies on Chronic Kidney Disease (CKD patients. Non traditional risk factors like oxidative stress are being given special emphasis to explain high incidence and identification of new therapeutic interventions. Excess Reactive oxygen Species levels have been implicated to damage DNA, lipids, proteins etc., It may also affect the cells of host, particularly at the inflammation site contributing to proteinuria observed in Chronic Kidney Disease patients. The uremic status, oxidant and antioxidant levels were assessed in the present study. This prospective observational study was conducted for nine months. Patients meeting the study criteria were included. Malonyldialdehyde (MDA, glutathione-S-transferase (GST, Protein thiols, Total proteins, Serum urea, creatinine, albumin and Haemoglobin levels were estimated using suitable methods. Study recruited 108 Chronic Kidney Disease patients, divided into three groups namely, patients without haemodialysis (54, patients with haemodialysis (54 and control population (50. Serum urea, creatinine, MDA and GST levels were found to be significantly increased (P<0.0001, and total proteins, albumin, proteinthiols, and Haemoglobin levels were found to be significantly decreased in Chronic Renal Failure patients compared to normal controls (P<0.0001. Our study confirms the presence of oxidative stress in Chronic Kidney Disease patient population. Our study also emphasises the need for anti-oxidant therapy in CKD patients.

  17. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    Science.gov (United States)

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women.

  18. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    Science.gov (United States)

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  19. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  20. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    Directory of Open Access Journals (Sweden)

    Varras Michail

    2012-11-01

    Full Text Available Abstract Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21. The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum. No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47

  1. Inflammatory and oxidative stress airway markers in premature newborns of hypertensive mothers

    Directory of Open Access Journals (Sweden)

    R.J. Madoglio

    2016-01-01

    Full Text Available Although oxidative stress and inflammation are important mechanisms in the pathophysiology of preeclampsia and preterm diseases, their contribution to the respiratory prognosis of premature infants of hypertensive mothers is not known. Our objective was to determine the levels of oxidative stress and inflammation markers in the airways of premature infants born to hypertensive and normotensive mothers, in the first 72 h of life, and to investigate whether they are predictors of bronchopulmonary dysplasia (BPD/death. This was a prospective study with premature infants less than 34 weeks’ gestation on respiratory support who were stratified into 2 groups: 32 premature infants of hypertensive mothers and 41 of normotensive women, with a mean gestational age of 29 weeks. Exclusion criteria were as follows: diabetes mellitus, chorioamnionitis, malformation, congenital infection, and death within 24 h after birth. The outcome of interest was BPD/death. Malondialdehyde (MDA, nitric oxide (NO, and interleukin 8 (IL-8 were measured in airway aspirates from the first and third days of life and did not differ between the groups. Univariate and multivariate statistical analyses were performed. The concentrations of MDA, NO, and IL-8 were not predictors of BPD/death. Premature infants who developed BPD/death had higher levels of IL-8 in the first days of life. The gestational age, mechanical ventilation, and a small size for gestational age were risk factors for BPD/death. In conclusion, the biomarkers evaluated were not increased in premature infants of hypertensive mothers and were not predictors of BPD/death.

  2. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells

    Directory of Open Access Journals (Sweden)

    Freeman James B

    2012-09-01

    Full Text Available Abstract Background Circulating melanoma cells (CMCs are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage. Methods We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients. Results Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p  Conclusions Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression.

  3. Oxidised fish oil does not influence established markers of oxidative stress in healthy human subjects

    DEFF Research Database (Denmark)

    Ottestad, Inger; Vogt, Gjermund; Retterstøl, Kjetil;

    2012-01-01

    /d of fish oil (1·6 g/d EPA þ DHA; n 17), 8 g/d of oxidised fish oil (1·6 g/d EPA þ DHA; n 18) or 8 g/d of high-oleic sunflower oil (n 19). Fasting blood and morning spot urine samples were collected at weeks 0, 3 and 7. No significant changes between the different groups were observed with regard to urinary......Intake of fish oil reduces the risk of CHD and CHD deaths. Marine n-3 fatty acids (FA) are susceptible to oxidation, but to our knowledge, the health effects of intake of oxidised fish oil have not previously been investigated in human subjects. The aim of the present study was to investigate...... markers of oxidative stress, lipid peroxidation and inflammation, and the level of plasma n-3 FA after intake of oxidised fish oil. In a double-blinded randomised controlled study, healthy subjects (aged 18–50 years, n 54) were assigned into one of three groups receiving capsules containing either 8 g...

  4. The Effects of Testosterone on Oxidative Stress Markers in Mice with Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Hamid Choobineh

    2016-05-01

    Full Text Available Background: Spinal cord injury (SCI causes infertility in male patients through erectile dysfunction, ejaculatory dysfunction, semen and hormone abnormalities. Oxidative stress (OS is involved in poor semen quality and subsequent infertility in males with SCI. The aim of this study is to examine the effects of SCI on the level of testosterone hormone. Materials and Methods: In this experimental study, we evaluated the effects of exogenous testosterone on the activity of the antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPx as well as the levels of malondialdehyde (MDA and protein carbonylation (PCO, as markers of OS, in 10 groups of SCI mice. Total antioxidant capacity (TAC was determined using the 2,29-azinobis-(3-ethylbenzothiazoline- 6-sulfonic acid (ABTS radical cation assay. Results: Exogenous testosterone administration in mice with SCI significantly reduced SOD and GPx enzyme activities and MDA level. There was no significant decrease in PCO content. In addition, TAC remarkably increased in the sham and SCI groups not treated with testosterone but remained unchanged in all other experimental groups. Exogenous testosterone also reduced serum testosterone levels in all groups except the positive control group. Conclusion: Our cumulative data indicated that SCI could cause sterility by disturbing the plasmatic testosterone balance. The normal level of endogenous testosterone was not completely restored by exogenous testosterone administration.

  5. Breath alkanes as a marker of oxidative stress in different clinical conditions.

    Science.gov (United States)

    Aghdassi, E; Allard, J P

    2000-03-15

    We assessed oxidative stress in three different clinical conditions: smoking, human immunodeficiency virus (HIV) infection, and inflammatory bowel disease, using breath alkane output and other lipid peroxidation parameters such as plasma lipid peroxides (LPO) and malondialdehyde (MDA). Antioxidant micronutrients such as selenium, vitamin E, C, beta-carotene and carotenoids were also measured. Lipid peroxidation was significantly higher and antioxidant vitamins significantly lower in smokers compared to nonsmokers. Beta-carotene or vitamin E supplementation significantly reduced lipid peroxidation in that population. However, vitamin C supplementation had no effect. In HIV-infected subjects, lipid peroxidation parameters were also elevated and antioxidant vitamins reduced compared to seronegative controls. Vitamin E and C supplementation resulted in a significant decrease in lipid peroxidation with a trend toward a reduction in viral load. In patients with inflammatory bowel disease, breath alkane output was also significantly elevated when compared to healthy controls. A trial with vitamin E and C is underway. In conclusion, breath alkane output, plasma LPO and MDA are elevated in certain clinical conditions such as smoking, HIV infection, and inflammatory bowel disease. This is associated with lower levels of antioxidant micronutrients. Supplementation with antioxidant vitamins significantly reduced these lipid peroxidation parameters. The results suggest that these measures are good markers for lipid peroxidation. PMID:10802218

  6. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  7. Sensing the Heat Stress by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Cates Jordan

    2011-08-01

    Full Text Available Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF, which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. Results The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO cells. The time profile of the GFP protein depends on the transient activity, Transient(t, of the heat shock system. The function Transient(t depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104. The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i the response of the cell to two

  8. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole;

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized...

  9. Marker-dependent associations among oxidative stress, growth and survival during early life in a wild mammal

    Science.gov (United States)

    Selman, Colin; Blount, Jonathan D.; Pilkington, Jill G.; Watt, Kathryn A.; Pemberton, Josephine M.; Reid, Jane M.

    2016-01-01

    Oxidative stress (OS) is hypothesized to be a key physiological mechanism mediating life-history trade-offs, but evidence from wild populations experiencing natural environmental variation is limited. We tested the hypotheses that increased early life growth rate increases OS, and that increased OS reduces first-winter survival, in wild Soay sheep (Ovis aries) lambs. We measured growth rate and first-winter survival for four consecutive cohorts, and measured two markers of oxidative damage (malondialdehyde (MDA), protein carbonyls (PC)) and two markers of antioxidant (AOX) protection (total AOX capacity (TAC), superoxide dismutase (SOD)) from blood samples. Faster lamb growth was weakly associated with increased MDA, but not associated with variation in the other three markers. Lambs with higher SOD activity were more likely to survive their first winter, as were male but not female lambs with lower PC concentrations. Survival did not vary with MDA or total TAC. Key predictions relating OS to growth and survival were therefore supported in some OS markers, but not others. This suggests that different markers capture different aspects of the complex relationships between individual oxidative state, physiology and fitness, and that overarching hypotheses relating OS to life-history variation cannot be supported or refuted by studying individual markers. PMID:27733545

  10. Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Aidan G. Major

    2013-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is one of the world’s top ten most common cancers. Current survival rates are poor with only 50% of patients expected to survive five years after diagnosis. The poor survival rate of HNSCC is partly attributable to the tendency for diagnosis at the late stage of the disease. One of the reasons for treatment failure is thought to be related to the presence of a subpopulation of cells within the tumour called cancer stem cells (CSCs. CSCs display stem cell-like characteristics that impart resistance to conventional treatment modalities and promote tumour initiation, progression, and metastasis. Specific markers for this population have been investigated in the hope of developing a deeper understanding of their role in the pathogenesis of HNSCC and elucidating novel therapeutic strategies.

  11. Tumor cell marker PVRL4 (nectin 4 is an epithelial cell receptor for measles virus.

    Directory of Open Access Journals (Sweden)

    Ryan S Noyce

    2011-08-01

    Full Text Available Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4 rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a

  12. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

    International Nuclear Information System (INIS)

    Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established. The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis. Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group. Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes

  13. MicroRNA-194 is a Marker for Good Prognosis in Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Nofech-Mozes, Roy; Khella, Heba W Z; Scorilas, Andreas; Youssef, Leza; Krylov, Sergey N; Lianidou, Evi; Sidiropoulos, Konstantinos G; Gabril, Manal; Evans, Andrew; Yousef, George M

    2016-04-01

    Clear cell renal cell carcinoma (ccRCC) is the most prevalent adult kidney cancer. Prognostic markers are needed to guide patient management toward aggressive versus more conservative approaches, especially for small tumors ≤4 cm. miR-194 was reported to be downregulated in several cancers and is involved in epithelial to mesenchymal transition. We evaluated miR-194 as a prognostic marker in ccRCC. In a cohort of 234 patients with primary ccRCC, we correlated miR-194 expression level with multiple clinicopathological features including disease-free and overall survival, tumor size, clinical stage, and histological grade. Our results shows a stepwise decrease in miR-194 expression from normal kidney to primary ccRCC (P = 0.0032) and a subsequent decrease from primary to metastatic lesions. Additionally, patients with higher miR-194 expression has significantly longer disease-free survival (P = 0.041) and overall survival (P = 0.031) compared to those with lower expression. In multivariate analysis, miR-194-positive tumors retain significance in disease-free survival and overall survival, suggesting miR-194 is an independent marker for good prognosis in ccRCC. Moreover, miR-194 is a marker for good prognosis for patients with small renal masses (P = 0.014). These findings were validated on an independent data set from The Cancer Genome Atlas. We also compared miR-194 expression between RCC subtypes. ccRCC had the highest levels, whereas chromophobe RCC and oncocytoma had comparable lower levels. Target prediction coupled with pathway analysis show that miR-194 is predicted to target key molecules and pathways involved in RCC progression. miR-194 represents a prognostic biomarker in ccRCC. PMID:26860079

  14. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  15. Plasmacytoma with aberrant expression of myeloid markers, T-cell markers, and cytokeratin

    DEFF Research Database (Denmark)

    Shin, J S; Stopyra, G A; Warhol, M J;

    2001-01-01

    variations in immunophenotype occur. We describe a case of a plasmacytoma from a patient who presented with sudden onset of pain and a lytic lesion of the left proximal humerus. Hematoxylin and eosin-stained sections showed a lymphoproliferative lesion composed of large lymphoid cells, some with plasmacytoid...

  16. Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells.

    Science.gov (United States)

    Kassem, Dina H; Kamal, Mohamed M; El-Kholy, Abd El-Latif G; El-Mesallamy, Hala O

    2016-08-01

    Recently, there has been much attention towards generation of insulin producing cells (IPCs) from stem cells, especially from Wharton's jelly mesenchymal stem cells (WJ-MSCs). However, generation of mature IPCs remains a challenge. Assessment of generation of IPCs was usually done by examining β-cell markers, however, assessment of pluripotency/stem cell markers drew less attention. Therefore, the purpose of this study was to investigate the levels of pluripotency/stem cell markers during differentiation of WJ-MSCs into IPCs and the association of these levels with differentiation outcomes. WJ-MSCs were isolated, characterized then induced to differentiate into IPCs using three different protocols namely A, B and C. Differentiated IPCs were assessed by the expression of pluripotency/stem cell markers, together with β-cell markers using qRT-PCR, and functionally by measuring glucose stimulated insulin secretion. Differentiated cells from protocol A showed lowest expression of pluripotency/stem cell markers and relatively best GSIS. However, protocol B showed concomitant expression of pluripotency/stem cell and β-cell markers with relatively less insulin secretion as compared to protocol A. Protocol C failed to generate glucose-responsive IPCs. In conclusion, sustained expression of pluripotency/stem cell markers could be associated with the incomplete differentiation of WJ-MSCs into IPCs. A novel finding for which further investigations are warranted. PMID:27265786

  17. Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells.

    Science.gov (United States)

    Kassem, Dina H; Kamal, Mohamed M; El-Kholy, Abd El-Latif G; El-Mesallamy, Hala O

    2016-08-01

    Recently, there has been much attention towards generation of insulin producing cells (IPCs) from stem cells, especially from Wharton's jelly mesenchymal stem cells (WJ-MSCs). However, generation of mature IPCs remains a challenge. Assessment of generation of IPCs was usually done by examining β-cell markers, however, assessment of pluripotency/stem cell markers drew less attention. Therefore, the purpose of this study was to investigate the levels of pluripotency/stem cell markers during differentiation of WJ-MSCs into IPCs and the association of these levels with differentiation outcomes. WJ-MSCs were isolated, characterized then induced to differentiate into IPCs using three different protocols namely A, B and C. Differentiated IPCs were assessed by the expression of pluripotency/stem cell markers, together with β-cell markers using qRT-PCR, and functionally by measuring glucose stimulated insulin secretion. Differentiated cells from protocol A showed lowest expression of pluripotency/stem cell markers and relatively best GSIS. However, protocol B showed concomitant expression of pluripotency/stem cell and β-cell markers with relatively less insulin secretion as compared to protocol A. Protocol C failed to generate glucose-responsive IPCs. In conclusion, sustained expression of pluripotency/stem cell markers could be associated with the incomplete differentiation of WJ-MSCs into IPCs. A novel finding for which further investigations are warranted.

  18. Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum.

    Science.gov (United States)

    Chen, Hsiao-Jou Cortina; Spiers, Jereme G; Sernia, Conrad; Lavidis, Nickolas A

    2016-01-01

    Chronic mild stress has been shown to cause hippocampal neuronal nitric oxide synthase (NOS) overexpression and the resultant nitric oxide (NO) production has been implicated in the etiology of depression. However, the extent of nitrosative changes including NOS enzymatic activity and the overall output of NO production in regions of the brain like the hippocampus and striatum following acute stress has not been characterized. In this study, outbred male Wistar rats aged 6-7 weeks were randomly allocated into 0 (control), 60, 120, or 240 min stress groups and neural regions were cryodissected for measurement of constitutive and inducible NOS enzymatic activity, nitrosative status, and relative gene expression of neuronal and inducible NOS. Hippocampal constitutive NOS activity increased initially but was superseded by the inducible isoform as stress duration was prolonged. Interestingly, hippocampal neuronal NOS and interleukin-1β mRNA expression was downregulated, while the inducible NOS isoform was upregulated in conjunction with other inflammatory markers. This pro-inflammatory phenotype within the hippocampus was further confirmed with an increase in the glucocorticoid-antagonizing macrophage migration inhibitory factor, Mif, and the glial surveillance marker, Ciita. This indicates that despite high levels of glucocorticoids, acute stress sensitizes a neuroinflammatory response within the hippocampus involving both pro-inflammatory cytokines and inducible NOS while concurrently modulating the immunophenotype of glia. Furthermore, there was a delayed increase in striatal inducible NOS expression while no change was found in other pro-inflammatory mediators. This suggests that short term stress induces a generalized increase in inducible NOS signaling that coincides with regionally specific increased markers of adaptive immunity and inflammation within the brain.

  19. Oxidative stress markers and phosphorus magnetic resonance spectroscopy in a patient with GLUT1 deficiency treated with modified Atkins diet.

    Science.gov (United States)

    Kitamura, Yuri; Okumura, Akihisa; Hayashi, Masaharu; Mori, Harushi; Takahashi, Satoru; Yanagihara, Keiko; Miyata, Rie; Tanuma, Naoyuki; Mimaki, Takashi; Abe, Shinpei; Shimizu, Toshiaki

    2012-05-01

    Glucose transporter type 1 deficiency syndrome is an inborn error of glucose transport across blood-tissue barriers, and the modified Atkins diet is an effective and well-tolerated treatment. To investigate the effects of the modified Atkins diet, we examined the cerebrospinal fluid markers and performed phosphorus magnetic resonance spectroscopy in a patient with glucose transporter type 1 deficiency syndrome before and after the modified Atkins diet. Cerebrospinal fluid levels of the oxidative stress markers, 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine adduct, were markedly increased above the cutoff index and were normalized 18 months after the modified Atkins diet. Phosphorus magnetic resonance spectroscopy measurements showed 18% increase of PCr/γ-ATP ratio after the modified Atkins diet. These results suggest that the modified Atkins diet may reduce oxidative stress in the brain and improve energy reserve capacity, which is important in sustaining electrophysiological activities essential for performing brain functions.

  20. A Quantitative Perspective on Surface Marker Selection for the Isolation of Functional Tumor Cells.

    Science.gov (United States)

    Cahall, Calvin F; Lilly, Jacob L; Hirschowitz, Edward A; Berron, Brad J

    2015-01-01

    Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These levels are contrasted with that present on healthy peripheral blood mononuclear cells (PBMC) for comparison to expected background levels in a fluid biopsy setting. A key feature of this work is establishing a metric of markers per square micrometer. This describes an average marker density on the cell membrane surface, which is a critical metric for emerging isolation strategies. These results serve to extend expression of key tumor markers in a sensitive and dynamic manner beyond traditional positive/negative immunohistochemical staining to guide future fluid biopsy targeting strategies. PMID:26309407

  1. Effect of varied recovery interventions on markers of psychophysiological stress in professional rugby union.

    Science.gov (United States)

    Lindsay, Angus; Lewis, John; Gill, Nicholas; Gieseg, Steven P; Draper, Nick

    2015-01-01

    Rugby union is a physical demanding sport that requires optimum recovery between games to maintain performance levels. Analysis of four unique biochemical markers of stress is measured here to determine which recovery strategy currently in use by a professional team provides the necessary requirements for sustained performance. Urine and saliva samples were collected from 37 professional rugby players before, immediately after and 36 hours after five home games, and analysed by enzyme linked immunosorbent assay and high performance liquid chromatography for urinary myoglobin, total neopterin (NP; NP + 7,8-dihydroneopterin), salivary cortisol and immunoglobulin A. Subjects completed a cold water immersion (CWI) or pool session (PS), donned compression garments, consumed protein and carbohydrate food and fluid, and slept for 8 hours post-game. The following day subjects choose from one or a combination of CWI, PS or active recovery/stretching to complete. There was no difference between the recovery protocols for cortisol, total NP, immunoglobulin A concentration or myoglobin at 36 hours post-game. Immunoglobulin A secretion rate significantly increased above pre-game levels at 36 hours post-game for all protocols; however, protocol three did not increase as much (p = 0.038). Total NP was also significantly increased above pre-game levels at 36 hours post-game for all protocols. This study provides evidence that the immediate post-game recovery intervention following a game of professional rugby union may be the most important aspect of psychophysiological player recovery, irrespective of the "next-day" intervention. The concentrations of total NP and immunoglobulin A suggest these professional rugby players are still in a state of recovery 36 hours post-game.

  2. Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers.

    Science.gov (United States)

    Ghazavi, Ali; Mosayebi, Ghasem; Solhi, Hassan; Rafiei, Mohammad; Moazzeni, Seyed Mohammad

    2013-06-01

    A relationship between the expression of inflammation markers, oxidative stress and opium use has not been clearly established. This study was done to determine serum high-sensitivity C-reactive protein (hs-CRP), quantity of C3 and C4 complement factors, immunoglobulins, nitric oxide (NO) and total antioxidant capacity (TAC) in opium smokers and non-drug-using control participants. The present study was done on 44 male opium smokers and 44 controls of the same sex and age (20-40 years). The control group was healthy individuals with no lifetime history of drug abuse or dependence. All of the opium abusers were selected from those who had a history of opium use, for at least one year, with a daily opium dosage not less than 2g. Addicts known to abuse alcohol or other drugs were excluded. Serum hs-CRP concentration was measured using ELISA method and serum C3, C4 and immunoglobulins concentration were determined by Single Radial Immunodiffusion (SRID) method. NO production was estimated through Griess reaction and TAC was assessed by Ferric Reducing/Antioxidant Power (FRAP) test. Serum hs-CRP, complement factors (C3 and C4) and FRAP levels were significantly higher in the opium smokers (8.93 ± 1.93; 138.47 ± 13.39; 68.79 ± 7.02 and 972.75 ± 11.55, respectively) relative to the control group (0.72 ± 0.09; 93.36 ± 8.73; 33.08 ± 7.39 and 761.95 ± 18.61, respectively). These results permit us to conclude that opium smokers indeed present with a low to moderate grade inflammation, which is defined by an increase in acute phase proteins. PMID:23850638

  3. UVC-induced stress granules in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Mohamed Taha Moutaoufik

    Full Text Available Stress granules (SGs are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α. We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.

  4. Correlation between EGFR gene mutation, cytologic tumor markers, 18F-FDG uptake in non-small cell lung cancer

    OpenAIRE

    Cho, Arthur; Hur, Jin; Moon, Yong Wha; Hong, Sae Rom; Suh, Young Joo; Kim, Yun Jung; Im, Dong Jin; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Shim, Hyo Sup; Lee, Jae Seok; Kim, Joo-Hang; Choi, Byoung Wook

    2016-01-01

    Background EGFR mutation-induced cell proliferation causes changes in tumor biology and tumor metabolism, which may reflect tumor marker concentration and 18F-FDG uptake on PET/CT. Direct aspirates of primary lung tumors contain different concentrations of tumor markers than serum tumor markers, and may correlate better with EGFR mutation than serum tumor markers. The purpose of this study is to investigate an association between cytologic tumor markers and FDG uptake with EGFR mutation statu...

  5. Stem cell markers in the heart of the human newborn

    OpenAIRE

    Armando Faa; Elvira Podda; Vassilios Fanos

    2016-01-01

    The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem ...

  6. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Katherine Drews-Elger

    Full Text Available BACKGROUND: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: We have generated conditional knockout mice to obtain NFAT5(-/- T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5(-/- cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5(-/- cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5(-/- lymphocytes. CONCLUSIONS/SIGNIFICANCE: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.

  7. SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma

    Science.gov (United States)

    Kawai, Takayuki; Yasuchika, Kentaro; Ishii, Takamichi; Miyauchi, Yuya; Kojima, Hidenobu; Yamaoka, Ryoya; Katayama, Hokahiro; Yoshitoshi, Elena Yukie; Ogiso, Satoshi; Kita, Sadahiko; Yasuda, Katsutaro; Fukumitsu, Ken; Komori, Junji; Hatano, Etsuro; Kawaguchi, Yoshiya; Uemoto, Shinji

    2016-01-01

    The current lack of cancer stem cell (CSC) markers that are easily evaluated by blood samples prevents the establishment of new therapeutic strategies in hepatocellular carcinoma (HCC). Herein, we examined whether sex determining region Y-box 9 (SOX9) represents a new CSC marker, and whether osteopontin (OPN) can be used as a surrogate marker of SOX9 in HCC. In HCC cell lines transfected with a SOX9 promoter-driven enhanced green fluorescence protein gene, FACS-isolated SOX9+ cells were capable of self-renewal and differentiation into SOX9− cells, and displayed high proliferation capacity in vitro. Xenotransplantation experiments revealed that SOX9+ cells reproduced, differentiated into SOX9− cells, and generated tumors at a high frequency in vivo. Moreover, SOX9+ cells were found to be involved in epithelial-mesenchymal transition (EMT) and activation of TGFb/Smad signaling. Gain/loss of function experiments showed that SOX9 regulates Wnt/beta-catenin signaling, including cyclin D1 and OPN. Immunohistochemistry of 166 HCC surgical specimens and serum OPN measurements showed that compared to SOX9− patients, SOX9+ patients had significantly poorer recurrence-free survival, stronger venous invasion, and higher serum OPN levels. In conclusion, SOX9 is a novel HCC-CSC marker regulating the Wnt/beta-catenin pathway and its downstream target, OPN. OPN is a useful surrogate marker of SOX9 in HCC. PMID:27457505

  8. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  9. High expression of markers of apoptosis in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Petersen, Bodil Laub; Lundegaard, Pia Rengtved; Bank, M I;

    2003-01-01

    53 and the number of cells in apoptosis detected with TUNEL. Langerhans cell histiocytosis cells showed strong expression of p53 and in some cases co-expression of Fas and Fas-L. The expression of Fas-L was significantly higher in infiltrates from patients with single-system disease. The actual...... number of pathological Langerhans cells in apoptosis as estimated by TUNEL was low. CONCLUSIONS: The low number of TUNEL-reactive cells can be explained by the rapid turnover of apoptotic cells in the tissue, not leaving the apoptotic cells long enough in the tissue to be detected. The co......-expression of Fas and Fas-L in some Langerhans cells can lead to an autocrine apoptotic shortcut, mediating the death of the double-positive cells. Our findings suggest that apoptosis mediated through the Fas/Fas-L pathway may contribute to the spontaneous regression of lesions in single-system disease. A delicate...

  10. Surface Markers for Chondrogenic Determination: A Highlight of Synovium-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Douglas D. Campbell

    2012-11-01

    Full Text Available Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.

  11. Childhood trauma and parental style: Relationship with markers of inflammation, oxidative stress, and aggression in healthy and personality disordered subjects.

    Science.gov (United States)

    Fanning, Jennifer R; Lee, Royce; Gozal, David; Coussons-Read, Mary; Coccaro, Emil F

    2015-12-01

    Recent studies suggest that early life trauma is associated with elevations in circulating markers of inflammation in human subjects. History of aggression as a behavior, or aggression as a personality trait, is also associated with elevations of these inflammatory markers. Since early life trauma is associated with the development and maintenance of aggression in later life we examined the relationship of early life adversity, plasma inflammation markers (IL-6 and CRP) and oxidative stress markers (8-OH-DG and 8-ISO), and aggression in adult subjects with (n=79) and without (n=55) personality disorder. We used a series of mediated and moderated path models to test whether the effects of early adversity on later aggression may be mediated through markers of inflammation. Childhood abuse and parental control were associated with basal IL-6 and CRP concentrations. Path modeling suggested that childhood abuse was associated with aggression indirectly through CRP while parental control influenced aggression indirectly through IL-6 and CRP. Furthermore, these effects were independent of the effect of current depression. The results suggest that disruption of inflammatory processes represent one pathway by which early adversity influences aggression.

  12. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    Science.gov (United States)

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  13. Multidimensional profiling of cell surface proteins and nuclear markers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  14. Functional characteristics of neonatal rat β cells with distinct markers

    DEFF Research Database (Denmark)

    Martens, G A; Motté, E; Kramer, G;

    2014-01-01

    of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had...

  15. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    Directory of Open Access Journals (Sweden)

    Tahereh Talaei-Khozani

    2014-03-01

    Full Text Available Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA and 5-Aza-2-Deoxycytidine (5-aza-dC. The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.

  16. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  17. Group-specific human granulocyte antigens on a chronic myelogenous leukemia cell line with a Philadelphia chromosome marker.

    Science.gov (United States)

    Drew, S I; Terasaki, P I; Billing, R J; Bergh, O J; Minowada, J; Klein, E

    1977-05-01

    Group-specific human granulocyte antigens are serologically detectable with granulocytotoxic-positive human alloantisera on a cell line, K562, of chronic myelogenous leukemia origin which bears a Philadelphia chromosomal marker. The same cell line lacks serologically detectable HLA, B2 microglobulin, and B-lymphocyte antigens. Granulocyte antigens are important cell markers for cell lines of suspected myeloid lineage.

  18. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    Full Text Available Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.

  19. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.

    Science.gov (United States)

    Capece, Angela; Votta, Sonia; Guaragnella, Nicoletta; Zambuto, Marianna; Romaniello, Rossana; Romano, Patrizia

    2016-05-01

    The most diffused formulation of starter for winemaking is active dry yeast (ADY). ADYs production process is essentially characterized by air-drying stress, a combination of several stresses, including thermal, hyperosmotic and oxidative and cell capacity to counteract such multiple stresses will determine its survival. The molecular mechanisms underlying cell stress response to desiccation have been mostly studied in laboratory and commercial yeast strains, but a growing interest is currently developing for indigenous yeast strains which represent a valuable and alternative source of genetic and molecular biodiversity to be exploited. In this work, a comparative study of different Saccharomyces cerevisiae indigenous wine strains, previously selected for their technological traits, has been carried out to identify potentially relevant genes involved in desiccation stress tolerance. Cell viability was evaluated along desiccation treatment and gene expression was analyzed by real-time PCR before and during the stress. Our data show that the observed differences in individual strain sensitivity to desiccation stress could be associated to specific gene expression over time. In particular, either the basal or the stress-induced mRNA levels of certain genes, such as HSP12, SSA3, TPS1, TPS2, CTT1 and SOD1, result tightly correlated to the strain survival advantage. This study provides a reliable and sensitive method to predict desiccation stress tolerance of indigenous wine yeast strains which could be preliminary to biotechnological applications. PMID:26882930

  20. Dissociating markers of senescence and protective ability in memory T cells.

    Directory of Open Access Journals (Sweden)

    Martin Prlic

    Full Text Available No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime-boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions.

  1. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian;

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... staining to weak or absent NANOG staining, and vice versa. SSEA4 staining was only observed in small clusters or single cells and not confined to the TRA territory. Co-expression of all markers was only detected in small areas. SSEA1 expression was found exclusively outside the TRA territory. In conclusion......, pronounced regional differences in the expression of markers considered specific for undifferentiated hESC may suggest the existence of different cell populations....

  2. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors.

    Science.gov (United States)

    Atli, Abdullah; Bulut, Mahmut; Bez, Yasin; Kaplan, İbrahim; Özdemir, Pınar Güzel; Uysal, Cem; Selçuk, Hilal; Sir, Aytekin

    2016-06-01

    The traumatic life events, including earthquakes, war, and interpersonal conflicts, cause a cascade of psychological and biological changes known as post-traumatic stress disorder (PTSD). Malondialdehyde (MDA) is a reliable marker of lipid peroxidation, and paraoxonase is a known antioxidant enzyme. The aims of this study were to investigate the relationship between earthquake trauma, PTSD effects on oxidative stress and the levels of serum paraoxonase 1 (PON1) enzyme activity, and levels of serum MDA. The study was carried out on three groups called: the PTSD group, the traumatized with earthquake exercise group, and healthy control group, which contained 32, 31, and 38 individuals, respectively. Serum MDA levels and PON1 enzyme activities from all participants were measured, and the results were compared across all groups. There were no significant differences between the PTSD patients and non-PTSD earthquake survivors in terms of the study variables. The mean PON1 enzyme activity from PTSD patients was significantly lower, while the mean MDA level was significantly higher than that of the healthy control group (p earthquake survivors who did not develop PTSD showed higher MDA levels and lower PON1 activity when compared to healthy controls. However, the differences between these groups did not reach a statistically significant level. Increased MDA level and decreased PON1 activity measured in PTSD patients after earthquake and may suggest increased oxidative stress in these patients. The nonsignificant trends that are observed in lipid peroxidation markers of earthquake survivors may indicate higher impact of PTSD development on these markers than trauma itself. For example, PTSD diagnosis seems to add to the effect of trauma on serum MDA levels and PON1 enzyme activity. Thus, serum MDA levels and PON1 enzyme activity may serve as biochemical markers of PTSD diagnosis. PMID:26324882

  3. Biology and Molecular Markers of Malignant Gonadal Germ Cell Tumors

    OpenAIRE

    Salonen, Jonna

    2009-01-01

    Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tu...

  4. A new marker set that identifies fetal cells in maternal circulation with high specificity

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman;

    2014-01-01

    OBJECTIVE: Fetal cells from the maternal circulation (FCMBs) have the potential to replace cells from amniotic fluid or chorionic villi in a diagnosis of common chromosomal aneuploidies. Good markers for enrichment and identification are lacking. METHOD: Blood samples from 78 normal pregnancies...

  5. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lip

  6. Expression of immunohistochemical markers for testicular carcinoma in situ by normal human fetal germ cells

    DEFF Research Database (Denmark)

    Jørgensen, N; Rajpert-De Meyts, E; Graem, N;

    1995-01-01

    -like alkaline phosphatase, the protooncogene c-kit protein product, and the antigens for the monoclonal antibodies TRA-1-60 and M2A. The relative numbers of fetal germ cells that demonstrated positive reaction with the markers were calculated. RESULTS: The vast majority of the germ cells (75-100%) in the first...

  7. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    OpenAIRE

    Gargiulo, A.M.; Pedini, V.; C. Dall’Aglio; Ceccarelli, P.; L. Pascucci; F Mercati

    2009-01-01

    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized pr...

  8. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  9. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs

    Institute of Scientific and Technical Information of China (English)

    Miersalijiang Yasen; Qinming Fei; William C Hutton; Jian Zhang; Jian Dong; Xiaoxing Jiang; Feng Zhang

    2013-01-01

    Basic knowledge about the normal regeneration process within the intervertebral disc (IVD) is important to the understanding of the underlying biology.The presence of progenitor and stem cells in IVD has been verified.However,changes of number of progenitor and stem cells with age are still unknown.In this study,changes of cell proliferation and progenitor cell markers with age in IVD cells from rabbits of two different ages were investigated using flow cytometry,immunohistochemistry,real-time polymerase chain reaction,and western blot analysis.Proliferating cell nuclear antigen (PCNA) was chosen as a marker for proliferation,and Notch1,Jagged1,C-KIT,CD166 were chosen as stem/progenitor cell markers.Cell cycle analysis showed that cell number in the G2/M phase of the young rabbits was significantly higher than that of mature rabbits.Immunohistochemical staining demonstrated the expression of PCNA,C-KIT,CD166,Notch1,and Jagged1 in both young and mature annulus fibrosus (AF).Protein expressions of these cell markers in the young rabbits were all significantly higher than those in the mature rabbits.The expression levels of PCNA,CD166,C-KIT,Jagged1 were significantly higher in the AF,and PCNA,C-KIT in the nucleus pulposus from young rabbits than those from the mature rabbits.These findings demonstrated that both proliferation and progenitor cells exist in rabbit IVDs and the number of cells expressing proliferation and progenitor cell markers decreases with age in the rabbit IVD cells.Methods that are designed to maintain the endogenous progenitor cells and stimulate their proliferation could be successful in preventing or inhibiting degenerative disc disease.

  10. Prognostic impact of cytological fluid tumor markers in non-small cell lung cancer.

    Science.gov (United States)

    Cho, Arthur; Hur, Jin; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Hong, Sae Rom; Suh, Young Joo; Im, Dong Jin; Kim, Yun Jung; Lee, Jae Seok; Shim, Hyo Sup; Choi, Byoung Wook

    2016-03-01

    The serum tumor markers CYFRA 21-1, carcinoembryonic antigen (CEA), and squamous cell carcinoma antigen (SCCA) are useful in diagnosis and prognosis of non-small cell lung cancer (NSCLC). Cytologic tumor markers obtained during needle aspiration biopsies (NAB) of lung lesions are useful for NSCLC diagnosis. This study investigated the incremental prognostic value of cytologic tumor markers compared to serum tumor markers. This prospective study included 253 patients diagnosed with NSCLC by NAB with cytologic tumor marker analysis. Levels of cytologic CYFRA 21-1, CEA, SCCA, and their serum counterparts were followed up for survival analysis. Optimal cutoff values for each tumor marker were obtained for overall survival (OS) and progression-free survival (PFS) analyses. All patients were followed up for a median of 22.8 months. Using cutoff values of 0.44 ng/ml for C-SCCA, 2.0 ng/ml for S-SCCA, and 3.3 ng/ml for S-CYFRA, a multivariate analysis revealed that high S-SCCA (hazard ratio, HR, 1.84) and high C-SCCA (HR, 1.63) were independent predictive factors of OS. The 3-year overall survival rate was 55 vs. 80 % for high and low C-SCCA, respectively. Cytologic tumor marker level detection is easily obtainable and provides prognostic information for NSCLC. Cytologic tumor markers provide comparable prognostic information relative to serum tumor markers, with C-SCCA acting as a strong prognostic factor of overall survival and PFS. PMID:26432331

  11. Identification of circulating fetal cell markers by microarray analysis

    DEFF Research Database (Denmark)

    Brinch, Marie; Hatt, Lotte; Singh, Ripudaman;

    2012-01-01

    identified by XY fluorescence in situ hybridization and confirmed by reverse-color fluorescence in situ hybridization were shot off microscope slides by laser capture microdissection. The expression pattern of a subset of expressed genes was compared between fetal cells and maternal blood cells using stem...

  12. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    Science.gov (United States)

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  13. Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker

    International Nuclear Information System (INIS)

    Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of potential stem cell markers CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts, mRNA expression of these markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. All five putative stem cell markers showed distinct expression patterns in the tumours examined. Two patient-derived cell lines highly expressed CD133 (> 85% of positive cells) and three other cell lines had an expression level of about 50% whereas in long-term culture based models CD133 expression ranged only from 0 to 20%. In 8/14 cell lines, more than 80% of the cells were positive for CD24 and 11/14 were over 70% positive for CD44. 10/14 cell lines expressed CDCP1 on ≥ 83% of cells. CXCR4 expression was determined solely on 94 L and SW480. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated surface markers and showed single cell fractions expressing up to three markers simultaneously. Statistical analysis revealed that the CXCR4 mRNA level correlates negatively with the protein expression of CD133, CD44, CD24 and CDCP1 in cell lines and xenografts. A lower differentiation grade of donor material correlated with a higher CDCP1 mRNA expression level in the respective tumour model. In vivo growth behaviour studies of SW620 revealed significantly higher take rates and shorter doubling times in the tumour growth of CD133 positive subclones in comparison to the unsorted cell line or CD133 negative subclones. Our data revealed correlations in the expression of surface markers CD44 and CD24 as well as CD44 and CDCP1 and strongly suggest that CD133 is a stem cell marker within our colon

  14. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes

    Indian Academy of Sciences (India)

    Finny Monickaraj; Sankaramoorthy Aravind; Pichamoorthy Nandhini; Paramasivam Prabu; Chandrakumar Sathishkumar; Viswanathan Mohan; Muthuswamy Balasubramanyam

    2013-03-01

    Telomere shortening is emerging as a biological indicator of accelerated aging and aging-related diseases including type 2 diabetes. While telomere length measurements were largely done in white blood cells, there is lack of studies on telomere length in relation to oxidative stress in target tissues affected in diabetes. Therefore, the aim of this study is to induct oxidative stress in adipocytes and to test whether these adipocytes exhibit shortened telomeres, senescence and functional impairment. 3T3-L1 adipocytes were subjected to oxidative stress and senescence induction by a variety of means for 2 weeks (exogenous application of H2O2, glucose oxidase, asymmetric dimethylarginine (ADMA) and glucose oscillations). Cells were probed for reactive oxygen species generation (ROS), DNA damage, mRNA and protein expression of senescent and pro-inflammatory markers, telomere length and glucose uptake. Compared to untreated cells, both ROS generation and DNA damage were significantly higher in cells subjected to oxidative stress and senescence. Adipocytes subjected to oxidative stress also showed shortened telomeres and increased mRNA and protein expression of p53, p21, TNF and IL-6. Senescent cells were also characterized by decreased levels of adiponectin and impaired glucose uptake. Briefly, adipocytes under oxidative stress exhibited increased ROS generation, DNA damage, shortened telomeres and switched to senescent/pro-inflammatory phenotype with impaired glucose uptake.

  15. Cell surface carbohydrates as prognostic markers in human carcinomas

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1996-01-01

    Tumour development is usually associated with changes in cell surface carbohydrates. These are often divided into changes related to terminal carbohydrate structures, which include incomplete synthesis and modification of normally existing carbohydrates, and changes in the carbohydrate core struc...

  16. Detection of embryonic stem cell markers in adult human adipose tissue-derived stem cells

    Directory of Open Access Journals (Sweden)

    Sarasa Bharati Arumugam

    2011-01-01

    Full Text Available Background: Bone marrow transplantation is already an established therapy, which is now widely used in medicine to treat leukemia, lymphoma, and several inherited blood disorders. The culture of multilineage cells from easily available adipose tissue is another source of multipotent mesenchymal stem cells, and is referred to as adipose tissue-derived stem cells (ADSCs. While ADSCs are being used to treat various conditions, some lacuna exists regarding the specific proteins in these. It was therefore decided to analyze the specific proteins of embryonic cells in ADSCs. Aims: To analyze the specific protein of embryonic stem cells (ESCs in ADSCs. Materials and Methods: Adult human adipose tissue-derived stem cells (ADSCs were harvested from 13 patients after obtaining patients′ consent. The specific markers of ESCs included surface proteins CD10, CD13, CD44, CD59, CD105, and CD166, and further nucleostemin,(NS NANOG, peroxisome proliferator-activated receptor-gγ, collagen type 1 (Coll1, alkaline phosphate, (ALP osteocalcin (OC, and core binding factor 1 (Cbfa1 were analyzed using by reverse transcription-polymerase chain reaction, (RT-PCR immunofluorescence (IF, and western blot. Results: All the proteins were expressed distinctly, except CD13 and OC. CD13 was found individually with different expressions, and OC expression was discernable. Conclusions: Although the ESC with its proven self-renewal capacity and pluripotency seems appropriate for clinical use, the recent work on ADSCs suggests that these adult stem cells would be a valuable source for future biotechnology, especially since there is a relative ease of procurement.

  17. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality.

    Science.gov (United States)

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W; Böttcher, Sebastian; van Dongen, Jacques J M; Orfao, Alberto; Almeida, Julia

    2015-12-15

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.

  18. Glow in the Dark: Fluorescent Proteins as Cell and Tissue-Specific Markers in Plants

    Institute of Scientific and Technical Information of China (English)

    Wenzislava Ckurshumova; Adriana E. Caragea; Rochelle S. Goldstein; Thomas Berleth

    2011-01-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants,fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types,to monitor dynamic cell fate selection processes,and to obtain cell type-specific transcriptomes.Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes.The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms.In developmental studies,the use of fluorescent proteins has become critical,where morphological markers of tissues,cell types,or differentiation stages are either not known or not easily recognizable.In this review,we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  19. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    Science.gov (United States)

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  20. Human Breast Cancer Cell Lines Co-Express Neuronal, Epithelial, and Melanocytic Differentiation Markers In Vitro and In Vivo

    OpenAIRE

    Qingbei Zhang; Hanli Fan; Jikun Shen; Hoffman, Robert M.; H Rosie Xing

    2010-01-01

    Differentiation programs are aberrant in cancer cells allowing them to express differentiation markers in addition to their tissue of origin. In the present study, we demonstrate the multi-lineage differentiation potential of breast cancer cell lines to express multiple neuronal/glial lineage-specific markers as well as mammary epithelial and melanocytic-specific markers. Multilineage expression was detected in luminal (MCF-7 and SKBR3) and basal (MDA-MB-231) types of human breast cancer cell...

  1. Clinicopathological Analysis and Multipronged Quantitative Proteomics Reveal Oxidative Stress and Cytoskeletal Proteins as Possible Markers for Severe Vivax Malaria.

    Science.gov (United States)

    Ray, Sandipan; Patel, Sandip K; Venkatesh, Apoorva; Bhave, Amruta; Kumar, Vipin; Singh, Vaidhvi; Chatterjee, Gangadhar; Shah, Veenita G; Sharma, Sarthak; Renu, Durairaj; Nafis, Naziya; Gandhe, Prajakta; Gogtay, Nithya; Thatte, Urmila; Sehgal, Kunal; Verma, Sumit; Karak, Avik; Khanra, Dibbendhu; Talukdar, Arunansu; Kochar, Sanjay K; S B, Vijeth; Kochar, Dhanpat K; Rojh, Dharmendra; Varma, Santosh G; Gandhi, Mayuri N; Srikanth, Rapole; Patankar, Swati; Srivastava, Sanjeeva

    2016-01-01

    In Plasmodium vivax malaria, mechanisms that trigger transition from uncomplicated to fatal severe infections are obscure. In this multi-disciplinary study we have performed a comprehensive analysis of clinicopathological parameters and serum proteome profiles of vivax malaria patients with different severity levels of infection to investigate pathogenesis of severe malaria and identify surrogate markers of severity. Clinicopathological analysis and proteomics profiling has provided evidences for the modulation of diverse physiological pathways including oxidative stress, cytoskeletal regulation, lipid metabolism and complement cascades in severe malaria. Strikingly, unlike severe falciparum malaria the blood coagulation cascade was not found to be affected adversely in acute P. vivax infection. To the best of our knowledge, this is the first comprehensive proteomics study, which identified some possible cues for severe P. vivax infection. Our results suggest that Superoxide dismutase, Vitronectin, Titin, Apolipoprotein E, Serum amyloid A, and Haptoglobin are potential predictive markers for malaria severity. PMID:27090372

  2. Cell-free DNA in the Cerebrospinal Fluid under Emotional Stress

    OpenAIRE

    Mariia Zharova; Pavel Umriukhin; Natalia Veiko

    2016-01-01

    Background: Cell free circulating DNA (cfDNA) in blood is known to be a tumor marker however there is no information about its concentration in cerebrospinal fluid (CSF) in control and in emotional stress (ES). The aim of the study was to determine level of cfDNA in CSF of rats with different resistance to stress before and after ES. Methods: A total of 19 male Wistar rats weighing 200-220 g were included in this study. All rats were divided into 2 groups depending on the motor activity: acti...

  3. CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL

    OpenAIRE

    G. Cutrona; Tasso, P; Dono, M; Roncella, S; M. ULIVI; Carpaneto, E M; Fontana, V; Comis, M; F. Morabito; Spinelli, M.; Frascella, E.; Boffa, L C; G. Basso; Pistoia, V.; Ferrarini, M.

    2002-01-01

    CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 ca...

  4. Peroxiredoxins, oxidative stress, and cell proliferation.

    Science.gov (United States)

    Immenschuh, Stephan; Baumgart-Vogt, Eveline

    2005-01-01

    Peroxiredoxins (Prxs) are a family of multifunctional antioxidant thioredoxin-dependent peroxidases that have been identified in a large variety of organisms. The major functions of Prxs comprise cellular protection against oxidative stress, modulation of intracellular signaling cascades that apply hydrogen peroxide as a second messenger molecule, and regulation of cell proliferation. In the present review, we discuss pertinent findings on the protein structure, the cell- and tissue-specific distribution, as well as the subcellular localization of Prxs. A particular emphasis is put on Prx I, which is the most abundant and ubiquitously distributed member of the mammalian Prxs. Major transcriptional and posttranslational regulatory mechanisms and signaling pathways that control Prx gene expression and activity are summarized. The interaction of Prx I with the oncogene products c-Abl and c-Myc and the regulatory role of Prx I for cell proliferation and apoptosis are highlighted. Recent findings on phenotypical alterations of mouse models with targeted disruptions of Prx genes are discussed, confirming the physiological functions of Prxs for antioxidant cell and tissue protection along with an important role as tumor suppressors.

  5. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers

    Institute of Scientific and Technical Information of China (English)

    Ruth Alvarez; Hye-Lim Lee; Cun-Yu Wang; Christine Hong

    2015-01-01

    Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations:CD51/CD140a, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24%of PDLCs were CD511/CD140a1, 0.8%were CD2711, and 2.4%were STRO-11/CD1461. Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD2711 DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.

  6. Transcription Profiles of Marker Genes Predict The Transdifferentiation Relationship between Eight Types of Liver Cell during Rat Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaguang Chen

    2015-07-01

    Full Text Available Objective: To investigate the transdifferentiation relationship between eight types of liver cell during rat liver regeneration (LR. Materials and Methods: 114 healthy Sprague-Dawley (SD rats were used in this experimental study. Eight types of liver cell were isolated and purified with percoll density gradient centrifugation and immunomagentic bead methods. Marker genes for eight types of cell were obtained by retrieving the relevant references and databases. Expression changes of markers for each cell of the eight cell types were measured using microarray. The relationships between the expression profiles of marker genes and transdifferentiation among liver cells were analyzed using bioinformatics. Liver cell transdifferentiation was predicted by comparing expression profiles of marker genes in different liver cells. Results: During LR hepatocytes (HCs not only express hepatic oval cells (HOC markers (including PROM1, KRT14 and LY6E, but also express biliary epithelial cell (BEC markers (including KRT7 and KRT19; BECs express both HOC markers (including GABRP, PCNA and THY1 and HC markers such as CPS1, TAT, KRT8 and KRT18; both HC markers (KRT18, KRT8 and WT1 and BEC markers (KRT7 and KRT19 were detected in HOCs. Additionally, some HC markers were also significantly upregulated in hepatic stellate cells ( HSCs, sinusoidal endothelial cells (SECs , Kupffer cells (KCs and dendritic cells (DCs, mainly at 6-72 hours post partial hepatectomy (PH. Conclusion: Our findings indicate that there is a mutual transdifferentiation relationship between HC, BEC and HOC during LR, and a tendency for HSCs, SECs, KCs and DCs to transdifferentiate into HCs.

  7. Cadherin-9 is a novel cell surface marker for the heterogeneous pool of renal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Cornelia Thedieck

    Full Text Available BACKGROUND: Interstitial fibroblasts are a minor, but nevertheless very important, component of the kidney. They secrete and remodel extracellular matrix and they produce active compounds such as erythropoietin. However, studying human renal fibroblasts has been hampered by the lack of appropriate surface markers. METHODS AND FINDINGS: The expression of cadherin-9 in various human renal cell lines and tissues was studied on the mRNA level by RT-PCR and on the protein level with the help of newly generated cadherin-9 antibodies. The classical type II cadherin-9, so far only described in the neural system, was identified as a reliable surface marker for renal fibroblasts. Compared to FSP1, a widely-used cytosolic renal fibroblast marker, cadherin-9 showed a more restricted expression pattern in human kidney. Under pathological conditions, cadherin-9 was expressed in the stroma of renal cell carcinoma, but not in the tumor cells themselves, and in renal fibrosis the percentage of cadherin-9-positive cells was clearly elevated 3 to 5 times compared to healthy kidney tissue. Induction of epithelial mesenchymal transition in renal epithelial cells with cyclosporin-A, which causes renal fibrosis as a side effect, induced cadherin-9 expression. Functional studies following siRNA-mediated knockdown of cadherin-9 revealed that it acts in the kidney like a typical classical cadherin. It was found to be associated with catenins and to mediate homophilic but not heterophilic cell interactions. CONCLUSIONS: Cadherin-9 represents a novel and reliable cell surface marker for fibroblasts in healthy and diseased kidneys. Together with the established marker molecules FSP1, CD45 and alpha smooth muscle actin, cadherin-9 can now be used to differentiate the heterogenic pool of renal fibroblasts into resident and activated fibroblasts, immigrated bone marrow derived fibroblast precursors and cells in different stages of epithelial mesenchymal transition.

  8. The impact of match-play tennis in a hot environment on indirect markers of oxidative stress and antioxidant status

    Science.gov (United States)

    Knez, Wade L; Périard, JP

    2014-01-01

    Objectives The purpose of this study was to determine the impact of changes in oxidative stress and antioxidant status in response to playing tennis in HOT (∼36°C and 35% relative humidity (RH)) and COOL (∼22°C and 70% RH) conditions. Methods 10 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼122 and ∼107 min of total play in HOT and COOL conditions, respectively. Core body temperature, body mass and indirect markers of oxidative stress (diacrons reactive oxygen metabolic test) and antioxidant status (biological antioxidant potential test) were assessed immediately prematch, midmatch and postmatch, and 24 and 48 h into recovery. Results Regardless of the condition, oxidative stress remained similar throughout play and into recovery. Likewise, match-play tennis in the COOL had no impact on antioxidant status. However, antioxidants status increased significantly in the HOT compared with COOL environment (ptennis in the heat does not exacerbate the development of oxidative stress, but significantly increases antioxidant status. These data suggest that the heat stress observed in the HOT environment may provide a necessary signal for the upregulation of antioxidant defence, dampening cellular damage. PMID:24668382

  9. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats

    OpenAIRE

    Pyter, Leah M.; Kelly, Sean D.; Harrell, Constance S; Neigh, Gretchen N.

    2013-01-01

    Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic–pituitary–adrenal (HPA) and –gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. ...

  10. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas.

    Directory of Open Access Journals (Sweden)

    Vinay K Kartha

    Full Text Available Carcinoma associated fibroblasts (CAFs form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC, we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA. Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ, which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12, while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11. Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without

  11. The relationship between self-reported childhood adversities, adulthood psychopathology and psychological stress markers in patients with schizophrenia

    DEFF Research Database (Denmark)

    Seidenfaden, Dea; Knorr, Ulla; Soendergaard, Mia Greisen;

    2016-01-01

    : To compare levels of childhood trauma in schizophrenia patients vs. healthy control persons, and to study the association between childhood adversity and the symptomatology of adulthood schizophrenia, as well as subjective and biological markers of psychological stress. METHODS: Thirty-seven patients...... fulfilling ICD-10 criteria for schizophrenia and 39 healthy control persons filled out the comprehensive Childhood Abuse and Trauma Scale (CATS). Data were analyzed after a data-driven dichotomization into two groups of either high or low CATS score in patients and controls, respectively. The psychopathology......: As expected, patients had significantly higher total CATS scores than the control persons (>3-fold, P

  12. Variations in oxidative stress markers in elite basketball players at the beginning and end of a season

    OpenAIRE

    SPANIDIS, YPATIOS; GOUTZOURELAS, NIKOLAOS; Stagos, Dimitrios; MPESIOS, ANASTASIOS; PRIFTIS, ALEXANDROS; Bar-Or, David; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDES M.; LEON, GEORGE; Kouretas, Demetrios

    2015-01-01

    The aim of the present study was to examine the changes occuring in the redox status in male basketball players at the beginning and end of a highly competitive season. For this purpose, the redox status of 14 professional athletes of a European basketball club was examined at 2 different time points, at the beginning (phase 1) and at the end of the season (phase 2). The redox status was assessed in blood using conventional oxidative stress markers, such as thiobarbituric acid reactive substa...

  13. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    Science.gov (United States)

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures. PMID:21547694

  14. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation.

    Science.gov (United States)

    Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P; Whelan, Rebecca J; Patankar, Manish S

    2016-01-01

    The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors. PMID:27270209

  15. LRRN4 and UPK3B are markers of primary mesothelial cells.

    Directory of Open Access Journals (Sweden)

    Mutsumi Kanamori-Katayama

    Full Text Available BACKGROUND: Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20-40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months. Considering this the development of early pre clinical diagnostic markers may help improve clinical outcomes. METHODOLOGY: Microarray expression arrays on mesothelium and other tissues dissected from mice were used to identify candidate mesothelial lineage markers. Candidates were further tested by qRTPCR and in-situ hybridization across a mouse tissue panel. Two candidate biomarkers with the potential for secretion, uroplakin 3B (UPK3B, and leucine rich repeat neuronal 4 (LRRN4 and one commercialized mesothelioma marker, mesothelin (MSLN were then chosen for validation across a panel of normal human primary cells, 16 established mesothelioma cell lines, 10 lung cancer lines, and a further set of 8 unrelated cancer cell lines. CONCLUSIONS: Within the primary cell panel, LRRN4 was only detected in primary mesothelial cells, but MSLN and UPK3B were also detected in other cell types. MSLN was detected in bronchial epithelial cells and alveolar epithelial cells and UPK3B was detected in retinal pigment epithelial cells and urothelial cells. Testing the cell line panel, MSLN was detected in 15 of the 16 mesothelioma cells lines, whereas LRRN4 was only detected in 8 and UPK3B in 6. Interestingly MSLN levels appear to be upregulated in the mesothelioma lines compared to the primary mesothelial cells, while LRRN4 and UPK3B, are either lost or down-regulated. Despite the higher fraction of mesothelioma lines positive for MSLN, it was also detected at high levels in 2 lung cancer lines and 3 other unrelated cancer lines derived from papillotubular adenocarcinoma, signet ring carcinoma and transitional

  16. Effect of pinpoint plantar long-wavelength infrared light irradiation on subcutaneous temperature and stress markers

    OpenAIRE

    Ryotokuji, Kenji; Ishimaru, Keisou; Kihara, Kazuhiko; Namiki, Yoshihisa; Hozumi, Nobumichi

    2013-01-01

    Background and aims: The current investigation was aimed at the development of a novel non-invasive treatment system, “pinpoint plantar long-wavelength infrared light irradiation (PP-LILI)”, which may be able to relieve mental stress and reduce stress-related hormones.

  17. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    Science.gov (United States)

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  18. The use of lectins as markers for differentiated secretory cells in planarians.

    Science.gov (United States)

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. PMID:20865784

  19. Endoplasmic reticulum stress is involved in the response of human laryngeal carcinoma cells to Carboplatin but is absent in Carboplatin-resistant cells.

    Directory of Open Access Journals (Sweden)

    Anamaria Brozovic

    Full Text Available The major obstacle of successful tumor treatment with carboplatin (CBP is the development of drug resistance. In the present study, we found that following treatment with CBP the amount of platinum which enters the human laryngeal carcinoma (HEp2-derived CBP-resistant (7T cells is reduced relative to the parental HEp2. As a consequence, the formation of reactive oxidative species (ROS is reduced, the induction of endoplasmic reticulum (ER stress is diminished, the amount of inter- and intrastrand cross-links is lower, and the induction of apoptosis is depressed. In HEp2 cells, ROS scavenger tempol, inhibitor of ER stress salubrinal, as well as gene silencing of ER stress marker CCAAT/enhancer-binding protein (CHOP increases their survival and renders them as resistant to CBP as 7T cell subline but did not influence the survival of 7T cells. Our results suggest that in HEp2 cells CBP-induced ROS is a stimulus for ER stress. To the contrary, despite the ability of CBP to induce formation of ROS and activate ER stress in 7T cells, the cell death mechanism in 7T cells is independent of ROS induction and activation of ER stress. The novel signaling pathway of CBP-driven toxicity that was found in the HEp2 cell line, i.e. increased ROS formation and induction of ER stress, may be predictive for therapeutic response of epithelial cancer cells to CBP-based therapy.

  20. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer

    Directory of Open Access Journals (Sweden)

    Laird Peter W

    2008-07-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients. Results We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p Conclusion We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.

  1. Expression of the Memory Marker CD45RO on Helper T Cells in Macaques

    NARCIS (Netherlands)

    Valentine, Michael; Song, Kejing; Maresh, Grace A.; Mack, Heather; Huaman, Maria Cecilia; Polacino, Patricia; Ho, On; Cristillo, Anthony; Chung, Hye Kyung; Hu, Shiu-Lok; Pincus, Seth H.

    2013-01-01

    Background: In humans it has been reported that a major site of the latent reservoir of HIV is within CD4+ T cells expressing the memory marker CD45RO, defined by the mAb UCHL1. There are conflicting reports regarding the expression of this antigen in macaques, the most relevant animal species for s

  2. Relationship of GSTM1 and GSTT1 genetic variant and markers of oxidative stress and inflammation in smokers with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    ChanggaoZhou; Jianjin Tang; Mingwei Wang; Jianjun Yan; Qiming Wang; Jun Zhu; Zhijian Yang; Liansheng Wang

    2009-01-01

    Objective: To investigate the role of glutathione S-transferase (GST) genetic variants and markcrs of oxidative stress and inflammation in smoking-related coronary artery disease (CAD) patients. Methods: Five hundred and thirty-five Chinese CAD patients were successfully gcnotyped. Plasma total antioxidant status (TAOS), glutathione, C-reactive protein (CRP), fibfinogen(FIB) and white blood cell count (WBC) were determined to evaluate the oxidative stress and inflammatory response. Results: GSTM1-0/ GSTT1-0 subjects had a higher CRP, FIB, WBC and GSH and a lower TAOS compared to patients with wild-type GSTM1/GSTT1 genes, but there was significant difference only with regards to TAOS. Smokers with the null genotype of GSTT1 had the highest CRP and the lowest TAOS and GSH when compared to the GSTT1-1 genotype with smoking status, or the GSTT1-0 genotype with non-smoking stares, or the GSTT1-1 genotypc with non-smoking status. However, we found no significant difference between these groups. Also, no significant interaction was observed between genotypes and smoking stares in determining CRP levels. Conclusion: Our results suggest that GST polymorphisms do not modify the effect of smoking on markers of oxidative stress and inflammation in Chinese CAD patients.

  3. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  4. Effects of ω-3 PUFAs Supplementation on Myocardial Function and Oxidative Stress Markers in Typical Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Silvia Maffei

    2014-01-01

    Full Text Available Rett syndrome (RTT is a devastating neurodevelopmental disorder with a 300-fold increased risk rate for sudden cardiac death. A subclinical myocardial biventricular dysfunction has been recently reported in RTT by our group and found to be associated with an enhanced oxidative stress (OS status. Here, we tested the effects of the naturally occurring antioxidants ω-3 polyunsaturated fatty acids (ω-3 PUFAs on echocardiographic parameters and systemic OS markers in a population of RTT patients with the typical clinical form. A total of 66 RTT girls were evaluated, half of whom being treated for 12 months with a dietary supplementation of ω-3 PUFAs at high dosage (docosahexaenoic acid ~71.9 ± 13.9 mg/kg b.w./day plus eicosapentaenoic acid ~115.5 ± 22.4 mg/kg b.w./day versus the remaining half untreated population. Echocardiographic systolic longitudinal parameters of both ventricles, but not biventricular diastolic measures, improved following ω-3 PUFAs supplementation, with a parallel decrease in the OS markers levels. No significant changes in the examined echocardiographic parameters nor in the OS markers were detectable in the untreated RTT population. Our data indicate that ω-3 PUFAs are able to improve the biventricular myocardial systolic function in RTT and that this functional gain is partially mediated through a regulation of the redox balance.

  5. Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning

    OpenAIRE

    Kodama, Takashi; Guerrero, Shiloh; Shin, Minyoung; Moghadam, Seti; Faulstich, Michael; du Lac, Sascha

    2012-01-01

    Identification of marker genes expressed in specific cell types is essential for the genetic dissection of neural circuits. Here we report a new strategy for classifying heterogeneous populations of neurons into functionally distinct types and for identifying associated marker genes. Quantitative single-cell expression profiling of genes related to neurotransmitters and ion channels enables functional classification of neurons; transcript profiles for marker gene candidates identify molecular...

  6. Prognostic value of HMGB1 and oxidative stress markers in multiple trauma patients: A single-centre prospective study.

    Science.gov (United States)

    Polito, Francesca; Cicciu', Marco; Aguennouz, Mohammed; Cucinotta, Maria; Cristani, Mariateresa; Lauritano, Floriana; Sindoni, Alessandro; Gioffre'-Florio, Maria; Fama, Fausto

    2016-09-01

    Serious multiple traumatic injuries may rapidly become fatal or be complicated by a life-threatening sequelae leading to a significant increase of the mortality rate. Trauma scoring systems are used to evaluate the critical status of the patient and recently many different biomarkers have been taken into account to better estimate the potential clinical outcome. The aim of the present study is to analyse the expression pattern of high-mobility group box-1 (HMGB1), oxidative stress markers and nuclear factor erythroid 2-related (Nrf2) in critically ill traumatic patients (at hospital admittance and after 6 and 24 h), in order to find out their potential role as early post-traumatic predictors markers. Forty-seven patients admitted for multiple trauma and 15 healthy participants were prospectively recruited. Eight patients (17%) died within 92 h of admission; this subgroup of patients presented the highest severity scores and their HMGB1 expression levels were significantly correlated with ISS, whereas patients with higher ISS exhibited higher levels of HMGB1 (P <0.001). Our study suggests the role of HMGB1 as a predictive biomarker of outcome in injured patients and hypothesizes the protective role of Nrf2 in bringing down the oxidative stress and HMGB1 release; measuring HMGB1 in combination with Nrf2 might represent a potentially useful tool in the early detection of post-trauma complications. PMID:27343243

  7. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Science.gov (United States)

    Takahashi, Aki; Uchiyama, Shigeru; Kato, Yuya; Yuhi, Teruko; Ushijima, Hiromi; Takezaki, Makoto; Tominaga, Toshihiro; Moriyama, Yoshiko; Takeda, Kunio; Miyahara, Toshiro; Nagatani, Naoki

    2009-06-01

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  8. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Aki; Kato, Yuya; Takezaki, Makoto; Tominaga, Toshihiro; Moriyama, Yoshiko; Takeda, Kunio; Miyahara, Toshiro; Nagatani, Naoki [Department of Applied Chemistry, Graduate School of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan); Uchiyama, Shigeru [Okayama University of Science Specialized Training College, 8-3 Handa-cho, Kita-ku, Okayama 700-0003 (Japan); Yuhi, Teruko; Ushijima, Hiromi, E-mail: nagatani@dac.ous.ac.j [Biodevicetechnology Ltd. 2-13 Asahidai, Nomi-City, Ishikawa 923-1211 (Japan)

    2009-06-15

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  9. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Directory of Open Access Journals (Sweden)

    Aki Takahashi, Shigeru Uchiyama, Yuya Kato, Teruko Yuhi, Hiromi Ushijima, Makoto Takezaki, Toshihiro Tominaga, Yoshiko Moriyama, Kunio Takeda, Toshiro Miyahara and Naoki Nagatani

    2009-01-01

    Full Text Available The concentration of salivary secretory immunoglobulin A (sIgA is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2 containing non-ionic surfactant (3 wt% Tween 20. The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  10. A Quantitative Perspective on Surface Marker Selection for the Isolation of Functional Tumor Cells

    OpenAIRE

    Cahall, Calvin F; Lilly, Jacob L.; Hirschowitz, Edward A.; Berron, Brad J

    2015-01-01

    Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly stud...

  11. Effect of radiation on the expression of osteoclast marker genes in RAW264.7 cells

    OpenAIRE

    Yang, Bing; Zhou, Hui; Zhang, Xiao-Dong; Liu, Zheng; Fan, Fei-Yue; Sun, Yuan-Ming

    2012-01-01

    Cancer radiation therapy can cause skeletal complications, such as osteopenia and osteoporosis. To understand the mechanism responsible for the skeletal complications, the expression profiles of osteoclast marker genes in RAW264.7 cells were observed. Osteoclast formation was established by RAW264.7 cells that were treated with the receptor activator of nuclear factor (NF)-κB ligand (RANKL) and detected using immunochemistry and morphological observations. Quantitative real-time polymerase ch...

  12. The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Dasari Bhanu

    2010-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD and age-related macular degeneration (AMD share several pathological features including β-amyloid (Aβ peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD. Methods ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER stress markers, Ca2+ homeostasis, glutathione depletion, reactive oxygen species (ROS generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays. Results 27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP, reduced mitochondrial membrane potential, triggered Ca2+ dyshomeostasis, increased levels of the nuclear factor κB (NFκB and heme-oxygenase 1 (HO-1, two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death. Conclusions The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for

  13. Breast cancers radiation-resistance: key role of the cancer stem cells marker CD24

    International Nuclear Information System (INIS)

    This work focuses on the characterization of radiation-resistant breast cancer cells, responsible for relapse after radiotherapy. The 'Cancer Stem Cells' (CSC) theory describes a radiation-resistant cellular sub-population, with enhanced capacity to induce tumors and proliferate. In this work, we show that only the CSC marker CD24-/low defines a radiation resistant cell population, able to transmit the 'memory' of irradiation, expressed as long term genomic instability in the progeny of irradiated cells. We show that CD24 is not only a marker, but is an actor of radiation-response. So, CD24 expression controls cell proliferation in vitro and in vivo, and ROS level before and after irradiation. As a result, CD24-/low cells display enhanced radiation-resistance and genomic stability. For the first time, our results attribute a role to CD24-/low CSCs in the transmission of genomic instability. Moreover, by providing informations on tumor intrinsic radiation-sensitivity, CD24- marker could help to design new radiotherapy protocols. (author)

  14. Single-Nucleotide Polymorphisms and Markers of Oxidative Stress in Healthy Women

    OpenAIRE

    Minlikeeva, Albina N.; Browne, Richard W.; Ochs-Balcom, Heather M.; Catalin Marian; Shields, Peter G.; Maurizio Trevisan; Shiva Krishnan; Ramakrishna Modali; Michael Seddon; Teresa Lehman; Freudenheim, Jo L.

    2016-01-01

    Purpose There is accumulating evidence that oxidative stress is an important contributor to carcinogenesis. We hypothesized that genetic variation in genes involved in maintaining antioxidant/oxidant balance would be associated with overall oxidative stress. Methods We examined associations between single nucleotide polymorphisms (SNPs) in MnSOD, GSTP1, GSTM1, GPX1, GPX3, and CAT genes and thiobarbituric acid-reactive substances (TBARS), a blood biomarker of oxidative damage, in healthy white...

  15. MARKERS OF OXIDATIVE STRESS IN GENERALIZED ANXIETY PSYCHIATRIC DISORDER: THERAPEUTIC IMPLICATIONS

    OpenAIRE

    Khanna Ranjana S.; Reena Negi; Deepti Pande; Shruti Khanna; Hari D. Khanna

    2012-01-01

    There is growing evidence that oxidative stress contributes to the pathogenesis of anxiety disorders. Our aim was to measure oxidative stress in anxiety disorders subjects, and assesses the potential confounding influences of anti anxiety therapy. Serum malondialdehyde and antioxidant levels were estimated in patients at the time of presentation and also after anti- anxiety therapy for 3 months. During the period of study no antioxidant/s was given to the patients and control subjects. Serum ...

  16. Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LI; Hong-xia CHEN; Ying LIU; You-zhi ZHANG; Yan-qin LIU; Jin LI

    2006-01-01

    Aim:To explore the mechanism of agmatine's antidepressant action.Methods: Male mice were subjected to a variety of unpredictable stressors on a daily basis over a 24-d period.The open-field behaviors of the mice were displayed and recorded using a Videomex-V image analytic system automatically.For bromodeoxyuridine (BrdU;thymidine analog as a marker for dividing cells) labeling,the mice were injected with BrdU (100 mg/kg,ip,twice per d for 2 d),and the hippocampal neurogenesis in stressed mice was measured by immunohistochemistry.The proliferation of cultured hippocampal progenitor cells from neonatal rats was determined by colorimetric assay (cell counting kit-8) and 3H-thymidine incorporation assay.Results:After the onset of chronic stress,the locomotor activity of the mice in the open field significantly decreased,while coadministration of agmatine 10 mg/kg (po) blocked it.Furthermore,the number of BrdU-labeled cells in the hippocampal dentate gyrus significantly decreased in chronically stressed mice, which was also blocked by chronic coadministration with agmatine 10 mg/kg (po). Four weeks after the BrdU injection, some of the new born cells matured and became neurons, as determined by double labeling for BrdU and neuron specific enolase (NSE), a marker for mature neurons.In vitro treatment with agmatine 0.1-10 μmo1/L for 3 d significantly increased the proliferation of the cultured hippocampal progenitor cells in a dose-dependent manner.Conclusion:We have found that agmatine increases proliferation of hippocampal progenitor cells in vitro and the hippocampal neurogenesis in vivo in chronically stressed mice.This may be one of the important mechanisms involved in agmatine's antidepressant action.

  17. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-02-29

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.

  18. Time markers for Drosophila morphogenesis based on cell-pattern topology.

    Science.gov (United States)

    Zallen, Richard; Zallen, Jennifer A.

    2007-03-01

    Recent work on convergent extension in Drosophila has shown that the accumulation of actin-myosin networks at specific cell interfaces initiates planar polarity and the formation of multicellular rosette structures that contribute to elongation of the body axis [1]. This cell-rearrangement process takes place within a one-cell-thick layer, and the changing two-dimensional cell pattern can be characterized using topological measures such as cell-shape statistics [2]. We find that the timeline for the process contains a well-defined marker corresponding to a sharp increase in the slope of the time dependence of the variance of the cell-shape (number-of-sides) distribution. A rosette in this context is a cluster of cells enclosing high-order vertices at which 4 or 5 or more cells meet. While the cell-shape variance climbs steadily during axis elongation, the frequency of high-order vertices and large rosettes plateaus after 10 and 13 minutes, respectively. These time markers calibrate the conventional timeline descriptors referred to as stages 7 and 8 of embryonic development [3]. [1] J.T. Blankenship et al., Developmental Cell 11, 459 (2006); [2] J.A. Zallen and R. Zallen, J. Phys.: Condensed Matter 16, S5073 (2004); [3] J.A. Campos-Ortega and V. Hartenstein, The embryonic development of Drosophila melanogaster (1985).

  19. Behavioral Activity and Some Markers of Posttraumatic Stress Disorder among Serotoninergic System Indicators and Glucocorticoid Metabolizing Enzymes in Rats with Different Duration of Hexenal Sleep.

    Science.gov (United States)

    Tseylikman, O B; Lapshin, M S; Kozochkin, D A; Komel'kova, M V; Kuzina, O V; Golodniy, S V; Lazuko, S S; Tseylikman, V E

    2016-08-01

    Post-traumatic stress disorder was imitated in rats with long and short hexenal sleep by exposure to cat odor. Rats with long hexenal sleep demonstrated the highest sensitivity to posttraumatic stress disorders and developed anxiety and depressive disorders. The duration of hexenal sleep correlated with changes in markers of post-traumatic stress disorder, e.g. activity of 11β-hydroxysteroid dehydrogenase-2 in the liver of non-stressed animals and serotonin and monoamine oxidase A activity in the brain of stressed animals. PMID:27597057

  20. When supply does not meet demand-ER stress and plant programmed cell death

    Science.gov (United States)

    Williams, Brett; Verchot, Jeanmarie; Dickman, Martin B.

    2014-01-01

    The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility. PMID:24926295

  1. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tara L. Walker

    2016-04-01

    Full Text Available Here, we show that the lysophosphatidic acid receptor 1 (LPA1 is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways.

  2. A novel strategy for enrichment and isolation of osteoprogenitor cells from induced pluripotent stem cells based on surface marker combination.

    Directory of Open Access Journals (Sweden)

    Hiromi Ochiai-Shino

    Full Text Available In this study, we developed a new method to stimulate osteogenic differentiation in tissue-nonspecific alkaline phosphatase (TNAP-positive cells liberated from human induced pluripotent stem cells (hiPSCs-derived embryoid bodies (EBs with 14 days long TGF-β/IGF-1/FGF-2 treatment. TNAP is a marker protein of osteolineage cells. We analyzed and isolated TNAP-positive and E-cadherin-negative nonepithelial cells by fluorescence-activated cell sorting. Treating the cells with a combination of transforming growth factor (TGF-β, insulin-like growth factor (IGF-1, and fibroblast growth factor (FGF-2 for 14 days greatly enhanced TNAP expression and maximized expression frequency up to 77.3%. The isolated cells expressed high levels of osterix, which is an exclusive osteogenic marker. Culturing these TNAP-positive cells in osteoblast differentiation medium (OBM led to the expression of runt-related transcription factor 2, type I collagen, bone sialoprotein, and osteocalcin (OCN. These cells responded to treatment with activated vitamin D3 by upregulating OCN. Furthermore, in OBM they were capable of generating many mineralized nodules with strong expression of receptor activator of NF-kappaB ligand and sclerostin (SOST. Real-time RT-PCR showed a significant increase in the expression of osteocyte marker genes, including SOST, neuropeptide Y, and reelin. Scanning electron microscopy showed dendritic morphology. Examination of semi-thin toluidine blue-stained sections showed many interconnected dendrites. Thus, TNAP-positive cells cultured in OBM may eventually become terminally differentiated osteocyte-like cells. In conclusion, treating hiPSCs-derived cells with a combination of TGF-β, IGF-1, and FGF-2 generated TNAP-positive cells at high frequency. These TNAP-positive cells had a high osteogenic potential and could terminally differentiate into osteocyte-like cells. The method described here may reveal new pathways of osteogenesis and provide a novel

  3. EMX2 Is a Predictive Marker for Adjuvant Chemotherapy in Lung Squamous Cell Carcinomas

    Science.gov (United States)

    Zhang, Yi; Tolani, Bhairavi; Mo, Minli; Zhang, Hua; Zheng, Qingfeng; Yang, Yue; Cheng, Runfen; Jin, Joy Q.; Luh, Thomas W.; Yang, Cathryn; Tseng, Hsin-Hui K.; Giroux-Leprieur, Etienne; Woodard, Gavitt A.; Hao, Xishan; Wang, Changli; Jablons, David M.; He, Biao

    2015-01-01

    Background Squamous cell carcinomas (SCC) account for approximately 30% of non-small cell lung cancer (NSCLC). Current staging methods do not adequately predict outcome for this disease. EMX2 is a homeo-domain containing transcription factor known to regulate a key developmental pathway. This study assessed the significance of EMX2 as a prognostic and predictive marker for resectable lung SCC. Methods Two independent cohorts of patients with lung SCC undergoing surgical resection were studied. EMX2 protein expression was examined by immunohistochemistry, Western blot, or immunofluorescence. EMX2 expression levels in tissue specimens were scored and correlated with patient outcomes. Chemo-sensitivity of lung SCC cell lines stably transfected with EMX2 shRNAs to cisplatin, carboplatin, and docetaxel was examined in vitro. Results EMX2 expression was down-regulated in lung SCC tissue samples compared to their matched adjacent normal tissues. Positive EMX2 expression was significantly associated with improved overall survival in stage I lung SCC patients, and in stage II/IIIA lung SCC patients receiving adjuvant chemotherapy. EMX2 expression was also associated with expression of EMT markers in both lung SCC cell lines and tissue samples. Knock-down of EMX2 expression in lung SCC cells promoted chemo-resistance and cell migration. Conclusions EMX2 expression is down-regulated in lung SCC and its down-regulation is associated with chemo-resistance in lung SCC cells, possibly through regulation of Epithelial-to-Mesenchymal Transition (EMT). EMX2 may serve as a novel prognostic marker for stage I lung SCC patients and a prediction marker for stage II/IIIA lung SCC patients receiving adjuvant chemotherapy. PMID:26132438

  4. EMX2 Is a Predictive Marker for Adjuvant Chemotherapy in Lung Squamous Cell Carcinomas.

    Directory of Open Access Journals (Sweden)

    Dongsheng Yue

    Full Text Available Squamous cell carcinomas (SCC account for approximately 30% of non-small cell lung cancer (NSCLC. Current staging methods do not adequately predict outcome for this disease. EMX2 is a homeo-domain containing transcription factor known to regulate a key developmental pathway. This study assessed the significance of EMX2 as a prognostic and predictive marker for resectable lung SCC.Two independent cohorts of patients with lung SCC undergoing surgical resection were studied. EMX2 protein expression was examined by immunohistochemistry, Western blot, or immunofluorescence. EMX2 expression levels in tissue specimens were scored and correlated with patient outcomes. Chemo-sensitivity of lung SCC cell lines stably transfected with EMX2 shRNAs to cisplatin, carboplatin, and docetaxel was examined in vitro.EMX2 expression was down-regulated in lung SCC tissue samples compared to their matched adjacent normal tissues. Positive EMX2 expression was significantly associated with improved overall survival in stage I lung SCC patients, and in stage II/IIIA lung SCC patients receiving adjuvant chemotherapy. EMX2 expression was also associated with expression of EMT markers in both lung SCC cell lines and tissue samples. Knock-down of EMX2 expression in lung SCC cells promoted chemo-resistance and cell migration.EMX2 expression is down-regulated in lung SCC and its down-regulation is associated with chemo-resistance in lung SCC cells, possibly through regulation of Epithelial-to-Mesenchymal Transition (EMT. EMX2 may serve as a novel prognostic marker for stage I lung SCC patients and a prediction marker for stage II/IIIA lung SCC patients receiving adjuvant chemotherapy.

  5. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events.

  6. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: a putative marker of boar spermatogonia.

    Science.gov (United States)

    Lee, Won-Young; Lee, Kyung-Hoon; Heo, Young-Tae; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Chung, Hak-Jae; Yoon, Min-Jung; Song, Hyuk

    2014-11-30

    Spermatogenesis is initiated from spermatogonial stem cells (SSCs), which are derived from gonocytes. Although some rodent SSC markers have been investigated, other species- and developmental stage-specific markers of spermatogonia have not been identified. The objective of this study was to characterize the expression of undifferentiated embryonic cell transcription factor 1 (UTF1) gene as a potential marker for spermatogonia and SSCs in the boar testis. In boar testis tissue at pre-pubertal stages (tissues collected at 5, 30, and 60 days of age), UTF1 gene expression was detected in almost all spermatogonia cells that expressed a protein gene product 9.5 (PGP9.5), and immunocytochemical analysis of isolated total testicular cells showed that 91.14% of cells staining for PGP9.5 also stained for UTF1. However, in boar testis tissue at pubertal and post-pubertal stages (tissues collected at 90, 120, 150, and 180 days of age), UTF1 was not detected in all PGP9.5-positive cells in the basement membrane. While some PGP9.5-positive cells stained for UTF1, other cells stained only for PGP9.5 or UTF1. PGP9.5, UTF1, and NANOG was assessed in in vitro cultures of pig SSCs (pSSCs) from testes collected at 5 days of age. The relative amounts of PGP9.5, NANOG, and UTF1 mRNA were greater in pSSC colonies than in testis and muscle tissue. Thus, the UTF1 gene is expressed in PGP9.5-positive spermatogonia cells of pigs at 5 days of age, and its expression is maintained in cultured pSSC colonies, suggesting that UTF1 is a putative marker for early-stage spermatogonia in the pre-pubertal pig testis. These findings will facilitate the study of spermatogenesis and applications in germ cell research.

  7. Relationship of oxidized low density lipoprotein with lipid profile and oxidative stress markers in healthy young adults: a translational study

    Directory of Open Access Journals (Sweden)

    Martínez J Alfredo

    2011-04-01

    Full Text Available Abstract Background Despite oxidized low density lipoprotein (ox-LDL plays important roles in the pro-inflammatory and atherosclerotic processes, the relationships with metabolic and oxidative stress biomarkers have been only scarcely investigated in young adult people. Thus, the aim of this study was to assess plasma ox-LDL concentrations and the potential association with oxidative stress markers as well as with anthropometric and metabolic features in healthy young adults. Methods This study enrolled 160 healthy subjects (92 women/68 men; 23 ± 4 y; 22.0 ± 2.9 kg/m2. Anthropometry, body composition, blood pressure, lifestyle features, biochemical data, and oxidative stress markers were assessed with validated tools. Selenium, copper, and zinc nail concentrations were measured by atomic absorption spectrophotometry. Results Total cholesterol (TC, LDL-c and uric acid concentrations, TC-to-HDL-c ratio, and glutathione peroxidase (GPx activity were positive predictors of ox-LDL concentrations, while nail selenium level (NSL was a negative predictor, independently of gender, age, smoking status, physical activity. Those individuals included in the highest tertile of GPx activity (≥611 nmol/[mL/min] and of NSL (≥430 ng/g of nail had higher and lower ox-LDL concentrations, respectively, independently of the same covariates plus truncal fat or body mass index, and total cholesterol or LDL-c concentrations. Conclusions Ox-LDL concentrations were significantly associated with lipid biomarkers, GPx activity, uric acid concentration, and NSL, independently of different assayed covariates, in young healthy adults. These findings jointly suggest the early and complex relationship between lipid profile and redox status balance.

  8. [Possibilities and limits of paraffin-embedded cell markers in diagnosis of primary cutaneous histiocytosis].

    Science.gov (United States)

    Fartasch, M; Goerdt, S; Hornstein, O P

    1995-03-01

    To date, the rare primary histiocytoses of the skin are diagnosed definitively on the basis of the clinical symptoms, H&E-stained sections, and demonstration of CD1 positivity in frozen sections and of Birbeck granules on electron microscopy. The improvement and analysis of antibodies with the ability to react in paraffin tissue allow retrospective evaluation and classification of these disorders. The antibodies for S-100-protein, peanut agglutinin (PNA) and PCNA (proliferating cell nuclear antigen) have been advocated for differentiation of the specific cells of Langerhans cell histiocytosis (LCH) from other histiocytic cell systems. To date the non-Langerhans cell histiocytoses (non-LCH) have no common ultrastructural and immunohistochemical characteristics. The infiltrate is made up of multiple cell populations, which are of significance for the cellular pathobiology (subtypes of monocytes/macrophages and dendritic cells). The number and distribution of the different monocyte/macrophages and dendritic cells and their ability to react with immunohistochemical markers in paraffin tissue can be completely different in different clinical entities. The antibodies against factor XIIIa (shown on xanthoma disseminatum) and the monoclonal antibody Ki-M1P (shown on juvenile xanthogranuloma) seem to be valuable in discrimination between LCH and non-LCH. Both markers show a positive staining pattern with the characteristic large macrophages. In juvenile xanthogranuloma, the foam cells and giant cells express Ki-M1P, KP1 and anti-cathepsin B. Other monocyte/macrophage markers with the ability to react in paraffin tissue, such as Mac387, lysozyme, alpha 1-antitrypsin and Leu-M1 (Anti-CD 15), in contrast, did not show a typical staining pattern with the characteristic large macrophages dominating the histological picture.

  9. Physiological and Behavioral Vulnerability Markers Increase Risk to Early Life Stress in Preschool-Aged Children.

    Science.gov (United States)

    Kushner, Marissa R; Barrios, Chesley; Smith, Victoria C; Dougherty, Lea R

    2016-07-01

    The study examined whether child physiological (cortisol reactivity) and behavioral (negative emotionality) risk factors moderate associations between the early rearing environment, as measured by child exposure to maternal depression and stressful life events, and preschool psychopathology and psychosocial functioning. A sample of 156 preschool-aged children (77 boys, 79 girls; age M = 49.80 months, SD = 9.57, range: 36-71) participated in an observational assessment of temperament and was exposed to a stress-inducing laboratory task, during which we obtained five salivary cortisol samples. Parents completed clinical interviews to assess child and parent psychopathology and stressful life events. Results indicated that the combination of a blunted pattern of cortisol reactivity and recent stressful life events was associated with higher levels of preschoolers' externalizing symptoms and lower psychosocial functioning. In addition, greater life stress was associated with higher levels of preschoolers' internalizing symptoms. Lastly, children with high levels of negative emotionality and who were exposed to maternal depression had the lowest social competence. Our findings highlight the critical role of the early environment, particularly for children with identified risk factors, and add to our understanding of pathways involved in early emerging psychopathology and impairment. PMID:26424217

  10. Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers

    Directory of Open Access Journals (Sweden)

    Yo Mabuchi

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently defined as multipotent stromal cells that undergo sustained in vitro growth and can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety of diseases (e.g., acute graft-versus-host disease, Crohn’s disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases including heart failure and myocardial infarction. On the other hand, conventionally cultured MSCs reflect heterogeneous populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche homeostasis. The isolation of MSCs using selective markers (combination of PDGFRα and Sca-1 is crucial to address the many unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.

  11. Stem cell markers in neuroblastoma: An emerging role for LGR5

    Directory of Open Access Journals (Sweden)

    Helen eForgham

    2015-12-01

    Full Text Available The prognostic value of cancer stem cell markers in various cancer subtypes is a well documented research area. Our findings show that the stem cell marker Lgr5 is associated with an aggressive phenotype in neuroblastoma. Here, we discuss these findings within the context of recent studies in several cancers such as lung, colorectal and intestinal cancer, glioblastoma and ewing’s sarcoma.Neuroblastoma continues to be an elusive disease, due to its heterogeneous presentation ranging from spontaneous regression to aggressive metastatic disease and intertwined genetic variability. Currently, the most significant prognostic marker of high risk disease and poor prognosis is amplification of the MYCN oncogene, which is found in approximately 25% of cases [1]. With this in mind, there is still much to learn about the driving mechanisms of this aggressive paediatric tumour. Neuroblastoma development is thought to be the result of aberrant differentiation of the cell of origin, embryonic neural crest cells which then migrate and invade during the developmental stage[2]. Aberrant cells are those which would, under normal conditions form the mature tissues of the sympathetic ganglia and adrenal medulla. Tumours are known to develop indiscriminately along the radius of the sympathetic ganglia, although it is well established that the adrenal glands are fundamentally the most common primary site [3

  12. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  13. Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers.

    Science.gov (United States)

    Argani, Pedram; Hicks, Jessica; De Marzo, Angelo M; Albadine, Roula; Illei, Peter B; Ladanyi, Marc; Reuter, Victor E; Netto, George J

    2010-09-01

    Xp11 translocation renal cell carcinoma (RCC) harbor various TFE3 gene fusions, and are known to underexpress epithelial immunohistochemical (IHC) markers such as cytokeratin and EMA relative to usual adult type RCC; however, their profile in reference to other IHC markers that are differentially expressed in other subtypes of RCC has not been systematically assessed. Few therapeutic targets have been identified in these aggressive cancers. We created 2 tissue microarrays (TMA) containing five 1.4-mm cores from each of 21 Xp11 translocation RCC (all confirmed by TFE3 IHC, 6 further confirmed by genetics), 7 clear cell RCC (CCRCC), and 6 papillary RCC (PRCC). These TMA were labeled for a panel of IHC markers. In contrast to earlier published data, Xp11 translocation RCC frequently expressed renal transcription factors PAX8 (16/21 cases) and PAX2 (14/21 cases), whereas only 1 of 21 cases focally expressed MiTF and only 5 of 21 overexpressed p21. Although experimental data suggest otherwise, Xp11 translocation RCC did not express WT-1 (0/21 cases). Although 24% of Xp11 translocation RCC expressed HIF-1alpha (like CCRCC), unlike CCRCC CA IX expression was characteristically only focal (mean 6% cell labeling) in Xp11 translocation RCC. Other markers preferentially expressed in CCRCC or PRCC, such as HIG-2, claudin 7, and EpCAM, yielded inconsistent results in Xp11 translocation RCC. Xp11 translocation RCC infrequently expressed Ksp-cadherin (3/21 cases) and c-kit (0/21 cases), markers frequently expressed in chromophobe RCC. Using an H-score that is the product of intensity and percentage labeling, Xp11 translocation RCC expressed higher levels of phosphorylated S6, a measure of mTOR pathway activation (mean H score=88), than did CCRCC (mean H score=54) or PRCC (mean H score=44). In conclusion, in contrast to prior reports, Xp11 translocation RCC usually express PAX2 and PAX8 but do not usually express MiTF. Although they may express HIF-1alpha, they only focally

  14. Pycnogenol (PYC) induces apoptosis in human fibrosarcoma (HFS) cells under metal-mediated oxidative stress.

    Science.gov (United States)

    Park, Yeon Sun; Kim, Young Gon

    2011-01-01

    Pycnogenol (PYC), polyphenolic compounds with antioxidant activity, acted as a prooxidant. PYC caused oxidative stress in human fibrosarcoma cells (HFS) when administered following pretreatment with iron chloride. The generated reactive oxygen species (ROS) caused the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA and resulted in more apoptosis in HFS cells than in the human fibroblastoma (HFB) cells. DNA damage and cellular viability at different PYC concentrations were closely consistent with cell growth, high performance liquid chromatography (HPLC), Enzyme Linked Immunosorbent Assay (ELISA) and assays of two major antioxidant enzymes, superoxide dismutase (SOD) and catalase. Although the presence of PYC induced total SOD and catalase activities under oxidative stress in dose dependent fashion, more apoptotic cells were induced in HFS cells with increased [8-OHdG] than in HFB cells. The results suggest that PYC selectively induced cell death in HFS cells. This further confirmed that PYC-induced apoptosis is mediated primarily through the activation of caspase-3 apoptotic marker in HFS cells but not in HFB cells. We conclude that PYC would behave as either antioxidant or prooxidant dependant upon the cellular types. PMID:22754951

  15. Evaluation of rice germplasm under salt stress at the seedling stage through SSR markers

    Directory of Open Access Journals (Sweden)

    M. Al-Amin

    2013-06-01

    Full Text Available Twenty eight rice germplasms were used for identification of salt tolerant rice genotypes at the seedling stage at the experimental farm and Biotechnology laboratory of the Bangladesh Institute of Nuclear Agriculture (BINA, Mymensingh during February 2009 to October 2009. Phenotyping for salinity screening of the rice genotypes was done using salinized (EC level 12 dS m-1 nutrient solution in hydroponic system. Genotypes were evaluated for salinity tolerance on 1-9 scale based on seedling growth parameters following modified Standard Evaluation Scoring (SES of IRRI. Phenotypically, on the basis of SES and % total dry matter (TDM reduction of the genotypes viz. PBSAL-614, PBSAL-613, PBSAL-730, Horkuch, S-478/3 Pokkali and PBSAL (STL-15 were found to be salt tolerant; on the other hand Iratom-24, S-653/32, S-612/32, S-604/32, S-633/32, Charnock (DA6, BINA Dhan-6 and S-608/32 were identified as salt susceptible. For genotyping, ten SSR markers were used for polymorphism, where 3 primers (RM127, RM443 and RM140 were selected for evaluation of salt tolerance. In respect of Primer RM127, 7 lines were found salt tolerant and 11 lines were moderately tolerant and 10 lines were susceptible. Nine tolerant, 9 moderately tolerant and 10 susceptible lines were found when the primer RM140 was used and primer RM443 identified 8 lines as tolerant, 9 lines as moderately tolerant and 11 lines as susceptible. Thus, the salt tolerant lines can be used in further evaluation for salinity tolerance and the SSR markers used in this study are proving valuable for identifying salt tolerant genes in marker assisted breeding.

  16. Nuclear Import Analysis of Two Different Fluorescent Marker Proteins into Hepatocyte Cell Lines (HuH-7 Cell

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2015-10-01

    Full Text Available The application of fluorescent proteins as expression markers and protein fusion partners has provedimmensely valuable for resolving the organization of biological events in living cells. EGFP and DsRed2 arecommonly fluorescent marker protein which is used for biotechnology and cell biology research. The presentstudy was designed to identify the expression vector that suitable to ligate with DNA encoding HBV coreprotein for intracellular localization study in hepatocyte cell, which were expressed as fusion proteins. We alsocompared and quantified the expressed fluorescent protein which predominantly localized in the cellcompartment. The results indicated that DsRed2 shown as less than ideal for intracellular localization study ofthan EGFP, because of its tetrameric structure of the fluorescent protein and when fused to a protein of interest,the fusion protein often forms aggregates in the living cells. In contrast, EGFP fluorescent protein shown a muchhigher proportion of cytoplasmic localization, thus being more suitable for analysis of intracellular localizationthan DsRed2 fluorescent protein. EGFP fluorescent protein is also capable to produce a strong green fluorescencewhen excited by blue light, without any exogenously added substrate or cofactor, events inside living cell canthus be visualized in a non-invasive way. Based on our present quantitative data and some reasons above shownthat EGFP is more suitable than DsRed2 as a fluorescent marker protein for intracellular localization study intoHuH-7 cell.Keywords: EGFP, DsRed2 fluorescent protein , HuH-7 cell, HBV, intracellular localization

  17. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  18. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  19. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    Science.gov (United States)

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells. PMID:27185188

  20. Markers for sebaceoma show a spectrum of cell cycle regulators, tumor suppressor genes, and oncogenes

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available Background: Sebaceoma is a tumor for which the causative oncogenes are not well-understood. Sebaceomas demonstrate some histopathologic features similar to basal cell carcinoma (BCC, such as palisading borders and basaloid cells with additional features, including foamy cytoplasm and indented nuclei. Aims: We examine multiple cell-cycle, oncogene, and tumor suppressor gene markers in sebaceomas, to try to find some suitable biological markers for this tumor, and compare with other published studies. Materials and Methods: We investigated a panel of immunohistochemical (IHC stains that are important for cellular signaling, including a cell cycle regulator, tumor suppressor gene, oncogene, hormone receptor, and genomic stability markers in our cohort of sebaceomas. We collected 30 sebaceomas from three separate USA dermatopathology laboratories. The following IHC panel: Epithelial membrane antigen (EMA/CD227, cytokeratin AE1/AE3, cyclin D1, human breast cancer 1 protein (BRCA-1, C-erb-2, Bcl-2, human androgen receptor (AR, cyclin-dependent kinase inhibitor 1B (p27 kip1 , p53, topoisomerase II alpha, proliferating cell nuclear antigen, and Ki-67 were tested in our cases. Results: EMA/CD227 was positive in the well-differentiated sebaceomas (13/30. Cyclin-dependent kinase inhibitor 1B was positive in tumors with intermediate differentiation (22/30. The less well-differentiated tumors failed to stain with EMA and AR. Most of the tumors with well-differentiated palisaded areas demonstrated positive staining for topoisomerase II alpha, p27 kip1 , and p53, with positive staining in tumoral basaloid areas (22/30. Numerous tumors were focally positive with multiple markers, indicating a significant degree of variability in the complete group. Conclusions: Oncogenes, tumor suppressor genes, cell cycle regulators, and hormone receptors are variably expressed in sebaceomas. Our results suggest that in these tumors, selected marker staining seems to correlate

  1. Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas.

    Science.gov (United States)

    Buishand, Floryne O; Arkesteijn, Ger J A; Feenstra, Laurien R; Oorsprong, Claire W D; Mestemaker, Margiet; Starke, Achim; Speel, Ernst-Jan M; Kirpensteijn, Jolle; Mol, Jan A

    2016-06-01

    The long-term prognosis after surgical resection of malignant insulinoma (INS) is poor. Novel adjuvant therapies, specifically targeting cancer stem cells (CSCs), are warranted. Therefore, the goal of this study was to characterize and target putative INS CSCs. Using fluorescence-activated cell sorting, human INS cell line CM and pancreatic carcinoid cell line BON1 were screened for the presence of stem cell-associated markers. CD90, CD166, and GD2 were identified as potential CSC markers. Only CD90(+) INS cells had an increased tumor-initiating potential in athymic nude mice. Anti-CD90 monoclonal antibodies decreased the viability and metastatic potential of injected cells in a zebrafish embryo INS xenograft model. Primary INS stained positive for CD90 by immunohistochemistry, however also intratumoral fibroblasts and vascular endothelium showed positive staining. The results of this study suggest that anti-CD90 monoclonals form a potential novel adjuvant therapeutic modality by targeting either INS cells directly, or by targeting the INS microenvironment. PMID:27049037

  2. Markers of Oxidative Stress in Generalized Anxiety Psychiatric Disorder: Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Khanna Ranjana S.

    2012-05-01

    Full Text Available There is growing evidence that oxidative stress contributes to the pathogenesis of anxiety disorders. Our aim was to measure oxidative stress in anxiety disorders subjects, and assesses the potential confounding influences of anti anxiety therapy. Serum malondialdehyde and antioxidant levels were estimated in patients at the time of presentation and also after anti- anxiety therapy for 3 months. During the period of study no antioxidant/s was given to the patients and control subjects. Serum malondialdehyde levels were significantly higher in the anxiety disorders patients in comparison to control cases. Also, the antioxidant activity of enzymes super oxide dismutase, glutathione and non enzymatic antioxidant levels of vitamins E and C were significantly lower in patients compared to controls at the initial presentation. After 3 months of anti anxiety treatment all the above parameters showed reversal in the respective levels of serum malondialdehyde and antioxidant activity. Anti anxiety medications results in reduced oxidative stress which indicates that oxidative stress is not the cause, but rather a consequence, of anxiety disorders.

  3. Cisplatinum dose dependent response in germ cell cancer evaluated by tumour marker modelling

    DEFF Research Database (Denmark)

    Carl, J; Christensen, T B; von der Maase, H

    1992-01-01

    This study presents an analysis on longitudinal tumour marker series in twenty-two patients with non-seminomatous germ cell cancers treated with cisplatinum (DDP) based combination chemotherapy. Series of alphafoetoprotein (AFP), human chorionic gonadotrophin (HCG) and lactate dehydrogenase (LDH...... faster than AFP producing cells, and were 3-5-fold more sensitive to the chemotherapy given than AFP producing cells. Treatment response versus DDP dose appeared to be bi-phasic, but with no significant change in treatment efficiency within the given range of DDP doses....

  4. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    OpenAIRE

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.; Shih, Shou-Ching

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed ...

  5. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    International Nuclear Information System (INIS)

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis

  6. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  7. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  8. Optimal matrix rigidity for stress fiber polarization in stem cells

    Science.gov (United States)

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  9. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    OpenAIRE

    R.E. Shackelford; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cy...

  10. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    International Nuclear Information System (INIS)

    Highlights: ► Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. ► Oxidative stress induces complete mitochondrial fragmentation in Δyfh1 cells. ► Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. ► Inhibition of mitochondrial fission in Δyfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron–sulfur cluster assembly. Yeast cells lacking frataxin (Δyfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in Δyfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  11. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  12. Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers

    International Nuclear Information System (INIS)

    Background and purpose: In this study, we investigated whether cancer stem cell marker expressing cells can be identified that predict for the response of esophageal cancer (EC) to CRT. Materials and methods: EC cell-lines OE-33 and OE-21 were used to assess in vitro, stem cell activity, proliferative capacity and radiation response. Xenograft tumors were generated using NOD/SCID mice to assess in vivo proliferative capacity and tumor hypoxia. Archival and fresh EC biopsy tissue was used to confirm our in vitro and in vivo results. Results: We showed that the CD44+/CD24− subpopulation of EC cells exerts a higher proliferation rate and sphere forming potential and is more radioresistant in vitro, when compared to unselected or CD44+/CD24+ cells. Moreover, CD44+/CD24− cells formed xenograft tumors faster and were often located in hypoxic tumor areas. In a study of archival pre-neoadjuvant CRT biopsy material from EC adenocarcinoma patients (N = 27), this population could only be identified in 50% (9/18) of reduced-responders to neoadjuvant CRT, but never (0/9) in the complete responders (P = 0.009). Conclusion: These results warrant further investigation into the possible clinical benefit of CD44+/CD24− as a predictive marker in EC patients for the response to chemoradiation

  13. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    Science.gov (United States)

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  14. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress.

    Science.gov (United States)

    Messina, Concetta Maria; Faggio, Caterina; Laudicella, Vincenzo Alessandro; Sanfilippo, Marilena; Trischitta, Francesca; Santulli, Andrea

    2014-12-01

    In this study the effects of an anionic surfactant, sodium dodecyl sulfate (SDS), are assessed on the Mediterranean mussel (Mytilus galloprovincialis), exposed for 18 days at a concentration ranging from 0.1 mg/l to 1 mg/l. The effects are monitored using biomarkers related to stress response, such as regulatory volume decrease (RVD), and to oxidative stress, such as reactive oxygen species (ROS), endogenous antioxidant systems and Hsp70 levels. The results demonstrate that cells from the digestive gland of M. galloprovincialis, exposed to SDS were not able to perform the RVD owing to osmotic stress. Further, SDS causes oxidative stress in treated organisms, as demonstrated by the increased ROS production, in comparison to the controls (p<0.05). Consequently, two enzymes involved in ROS scavenging, superoxide dismutase (SOD) and catalase (CAT) have higher activities and the proportion of oxidized glutathione (GSSG) is higher in hepatopancreas and mantle of treated animals, compared to untreated animals (p<0.05). Furthermore Hsp70 demonstrates an up-regulation in all the analyzed tissues of exposed animals, attesting the stress status induced by the surfactant with respect to the unexposed animals. The results highlight that SDS, under the tested concentrations, exerts a toxic effect in mussels in which the disruption of the osmotic balance follows the induction of oxidative stress.

  15. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  16. Defining the expression of marker genes in equine mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Deborah J Guest

    2008-11-01

    Full Text Available Deborah J Guest1, Jennifer C Ousey1, Matthew RW Smith21Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU; 2Reynolds House Referrals, Greenwood Ellis and Partners, 166 High Street, Newmarket, Suffolk, CB8 9WS, UKAbstract: Mesenchymal stromal (MS cells have been derived from multiple sources in the horse including bone marrow, adipose tissue and umbilical cord blood. To date these cells have been investigated for their differentiation potential and are currently being used to treat damage to horse musculoskeletal tissues. However, no work has been done in horse MS cells to examine the expression profile of proteins and cell surface antigens that are expressed in human MS cells. The identification of such profiles in the horse will allow the comparison of putative MS cells isolated from different laboratories and different tissues. At present it is difficult to ascertain whether equivalent cells are being used in different reports. Here, we report on the expression of a range of markers used to define human MS cells. Using immunocytochemistry we show that horse MS cells homogenously express collagens, alkaline phosphatase activity, CD44, CD90 and CD29. In contrast, CD14, CD79α and the embryonic stem cell markers Oct-4, SSEA (stage specific embryonic antigen -1, -3, -4, TRA (tumor rejection antigen -1–60 and -1–81 are not expressed. The MS cells also express MHC class I antigens but do not express class II antigens, although they are inducible by treatment with interferon gamma (IFN-γ.Keywords: mesenchymal stem cells, equine, gene expression

  17. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Sara Soleimani Rad; Shamsi Abbasalizadeh; Amir Ghorbani Haghjo

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted...

  18. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    OpenAIRE

    Soleimani Rad, Sara; Abbasalizadeh, Shamsi; Ghorbani Haghjo, Amir; Sadagheyani, Mehzad; Montaseri, Azadeh; Soleimani Rad, Jafar

    2013-01-01

    Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods: For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands o...

  19. Towards uranium dose-effects relationships for bio markers of oxidative stress in fish

    International Nuclear Information System (INIS)

    Within the Envirhom program, the bioavailability of uranium, a widely spread metal in fresh waters, has been studied in various organisms to gain understanding of metal-organisms interactions. Experiments are still in progress to establish a comprehensive basis of early and delayed involved toxicological mechanisms. Uranium is known to be both radio-toxic and chemo-toxic. The cellular damage of radiation, but also of heavy metal exposure, is mainly associated with an oxidative injury due to the formation of reactive oxygen species. Moreover, the intensity of oxidative damages is dependant on the efficiency of antioxidant defense systems of the organism. In this context, short-term experiments were performed with juvenile rainbow trout (Onchorynchus mykiss) in order to (1) assess the response of some antioxidant parameters and other potential bio-markers and (2) to better characterize the kinetics of the responses in relation with U concentrations and exposure duration. Trout were exposed by direct pathway to a range of U concentrations in water (low, medium and high: 20, 100 and 500 μg U.L-1 respectively) during 10 days. Several antioxidant parameters were measured: the rate of reduced glutathione (GSH) that plays a major role in cellular detoxification and antioxidant defense, and the activities of superoxide dismutases (SOD) and catalase that are involved in the detoxification of oxygen reactive species. The activity of glutathione reductase (GR), that restores the pool of GSH was measured, as well as the activity of acetylcholinesterase (AChE), a marker of neurotoxicity. In parallel, U analysis were performed in gill, skin, muscle, skeleton, intestine, liver, kidneys and body residues of exposed trout in order to assess the dependence of biological responses with a potential uranium bioaccumulation in fish tissues. (author)

  20. Towards uranium dose-effects relationships for bio markers of oxidative stress in fish

    Energy Technology Data Exchange (ETDEWEB)

    Buet, A.; Camilleri, V.; Simon, O.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Within the Envirhom program, the bioavailability of uranium, a widely spread metal in fresh waters, has been studied in various organisms to gain understanding of metal-organisms interactions. Experiments are still in progress to establish a comprehensive basis of early and delayed involved toxicological mechanisms. Uranium is known to be both radio-toxic and chemo-toxic. The cellular damage of radiation, but also of heavy metal exposure, is mainly associated with an oxidative injury due to the formation of reactive oxygen species. Moreover, the intensity of oxidative damages is dependant on the efficiency of antioxidant defense systems of the organism. In this context, short-term experiments were performed with juvenile rainbow trout (Onchorynchus mykiss) in order to (1) assess the response of some antioxidant parameters and other potential bio-markers and (2) to better characterize the kinetics of the responses in relation with U concentrations and exposure duration. Trout were exposed by direct pathway to a range of U concentrations in water (low, medium and high: 20, 100 and 500 {mu}g U.L{sup -1} respectively) during 10 days. Several antioxidant parameters were measured: the rate of reduced glutathione (GSH) that plays a major role in cellular detoxification and antioxidant defense, and the activities of superoxide dismutases (SOD) and catalase that are involved in the detoxification of oxygen reactive species. The activity of glutathione reductase (GR), that restores the pool of GSH was measured, as well as the activity of acetylcholinesterase (AChE), a marker of neurotoxicity. In parallel, U analysis were performed in gill, skin, muscle, skeleton, intestine, liver, kidneys and body residues of exposed trout in order to assess the dependence of biological responses with a potential uranium bioaccumulation in fish tissues. (author)

  1. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    The present study was undertaken in order to investigate if toluene induced oxidative stress in brains from rats exposed prenatally to 1800 ppm toluene 6 hr/day at days 7-20 during the pregnancy. 35-42 days after birth the rats were killed and synaptosomal fractions were prepared for the...... experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  2. Hypoxia and oxidative stress markers in pediatric patients undergoing hemodialysis: cross section study

    Directory of Open Access Journals (Sweden)

    Hamed Enas A

    2012-10-01

    Full Text Available Abstract Background Tissue injury due to hypoxia and/or free radicals is common in a variety of disease processes. This cross-sectional study aimed to investigate effect of chronic kidney diseases (CKD and hemodialysis (HD on hypoxia and oxidative stress biomarkers. Methods Forty pediatric patients with CKD on HD and 20 healthy children were recruited. Plasma hypoxia induced factor-1α (HIF-1α, vascular endothelial growth factor (VEGF were measured by specific ELISA kits while, total antioxidant capacity (TAC, total peroxide (TPX, pyruvate and lactate by enzymatic/chemical colorimetric methods. Oxidative stress index (OSI and lactate/pyruvate (L/P ratio were calculated. Results TAC was significantly lower while TPX, OSI and VEGF were higher in patients at before- and after-dialysis session than controls. Lactate and HIF-1α levels were significantly higher at before-dialysis session than controls. Before dialysis, TAC and L/P ratio were lower than after-dialysis. In before-dialysis session, VEGF correlated positively with pyruvate, HIF-1α and OSI correlated positively with TPX, but, negatively with TAC. In after-dialysis session, HIF-1α correlated negatively with TPX and OSI; while, OSI correlated positively with TPX. Conclusions CKD patients succumb considerable tissue hypoxia with oxidative stress. Hemodialysis ameliorated hypoxia but lowered antioxidants as evidenced by decreased levels of HIF-1α and TAC at before- compared to after-dialysis levels.

  3. Effect of natural polyphenols (Pycnogenol) on oxidative stress markers in children suffering from Crohn's disease--a pilot study.

    Science.gov (United States)

    Koláček, M; Muchová, J; Dvořáková, M; Paduchová, Z; Žitňanová, I; Čierna, I; Országhová, Z; Székyová, D; Jajcaiová-Zedníčková, N; Kovács, L; Ďuračková, Z

    2013-08-01

    Crohn's disease (CD) is a nonspecific, chronic inflammatory disease of the gastrointestinal tract. It is supposed that in etiopathogenesis oxidative stress (OS) plays a role. However, its precise role in the active and non-active states of disease is not known yet. We conducted a pilot study focusing on the relationship between OS of CD in remission and the possibility to influence clinical parameters and markers of OS by polyphenolic extract, Pycnogenol® (Pyc). Compared to 15 healthy controls 15 pediatric CD patients (all were in remission according to their disease activity index - PCDAI) had reduced the activity of Cu/Zn-superoxide dismutase (SOD) and increased the oxidative damage to proteins. We found negative correlations between markers of inflammation (calprotectin, CRP) as well as between PCDAI and total antioxidant capacity (TAC). Activities of antioxidant enzymes, SOD, and glutathione peroxidase (GPX) negatively correlated with calprotectin and PCDAI. Pyc (2 mg/kg) positively influenced the parameters of OS in CD patients after 10 weeks of administration. PMID:23710677

  4. Generating markers based on biotic stress of protein system in and tandem repeats sequence for Aquilaria sp

    International Nuclear Information System (INIS)

    Aquilaria sp. belongs to the Thymelaeaceae family and is well distributed in Asia region. The species has multipurpose use from root to shoot and is an economically important crop, which generates wide interest in understanding genetic diversity of the species. Knowledge on DNA-based markers has become a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. In this work, both targeted genes and tandem repeat sequences were used for DNA fingerprinting in Aquilaria sp. A total of 100 ISSR (inter simple sequence repeat) primers and 50 combination pairs of specific primers derived from conserved region of a specific protein known as system in were optimized. 38 ISSR primers were found affirmative for polymorphism evaluation study and were generated from both specific and degenerate ISSR primers. And one utmost combination of system in primers showed significant results in distinguishing the Aquilaria sp. In conclusion, polymorphism derived from ISSR profiling and targeted stress genes of protein system in proved as a powerful approach for identification and molecular classification of Aquilaria sp. which will be useful for diversification in identifying any mutant lines derived from nature. (author)

  5. Effects of ginger (Zingiber officinale Roscoe supplementation and resistance training on some blood oxidative stress markers in obese men

    Directory of Open Access Journals (Sweden)

    Sirvan Atashak

    2014-06-01

    Full Text Available Excessive adiposity increases oxidative stress, and thus may play a critical role in the pathogenesis and development of obesity-associated comorbidities, in particular atherosclerosis, diabetes mellitus, and arterial hypertension. Improved body composition, through exercise training and diet, may therefore significantly contribute to a reduction in oxidative stress. Further, some foods high in antioxidants (e.g., ginger provide additional defense against oxidation. This study was conducted to assess the effects of ginger (Zingiber officinale Roscoe supplementation and progressive resistance training (PRT on some nonenzymatic blood [total antioxidant capacity (TAC and malondialdehyde (MDA] oxidative stress markers in obese men. Thirty-two obese males (body mass index ≥30, aged 18–30 years were randomized to one of the following four groups: a placebo (PL; n = 8; resistance training plus placebo (RTPL; n = 8; resistance training plus ginger supplementation (RTGI; n = 8; and ginger supplementation only (GI; n = 8. Participants in the RTGI and GI groups consumed 1 g ginger/day for 10 weeks. At the same time, PRT was undertaken by the RTPL and RTGI groups three times/week. Resting blood samples were collected at baseline and at 10 weeks, and analyzed for plasma nonenzymatic TAC and MDA concentration. After the 10-week intervention, we observed significant training × ginger supplementation × resistance training interaction for TAC (p = 0.043 and significant interactions for training × resistance training and training × ginger supplementation for MDA levels (p < 0.05. The results of this study show that 10 weeks of either ginger supplementation or PRT protects against oxidative stress and therefore both of these interventions can be beneficial for obese individuals; however, when combined, the effects cancel each other out.

  6. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men

    Directory of Open Access Journals (Sweden)

    Meng Rao

    2015-01-01

    Full Text Available In this experimental prospective study, we aimed to analyze the effect of transient scrotal hyperthermia on the male reproductive organs, from the perspective of sperm parameters, semen plasma biochemical markers, and oxidative stress, to evaluate whether different frequencies of heat exposure cause different degrees of damage to spermatogenesis. Two groups of volunteers (10 per group received testicular warming in a 43°C water bath 10 times, for 30 min each time: group 1: 10 consecutive days; group 2: once every 3 days. Sperm parameters, epididymis and accessory sex gland function, semen plasma oxidative stress and serum sex hormones were tested before treatment and in the 16-week recovery period after treatment. At last, we found an obvious reversible decrease in sperm concentration (P = 0.005 for Group 1 and P= 0.008 for Group 2 when the minimums were compared with baseline levels, the same below, motility (P = 0.009 and 0.021, respectively, the hypoosmotic swelling test score (P = 0.007 and 0.008, respectively, total acrosin activity (P = 0.018 and 0.009, respectively, and an increase in the seminal plasma malondialdehyde concentration (P = 0.005 and 0.017, respectively. The decrease of sperm concentration was greater for Group 2 than for Group 1 (P = 0.031. We concluded that transient scrotal hyperthermia seriously, but reversibly, negatively affected the spermatogenesis, oxidative stress may be involved in this process. In addition, intermittent heat exposure more seriously suppresses the spermatogenesis compared to consecutive heat exposure. This may be indicative for clinical infertility etiology analysis and the design of contraceptive methods based on heat stress.

  7. BSND and ATP6V1G3: Novel Immunohistochemical Markers for Chromophobe Renal Cell Carcinoma

    OpenAIRE

    SHINMURA, KAZUYA; Igarashi, Hisaki; Kato, Hisami; Koda, Kenji; Ogawa, Hiroshi; Takahashi, Seishiro; Otsuki, Yoshiro; Yoneda, Tatsuaki; Kawanishi, Yuichi; Funai, Kazuhito; Takayama, Tatsuya; Ozono, Seiichiro; Sugimura, Haruhiko

    2015-01-01

    Abstract Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequ...

  8. Functionality and specificity of gene markers for skin sensitization in dendritic cells

    OpenAIRE

    Lambrechts, Nathalie; Nelissen, Inge; van Tendeloo, Viggo; Witters, Hilda; Den Heuvel, Rosette; Hooyberghs, Jef; Schoeters, Greet

    2011-01-01

    Transcriptomic analyses revealed a discriminating gene expression profile in human CD34(+) progenitor-derived dendritic cells (DC) after exposure to skin sensitizers versus non-sensitizers. Starting from the differential expression in a small set of genes, a preliminary classification model (VITOSENS (R)) has been developed to identify chemicals as (non-)sensitizing. The objective of the current study is to gain knowledge on the role of the VITOSENS (R) markers in the DC maturation process, a...

  9. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    Science.gov (United States)

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  10. Identification of Interconnected Markers for T-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Emine Guven Maiorov; Ozlem Keskin; Ozden Hatirnaz Ng; Ugur Ozbek; Attila Gursoy

    2013-01-01

    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 210253, 20 pages http://dx.doi.org/10.1155/2013/210253 Research Article Identification of Interconnected Markers for T-Cell Acute Lymphoblastic Leukemia Emine Guven Maiorov,1 Ozlem Keskin,1 Ozden Hatirnaz Ng,2 Ugur Ozbek,2 and Attila Gursoy1 1 Center for Computational Biology and Bioinformatics and College of Engineering, Koc¸ University, Rumelifeneri Yolu, Sariyer, 34450 Istanbu...

  11. Prognostic Value of Cancer Stem Cells Markers in Triple-Negative Breast Cancer

    OpenAIRE

    Collina, Francesca; Di Bonito, Maurizio; Li Bergolis, Valeria; De Laurentiis, Michelino; Vitagliano, Carlo; Cerrone, Margherita; Nuzzo, Francesco; Cantile, Monica; Botti, Gerardo

    2015-01-01

    Triple-negative breast cancer (TNBC) has a significant clinical relevance of being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. Increased aggressiveness of this tumor, as well as resistance to standard drug therapies, may be associated with the presence of stem cell populations within the tumor. Several stemness markers have been described for the various histological subtypes of breast cancer, such as...

  12. p63 as a prognostic marker for giant cell tumor of bone

    Science.gov (United States)

    kakizaki, Hiroshi; Okada, Kyoji; Torigoe, Tomoaki; Kusumi, Tomomi

    2013-01-01

    Background and purpose Giant cell tumor of bone (GCT) is sometimes difficult to distinguish from other giant-cell-rich tumors such as chondroblastoma (CHB) and aneurysmal bone cyst (ABC). The usefulness of p63 as a diagnostic marker for GCT is controversial. While there have been no reports about p63 as a prognostic marker for local recurrence, various p63-positive rates in GCT have been reported. The purpose of this study was to investigate retrospectively whether p63 is useful as a diagnostic marker and/or a prognostic marker for local recurrence of GCT. Methods This study included 36 patients diagnosed with either GCT (n = 16), CHB (n = 9), ABC (n = 7), or non-ossifying fibroma (NOF) (n = 4). p63 immunostaining was performed for all specimens. The mean p63-positive rate was compared with the four diseases and between the recurrent and non-recurrent cases of GCT. Results Although the mean p63-positive rate for GCT (36.3%) was statistically higher than that of all other diseases examined (CHB: 15.2%; ABC: 5.8%; NOF: 3.4%), p63 was not specific for GCT. The mean p63-positive rate for recurrent GCT cases (73.6%) was statistically higher than that for non-recurrent cases (29.1%). Conclusion In the diagnosis of GCT, p63 is a useful but not a conclusive marker. However, p63 did appear to indicate the biological aggressiveness of GCT. Therefore, p63 may help surgeons to estimate the risk of recurrence after surgery and help them to choose the best treatment for each GCT case. PMID:23033898

  13. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Science.gov (United States)

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  14. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    Science.gov (United States)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  15. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs.

    Science.gov (United States)

    Rotenberg, Menahem Y; Ruvinov, Emil; Armoza, Anna; Cohen, Smadar

    2012-08-01

    Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model. PMID:22622237

  16. Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Zhongxia Wang

    2014-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC remains a disastrous disease and the treatment for HCC is rather limited. Separation and identification of active compounds from traditionally used herbs in HCC treatment may shed light on novel therapeutic drugs for HCC. Methods. Cell viability and colony forming assay were conducted to determine anti-HCC activity. Morphology of cells and activity of caspases were analyzed. Antiapoptotic Bcl-2 family proteins and JNK were also examined. Levels of unfolded protein response (UPR markers were determined and intracellular calcium was assayed. Small interfering RNAs (siRNAs were used to investigate the role of UPR and autophagy in baicalein-induced cell death. Results. Among four studied flavonoids, only baicalein exhibited satisfactory inhibition of viability and colony formation of HCC cells within water-soluble concentration. Baicalein induced apoptosis via endoplasmic reticulum (ER stress, possibly by downregulating prosurvival Bcl-2 family, increasing intracellular calcium, and activating JNK. CHOP was the executor of cell death during baicalein-induced ER stress while eIF2α and IRE1α played protective roles. Protective autophagy was also triggered by baicalein in HCC cells. Conclusion. Baicalein exhibits prominent anti-HCC activity. This flavonoid induces apoptosis and protective autophagy via ER stress. Combination of baicalein and autophagy inhibitors may represent a promising therapy against HCC.

  17. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts

    Directory of Open Access Journals (Sweden)

    Norifumi eKawada

    2015-11-01

    Full Text Available Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are a source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts.

  18. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?

    Directory of Open Access Journals (Sweden)

    Martha Lucinda Contreras-Zentella

    2016-01-01

    Full Text Available Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.

  19. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?

    Science.gov (United States)

    Contreras-Zentella, Martha Lucinda; Hernández-Muñoz, Rolando

    2016-01-01

    Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH) in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.

  20. Electrocardiographic markers of ischemia during mental stress testing in postinfarction patients. Role of body surface mapping

    International Nuclear Information System (INIS)

    In patients with coronary artery disease, radionuclide investigations have documented a high incidence of mental stress-induced myocardial ischemia in the absence of significant electrocardiographic changes and/or angina. To investigate the causes of the low electrocardiographic sensitivity, we recorded body surface maps during mental arithmetic in 22 normal volunteers and 37 postinfarction patients with residual exercise ischemia. Myocardial perfusion was studied with thallium-201 or technetium-99 (SESTAMIBI) planar scans. In 14 patients, body surface maps were also recorded during atrial pacing at the heart rate values achieved during mental stress. While taking the body surface maps, the area from J point to 80 msec after this point (ST-80) was analyzed by integral maps, difference maps, and departure maps. The body surface mapping criteria for ischemia were a new negative area on the integral maps, a negative potential of more than 2 SD from mean normal values on the difference maps, and a negative departure index of more than 2. Scintigraphy showed asymptomatic myocardial hypoperfusion in 33 patients. Eight patients had significant ST segment depression. The ST-80 integral and difference maps identified 17 ischemic patients. Twenty-four patients presented abnormal departure maps. One patient presented ST depression and abnormal body surface maps without reversible tracer defect. In 14 of 14 patients, atrial pacing did not reproduce the body surface map abnormalities. The analyses of the other electrocardiographic variables showed that in patients with mental stress-induced perfusion defects, only changes of T apex-T offset (aT-eT) interval in Frank leads and changes of maximum negative potential value of aT-eT integral maps significantly differed from those of normal subjects

  1. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  2. Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin

    Science.gov (United States)

    Chen, Wei-Ching; Hsu, Hui-Ping; Li, Chung-Yen; Yang, Ya-Ju; Hung, Yu-Hsuan; Cho, Chien-Yu; Wang, Chih-Yang; Weng, Tzu-Yang; Lai, Ming-Derg

    2016-01-01

    Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer. PMID:27633757

  3. MARKERS OF OXIDATIVE STRESS AND SERUM LIPIDS IN PAT IENTS WITH POLYCYSTIC OVARIAN SYNDROME

    Directory of Open Access Journals (Sweden)

    Madhu Latha

    2012-11-01

    Full Text Available ABSTRACT: Dyslipidemia and oxidative stress were evaluated in patients with polycystic ovarian syndrome. MATERIALS AND METHODS: Total cholesterol, Triglyceride, HDL cholesterol, LDL cholesterol, Malondialdehyde (MDA and Total antioxidant capacity were measured in serum of PCOS subjects and age matche d controls. RESULTS: Study group comprised of 31 women with PCOS and control group wit h 31 healthy volunteers. Mean serum levels of MDA, Cholesterol, Triglycerides and LDL c holesterol were significantly increased and TAC and HDL cholesterol were significantly decrease d in PCOS subjects compared to controls. CONCLUSION: Our results revealed that PCOS is associated with d yslipidemia and altered oxidative status.

  4. Detection of serum p53 antibodies in patients with esophageal squamous cell carcinoma: correlation with clinicopathologic features and tumor markers.

    Science.gov (United States)

    Shimada, H; Nakajima, K; Ochiai, T; Koide, Y; Okazumi, S I; Matsubara, H; Takeda, A; Miyazawa, Y; Arima, M; Isono, K

    1998-01-01

    The significance of serum p53-Abs in patients with esophageal squamous cell carcinoma was determined. Examination of clinicopathological features and assessment of tumor marker sensitivities of carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC-Ag) and CYFRA21-1 were performed. Thirty-three (58%) of 57 patients were positive for serum p53-Abs, however, no relation with cancer progression existed. Fourteen of the 33 sero-positive patients revealed normal levels of all tumor markers tested. Thus, serum p53-Abs appears to be a useful marker for the detection of esophageal squamous cell carcinoma.

  5. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    International Nuclear Information System (INIS)

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker

  6. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyung [Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan (Korea, Republic of); Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan (Korea, Republic of); Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun [Department of Parasitology and Genetics, Kosin University College of Medicine, Busan (Korea, Republic of); Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo [Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan (Korea, Republic of); Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan (Korea, Republic of); Park, Eun-Sil [Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, MA (United States); Jeong, Namkung [Department of Obstetrics and Gynecology, The Catholic University, Seoul (Korea, Republic of); Eo, Wan-Kyu [Department of Internal Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kim, Heung Yeol, E-mail: hykyale@yahoo.com [Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan (Korea, Republic of); Cha, Hee-Jae, E-mail: hcha@kosin.ac.kr [Department of Parasitology and Genetics, Kosin University College of Medicine, Busan (Korea, Republic of); Institute for Medical Science, Kosin University College of Medicine, Busan (Korea, Republic of)

    2014-05-02

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.

  7. Automated detection of residual cells after sex-mismatched stem-cell transplantation – evidence for presence of disease-marker negative residual cells

    Directory of Open Access Journals (Sweden)

    Johannes Tilman

    2009-05-01

    Full Text Available Abstract Background A new chimerism analysis based on automated interphase fluorescence in situ hybridization (FISH evaluation was established to detect residual cells after allogene sex-mismatched bone marrow or blood stem-cell transplantation. Cells of 58 patients were characterized as disease-associated due to presence of a bcr/abl-gene-fusion or a trisomy 8 and/or a simultaneous hybridization of gonosome-specific centromeric probes. The automatic slide scanning platform Metafer with its module MetaCyte was used to analyse 3,000 cells per sample. Results Overall 454 assays of 58 patients were analyzed. 13 of 58 patients showed residual recipient cells at one stage of more than 4% and 12 of 58 showed residual recipient cells less than 4%, respectively. As to be expected, patients of the latter group were associated with a higher survival rate (48 vs. 34 month. In only two of seven patients with disease-marker positive residual cells between 0.1–1.3% a relapse was observed. Besides, disease-marker negative residual cells were found in two patients without relapse at a rate of 2.8% and 3.3%, respectively. Conclusion The definite origin and meaning of disease-marker negative residual cells is still unclear. Overall, with the presented automatic chimerism analysis of interphase FISH slides, a sensitive method for detection of disease-marker positive residual cells is on hand.

  8. One Step Quick Detection of Cancer Cell Surface Marker by Integrated NiFe-based Magnetic Biosensing Cell Cultural Chip

    Institute of Scientific and Technical Information of China (English)

    Chenchen Bao; Lei Chen; Tao Wang; Chong Lei; Furong Tian; Daxiang Cui; Yong Zhou

    2013-01-01

    RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiFe-based magnetic biosensing cell chip combined with functionalized magnetic nanoparti-cles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cul-tured on the NiFe-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin. Cell lines such as Calu3, Hela, A549, CaFbr, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost, easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.

  9. Expression of cancer stem cell surface markers after chemotherapeutic drug treatment to reflect breast cancer cell regrowth

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Wings Tjing Yung Loo; Louis Wing Cheong Chow; Kelly Wei Yu Rui

    2014-01-01

    Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment. Methods We observed the cytotoxic effects of three chemotherapeutic agents [ epirubicin ( Epi ) , fluorouracil ( 5-FU ) and cyclophosphamide ( Cyc ) ] in three cell lines, and the cell viabilities after removed these chemotherapeutic agents. Expressions of stem cell surface markers CD44, CD24, CD90, CD14 and aldehyde dehydrogenase1(ALDH1) in breast cancer cells were analyzed by real-time PCR. The post hoc analysis (Tukey’s tests) in conjunction with one-way ANOVA was used for statistical analysis. Results The initial cytotoxic efficacy was most notable. After the treatment of the same therapeutic agents, cell viability was decreased by 64. 8% 35. 14%, 32. 25% in BT-483 cells, 66. 4%, 22. 94% and 45. 88% in MDA-MB-231 cells, 97. 1%, 99. 5% and 76. 4% in MCF cells. The difference was significant compared with that before treatment ( P=0. 000 ) . However, the inhibitory effects were diminished after chemotherapeutic agent withdrawal. Cell viabilities were increased to 167. 9%, 212. 04% and 188. 66% in MDA-MB-231 cells at 48 h after withdrawal. At 72 h after withdrawal, cell viability was increased with a significant difference in three cell lines (all P values=0. 000). Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231, BT-483 and MCF-7 cells. ALDH1 mRNA level was significant higher in BT-483 ( HER-2 overexpression cell line) than MDA-MB-231 ( triple negative cell line ) ( P = 0. 012 ) . CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483 (P=0. 003, 0. 001). BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line (P= 0.013, 0.020), and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells ( P=0. 955 ) . CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells, but not in BT-483 cells. Conclusion Some malignant

  10. Mucosal-associated invariant T cell is a potential marker to distinguish fibromyalgia syndrome from arthritis.

    Directory of Open Access Journals (Sweden)

    Chie Sugimoto

    Full Text Available Fibromyalgia (FM is defined as a widely distributed pain. While many rheumatologists and pain physicians have considered it to be a pain disorder, psychiatry, psychology, and general medicine have deemed it to be a syndrome (FMS or psychosomatic disorder. The lack of concrete structural and/or pathological evidence has made patients suffer prejudice that FMS is a medically unexplained symptom, implying inauthenticity. Furthermore, FMS often exhibits comorbidity with rheumatoid arthritis (RA or spondyloarthritis (SpA, both of which show similar indications. In this study, disease specific biomarkers were sought in blood samples from patients to facilitate objective diagnoses of FMS, and distinguish it from RA and SpA.Peripheral blood mononuclear cells (PBMCs from patients and healthy donors (HD were subjected to multicolor flow cytometric analysis. The percentage of mucosal-associated invariant T (MAIT cells in PBMCs and the mean fluorescent intensity (MFI of cell surface antigen expression in MAIT cells were analyzed.There was a decrease in the MAIT cell population in FMS, RA, and SpA compared with HD. Among the cell surface antigens in MAIT cells, three chemokine receptors, CCR4, CCR7, and CXCR1, a natural killer (NK receptor, NKp80, a signaling lymphocyte associated molecule (SLAM family, CD150, a degrunulation marker, CD107a, and a coreceptor, CD8β emerged as potential biomarkers for FMS to distinguish from HD. Additionally, a memory marker, CD44 and an inflammatory chemokine receptor, CXCR1 appeared possible markers for RA, while a homeostatic chemokine receptor, CXCR4 deserved for SpA to differentiate from FMS. Furthermore, the drug treatment interruption resulted in alternation of the expression of CCR4, CCR5, CXCR4, CD27, CD28, inducible costimulatory molecule (ICOS, CD127 (IL-7 receptor α, CD94, NKp80, an activation marker, CD69, an integrin family member, CD49d, and a dipeptidase, CD26, in FMS.Combined with the currently available

  11. 2-NBDG, a fluorescent analogue of glucose, as a marker for detecting cell electropermeabilization in vitro.

    Science.gov (United States)

    Raeisi, Elham; Mir, Lluis M

    2012-10-01

    This study investigated whether molecules spontaneously transported inside cells, like glucose derivatives, can also be used as electropermeabilization markers. Uptake of a fluorescent deoxyglucose derivative (2-NBDG) by normal and electropermeabilized cells in culture was analyzed. 2-NBDG was added to DC-3F cell suspensions and cells, exposed or not to eight square-wave electric pulses of 100-μs duration and of appropriate field amplitude at a repetition frequency of 1 Hz or 5 kHz, were incubated at 37 °C. 2-NBDG uptake was temperature-, concentration- and time-dependent in cells submitted or not to the electric pulses. In spite of significant uptake of 2-NBDG mediated by GLUT transporters into nonpermeabilized cells, the electric pulses significantly increased about ten to hundred times the 2-NBDG uptake into the cells. The increase in the field amplitude from 900 to 1,500 V/cm resulted in a progressive increase of 2-NDBG. Our results show that under the conditions of in vivo exposure duration to FDG and the physiological concentration of D-glucose, electric pulses increased 2-NBDG uptake into electropermeabilized cells. Under our experimental conditions, the percentage of permeabilized cells within the population of cells exposed to electric pulses remained at the same level regardless of the pulse frequency used, 1 Hz or 5 kHz. The findings showed that glucose derivatives can also be used to detect electropermeabilized cells exposed to electric pulses.

  12. Time to Relax: Mechanical Stress Release Guides Stem Cell Responses.

    Science.gov (United States)

    Sommerfeld, Sven D; Elisseeff, Jennifer H

    2016-02-01

    Stem cells integrate spatiotemporal cues, including the mechanical properties of their microenvironment, into their fate decisions. Chaudhuri et al. (2015) show that the ability of the extracellular matrix to dissipate cell-induced forces, referred to as stress-relaxation, is a key mechanical signal influencing stem cell fate and function. PMID:26849301

  13. Relation between Endothelial Nitric Oxide Synthase Genotypes and Oxidative Stress Markers in Larynx Cancer

    Directory of Open Access Journals (Sweden)

    K. Yanar

    2016-01-01

    Full Text Available Nitric oxide synthase (eNOS/NOS3 is responsible for the endothelial synthesis of nitric oxide (NO•. G894T polymorphism leads to the amino acid substitution from Glu298Asp that causes lower NOS3 activity and basal NO• production in NOS3 894T (298Asp allele carriers compared with the GG homozygotes. NO• acts as an antioxidant protecting against Fenton’s reaction which generates highly reactive hydroxyl radicals. Allelic variation of NOS3 may influence an individual’s risk of laryngeal cancer (LC. In the current study we have examined the possible relationship between NOS3 G894T genotypes and various systemic oxidative damage markers such as protein carbonyl, advanced oxidation protein products, Cu, Zn-superoxide dismutase, thiol group fractions, and lipid hydroperoxides in LC patients. Genotyping was carried out by PCR-RFLP. In LC patients with TT genotype, Cu, Zn-superoxide dismutase activities and nonprotein thiol levels were significantly higher than the controls. In patients with GT and GG genotype, high levels of lipid hydroperoxides showed statistical significance when compared to controls. Our results indicate a potential relationship among G894T polymorphism of NOS3, and impaired redox homeostasis. Further studies are required to determine the role of NOS3 gene polymorphism and impaired plasma redox homeostasis.

  14. Relation between Endothelial Nitric Oxide Synthase Genotypes and Oxidative Stress Markers in Larynx Cancer.

    Science.gov (United States)

    Yanar, K; Çakatay, U; Aydın, S; Verim, A; Atukeren, P; Özkan, N E; Karatoprak, K; Cebe, T; Turan, S; Ozkök, E; Korkmaz, G; Cacına, C; Küçükhüseyin, O; Yaylım, İ

    2016-01-01

    Nitric oxide synthase (eNOS/NOS3) is responsible for the endothelial synthesis of nitric oxide (NO(•)). G894T polymorphism leads to the amino acid substitution from Glu298Asp that causes lower NOS3 activity and basal NO(•) production in NOS3 894T (298Asp) allele carriers compared with the GG homozygotes. NO(•) acts as an antioxidant protecting against Fenton's reaction which generates highly reactive hydroxyl radicals. Allelic variation of NOS3 may influence an individual's risk of laryngeal cancer (LC). In the current study we have examined the possible relationship between NOS3 G894T genotypes and various systemic oxidative damage markers such as protein carbonyl, advanced oxidation protein products, Cu, Zn-superoxide dismutase, thiol group fractions, and lipid hydroperoxides in LC patients. Genotyping was carried out by PCR-RFLP. In LC patients with TT genotype, Cu, Zn-superoxide dismutase activities and nonprotein thiol levels were significantly higher than the controls. In patients with GT and GG genotype, high levels of lipid hydroperoxides showed statistical significance when compared to controls. Our results indicate a potential relationship among G894T polymorphism of NOS3, and impaired redox homeostasis. Further studies are required to determine the role of NOS3 gene polymorphism and impaired plasma redox homeostasis. PMID:26682008

  15. Evaluation of Two Biochemical Markers for Salt Stress in Three Pistachio Rootstocks Inoculated with Arbuscular Mycorrhiza (Glomus mosseae

    Directory of Open Access Journals (Sweden)

    Shamshiri M.H.

    2014-03-01

    Full Text Available The possible involvement of the methylglyoxal and proline accumulation in leaves and roots of three pistachio rootstocks, cv. Sarakha, Abareqi and Bane baghi, pre-inoculated with arbuscular mycorrhizal fungus (Glomus mosseae in response to salt stress was studied during a greenhouse experiment in 2013. Six months old pistachio seedlings were exposed to four salinity levels of irrigation water (EC of 0.5 as control, 5, 10 and 15 dS m-1 for 70 days. Methylglyoxal and proline of the roots and leaves were increased by increasing salt stress. The highest concentrations of proline in leaves and roots were recorded in Abareqi rootstock while the lowest concentration was observed in Sarakhs. In general, a negative relationship was obtained between proline and methylglyoxal concentrations in both tissues especially at two highest levels of salinity. A very strong relationship between salinity and measured biochemical markers were found. The level of both biomarkers were reduced in both tissues and in all rootstocks as the effect of mycorrhizal symbiosis. Root colonization percentage was declined as the effect of salinity in Abareqi and Bane baghi and not in Sarakhs.

  16. Localisation of NG2 immunoreactive neuroglia cells in the rat locus coeruleus and their plasticity in response to stress

    Directory of Open Access Journals (Sweden)

    Mohsen eSeifi

    2014-05-01

    Full Text Available The locus coeruleus (LC nucleus modulates adaptive behavioural responses to stress and dysregulation of LC neuronal activity is implicated in stress-induced mental illnesses. The LC is composed primarily of noradrenergic neurons together with various glial populations. A neuroglia cell-type largely unexplored within the LC is the NG2 cell. NG2 cells serve primarily as oligodendrocyte precursor cells throughout the brain. However, some NG2 cells are in synaptic contact with neurons suggesting a role in information processing. The aim of this study was to neurochemically and anatomically characterise NG2 cells within the rat LC. Furthermore, since NG2 cells have been shown to proliferate in response to traumatic brain injury, we investigated whether such NG2 cells plasticity also occurs in response to emotive insults such as stress. Immunohistochemistry and confocal microscopy revealed that NG2 cells were enriched within the pontine region occupied by the LC. Close inspection revealed that a sub-population of NG2 cells were located within unique indentations of LC noradrenergic somata and were immunoreactive for the neuronal marker NeuN whilst NG2 cell processes formed close appositions with clusters immunoreactive for the inhibitory synaptic marker proteins gephyrin and the GABA-A receptor alpha3-subunit, on noradrenergic dendrites. In addition, LC NG2 cell processes were decorated with vesicular glutamate transporter 2 immunoreactive puncta. Finally, ten days of repeated restraint stress significantly increased the density of NG2 cells within the LC. The study demonstrates that NG2 IR cells are integral components of the LC cellular network and they exhibit plasticity as a result of emotive challenges.

  17. The Effect of Oral Feeding of Tribulus Terrestris Fruit on Some Markers of Oxidative Stress in the Brain of Diabetic Rats

    OpenAIRE

    M. Roghani; S Arbab-Soleymani

    2013-01-01

    Introduction: Chronic diabetes mellitus in the long run accompanies enhanced oxidative stress burden and decreases activity of antioxidant defense system. Due to significant role of these factors in development of some neurological disorders and with regard to antidiabetic and antioxidant effect of Tribulus terrestris (TT), this study was conducted to evaluate the effect of its oral administration on brain tissue level of some markers of lipid peroxidation and oxidative stress in diabetic rat...

  18. Napsin A is a specific marker for ovarian clear cell adenocarcinoma.

    Science.gov (United States)

    Yamashita, Yoriko; Nagasaka, Tetsuro; Naiki-Ito, Aya; Sato, Shinya; Suzuki, Shugo; Toyokuni, Shinya; Ito, Masafumi; Takahashi, Satoru

    2015-01-01

    Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors. PMID:24721826

  19. Comparison of oxidative stress markers in HIV-infected patients on efavirenz or atazanavir/ritonavir-based therapy

    Directory of Open Access Journals (Sweden)

    Vicente Estrada

    2014-11-01

    Full Text Available Introduction: Chronic low-grade inflammation and immune activation may persist in HIV patients despite effective antiretroviral therapy (ART. These abnormalities are associated with increased oxidative stress (OS. Bilirubin (BR may have a beneficial role in counteracting OS. Atazanavir (ATV inhibits UGT1A1, thus increasing unconjugated BR levels, a distinctive feature of this drug. We compared changes in OS markers in HIV patients on ATV/r versus efavirenz (EFV-based first-line therapies. Materials and Methods: Cohort of the Spanish Research Network (CoRIS is a multicentre, open, prospective cohort of HIV-infected patients naïve to ART at entry and linked to a biobank. We identified hepatitis C virus/hepatitis B virus (HCV/HBV negative patients who started first-line ART with either ATV/r or EFV, had a baseline biobank sample and a follow-up sample after at least nine months of ART while maintaining initial regimen and being virologically suppressed. Lipoprotein-associated Phospholipase A2 (Lp-PLA2, Myeloperoxidase (MPO and Oxidized LDL (OxLDL were measured in paired samples. Marker values at one year were interpolated from available data. Multiple imputations using chained equations were used to deal with missing values. Change in the OS markers was modelled using multiple linear regressions adjusting for baseline marker values and baseline confounders. Correlations between continuous variables were explored using Pearson's correlation tests. Results: 145 patients (97 EFV; 48 ATV/r were studied. Mean (SD baseline values for OS markers in EFV and ATV/r groups were: Lp-PLA2 [142.2 (72.8 and 150.1 (92.8 ng/mL], MPO [74.3 (48.2 and 93.9 (64.3 µg/L] and OxLDL [76.3 (52.3 and 82.2 (54.4 µg/L]. After adjustment for baseline variables patients on ATV/r had a significant decrease in Lp-PLA2 (estimated difference −16.3 [CI 95%: −31.4, −1.25; p=0.03] and a significantly lower increase in OxLDL (estimated difference −21.8 [−38.0, −5.6; p<0

  20. Differential Expression of Stem Cell Markers in Ocular Surface Squamous Neoplasia.

    Science.gov (United States)

    Mishra, Dilip Kumar; Veena, Uppala; Kaliki, Swathi; Kethiri, Abhinav Reddy; Sangwan, Virender S; Ali, Mohammed Hasnat; Naik, Milind N; Singh, Vivek

    2016-01-01

    Ocular Surface Squamous Neoplasm (OSSN) is the neoplasia arising from the conjunctiva, cornea and limbus. OSSN ranges from mild, moderate, severe dysplasia, carcinoma in situ (CIS) to squamous cell carcinoma (SCC). Recent findings on cancer stem cells theory indicate that population of stem-like cell as in neoplasia determines its heterogeneity and complexity leading to varying tumor development of metastatic behavior and recurrence. Cancer stem cell markers are not much explored in the cases of OSSN. In the present study, we aim to evaluate the expression of stem cells using stem cell markers mainly p63, ABCG2, c-KIT (CD117) and CD44 in OSSN tissue, which could have prognostic significance. The present study tries for the first time to explore expression of these stem markers in the cases of OSSN. These cases are subdivided into two groups. One group comprises of carcinoma in situ (n = 6) and the second group comprises of invasive carcinoma (n = 6). The mean age at presentation was 52 years; with 53 years for CIS group and 52 years for SCC group. From each group section from the paraffin block were taken for the IHC staining of p63, c-Kit, ABCG2 and CD44. Our experiments show high expression of P63 and CD44 in the cases of CIN and SCC. Both CIS and SCC displayed positive staining with p63, with more than 80% cells staining positive. However minimal expression of c-kit in both CIN and SCC. But surprisingly we got high expression of ABCG2 in cases of carcinoma in situ as compared to that of invasive squamous cell carcinoma. More than 50% of cells showed CD44 positivity in both CIS and SCC groups. Our results show for the first time that these four stem cells especially the limbal epithelium stem cells play a vital role in the genesis of OSSN but we need to explore more cases before establishing its clinical and biological significance. PMID:27584160

  1. Differential Expression of Stem Cell Markers in Ocular Surface Squamous Neoplasia

    Science.gov (United States)

    Mishra, Dilip Kumar; Veena, Uppala; Kaliki, Swathi; Kethiri, Abhinav Reddy; Sangwan, Virender S.; Ali, Mohammed Hasnat; Naik, Milind N.; Singh, Vivek

    2016-01-01

    Ocular Surface Squamous Neoplasm (OSSN) is the neoplasia arising from the conjunctiva, cornea and limbus. OSSN ranges from mild, moderate, severe dysplasia, carcinoma in situ (CIS) to squamous cell carcinoma (SCC). Recent findings on cancer stem cells theory indicate that population of stem-like cell as in neoplasia determines its heterogeneity and complexity leading to varying tumor development of metastatic behavior and recurrence. Cancer stem cell markers are not much explored in the cases of OSSN. In the present study, we aim to evaluate the expression of stem cells using stem cell markers mainly p63, ABCG2, c-KIT (CD117) and CD44 in OSSN tissue, which could have prognostic significance. The present study tries for the first time to explore expression of these stem markers in the cases of OSSN. These cases are subdivided into two groups. One group comprises of carcinoma in situ (n = 6) and the second group comprises of invasive carcinoma (n = 6). The mean age at presentation was 52 years; with 53 years for CIS group and 52 years for SCC group. From each group section from the paraffin block were taken for the IHC staining of p63, c-Kit, ABCG2 and CD44. Our experiments show high expression of P63 and CD44 in the cases of CIN and SCC. Both CIS and SCC displayed positive staining with p63, with more than 80% cells staining positive. However minimal expression of c-kit in both CIN and SCC. But surprisingly we got high expression of ABCG2 in cases of carcinoma in situ as compared to that of invasive squamous cell carcinoma. More than 50% of cells showed CD44 positivity in both CIS and SCC groups. Our results show for the first time that these four stem cells especially the limbal epithelium stem cells play a vital role in the genesis of OSSN but we need to explore more cases before establishing its clinical and biological significance. PMID:27584160

  2. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Yingying Wu; Bing Xue; Xiaojin Li; Hongchen Liu

    2012-01-01

    Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabeticperipheral neuropathy.Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity.This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro.Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis.Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine.The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR,while protein expression of cleaved caspase-3 and-9 were analyzed by means of western blotting.Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress,mitochondrial depolarization and apoptosis in a dose-dependent manner.Furthermore,puerarin treatment downregulated Bax expression,upregulated bcl-2 expression and attenuated the activation of caspase-3 and-9.Overall,our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.

  3. Endoplasmic reticulum stress induced by Thapsigargin in vascular smooth muscle cells of rat coronary artery

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yan; DENG Chun-yu; JIANG Li

    2016-01-01

    AIM:To establish the endoplasmic reticulum stress ( ERS) cell model in vascular smooth muscle cells ( VSMCs) of Sprague-Dawley (SD) rats.METHODS:Under sterile condition, the coronary arteries were isolated from SD rats .The primary VSMCs were cultured by tissue-sticking method , and observed the basic morphological characteristics under optical microscope .The marker proteins of VSMCs including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain ( SM-MHC) were identified by immuno-fluorescence technique .VSMCs were treated with thapsigargin (0.5, 1 and 2 μmol/L) for 24 h, and the expression levels of binding immunoglobulin protein (BiP) and C/EBP homologus protein (CHOP), the marker molecules of ERS, were detected using Western blotting.RESULTS:VSMCs climbed out from coronary artery tissues after about six days , and the cells had a nice state and formed the VSMC-like typical "peak valley".The results of immunofluorescence technique show that the marker proteins of VSMCs ,α-SMA and SM-MHC were expressed significantly .The results of Western blotting show that the protein expression levels of BiP and CHOP were increased by thapsigargin in a dose-dependent manner .CONCLUSION:VSMCs can be successfully cultured by tissue-sticking method and built the ERS model induced by thapsigargin .

  4. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  5. Serum Levels of Melatonin and Oxidative Stress Markers and Correlation between Them in Infertile Men

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Rad

    2013-11-01

    Full Text Available Introduction: Infertility is the problem of 15% of young couples in different societies. One of the factors that could affect fertility is oxidative stress. Therefore, the aim of the present study is to investigate the level of Melatonin, a free radical scavenger, and its correlation with oxidative biomarkers in infertile men. Methods:For this purpose, fertile and infertile men in 2 groups, 30 people in each group, were studied. The fertile men were selected from husbands of patients admitted to Alzahra obstetric and gynecology hospital, according to WHO standards. The infertile men were selected from patients referred to infertility ward. Blood sampling from the participants carried out at a specific time, sera collected and the levels of malondialdehyde, total antioxidant capacity and Melatonin were detected in the sera. The data were analyzed using t-test and Sperman's correlation method. Results: Melatonin level in the sera from fertile men were 522 (39.32 ng/L and in infertile men were 511.78 (34.6 ng/L. MDA level in fertile and infertile men were 2.26 (0.34 vs 2.99 (0.44 nmol/ml which was significantly different. The level of TAC in the sera from fertile men were significantly higher than in infertile men. The result obtained for correlation coefficient Spearman's test revealed a significant, strong and direct correlation between Melatonin and TAC and a significant and reverse correlation between melatonin and MDA.Conclusion: It is concluded that melatonin could be involved in infertility. In other word, melatonin treatment and antioxidant-rich nutrition could help fertility by combating oxidative stress.

  6. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress

    Directory of Open Access Journals (Sweden)

    Gholamreza Askari

    2012-01-01

    Full Text Available Background: Athletes use flavonoids as antioxidant to enhance endurance and physical performance. In vitro data indicate flavonoids have antioxidative and antiinflammatory functions but data in human studies are limited. The aim of this study was to determine the effects of a 2-month flavonoid quercetin supplementation on oxidative stress and inflammatory biomarkers in nonprofessional athletes with regular exercise. Materials and Methods: The randomized double-blind clinical trial was done among subjects with systematic and regular exercise for 8 weeks in four groups, each containing 15 individuals: 500 mg quercetin + 250 mg vitamin C as pro-oxidant (Q+C, 500 mg of quercetin alone (Q, 250 mg of vitamin C alone (C, and placebo (Control. IL-6, CRP, E-selectin and F2-isoprostane were measured before and after intervention. Results: In 60 participants with mean (±SD age of 21.0 ± 1.6 years, statistically significant within group differences were observed in IL-6 (P<0.1, CRP (P<0.01 and F2-isoprostane for group 1 and pre- and postchanges in E-selectin was marginally significant for all study groups (P<0.1. Group 1 had marginally smaller F2-isoprostane (P<0.1 and interleukin 6 than control group (P<0.05 and there were marginally differences in CRP between respondents in group 1 and 2 with the control group (P<0.1. Conclusions: Eight-week supplementation with quercein-vitamin C was effective in reducing oxidative stress and reducing inflammatory biomarkers including CRP and IL-6 with little effect on E-selectin in healthy subjects.

  7. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells.

    Science.gov (United States)

    Temelie, Mihaela; Stroe, Daniela; Petcu, Ileana; Mustaciosu, Cosmin; Moisoi, Nicoleta; Savu, Diana

    2016-08-01

    Bystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection. At doses of X-ray radiation 0.5 and 1 Gy, we detected bystander effects as increased numbers of micronuclei shortly after the treatment, through medium transfer and by co-cultures. Interestingly, bystander cells did not exhibit long-term adverse changes in viability. Evaluation of several compartmental stress markers (CHOP, BiP, mtHsp60, cytHsp70) by qRT-PCR did not reveal expression changes at transcriptional level. We investigated the involvement of ROS and NO in this process by addition of specific scavengers of these molecules, DMSO or c-PTIO in the transferred medium. This approach proved that ROS but not NO is involved in the induction of lesions in the acceptor cells. These results indicate that L929 cells are susceptible to stress effects of radiation-induced bystander signaling. PMID:27025606

  8. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress.

    Science.gov (United States)

    Kim, Pyung-Hwan; Na, Sang-Su; Lee, Bomnaerin; Kim, Joo-Hyun; Cho, Je-Yoel

    2015-12-01

    To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.

  9. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  10. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  11. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells.

    Directory of Open Access Journals (Sweden)

    Joanna eŚlusarczyk

    2015-03-01

    Full Text Available Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test, the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive in 3 month old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4 and beneficial (IGF-1, BDNF phenotypes in cultures of microglia obtained from the cortices of 1-2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats.Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.

  12. Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker.

    Directory of Open Access Journals (Sweden)

    Melis Karaca

    Full Text Available BACKGROUND: The mass of pancreatic beta-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous beta-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of beta-cells and investigated their physiological relevance in increased insulin demand conditions in rats. METHODS: Two rat beta-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. beta(high and beta(low-cells. Insulin release, Ca(2+ movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, beta(high and beta(low-cell distribution and functionality were investigated in animal models with decreased or increased beta-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. RESULTS: We show that beta-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike beta(low-cells, beta(high-cells express functional beta-cell markers and are highly responsive to various insulin secretagogues. Whereas beta(low-cells represent the main population in diabetic pancreas, an increase in beta(high-cells is associated with gain of function that follows sustained glucose overload. CONCLUSION: Our data show that a functional heterogeneity of beta-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in beta-cell defects in type 2 diabetes.

  13. Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.

    Science.gov (United States)

    Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B

    1992-11-01

    S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias. PMID:1384316

  14. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    Science.gov (United States)

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  15. Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines.

    Science.gov (United States)

    Teixeira, R C; Baêta, B A; Ferreira, J S; Medeiros, R C; Maya-Monteiro, C M; Lara, F A; Bell-Sakyi, L; Fonseca, A H

    2016-06-20

    This study aimed to describe the association of Borrelia burgdorferi s.s. with ixodid tick cell lines by flow cytometry and fluorescence and confocal microscopy. Spirochetes were stained with a fluorescent membrane marker (PKH67 or PKH26), inoculated into 8 different tick cell lines and incubated at 30°C for 24 h. PKH efficiently stained B. burgdorferi without affecting bacterial viability or motility. Among the tick cell lines tested, the Rhipicephalus appendiculatus cell line RA243 achieved the highest percentage of association/internalization, with both high (90%) and low (10%) concentrations of BSK-H medium in tick cell culture medium. Treatment with cytochalasin D dramatically reduced the average percentage of cells with internalized spirochetes, which passed through a dramatic morphological change during their internalization by the host cell as observed in time-lapse photography. Almost all of the fluorescent bacteria were seen to be inside the tick cells. PKH labeling of borreliae proved to be a reliable and valuable tool to analyze the association of spirochetes with host cells by flow cytometry, confocal and fluorescence microscopy. PMID:27332772

  16. Transmembrane adaptor molecules: a new category of lymphoid-cell markers.

    Science.gov (United States)

    Tedoldi, Sara; Paterson, Jennifer C; Hansmann, Martin-Leo; Natkunam, Yasodha; Rüdiger, Thomas; Angelisova, Pavla; Du, Ming Q; Roberton, Helen; Roncador, Giovanna; Sanchez, Lydia; Pozzobon, Michela; Masir, Noraidah; Barry, Richard; Pileri, Stefano; Mason, David Y; Marafioti, Teresa; Horejsí, Václav

    2006-01-01

    Transmembrane adaptor proteins (of which 7 have been identified so far) are involved in receptor signaling in immune cells. They have only a short extracellular region, with most of the molecule comprising a substantial intracytoplasmic region carrying multiple tyrosine residues that can be phosphorylated by Src- or Syk-family kinases. In this paper, we report an immunohistologic study of 6 of these molecules in normal and neoplastic human tissue sections and show that they are restricted to subpopulations of lymphoid cells, being present in either T cells (LAT, LIME, and TRIM), B cells (NTAL), or subsets of both cell types (PAG and SIT). Their expression in neoplastic lymphoid cells broadly reflects that of normal lymphoid tissue, including the positivity of plasma cells and myeloma/plasmacytoma for LIME, NTAL, PAG, and SIT. However, this study also revealed some reactions that may be of diagnostic/prognostic value. For example, lymphocytic lymphoma and mantle-cell lymphoma showed similar profiles but differed clearly from follicle-center lymphoma, whereas PAG tended to be selectively expressed in germinal center-derived subsets of diffuse large B-cell lymphoma. These molecules represent a potentially important addition to the panel of immunophenotypic markers detectable in routine biopsies that can be used in hematopathologic studies. PMID:16160011

  17. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  18. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    Science.gov (United States)

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  19. From cell to man: Evaluation of osteopontin as a possible bio-marker of uranium exposure

    International Nuclear Information System (INIS)

    Background: Ore workers are conventionally monitored for exposure by measuring the uranium in their urine, but specific bio-markers of kidney damage still remain to be discovered. A recent toxico-genomics study allowed us to focus on osteopontin (OSTP) normally excreted in human urine and linked to mineral metabolism. Objectives: We examined the association between osteopontin and uranium exposure both in vitro, in a human kidney cell model, and in the urine of exposed individuals. Methods: OSTP was measured in supernatants of uranium-exposed HK2 cells to establish a dose-response curve and a time course experiment. Its role was studied through a gene extinction experiment. Uranium and OSTP were then monitored in the urine of exposed nuclear fuel industry workers and a chronically exposed population. These levels were compared with those found in a non-exposed population. Results: The study of HK2 cells indicated that OSTP secretion decreased after uranium exposure in a concentration and time dependent manner, but its suppression does not affect cell sensitivity to uranium. In spite of wide inter-individual variability, this parameter decreases also in human urine when urinary uranium exceeds 30 μg/L after an acute exposure, a value considered to be critical for kidney damage. Conclusion: This study reports how toxico-genomics can highlight putative toxicity bio-markers in an easy to access biological fluid. The decrease of urinary osteopontin in response to uranium exposure suggests kidney damage and would thus be complementary to current markers. (authors)

  20. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  1. Markers of Biological Stress and Mucosal Immunity during a Week Leading to Competition in Adolescent Swimmers

    Directory of Open Access Journals (Sweden)

    E. Papadopoulos

    2014-01-01

    Full Text Available In this study we examined changes in the salivary concentrations of immunoglobulin A (sIgA, cortisol (sC, testosterone (sT, and testosterone-to-cortisol ratio (T/C in 21 competitive swimmers, 11–15 years old, during a week leading to competition as compared to a control (noncompetition week. No day-to-day changes or significant differences between weeks were observed for sIgA (47.9±4.4 versus 54.9±5.2 μg/mL for control versus competition week, resp., sC (2.7±0.2 versus 2.5±0.2 ng/mL for control versus competition week, resp., and T/C ratio (83.4±7.0 versus 77.9±7.7 for control versus competition week, resp.. In contrast, sT was significantly lower during the week of competition (154.5±11.3 pg/mL as compared to the control week (181.3±11.5 pg/mL suggesting that the swimmers were in a catabolic state, although this did not have a negative effect on their performance. In conclusion, salivary cortisol did not change between the two weeks, and thus competition stress was relatively low, and mucosal immunity was unaffected in these young athletes prior to competition.

  2. Thermal stress markers in Colpophyllia natans provide an archive of site-specific bleaching events

    Science.gov (United States)

    Mallela, Jennie; Hetzinger, Steffen; Halfar, Jochen

    2016-03-01

    Tropical coral reef monitoring relies heavily on in situ diver observations. However, in many reef regions resources are not available to regularly monitor reefs. This lack of historical baseline data makes it difficult to determine how different reefs respond to environmental stressors and what the implications are for management. To test whether coral cores could be used to identify bleaching events retrospectively, three sites in Tobago with pre-existing reef data including water quality and bleaching observations were identified. Colpophyllia natans cores were examined for growth anomalies which occurred during periods of thermal stress. If present, anomalies were compared to in situ, real-time bleaching observations and water quality data. Interestingly, sites with better water quality during the 2005 thermal anomaly were less prone to bleaching. We suggest that by reducing terrestrial run-off (e.g., sediment and nutrients), and therefore improving marine water quality, reef managers could enhance near-shore coral reef resilience during high-temperature events.

  3. Identification and characterization of 2 testicular germ cell markers, Glut3 and CyclinA2.

    Science.gov (United States)

    Howitt, Brooke E; Brooks, James D; Jones, Sunita; Higgins, John P T

    2013-10-01

    Testicular germ cell tumors (TGCT) are the most common type of testicular tumor and encompass different histologic types that greatly influence treatment and prognosis. Immunohistochemical studies may be required for accurate classification, particularly when these tumors present at extragonadal sites, and to aid in distinguishing histologic types. Traditional markers for identifying and distinguishing TGCT include PLAP, CD117, AFP, and CD30. More recently, the addition of OCT3/4 and SALL4 has increased sensitivity for immunohistochemical detection of germ cell tumors. We examined gene expression data from a previously published microarray study that compared normal testis mRNA expression to various TGCT. We also performed a search of the literature to identify less well-characterized markers. Glut3 and cyclinA2 showed promise as TGCT markers. Therefore, we evaluated expression of glut3 and cyclinA2 by immunohistochemistry using tissue microarrays (TMAs). Of 66 seminomas included in the TMA, 64 (97%) showed positive nuclear staining for cyclinA2 and 58 (88%) were strongly positive. Strong positive staining for cyclinA2 was also seen in the spermatocytic seminoma. All 20 of the embryonal carcinomas stained positively with cyclinA2, and 19 (95%) displayed strong nuclear staining for cyclinA2. Twenty of the 20 embryonal carcinomas stained for glut3 in a strong membranous pattern. Of 8 yolk sac tumors, 100% stained with glut3. We also evaluated glut3 and cyclinA2 staining on a general TMA containing 486 samples representing 156 different tumors. CyclinA2 stained a number of other tumor types, but the majority of these were weak or focal staining. Glut3 was rarely positive in other tumors; interestingly, most of these were of ovarian origin. We conclude that glut3 is a sensitive (96%) and specific (92%) marker for embryonal carcinomas and yolk sac tumors. Although cyclinA2 is a sensitive marker of seminomas and embryonal carcinomas (98%), its specificity is lower if

  4. Urogenital epithelial cells as simple markers of estrogen response in infants: methods and applications.

    Directory of Open Access Journals (Sweden)

    Margaret A Adgent

    Full Text Available Exposure to estrogen-mimicking chemicals during critical periods of development, such as infancy, may have adverse effects. However, these effects can be difficult to characterize in most epidemiologic studies. For example, growth of reproductive organs may be susceptible to estrogenic chemicals, but measuring it requires skilled ultrasound examination; timing of pubertal onset may be altered, but observing it requires long-term follow up. To address the need for a simple marker of response to estrogenic exposures in infants, we propose a novel application of a classic marker of estrogen response in adult women: cytological evaluation of urogenital epithelial cells. In this cross-sectional study of 34 female and 41 male infants, we demonstrate that epithelial cells can be obtained from swabs of the vaginal introitus (females and urethral meatus (males, as well as from spun urine, and that these cells respond to differential estrogenic conditions, as indicated by the relative abundance of the superficial epithelial cell type. To model varying estrogen exposure, we sampled from infants who were either newborn (highly exposed to maternal estrogens, or 12 weeks old (12 W (negligibly exposed to estrogen. Newborns had a higher percentage of superficial cells (%S, as compared to 12 W (mean ± standard error: 8.3 ± 1.8 vs. 0.9 ± 0.2 (p < 0.01, consistent with an estrogen response. This difference in %S from newborn to 12 W was observed similarly for swab (-7.6 ± 1.7 and urine (-7.3 ± 2.6 specimens and for males (-9.6 ± 2.9 and females (-5.2 ± 2.1. Examination of urogenital epithelial cells can successfully demonstrate estrogen response in both sexes, using cell specimens collected from either swab or urine sampling. In future studies, this simple, non-invasive method may be applied to assess whether estrogen-mimicking chemicals produce an estrogenic response in infants.

  5. Urogenital Epithelial Cells as Simple Markers of Estrogen Response in Infants: Methods and Applications

    Science.gov (United States)

    Adgent, Margaret A.; Flake, Gordon P.; Umbach, David M.; Stallings, Virginia A.; Bernbaum, Judy C.; Rogan, Walter J.

    2013-01-01

    Exposure to estrogen-mimicking chemicals during critical periods of development, such as infancy, may have adverse effects. However, these effects can be difficult to characterize in most epidemiologic studies. For example, growth of reproductive organs may be susceptible to estrogenic chemicals, but measuring it requires skilled ultrasound examination; timing of pubertal onset may be altered, but observing it requires long-term follow up. To address the need for a simple marker of response to estrogenic exposures in infants, we propose a novel application of a classic marker of estrogen response in adult women: cytological evaluation of urogenital epithelial cells. In this cross-sectional study of 34 female and 41 male infants, we demonstrate that epithelial cells can be obtained from swabs of the vaginal introitus (females) and urethral meatus (males), as well as from spun urine, and that these cells respond to differential estrogenic conditions, as indicated by the relative abundance of the superficial epithelial cell type. To model varying estrogen exposure, we sampled from infants who were either newborn (highly exposed to maternal estrogens), or 12 weeks old (12W) (negligibly exposed to estrogen). Newborns had a higher percentage of superficial cells (%S), as compared to 12W (mean ± standard error: 8.3 ± 1.8 vs. 0.9 ± 0.2) (p < 0.01), consistent with an estrogen response. This difference in %S from newborn to 12W was observed similarly for swab (-7.6 ± 1.7) and urine (-7.3 ± 2.6) specimens and for males (-9.6 ± 2.9) and females (-5.2 ± 2.1). Examination of urogenital epithelial cells can successfully demonstrate estrogen response in both sexes, using cell specimens collected from either swab or urine sampling. In future studies, this simple, non-invasive method may be applied to assess whether estrogen-mimicking chemicals produce an estrogenic response in infants. PMID:24146956

  6. Identification of Stage-Specific Surface Markers in Early B Cell Development Provides Novel Tools for Identification of Progenitor Populations.

    Science.gov (United States)

    Jensen, Christina T; Lang, Stefan; Somasundaram, Rajesh; Soneji, Shamit; Sigvardsson, Mikael

    2016-09-01

    Whereas the characterization of B lymphoid progenitors has been facilitated by the identification of lineage- and stage-specific surface markers, the continued identification of differentially expressed proteins increases our capacity to explore normal and malignant B cell development. To identify novel surface markers with stage-specific expression patterns, we explored the reactivity of CD19(+) B cell progenitor cells to Abs targeted to 176 surface proteins. Markers with stage-specific expression were identified using a transgenic reporter gene system subdividing the B cell progenitors into four surface IgM(-) stages. This approach affirmed the utility of known stage-specific markers, as well as identifying additional proteins that selectively marked defined stages of B cell development. Among the stage-specific markers were the cell adhesion proteins CD49E, CD11A, and CD54 that are highly expressed selectively on the most immature progenitors. This work identifies a set of novel stage-specific surface markers that can be used as a complement to the classical staining protocols to explore B lymphocyte development. PMID:27456481

  7. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  8. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment.

    Science.gov (United States)

    Chaudhari, Pooja; Tian, Lipeng; Deshmukh, Abhijeet; Jang, Yoon-Young

    2016-09-01

    Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.

  9. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation.

    Directory of Open Access Journals (Sweden)

    Navjot Shah

    Full Text Available Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays.We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach.Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.

  10. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    International Nuclear Information System (INIS)

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo

  11. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    Science.gov (United States)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Macias, Brandon R.; Hargens, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2016-01-01

    atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.

  12. Image findings and bone metabolic markers of bone involvement by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kameta, Ayako; Tsuchimochi, Makoto; Harada, Mikiko; Katada, Tsutomu; Sasaki, Yoshihiko; Hayama, Kazuhide [Nippon Dental Univ. (Japan). School of Dentistry at Niigata

    2000-01-01

    Recently it has been reported that the circulating pyridinoline cross-linked carboxyl-terminal telopeptide of type I collagen (ICTP) and carboxyl-terminal propeptide of type I procollagen (PICP) are useful markers for detecting metastasis of malignancies to bone. Since ICTP and PICP are related to collagen metabolism, respectively breaking down and synthesizing type I collagen, elevated blood concentrations of these markers may reflect direct jaw bone destruction by oral cancer. The purpose of this study was to clarify the relationship between serum ICTP and PICP levels and bone invasion associated with oral cancer. Bone invasion was evaluated in 41 patients with oral squamous cell carcinoma (SCC) by panoramic radiography and {sup 99m}Tc-methylene diphosphonate (MDP) scintigraphy. We also assayed serum levels of parathyroid hormone-related protein (PTHrP) and compared them with concentrations of bone metabolic markers and imaging findings. There was no significant relationship between serum ICTP and PICP levels and bone invasion. However, in three of the five cases that showed remarkably high serum ICTP levels, {sup 99m}Tc-MDP uptake in the lesion was intensely increased. This suggests that serum ICTP levels may be elevated when bone metabolic changes caused by cancer involving the bone are extensive. We could find no significant correlation among serum levels of ICTP, PICP, and PTHrP. ICTP and PICP do not appear to be good indicators of direct bone invasion by oral SCC in early stages. (author)

  13. Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Sakariassen Per

    2008-02-01

    Full Text Available Abstract Background It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1. The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer. Methods Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues. Results CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival. Conclusion Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was

  14. Stressful Presentations: Mild Chronic Cold Stress in Mice Influences Baseline Properties of Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Kathleen Marie Kokolus

    2014-02-01

    Full Text Available The ability of dendritic cells to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to study immune responses. Physiological stress is well recognized to impair several arms of immune protection. The goals of this report are to briefly summarize previous work revealing how DCs respond to various forms of physiologically relevant stress and to present new data highlighting the potential for chronic mild cold stress inherent in mice housed at standard ambient temperatures required for laboratory mice to influence baseline DCs properties. Since recent data from our group shows that CD8+ T cell function is altered by mild chronic cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether mild cold stress may also be influencing DC properties. We found increased numbers of splenic DCs (CD11c+ in cold stressed mice compared to mice housed at a thermoneutral temperature, which significantly reduces cold stress. However, many of the DCs which are expanded in cold stressed mice express an immature phenotype. We also found that antigen presentation and ability of splenocytes to activate T cells were impaired compared to that seen in DCs isolated from mice at thermoneutrality. The new data presented here strongly suggest that the housing temperature of mice can affect fundamental properties of DC function which in turn could be influencing the response of DCs to added experimental stressors or other treatments.

  15. Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker.

    Directory of Open Access Journals (Sweden)

    Jan M Bruder

    Full Text Available Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1 localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.

  16. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mashima, Hirosato, E-mail: hmashima1-tky@umin.ac.jp [Department of Gastroenterology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan); Ohno, Hideki [Division of Advanced Medical Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamada, Yumi; Sakai, Toshitaka; Ohnishi, Hirohide [Department of Gastroenterology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543 (Japan)

    2013-03-22

    Highlights: ► INSL5 is expressed in enteroendocrine cells along the colorectum. ► INSL5 is expressed increasingly from proximal colon to rectum. ► INSL5 co-localizes rarely with chromogranin A. ► All rectal neuroendocrine tumors examined expressed INSL5. -- Abstract: Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily, and is a potent agonist for RXFP4. We have shown that INSL5 is expressed in enteroendocrine cells (EECs) along the colorectum with a gradient increase toward the rectum. RXFP4 is ubiquitously expressed along the digestive tract. INSL5-positive EECs have little immunoreactivity to chromogranin A (CgA) and might be a unique marker of colorectal EECs. CgA-positive EECs were distributed normally along the colorectum in INSL5 null mice, suggesting that INSL5 is not required for the development of CgA-positive EECs. Exogenous INSL5 did not affect the proliferation of human colon cancer cell lines, and chemically-induced colitis in INSL5 null mice did not show any significant changes in inflammation or mucosal healing compared to wild-type mice. In contrast, all of the rectal neuroendocrine tumors examined co-expressed INSL5 and RXFP4. INSL5 may be a unique marker of colorectal EECs, and INSL5–RXFP4 signaling might play a role in an autocrine/paracrine fashion in the colorectal epithelium and rectal neuroendocrine tumors.

  17. Use of novel serum markers in clinical follow-up of Sertoli-Leydig cell turnours

    OpenAIRE

    Lenhard, Miriam; Kuemper, Caroline; DITSCH, NINA; Diebold, Joachim; Stieber, Petra; Friese, Klaus; Burges, Alexander

    2007-01-01

    Background: Sertoli-Leyclig cell tumours of the ovary account for only 0.2% of malignant ovarian tumours. Two-thirds of all patients become apparent due to the tumour's hormone production. Methods: A 41-year-old patient (gravida 4, para 4) presented with dyspnoea, enlarged abdominal girth and melaena. Diagnostic imaging was suspicious for an ovarian cancer. The standard tumour marker for ovarian cancer (CA 125) was elevated to 984 U/mL. Results: Surgical exploration of the abdomen revealed a ...

  18. Geometric guidance of integrin mediated traction stress during stem cell differentiation.

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2015-11-01

    Cells sense and transduce the chemical and mechanical properties of their microenvironment through cell surface integrin receptors. Traction stress exerted by cells on the extracellular matrix mediates focal adhesion stabilization and regulation of the cytoskeleton for directing biological activity. Understanding how stem cells integrate biomaterials properties through focal adhesions during differentiation is important for the design of soft materials for regenerative medicine. In this paper we use micropatterned hydrogels containing fluorescent beads to explore force transmission through integrins from single mesenchymal stem cells (MSCs) during differentiation. When cultured on polyacrylamide gels, MSCs will express markers associated with osteogenesis and myogenesis in a stiffness dependent manner. The shape of single cells and the composition of tethered matrix protein both influence the magnitude of traction stress applied and the resultant differentiation outcome. We show how geometry guides the spatial positioning of focal adhesions to maximize interaction with the matrix, and uncover a relationship between αvβ3, α5β1 and mechanochemical regulation of osteogenesis. PMID:26285084

  19. Novel Molecular Tumor Cell Markers in Regional Lymph Nodes and Blood Samples from Patients Undergoing Surgery for Non-Small Cell Lung Cancer

    OpenAIRE

    Oddmund Nordgård; Gurpartap Singh; Steinar Solberg; Lars Jørgensen; Ann Rita Halvorsen; Rune Smaaland; Odd Terje Brustugun; Åslaug Helland

    2013-01-01

    INTRODUCTION: Recent evidence suggests that microscopic lymph node metastases and circulating tumor cells may have clinical importance in lung cancer. The purpose of this study was to identify new molecular markers for tumor cells in regional lymph nodes (LNs) and peripheral blood (PB) from patients with non-small cell lung cancer (NSCLC). METHODS: Candidate markers were selected based on digital transcript profiling and previous literature. KRT19, CEACAM5, EPCAM, DSG3, SFTPA, SFTPC and SFTPB...

  20. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    Science.gov (United States)

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  1. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    Science.gov (United States)

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  2. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Antonio Carrasco-Yalan

    2011-04-01

    Full Text Available Mesenchymal stem cells (MSCs are of great interest for their potential use in cellular therapies. To define the population more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker for MSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers for MSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with a Pearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+, CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. The results were significant (p<0.05. The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrow appears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and accelerate the process of identifying MSCs for the field of cellular therapy.

  3. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Edgardo Flores-Torales

    2010-04-01

    Full Text Available Mesenchymal stem cells (MSCs are of great interest for their potential use in cellular therapies. To define thepopulation more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker forMSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers forMSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with aPearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+,CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. Theresults were significant (p<0.05. The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrowappears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and acceleratethe process of identifying MSCs for the field of cellular therapy.

  4. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  5. Day to Day Variability and Reliability of Blood Oxidative Stress Markers within a Four-Week Period in Healthy Young Men

    Directory of Open Access Journals (Sweden)

    A. H. Goldfarb

    2014-01-01

    Full Text Available The present study aimed to determine the day to day variability and reliability of several blood oxidative stress markers at rest in a healthy young cohort over a four-week period. Twelve apparently healthy resistance trained males (24.6 ± 3.0 yrs were tested over 7 visits within 4 weeks with at least 72 hrs between visits at the same time of day. Subjects rested 30 minutes prior to blood being obtained by vacutainer. Results. The highest IntraClass correlations (ICC’s were obtained for protein carbonyls (PC and oxygen radical absorbance capacity (ORAC (PC = 0.785 and ORAC = 0.780. Cronbach’s α reliability score for PC was 0.967 and for ORAC was 0.961. The ICC’s for GSH, GSSG, and the GSSG/TGH ratio ICC were 0.600, 0.573, and 0.570, respectively, with Cronbach’s α being 0.913, 0.904, and 0.903, respectively. Xanthine oxidase ICC was 0.163 and Cronbach’s α was 0.538. Conclusions. PC and ORAC demonstrated good to excellent reliability while glutathione factors had poor to excellent reliability. Xanthine oxidase showed poor reliability and high variability. These results suggest that the PC and ORAC markers were the most stable and reliable oxidative stress markers in blood and that daily changes across visits should be considered when interpreting resting blood oxidative stress markers.

  6. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    Science.gov (United States)

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  7. Serum Oxidative Stress Markers and Lipidomic Profile to Detect NASH Patients Responsive to an Antioxidant Treatment: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Paola Stiuso

    2014-01-01

    Full Text Available Liver steatosis can evolve to steatohepatitis (NASH through a series of biochemical steps related to oxidative stress in hepatocytes. Antioxidants, such as silybin, have been proposed as a treatment of patients with nonalcoholic fatty liver disease (NAFLD and NASH. In this study, we evaluated, in patients with histologically documented NASH, the oxidant/antioxidant status and lipid “fingerprint” in the serum of NASH patients, both in basal conditions and after 12 months of treatment with silybin-based food integrator Realsil (RA. The oxidant/antioxidant status analysis showed the presence of a group of patients with higher basal severity of disease (NAS scores 4.67 ± 2.5 and a second group corresponding to borderline NASH (NAS scores = 3.8 ± 1.5. The chronic treatment with RA changed the NAS score in both groups that reached the statistical significance only in group 2, in which there was also a significant decrease of serum lipid peroxidation. The lipidomic profile showed a lipid composition similar to that of healthy subjects with a restoration of the values of free cholesterol, lysoPC, SM, and PC only in group 2 of patients after treatment with RA. Conclusion. These data suggest that lipidomic and/or oxidative status of serum from patients with NASH could be useful as prognostic markers of response to an antioxidant treatment.

  8. The role of platelet and plasma markers of antioxidant status and oxidative stress in thrombocytopenia among patients with vivax malaria

    Directory of Open Access Journals (Sweden)

    Claudio F Araujo

    2008-09-01

    Full Text Available Malaria remains an important health problem in tropical countries like Brazil. Thrombocytopenia is the most common hematological disturbance seen in malarial infection. Oxidative stress (OS has been implicated as a possible mediator of thrombocytopenia in patients with malaria. This study aimed to investigate the role of OS in the thrombocytopenia of Plasmodium vivax malaria through the measurement of oxidant and antioxidant biochemical markers in plasma and in isolated platelets. Eighty-six patients with P. vivax malaria were enrolled. Blood samples were analyzed for total antioxidant and oxidant status, albumin, total protein, uric acid, zinc, magnesium, bilirubin, total thiols, glutathione peroxidase (GPx, malondialdehyde (MDA, antibodies against mildly oxidized low-density lipoproteins (LDL-/nLDL ratio and nitrite/nitrate levels in blood plasma and GPx and MDA in isolated platelets. Plasma MDA levels were higher in thrombocytopenic (TCP (median 3.47; range 1.55-12.90 µmol/L compared with the non-thrombocytopenic (NTCP patients (median 2.57; range 1.95-8.60 µmol/L. Moreover, the LDL-/nLDL autoantibody ratio was lower in TCP (median 3.0; range 1.5-14.8 than in NTCP patients (median 4.0; range 1.9-35.5. Finally, GPx and MDA were higher in the platelets of TPC patients. These results suggest that oxidative damage of platelets might be important in the pathogenesis of thrombocytopenia found in P. vivax malaria as indicated by alterations of GPx and MDA.

  9. Plasma Markers of Oxidative Stress in Patients with Gestational Diabetes Mellitus in the Second and Third Trimester

    Science.gov (United States)

    Ouyang, Zhenbo

    2016-01-01

    Objective. To determine plasma markers of oxidative stress during the second and third trimester of pregnancy in patients with gestational diabetes mellitus (GDM). Study Design. We conducted a prospective nested case-control study involving 400 pregnant women, 22 of whom developed GDM. As control group, 30 normal pregnant women were chosen randomly. Plasma samples were analyzed for 8-iso-prostaglandin F2α (8-iso-PGF2α), advanced oxidative protein products (AOPPs), protein carbonyl (PCO), glutathione peroxidase-3 (GPX-3), and paraoxonase-1 (PON1) at 16–20 weeks, 24–28 weeks, and 32–36 weeks of gestation. Results. Compared to control subjects, the plasma levels of PCO, AOPPs, and 8-iso-PGF2α were elevated at 16–20 weeks' and 32–36 weeks' gestation in GDM. There was no significant difference in PCO and 8-iso-PGF2α at 24–28 weeks in GDM. GPX-3 was statistically significantly increased at 16–20 weeks and 32–36 weeks in GDM. PON1 reduced in patients with GDM. No significant differences were found at 24–28 and 32–36 weeks between the GDM and control groups. In GDM, PCO, AOPPs, and 8-iso-PGF2α levels were higher and GPX-3 and PON1 levels were lower in the second than the third trimester. Conclusion. Oxidation status increased in GDM, especially protein oxidation, which may contribute to the pathogenesis of GDM. PMID:27803713

  10. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  11. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    OpenAIRE

    Qiuqiang Gao; Liang-Chun Liou; Qun Ren; Xiaoming Bao; Zhaojie Zhang

    2015-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 c...

  12. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  13. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers

    NARCIS (Netherlands)

    Munoz, J.; Stange, D.E.; Schepers, A.G.; van de Wetering, M.; Koo, B.K.; Itzkovitz, S.; Volckmann, R.; Kung, K.S.; Koster, J.; Radulescu, S.; Myant, K.; Versteeg, R.; Sansom, O.J.; van Es, J.H.; Barker, N.; van Oudenaarden, A.; Mohammed, S.; Heck, A.J.R.; Clevers, H.

    2012-01-01

    Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted Lgr5

  14. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency.

    Science.gov (United States)

    Bertolo, Alessandro; Gemperli, Armin; Gruber, Marco; Gantenbein, Benjamin; Baur, Martin; Pötzel, Tobias; Stoyanov, Jivko

    2015-01-01

    Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use. PMID:25473086

  15. Clinical Significance of Immuno phenotypic Markers in Pediatric T-cell Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    Background: Cell-marker profiling has led to conflicting conclusions about its prognostic significance in T-ALL. Aim: To investigate the prevalence of the expression of CD34, CD10 and myeloid associated antigens (CD13/ CD33) in childhood T-ALL and to relate their presence to initial clinical and biologic features and early response to therapy. Patients and Methods: This study included 67 consecutive patients with newly diagnosed T-ALL recruited from the Children's Cancer Hospital in Egypt during the time period from July 2007 to June 2008. Immuno phenotypic markers and minimal residual disease (MRD) were studied by five-color flow cytometry. Results: The frequency of CD34 was 34.9%, CD10 33.3%, while CD13/CD33 was 18.8%. No significant association was encountered between CD34, CD10 or myeloid antigen positivity and the presenting clinical features as age, sex, TLC and CNS leukemia. Only CD10+ expression had significant association with initial CNS involvement (p=0.039). CD34 and CD13/CD33 expression was significantly associated with T-cell maturation stages (p<0.05). No relationship was observed for age, TLC, gender, NCI risk or CNS involvement with early response to therapy illustrated by BM as well as MRD day 15 and day 42. CD34+, CD13/CD33+ and early T-cell stage had high MRD levels on day 15 that was statistically highly significant (p<0.01), but CD10+ had statistically significant lower MRD level on day 15 (p=0.049). However, only CD34 retained its significance at an MRD cut-off level of 0.01%. Conclusion: CD34, CD10, CD13/CD33 expression, as well as T-cell maturation stages, may have prognostic significance in pediatric T-ALL as they have a significant impact on early clearance of leukemic cells detected by MRD day 15.

  16. Transitioning from preclinical to clinical chemopreventive assessments of lyophilized black raspberries: interim results show berries modulate markers of oxidative stress in Barrett's esophagus patients.

    Science.gov (United States)

    Kresty, Laura A; Frankel, Wendy L; Hammond, Cynthia D; Baird, Maureen E; Mele, Jennifer M; Stoner, Gary D; Fromkes, John J

    2006-01-01

    Increased fruit and vegetable consumption is associated with decreased risk of a number of cancers of epithelial origin, including esophageal cancer. Dietary administration of lyophilized black raspberries (LBRs) has significantly inhibited chemically induced oral, esophageal, and colon carcinogenesis in animal models. Likewise, berry extracts added to cell cultures significantly inhibited cancer-associated processes. Positive results in preclinical studies have supported further investigation of berries and berry extracts in high-risk human cohorts, including patients with existing premalignancy or patients at risk for cancer recurrence. We are currently conducting a 6-mo chemopreventive pilot study administering 32 or 45 g (female and male, respectively) of LBRs to patients with Barrett's esophagus (BE), a premalignant esophageal condition in which the normal stratified squamous epithelium changes to a metaplastic columnar-lined epithelium. BE's importance lies in the fact that it confers a 30- to 40-fold increased risk for the development of esophageal adenocarcinoma, a rapidly increasing and extremely deadly malignancy. This is a report on interim findings from 10 patients. To date, the results support that daily consumption of LBRs promotes reductions in the urinary excretion of two markers of oxidative stress, 8-epi-prostaglandin F2alpha (8-Iso-PGF2) and, to a lesser more-variable extent, 8-hydroxy-2'-deoxyguanosine (8-OHdG), among patients with BE.

  17. Melamine-cyanurate complexes and oxidative stress markers in trout kidney following melamine and cyanuric acid long-term co-exposure and withdrawal.

    Science.gov (United States)

    Pacini, Nicole; Dörr, Ambrosius Josef Martin; Elia, Antonia Concetta; Scoparo, Melissa; Abete, Maria Cesarina; Prearo, Marino

    2014-10-01

    In 2007, renal failure and death in pets were linked to pet food containing both melamine (MEL) and cyanuric acid (CYA). In mammals and fish, the co-administration of MEL and CYA causes renal crystal formation. Moreover, little is known about the process of crystal removal in fish. The aim of this study was to evaluate the formation of MEL-cyanurate crystals in kidney of rainbow trout (Oncorhynchus mykiss) fed combined MEL and CYA diets for 10 weeks at 250, 500 and 1,000 mg/kg in feed (equivalent to 2.5, 5, 10 mg/kg body weight of trout fed 1 % body weight per day). During the exposure trial and throughout a withdrawal period, prooxidant effects of MEL and CYA were evaluated on oxidative stress markers such as catalase, glutathione S-transferase and malondialdehyde. Crystal formation was dose and time dependent, and after six withdrawal weeks, crystals persisted in kidney of trout treated the highest triazine dose. Catalase and glutathione S-transferase activity in kidney of trout exposed to both triazines for 10 weeks indicated that MEL (with or without CYA) can exert a higher prooxidant effect than CYA dispensed singly. Although the enzymes activity increase appears to be reverted after two MEL withdrawal weeks, persistence of crystals may lead to severe damage in renal cells of fish. PMID:24952615

  18. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    Directory of Open Access Journals (Sweden)

    F. Mercati

    2009-09-01

    Full Text Available The dermal sheath (DS of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle. As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres. The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.

  19. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    Science.gov (United States)

    Mercati, F.; Pascucci, L.; Ceccarelli, P.; Dall’Aglio, C.; Pedini, V.; Gargiulo, A.M.

    2009-01-01

    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle. As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres.The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.

  20. Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?

    Institute of Scientific and Technical Information of China (English)

    Heli Suila; Jari Natunen; Saara Laitinen; Leena Valmu; Virve Pitk(a)nen; Tia Hirvonen; Annamari Heiskanen; Heidi Anderson; Anita Laitinen; Suvi Natunen; Halina Miller-Podraza; Tero Satomaa

    2011-01-01

    Umbilical cord blood (UCB) is an efficient and valuable source of hematopoietic stem cells (HSCs) for transplantation. In addition to HSCs it harbours low amounts of mesenchymal stem cells (MSCs). No single marker to identify cord blood-derived stem cells, or to indicate their multipotent phenotype, has been characterized so far. SSEA-3 and -4 are cell surface globoseries glycosphingolipid epitopes that are commonly used as markers for human embryonic stem cells, where SSEA-3 rapidly disappears when the cells start to differentiate. Lately SSEA-3 and -4 have also been observed in MSCs. As there is an ongoing discussion and variation of stem-cell markers between laboratories, we have now comprehensively characterized the expression of these epitopes in both the multipotent stem-cell types derived from UCB. We have performed complementary analysis using gene expression analysis, mass spectrometry and immunochemical methods, including both flow cytometry and immunofluoresence microscopy. SSEA-4, but not SSEA-3, was expressed on MSCs but absent from HSCs. Our findings indicate that SSEA-3 and/or -4 may not be optimal markers for multipotency in the case of stem cells derived from cord blood, as their expression may be altered by cell-culture conditions.

  1. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  2. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans.

    Directory of Open Access Journals (Sweden)

    Dorit Samocha-Bonet

    Full Text Available BACKGROUND: Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered. METHODOLOGY AND PRINCIPAL FINDINGS: Forty (37 ± 2 y non-obese (25.6 ± 0.6 kg/m(2 sedentary men (n = 20 and women (n = 20 were overfed (+1040 ± 100 kcal/day, 46 ± 1% of energy from fat for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6 ± 0.1 and 2.7 ± 0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8 ± 2.8 at baseline to 50.3 ± 2.5 µmol/min/kg FFM at day 28 of overfeeding (P = 0.03 without a significant difference between men and women (P = 0.4. Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P<0.05. Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05 and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO(2 production at either time point. CONCLUSIONS: Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.

  3. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Kristine R. Jakobsen

    2015-03-01

    Full Text Available Background: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesicles displaying various proteins on their membrane surfaces. In addition, they are readily available in blood samples where they constitute potential biomarkers of human diseases, such as cancer. Here, we examine the potential of distinguishing non-small cell lung carcinoma (NSCLC patients from control subjects based on the differential display of exosomal protein markers. Methods: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa–IV disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array (EV Array was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. Results: The EV Array analysis was capable of detecting and phenotyping exosomes in all samples from only 10 µL of unpurified plasma. Multivariate analysis using the Random Forests method produced a combined 30-marker model separating the two patient groups with an area under the curve of 0.83, CI: 0.77–0.90. The 30-marker model has a sensitivity of 0.75 and a specificity of 0.76, and it classifies patients with 75.3% accuracy. Conclusion: The EV Array technique is a simple, minimal-invasive tool with potential to identify lung cancer patients.

  4. Effects of hypoxia on expression of a panel of stem cell and chemosensitivity markers in glioblastoma cell line-derived spheroids

    DEFF Research Database (Denmark)

    Kolenda, Jesper; Jensen, Stine Skov; Aaberg-Jessen, Charlotte;

    immunohistochemical panel included hypoxia (HIF-1α, HIF-2α), proliferation (Ki-67) and stem cell (CD133, nestin, podoplanin, Bmi-1, Sox-2) markers as well as markers related to chemosensitivity (MGMT, MDR-1, TIMP-1, Lamp-1). Since spheroids derived in hypoxia were smaller than in normoxia, a set of experiments...

  5. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells.

    Directory of Open Access Journals (Sweden)

    Shukkur M Farooq

    Full Text Available Oxalate toxicity is mediated through generation of reactive oxygen species (ROS via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL, an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO. The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2. Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.

  6. Hyperglycemic Stress Impairs the Stemness Capacity of Kidney Stem Cells in Rats.

    Directory of Open Access Journals (Sweden)

    Guang Yang

    Full Text Available The incidence of acute kidney injury in patients with diabetes is significantly higher than that of patients without diabetes, and may be associated with the poor stemness capacity of kidney stem cells (KSCs and limited recovery of injured renal tubules. To investigate the effects of hyperglycemic stress on KSC stemness, KSCs were isolated from the rat renal papilla and analyzed for their self-renewal and differentiation abilities. Our results showed that isolated KSCs expressed the mesenchymal stem cell markers N-cadherin, Nestin, CD133, CD29, CD90, and CD73. Moreover, KSCs co-cultured with hypoxia-injured renal tubular epithelial cell (RTECs induced the expression of the mature epithelial cell marker CK18, suggesting that the KSCs could differentiate into RTECs in vitro. However, KSC proliferation, differentiation ability and tolerance to hypoxia were decreased in high-glucose cultures. Taken together, these results suggest the high-glucose microenvironment can damage the reparative ability of KSCs. It may result in a decreased of recovery capability of renal tubules from injury.

  7. Circulating Tumor Cells in Metastatic Breast Cancer: A Prognostic and Predictive Marker

    Directory of Open Access Journals (Sweden)

    Sayyed Farshid Moussavi-Harami

    2014-05-01

    Full Text Available The role of circulating tumor cells (CTCs as a marker for disease progression in metastatic cancer is controversial. The current review will serve to summarize the evidence on CTCs as a marker of disease progression in patients with metastatic breast cancer. The immunohistochemistry (IHC-based CellSearch® is the only FDA-approved isolation technique for quantifying CTCs in patients with metastatic breast cancer. We searched PubMed and Web of Knowledge for clinical studies that assessed the prognostic and predictive value of CTCs using IHC-based isolation. The patient outcomes reported include median and Cox-proportional hazard ratios for overall survival (OS and progression-free survival (PFS. All studies reported shorter OS for CTC-positive patients versus CTC-negative. A subset of the selected trials reported significant lower median PFS for CTC-positive patients. The reported trials support the utility of CTC enumeration for patient prognosis. But further studies are required to determine the utility of CTC enumeration for guiding patient therapy. There are three clinical trials ongoing to test this hypothesis. These studies, and others, will further establish the role of CTCs in clinical practice.

  8. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma

    Science.gov (United States)

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-01-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients. PMID:27599779

  9. What is the clinical value of cancer stem cell markers in gliomas?

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hansen, Steinbjørn;

    2013-01-01

    . This review summarizes current reports on putative glioma CSC markers and reviews the prognostic value of the individual immunohistochemical markers reported in the literature. Using the Pubmed database, twenty-seven CSC studies looking at membrane markers (CD133, podoplanin, CD15, and A2B5), filament markers...

  10. CDH1, a Novel Surface Marker of Spermatogonial Stem Cells in Sheep Testis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; WU Sachula; LUO Fen-hua; Baiyinbatu; LIU Lin-hong; HU Tian-yuan; YU Bo-yang; LI Guang-peng; WU Ying-ji

    2014-01-01

    Spermatogonial stem cells (SSCs) are unique stem cells in adult body that can transmit genetic information to the next generation. They have self-renewal potential and can continuously support spermatogenesis throughout life of a male animal. However, the SSC population is extremely small, isolation and puriifcation of the SSCs is challenging, especially for livestock animals. It has been conifrmed that CDH1 (cadherin-1, also known as E-cadherin) can be expressed in undifferentiated SSCs of mouse and rats, but it has not been veriifed in sheep. Here, CDH1 was found as a novel surface marker for sheep SSCs. In this paper, sheep anti-CDH1 polyclonal antibodies were prepared and its activity was checked. Using the obtained antibodies and immunohistochemistry analysis, we conifrmed that CDH1 can be expressed by SSCs in sheep testis.

  11. Origin of Ameloblastoma From Basal Cells of the Oral Epithelium- Establishing the Relation Using Neuroectodermal Markers

    Science.gov (United States)

    Suneela, S; Narayan, T V; Shreedhar, Balasundari; Mohanty, Leeky; Shenoy, Sadhana; Swaminathan, Uma

    2014-01-01

    Background and Objectives: Basal cell layer of the oral epithelium has been rightfully regarded as a potential source of odontogenic tumours and cysts, but, without substantial evidence. Also, whether the basal cell layer retains within it, some properties of ectomesenchyme, which was imbibed during the early embryogenesis and hence its neuroectodermal relation, is not known. Here, an attempt is made to establish the hidden neuroectodermal potential of the oral epithelium, especially the basal layer, by observing the expression of known neuroectodermal markers, NSE (Neuron Specific Enolase), Synaptophysin and CD99. The expression of the same markers has also been studied in Ameloblastoma, connecting it with oral epithelium, in turn establishing basal cell layer as a potential source of Ameloblastoma. Materials and Methods: Sections of formalin fixed, paraffin embedded tissue samples of 20 cases of Ameloblastoma and 10 cases of Normal Retromolar mucosa, were stained immunohistochemically with NSE, Synaptophysin, CD99 and also with CK-19 and evaluated for positive expression. Results: Positive reaction was obtained in all the cases of Ameloblastoma and NRM (Normal Retromolar mucosa) with NSE, all the cases of Ameloblastoma and eight cases of NRM with Synaptophysin and in six cases of Ameloblastoma and NRM with CD99. The staining was diffuse and more marked in case of NSE than Synaptophysin and CD99. CK19 staining done to assure that the tissue antigenicity was maintained was positive in all the samples. Interpretation and Conclusion: A strong relationship between the neuroectoderm, Ameloblastoma and the basal layer of the oral epithelium is established by the study. It favours the hypothesis that the basal cell layer of oral mucosa may be the sought out culprit in most cases of the Ameloblastomas, especially those occurring in the non-tooth bearing area. This would call for the need to incorporate additional therapy in the form of mucosal striping along with the

  12. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  13. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;

    2011-01-01

    of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  14. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  15. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    NARCIS (Netherlands)

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  16. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  17. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  18. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  19. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus Ustilago maydis.

    Science.gov (United States)

    Valinluck, Michael; Woraratanadharm, Tad; Lu, Ching-yu; Quintanilla, Rene H; Banuett, Flora

    2014-05-01

    Positional cues localized to distinct cell domains are critical for the generation of cell polarity and cell morphogenesis. These cues lead to assembly of protein complexes that organize the cytoskeleton resulting in delivery of vesicles to sites of polarized growth. Tea4, an SH3 domain protein, was first identified in fission yeast, and is a critical determinant of the axis of polarized growth, a role conserved among ascomycete fungi. Ustilago maydis is a badiomycete fungus that exhibits a yeast-like form that is nonpathogenic and a filamentous form that is pathogenic on maize and teozintle. We are interested in understanding how positional cues contribute to generation and maintenance of these two forms, and their role in pathogenicity. We identified a homologue of fission yeast tea4 in a genetic screen for mutants with altered colony and cell morphology and present here analysis of Tea4 for the first time in a basidiomycete fungus. We demonstrate that Tea4 is an important positional marker for polarized growth and septum location in both forms. We uncover roles for Tea4 in maintenance of cell and neck width, cell separation, and cell wall deposition in the yeast-like form, and in growth rate, formation of retraction septa, growth reversal, and inhibition of budding in the filamentous form. We show that Tea4::GFP localizes to sites of polarized or potential polarized growth in both forms, as observed in ascomycete fungi. We demonstrate an essential role of Tea4 in pathogencity in the absence of cell fusion. Basidiomycete and ascomycete Tea4 homologues share SH3 and Glc7 domains. Tea4 in basidiomycetes has additional domains, which has led us to hypothesize that Tea4 has novel functions in this group of fungi.

  20. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo)radiation : a systematic review

    NARCIS (Netherlands)

    Noordhuis, Maartje G; Eijsink, Jasper J H; Roossink, Frank; de Graeff, Pauline; Pras, Elisabeth; Schuuring, Ed; Wisman, G Bea A; de Bock, Geertruida H; van der Zee, Ate G J

    2011-01-01

    The aim of this study was to systematically review the prognostic and predictive significance of cell biological markers in cervical cancer patients primarily treated with (chemo)radiation. A PubMed, Embase, and Cochrane literature search was performed. Studies describing a relation between a cell b

  1. Human Blood and Mucosal Regulatory T Cells Express Activation Markers and Inhibitory Receptors in Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    James D Lord

    Full Text Available FOXP3+ regulatory T cells (Tregs are critical for preventing intestinal inflammation. However, FOXP3+ T cells are paradoxically increased in the intestines of patients with the inflammatory bowel disease (IBD ulcerative colitis (UC or Crohn's disease (CD. We determined whether these FOXP3+ cells in IBD patients share or lack the phenotype of such cells from patients without IBD.We quantified and characterized FOXP3+ Treg populations, as well as FOXP3- CD4+ T cells, in the lamina propria lymphocytes (LPL of intestine surgically resected from patients with and without IBD, and in the blood of controls or Crohn's patients with or without disease activity.In all samples, a similar fraction of FOXP3+ cells expressed the "natural" Treg (nTreg marker Helios, suggesting that, in IBD, these cells are not entirely "induced" Tregs (iTregs derived from activated effector T cells. Helios+ and Helios- FOXP3+ T cells demonstrated similar expression of maturation markers, activation markers, and inhibitory molecules between IBD patients and controls, while FOXP3- cells paradoxically expressed more of the inhibitory receptors CD39, CTLA4, and PD-1 in inflamed mucosa. Greater expression of activation markers was also seen in both Helios+ and Helios- Tregs, relative to FOXP3- cells, in both IBD patients and controls, indicating that Tregs are effectively activated by antigen in IBD.Extensive immunophenotyping revealed that Helios+ and Helios- mucosal Tregs exist at a similar frequency, and have a similar expression of inhibitory molecules and activation markers in patients with IBD as in healthy controls.

  2. BSND and ATP6V1G3: Novel Immunohistochemical Markers for Chromophobe Renal Cell Carcinoma

    Science.gov (United States)

    Shinmura, Kazuya; Igarashi, Hisaki; Kato, Hisami; Koda, Kenji; Ogawa, Hiroshi; Takahashi, Seishiro; Otsuki, Yoshiro; Yoneda, Tatsuaki; Kawanishi, Yuichi; Funai, Kazuhito; Takayama, Tatsuya; Ozono, Seiichiro; Sugimura, Haruhiko

    2015-01-01

    Abstract Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequent immunohistochemical examination of 186 RCCs obtained in our patient series resulted in a strong diffuse positivity of BSND and ATP6V1G3 proteins (both of which are involved in the regulation of membrane transport) in all the chromophobe RCC specimens (23/23 cases, 100%) but not in the clear cell RCC specimens (0/153 cases, 0%) or the papillary RCC specimens (0/10 cases, 0%). BSND and ATP6V1G3 protein expressions were also detected in renal oncocytoma (13/14 cases, 92.9%) and in the distal nephron, including the collecting duct, in the normal kidney. A computational analysis of TCGA data suggested that DNA methylation was involved in the differential expression pattern of both genes among RCC subtypes. Finally, an immunohistochemical analysis showed lung carcinomas were negative (0/85 cases, 0%) for the expression of both proteins. These results suggest that BSND and ATP6V1G3 are excellent novel immunohistochemical markers for differentiating between chromophobe RCC and other subtypes of RCC, including clear cell and papillary RCCs.

  3. BSND and ATP6V1G3: Novel Immunohistochemical Markers for Chromophobe Renal Cell Carcinoma.

    Science.gov (United States)

    Shinmura, Kazuya; Igarashi, Hisaki; Kato, Hisami; Koda, Kenji; Ogawa, Hiroshi; Takahashi, Seishiro; Otsuki, Yoshiro; Yoneda, Tatsuaki; Kawanishi, Yuichi; Funai, Kazuhito; Takayama, Tatsuya; Ozono, Seiichiro; Sugimura, Haruhiko

    2015-06-01

    Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequent immunohistochemical examination of 186 RCCs obtained in our patient series resulted in a strong diffuse positivity of BSND and ATP6V1G3 proteins (both of which are involved in the regulation of membrane transport) in all the chromophobe RCC specimens (23/23 cases, 100%) but not in the clear cell RCC specimens (0/153 cases, 0%) or the papillary RCC specimens (0/10 cases, 0%). BSND and ATP6V1G3 protein expressions were also detected in renal oncocytoma (13/14 cases, 92.9%) and in the distal nephron, including the collecting duct, in the normal kidney. A computational analysis of TCGA data suggested that DNA methylation was involved in the differential expression pattern of both genes among RCC subtypes. Finally, an immunohistochemical analysis showed lung carcinomas were negative (0/85 cases, 0%) for the expression of both proteins. These results suggest that BSND and ATP6V1G3 are excellent novel immunohistochemical markers for differentiating between chromophobe RCC and other subtypes of RCC, including clear cell and papillary RCCs. PMID:26091477

  4. Sox9 Modulates Proliferation and Expression of Osteogenic Markers of Adipose-Derived Stem Cells (ASC

    Directory of Open Access Journals (Sweden)

    Sabine Stöckl

    2013-05-01

    Full Text Available Background: Mesenchymal stem cells (MSC are promising tools for tissue-engineering and musculoskeletal regeneration. They reside within various tissues, like adipose tissue, periosteum, synovia, muscle, dermis, blood and bone marrow, latter being the most common tissue used for MSC isolation. A promising alternative source for MSC is adipose tissue due to better availability and higher yield of MSC in comparison to bone marrow. A drawback is the yet fragmentary knowledge of adipose-derived stem cell (ASC physiology in order to make them a safe tool for in vivo application. Methods/Results: Here, we identified Sox9 as a highly expressed and crucial transcription factor in undifferentiated rat ASC (rASC. In comparison to rat bone marrow-derived stem cells (rBMSC, mRNA and protein levels of Sox9 were significantly higher in rASC. To study the role of Sox9 in detail, we silenced Sox9 with shRNA in rASC and examined proliferation, apoptosis and the expression of osteogenic differentiation markers. Our results clearly point to a difference in the expression profile of osteogenic marker genes between undifferentiated rASC and rBMSC in early passages. Sox9 silencing induced the expression of osteocalcin, Vegfα and Mmp13, and decreased rASC proliferation accompanied with an induction of p21 and cyclin D1 expression and delayed S-phase entry. Conclusions: We suggest a pro-proliferative role for Sox9 in undifferentiated rASC which may explain the higher proliferation rate of rASC compared to rBMSC. Moreover, we propose an osteogenic differentiation delaying role of Sox9 in rASC which suggests that Sox9 expression is needed to maintain rASC in an undifferentiated, proliferative state.

  5. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs).

    Science.gov (United States)

    Maestri, E; Malcevschi, A; Massari, A; Marmiroli, N

    2002-04-01

    Three types of molecular markers have been compared for their utility in evaluating genetic diversity among cultivars of Hordeum vulgare. Restriction fragment length polymorphisms at 71 sites were scored with the aid of probes corresponding to stress-responsive genes from barley and wheat, coding for a low-molecular-weight heat shock protein, a dehydrin, an aldose reductase homolog, and a 18.9-kDa drought-induced protein of unknown function. Indexes of genetic diversity computed in the total sample and within groups of cultivars (two-rowed and six-rowed, winter and spring varieties) indicated high values of genetic differentiation ( F (ST) >15%). A second assessment of genetic diversity was performed by PCR amplification of genomic DNA using as primers 13 arbitrary oligonucleotides derived from sequences of the same stress-responsive genes. A high degree of polymorphism was uncovered using these markers also, but they yielded low values for F (ST) (genetic distance among cultivars demonstrated a remarkable ability of the RFLPs associated with stress-responsive genes to discriminate on the basis of growth habit. The correlation with production data for the cultivars in different environments was also significant. This "functional genomics" strategy was therefore as informative as the "structural genomics" (SSR-based) approach, but requires the analysis of fewer probes. PMID:11976962

  6. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance

    Directory of Open Access Journals (Sweden)

    El Mesallamy Hala O

    2010-06-01

    Full Text Available Abstract Background High intake of dietary fructose is accused of being responsible for the development of the insulin resistance (IR syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Methods Oral glucose tolerance tests (OGTT were carried out, homeostasis model assessment of insulin resistance (HOMA was calculated, homocysteine (Hcy, lipid concentrations and markers of oxidative stress were measured in male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose diet (HFD, and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p. route for 35 days. Results Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy, lower total antioxidant capacity (TAC, lower paraoxonase (PON activity, and higher nitric oxide metabolites (NOx concentration, when compared to rats fed on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, triglycerides (TGs by 22.5%, total cholesterol (T-Chol by 11%, and low density lipoprotein cholesterol (LDL-C by 21.4%. Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed HHcy in the current dosage and duration. Conclusion Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS, and that taurine has a protective role against

  7. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  8. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  9. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  10. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial

    OpenAIRE

    Yu V Pankratova

    2012-01-01

    Реферат по статье: Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial Alireza Esteghamati, Delaram Eskandari, Hossein Mirmiranpour, Sina Noshad, Mostafa Mousavizadeh, Mehdi Hedayati, Manouchehr Nakhjavan//Clinical Nutrition xxx (2012) 1-7 Tehran, Iran

  11. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  12. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  13. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43- symmetric stretch vibrations at 959 cm-1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.

  14. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.

    Science.gov (United States)

    Billing, Anja M; Ben Hamidane, Hisham; Dib, Shaima S; Cotton, Richard J; Bhagwat, Aditya M; Kumar, Pankaj; Hayat, Shahina; Yousri, Noha A; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2016-01-01

    Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC. PMID:26857143

  15. Comparative evaluation of cancer stem cell markers in normal pancreas and pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Vizio, Barbara; Mauri, Francesco A; Prati, Adriana; Trivedi, Pritesh; Giacobino, Alice; Novarino, Anna; Satolli, Maria Antonietta; Ciuffreda, Libero; Camandona, Michele; Gasparri, Guido; Bellone, Graziella

    2012-01-01

    Chemoresistance and self-renewal of cancer stem cells (CSC), found in many tumors including pancreatic ductal adenocarcinoma (PDAC), are believed to underlie tumor mass regrowth. The distribution of cells carrying the putative stem-cell markers CD133, Nestin, Notch1-4, Jagged1 and 2, ABCG2 and aldehyde dehydrogenase (ALDH1) was assessed immunohistochemically using PDAC and normal pancreas tissue microarrays. The immunoreactivity was semi-quantitatively graded against the normal pancreas and was correlated with the differentiation grade and disease stage. No statistical significant differences were found between normal pancreas and PDAC in the expression of Nestin, Notch1, 3 and 4, ABCG2 or ALDH1. Notch2 and Jagged1 and 2 expression were increased in PDAC. CD133-positive cells were above-normal in PDAC, but the difference was not statistically significant. Nestin, Notch1-4, Jagged1, ABCG2 and ALDH1 immunostaining scores were not correlated with tumor grade or disease stage. CD133 and Notch2 expression was significantly inversely correlated with tumor grade, but not disease stage. Notch3 immunostaining positively correlated with tumor stage, but not with differentiation grade. Jagged2 protein expression correlated inversely with disease stage, but not with tumor grade. From the clinical standpoint, improved delineation of the tumor CSC signature, putatively responsible for tumor initiation and recurrence after initial response to chemotherapy, may offer novel therapeutic targets for this highly lethal cancer.

  16. GENETIC ALTERRATIONS OF MICROSATELLITE MARKERS AT CHROMOSOME 17 IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    GUO; Xue-jun

    2001-01-01

    [1]Froudarakis ME, Bouros D, Spandidos DA, et al. Microsatellite instability and loss of heterozygosity at chromosomes 17 in non-small cell lung cancer [J]. Chest 1998; 113:1091.[2]Fong KM, Zimmerman PV, Smith PJ. Microsatellite instability and other molecular abnormalities in non-small cell lung cancer [J]. Cancer Res 1994; 54:2098.[3]Mountain CF. A new international staging system for lung cancer [J]. Chest 1986; 89(suppl):225.[4]Shridhar V, Siegfried J, Hunt J, et al. Genetic instability of microsatellite sequences in many non-small cell lung carcinomas [J]. Cancer Res 1994; 54:2084.[5]Loeb LA. Microsatellite instability: Marker of a mutator phenotype in cancer [J]. Cancer Res 1994; 54:5059.[6]Sanchez CM, Monzo M, Rosell R, et al. Detection of chromosome 3p alterations in serum DNA of non-small cell lung cancer patients [J]. Ann Oncol 1989; 113.

  17. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  18. Human breast cancer cell lines co-express neuronal, epithelial, and melanocytic differentiation markers in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Qingbei Zhang

    Full Text Available Differentiation programs are aberrant in cancer cells allowing them to express differentiation markers in addition to their tissue of origin. In the present study, we demonstrate the multi-lineage differentiation potential of breast cancer cell lines to express multiple neuronal/glial lineage-specific markers as well as mammary epithelial and melanocytic-specific markers. Multilineage expression was detected in luminal (MCF-7 and SKBR3 and basal (MDA-MB-231 types of human breast cancer cell lines. We also observed comparable co-expression of these three cell lineage markers in MDA-MB-435 cells in vitro, in MDA-MB-435 primary tumors derived from parental and single cell clones and in lung metastases in vivo. Furthermore, ectoderm multi-lineage transdifferentiation was also found in human melanoma (Ul-MeL and glioblastoma cell lines (U87 and D54. These observations indicate that aberrant multi-lineage transdifferentiation or lineage infidelity may be a wide spread phenomenon in cancer.

  19. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress

    Science.gov (United States)

    Wang, Chen; Zhang, Feng; Cao, Yu; Zhang, Mingming; Wang, Aixiu; Xu, Mingcui; Su, Min; Zhang, Ming; Zhuge, Yuzheng

    2016-01-01

    The activation of hepatic stellate cells (HSCs) plays a vital role in the progression of liver fibrosis, and the induction of HSCs apoptosis may attenuate or reverse fibrogenesis. The therapeutic effects of etoposide(VP-16), a widely used anticancer agent, on HSCs apoptosis and liver fibrosis resolution are still unclear. Here, we report that VP-16 reduced the proliferation of LX-2 cells and led to significantly high levels of apoptosis, as indicated by Annexin V staining and the proteolytic cleavage of the executioner caspase-3 and PARP. Additionally, the unfolded protein response regulators CHOP, BIP, caspase-12, p-eIF2α and IRE1α, which are considered endoplasmic reticulum (ER) stress markers, were upregulated by VP-16. The strong inhibitory effect of VP-16 on LX-2 cells was mainly dependent on ER stress, which activated JNK signaling pathway. Remarkably, VP-16 treatment decreased the expression of α-SMA and type I collagen and simultaneously increased the ratio of matrix metalloproteinases (MMPs) to tissue inhibitor of matrix metalloproteinases (TIMPs). In contrast, VP-16 induced significantly more apoptosis in HSCs than in normal hepatocytes. Taken together, our findings demonstrate that VP-16 exerts a proapoptotic effect on LX-2 cells and has an antifibrogenic effect on collagen deposition, suggesting a new strategy for the treatment of liver fibrosis. PMID:27680712

  20. Quantification of cells expressing markers of proliferation and apoptosis in chronic tonsilitis.

    Science.gov (United States)

    Avramović, V; Petrović, V; Jović, M; Vlahović, P

    2015-10-01

    During chronic tonsillitis, the relationship between proliferation and apoptosis of lymphocytes in tonsillar follicles can be disturbed, which gives rise to attenuation of tonsil immunocompetence and diminishing its contribution in systemic immunity. In this study, we have quantified the cells expressing the markers of proliferation and apoptosis in the follicles of the palatine tonsil. Six tonsils from patients aged 10-29 years with hypertrophic tonsillitis and five tonsils from patients aged 18-22 years with recurrent tonsillitis were studied. The sections of paraffin blocks of tonsillar tissue were stained by the immunohistochemical LSAB/HRP method with the utilisation of antibodies for: Ki-67 antigen-cell marker of proliferation; Bcl-2 and survivin anti-apoptotic factors and Fas/CD95, caspase-3 and Bax pro-apoptotic factors. The size of lymphoid follicles, i.e. mean follicle area and number of lymphoid follicle immunopositive cells per mm2 of a slice area, i.e. numerical areal density were determined by the quantitative image analysis. The localisation of Ki-67, Bcl-2, survivin, Fas/CD95, caspase-3 and Bax- immunopositive cells inside the palatine tonsil was similar in both types of tonsillitis. The number of Ki-67 immunopositive cells was significantly (p tonsils with hypertrophic tonsillitis (14681.4 ± 1460.5) in comparison to those with recurrent tonsillitis (12491.4 ± 2321.6), although the number of survivin and caspase-3 immunopositive cells was significantly (p tonsillitis (survivin, 406.9 ± 98.4; caspase-3, 350.4 ± 119.4) when compared to those with hypertrophic tonsillitis (survivin, 117.4 ± 14.5; caspase-3, 210 ± 24). Our results show that the rate of the proliferation and apoptosis of follicular lymphocytes is different in various types of tonsillitis. This suggests that the immunological potential of the palatine tonsil varies in patients with hypertrophic and recurrent tonsillitis, which in practice poses a dilemma over the choice of

  1. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yung-Hsuan Hsiao

    2014-11-01

    Full Text Available Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs in the brain. An increase in SFAs, especially palmitic acid (PA, triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.

  2. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    Directory of Open Access Journals (Sweden)

    R Dhanya

    Full Text Available Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-Deoxyglucose (2-NBDG on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  3. Nutritional stress enhances cell viability of odontoblast-like cells subjected to low level laser irradiation

    International Nuclear Information System (INIS)

    In spite of knowing that cells under stress are biostimulated by low level laser (LLL) irradiation, the ideal condition of stress to different cell lines has not yet been established. Consequently, the aim of the present in vitro study was to evaluate the effects of a defined parameter of LLL irradiation applied on stressed odontoblast-like pulp cells (MDPC-23). The cells were seeded (12500 cells/cm2) in wells of 24-well plates using complete culture medium (DMEM) and incubated for 24 hours. Then, the DMEM was replaced by a new medium with low concentrations (nutritional stress condition) of fetal bovine serum (FBS) giving rise to the following experimental groups: G1: 2% FBS; G2: 5% FBS; and G3: 10% FBS. The cells were irradiated three times with LLL in specific parameters (808±3 nm, 100 mW, 1.5 J/cm2) every 24 hours. No irradiation was carried out in groups G4 (2% FBS-Control), G5 (5% FBS-Control), and G6 (10% FBS-Control). For all groups, the cell metabolism (MTT assay) and morphology (SEM) was evaluated. The experimental groups showed enhanced cell metabolism and normal cell morphology regardless of FBS concentration. A slight increase in the cell metabolism was observed only in group G2. It was concluded that cell nutritional stress caused by reducing the concentration of FBS to 5% is the most suitable method to assess the biostimulation of LLL irradiated MDPC-23 cells

  4. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  5. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  6. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells.

    Directory of Open Access Journals (Sweden)

    Li Fang

    Full Text Available Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E. Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria.

  7. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  8. Artichoke compound cynarin differentially affects the survival, growth and stress response of normal, immortalized and cancerous human cells

    DEFF Research Database (Denmark)

    Gezer, Ceren; Yücecan, Sevinç; Rattan, Suresh Inder Singh

    2015-01-01

    Cynarin (CYN) is the main derivative of caffeoylquinic acid, found in leaves and heads of artichoke. Potential health-beneficial effects of CYN include as being choloretic-cholesterol lowering, hepatoprotective, anti-atherosclerotic, and antioxidative. We have tested the effects of various doses...... of CYN on the proliferative potential, survival, morphology, and stress response (SR) markers haemoxygenase-1 (HO-1) and heat shock protein-70 (HSP70) in normal human skin fibroblasts (FSF-1), telomerase-immortalized mesenchymal stem cells (hTERT-MSC) and cervical cancer cells, HeLa. Effects of CYN...

  9. Magnetite induces oxidative stress and apoptosis in lung epithelial cells.

    Science.gov (United States)

    Ramesh, Vani; Ravichandran, Prabakaran; Copeland, Clinton L; Gopikrishnan, Ramya; Biradar, Santhoshkumar; Goornavar, Virupaxi; Ramesh, Govindarajan T; Hall, Joseph C

    2012-04-01

    There is an ongoing concern regarding the biocompatibility of nanoparticles with sizes less than 100 nm as compared to larger particles of the same nominal substance. In this study, we investigated the toxic properties of magnetite stabilized with polyacrylate sodium. The magnetite was characterized by X-ray powder diffraction analysis, and the mean particle diameter was calculated using the Scherrer formula and was found to be 9.3 nm. In this study, we treated lung epithelial cells with different concentrations of magnetite and investigated their effects on oxidative stress and cell proliferation. Our data showed an inhibition of cell proliferation in magnetite-treated cells with a significant dose-dependent activation and induction of reactive oxygen species. Also, we observed a depletion of antioxidants, glutathione, and superoxide dismutase, respectively, as compared with control cells. In addition, apoptotic-related protease/enzyme such as caspase-3 and -8 activities, were increased in a dose-dependent manner with corresponding increased levels of DNA fragmentation in magnetite-treated cells compared to than control cells. Together, the present study reveals that magnetite exposure induces oxidative stress and depletes antioxidant levels in the cells to stimulate apoptotic pathway for cell death. PMID:22147200

  10. Stress-induced adaptive islet cell identity changes.

    Science.gov (United States)

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  11. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer

    Science.gov (United States)

    Grolmusz, Vince Kornél; Karászi, Katalin; Micsik, Tamás; Tóth, Eszter Angéla; Mészáros, Katalin; Karvaly, Gellért; Barna, Gábor; Szabó, Péter Márton; Baghy, Kornélia; Matkó, János; Kovalszky, Ilona; Tóth, Miklós; Rácz, Károly; Igaz, Péter; Patócs, Attila

    2016-01-01

    Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications.

  12. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  13. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  14. Association of cancer stem cell markers genetic variants with gallbladder cancer susceptibility, prognosis, and survival.

    Science.gov (United States)

    Yadav, Anu; Gupta, Annapurna; Rastogi, Neeraj; Agrawal, Sushma; Kumar, Ashok; Kumar, Vijay; Mittal, Balraj

    2016-02-01

    Genes important to stem cell progression have been involved in the genetics and clinical outcome of cancers. We investigated germ line variants in cancer stem cell (CSC) genes to predict susceptibility and efficacy of chemoradiotherapy treatment in gallbladder cancer (GBC) patients. In this study, we assessed the effect of SNPs in CSC genes (surface markers CD44, ALCAM, EpCAM, CD133) and (molecular markers NANOG, SOX-2, LIN-28A, ALDH1A1, OCT-4) with GBC susceptibility and prognosis. Total 610 GBC patients and 250 controls were genotyped by using PCR-RFLP, ARMS-PCR, and TaqMan allelic discrimination assays. Chemotoxicity graded 2-4 in 200 patients and tumor response was recorded in 140 patients undergoing neoadjuvant chemotherapy (NACT). Differences in genotype and haplotype frequency distributions were calculated by binary logistic regression. Gene-gene interaction model was analyzed by generalized multifactor dimensionality reduction (GMDR). Overall survival was assessed by Kaplan-Meier survival curve and multivariate Cox-proportional methods. ALCAM Ars1157Crs10511244 (P = 0.0035) haplotype was significantly associated with GBC susceptibility. In GMDR analysis, ALCAM rs1157G>A, EpCAM rs1126497T>C emerged as best significant interaction model with GBC susceptibility and ALDH1A1 rs13959T>G with increased risk of grade 3-4 hematological toxicity. SOX-2 rs11915160A>C, OCT-4 rs3130932T>G, and NANOG rs11055786T>C were found best gene-gene interaction model for predicting response to NACT. In both Cox-proportional and recursive partitioning ALCAM rs1157GA+AA genotype showed higher mortality and hazard ratio. ALCAM gene polymorphisms associated with GBC susceptibility and survival while OCT-4, SOX-2, and NANOG variants showed an interactive role with treatment response. PMID:26318430

  15. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man?

    OpenAIRE

    Fillmore, Christine; Kuperwasser, Charlotte

    2007-01-01

    Identification of breast cancer stem cells as the cells within breast tumors that have the ability to give rise to cells that make up the bulk of the tumor mass has shifted the focus of cancer research. However, there is still much debate concerning the unique nature of the markers that distinguish cancer stem cells in the breast. As such, understanding whether CD44+/CD24- breast cancer cells are merely more successful in overcoming an engraftment incompatibility that exists when injecting hu...

  16. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    Science.gov (United States)

    Carreón-Rodríguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Cañedo-Dorantes, L.

    2008-08-01

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.

  17. Bax expression measured by AQUAnalysis is an independent prognostic marker in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Bose Pinaki

    2012-08-01

    Full Text Available Abstract Background Resistance to apoptosis is a hallmark of cancer and proteins regulating apoptosis have been proposed as prognostic markers in several malignancies. However, the prognostic impact of apoptotic markers has not been consistently demonstrated in oral squamous cell carcinoma (OSCC. This inconsistency in reported associations between apoptotic proteins and prognosis can be partly attributed to the intrinsic low resolution and misclassification associated with manual, semi-quantitative methods of biomarker expression measurement. The aim of this study was to examine the association between apoptosis-regulating proteins and clinical outcomes in oral squamous cell carcinoma (OSCC using the quantitative fluorescence immunohistochemistry (IHC based AQUAnalysis technique. Methods Sixty-nine OSCC patients diagnosed between 1998–2005 in Calgary, Alberta, Canada were included in the study. Clinical data were obtained from the Alberta Cancer Registry and chart review. Tissue microarrays (TMAs were assembled from triplicate cores of formalin-fixed paraffin embedded pre-treatment tumour tissue. Bax, Bcl-2 and Bcl-XL protein expression was quantified using fluorescent IHC and AQUA technology in normal oral cavity squamous epithelium (OCSE and OSCC tumour samples. Survival was analyzed using Kaplan-Meier plots and the Cox proportional hazard model. Results Bax expression was predominantly nuclear in OCSE and almost exclusively cytoplasmic in OSCC. No similar differences in localization were observed for Bcl-2 or Bcl-XL. Only Bax expression associated with disease-specific survival (DSS, with 5-year survival estimates of 85.7% for high Bax versus 50.3% for low Bax (p = 0.006, in univariate analysis. High Bax expression was also significantly associated with elevated Ki67 expression, indicating that increased proliferation might lead to an improved response to radiotherapy in patients with elevated Bax expression. In multivariate analyses

  18. Bax expression measured by AQUAnalysis is an independent prognostic marker in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Resistance to apoptosis is a hallmark of cancer and proteins regulating apoptosis have been proposed as prognostic markers in several malignancies. However, the prognostic impact of apoptotic markers has not been consistently demonstrated in oral squamous cell carcinoma (OSCC). This inconsistency in reported associations between apoptotic proteins and prognosis can be partly attributed to the intrinsic low resolution and misclassification associated with manual, semi-quantitative methods of biomarker expression measurement. The aim of this study was to examine the association between apoptosis-regulating proteins and clinical outcomes in oral squamous cell carcinoma (OSCC) using the quantitative fluorescence immunohistochemistry (IHC) based AQUAnalysis technique. Sixty-nine OSCC patients diagnosed between 1998–2005 in Calgary, Alberta, Canada were included in the study. Clinical data were obtained from the Alberta Cancer Registry and chart review. Tissue microarrays (TMAs) were assembled from triplicate cores of formalin-fixed paraffin embedded pre-treatment tumour tissue. Bax, Bcl-2 and Bcl-XL protein expression was quantified using fluorescent IHC and AQUA technology in normal oral cavity squamous epithelium (OCSE) and OSCC tumour samples. Survival was analyzed using Kaplan-Meier plots and the Cox proportional hazard model. Bax expression was predominantly nuclear in OCSE and almost exclusively cytoplasmic in OSCC. No similar differences in localization were observed for Bcl-2 or Bcl-XL. Only Bax expression associated with disease-specific survival (DSS), with 5-year survival estimates of 85.7% for high Bax versus 50.3% for low Bax (p = 0.006), in univariate analysis. High Bax expression was also significantly associated with elevated Ki67 expression, indicating that increased proliferation might lead to an improved response to radiotherapy in patients with elevated Bax expression. In multivariate analyses, Bax protein expression remained an independent

  19. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.

    Science.gov (United States)

    Iskender, Banu; Izgi, Kenan; Karaca, Halit; Canatan, Halit

    2015-10-01

    Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics. PMID:26054707

  20. Evaluation of a new tumour marker in patients with non-small-cell lung cancer: Cyfra 21.1.

    OpenAIRE

    van der Gaast, A; Schoenmakers, C. H.; Kok, T.C.; Blijenberg, B. G.; Cornillie, F.; Splinter, T A

    1994-01-01

    The Cyfra 21.1 assay is a newly developed test which measures in serum a fragment of cytokeratin 19. We evaluated this marker in 212 patients with non-small-cell lung cancer (NSCLC), predominantly stage 3a-b and 4, and compared it with three other markers: carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC) and tissue polypeptide antigen (TPA). Sensitivities for Cyfra 21.1, TPA, CEA and SCC (using cut-off levels corresponding to a 95% specificity for benign lung diseases) we...