WorldWideScience

Sample records for cell strains derived

  1. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium.

    Science.gov (United States)

    Miao, Qingfeng; Shim, Winston; Tee, Nicole; Lim, Sze Yun; Chung, Ying Ying; Ja, K P Myu Mia; Ooi, Ting Huay; Tan, Grace; Kong, Geraldine; Wei, Heming; Lim, Chong Hee; Sin, Yoong Kong; Wong, Philip

    2014-08-01

    We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 10(5) iMSCs or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Global and regional myocardial function was assessed serially at 1-week and 8-week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1-week and persisted to 8-week with global contractility of ejection fraction and fractional area change in saline- (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC-injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P myocardial dilatation was observed in saline-injected animals (4.40 ± 0.62 mm, P strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P strain only in saline-injected (21.50 ± 5.31%, P myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine-driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.

  2. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo, E-mail: cpennisi@hst.aau.dk

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  3. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Ferlazzo, Guido

    2007-01-01

    , in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells......The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However...... (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production...

  4. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation.

    Science.gov (United States)

    Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne

    2007-12-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model.

  5. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    Science.gov (United States)

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  6. Optimization of protocols for derivation of mouse embryonic stem cell lines from refractory strains, including the non obese diabetic mouse.

    Science.gov (United States)

    Davies, Timothy J; Fairchild, Paul J

    2012-07-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes.

  7. The CXC chemokine stromal cell-derived factor 1 is not responsible for CD8+ T cell suppression of syncytia-inducing strains of HIV-1.

    Science.gov (United States)

    Lacey, S F; McDanal, C B; Horuk, R; Greenberg, M L

    1997-09-02

    Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4(+) T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are HIV-1 suppressive factors secreted by CD8+ cells that inhibit NSI viruses. Recently, the CXC chemokine stromal cell-derived factor 1 (SDF-1) was identified as a ligand for CXCR4 and shown to inhibit SI strains. We speculated that SDF-1 might be an effector molecule for CD8+ suppression of SI isolates and assessed several SDF-1 preparations for inhibition of HIV-1LAI-mediated cell-cell fusion, and examined levels of SDF-1 transcripts in CD8(+) T cells. SDF-1 fusion inhibitory activity correlated with the N terminus, and the alpha and beta forms of SDF-1 exhibited equivalent fusion blocking activity. SDF-1 preparations having the N terminus described by Bleul et al. (Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. (1996) J. Exp. Med. 184, 1101-1109) readily blocked HIV-1LAI-mediated fusion, whereas forms containing two or three additional N-terminal amino acids lacked this activity despite their ability to bind and/or signal through CXCR4. Though SDF-1 is constitutively expressed in most tissues, CD8 T cells contained extremely low levels of SDF-1 mRNA transcripts (suppressive activity. We conclude that suppression of SI strains of HIV-1 by CD8+ T cells is unlikely to involve SDF-1.

  8. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Chiang Wen-Sheng

    2010-03-01

    Full Text Available Abstract Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs of young (8-10 weeks, adult (5 months, and old (21 months mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.

  9. Different Transcriptional Profiles of Human Monocyte-Derived Dendritic Cells Infected with Distinct Strains of Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Nunzia Sanarico

    2011-01-01

    Full Text Available In order to analyze dendritic cells (DCs activation following infection with different mycobacterial strains, we studied the expression profiles of 165 genes of human monocyte-derived DCs infected with H37Rv, a virulent Mycobacterium tuberculosis (MTB laboratory strain, CMT97, a clinical MTB isolate, Mycobacterium bovis bacillus Calmette-Guérin (BCG, Aventis Pasteur, and BCG Japan, both employed as vaccine against tuberculosis. The analysis of the gene expression reveals that, despite a set of genes similarly modulated, DCs response resulted strain dependent. In particular, H37Rv significantly upregulated EBI3 expression compared with BCG Japan, while it was the only strain that failed to release a significant IL-10 amount. Of note, BCG Japan showed a marked increase in CCR7 and TNF-α expression regarding both MTB strains and it resulted the only strain failing in exponential intracellular growth. Our results suggest that DCs display the ability to elicit a tailored strain-specific immune response.

  10. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  11. Improved derivation efficiency and pluripotency of stem cells from the refractory inbred C57BL/6 mouse strain by small molecules.

    Science.gov (United States)

    Lin, Chih-Jen; Amano, Tomokazu; Tang, Yong; Tian, Xiuchun

    2014-01-01

    The ability of small molecules to maintain self-renewal and to inhibit differentiation of pluripotent stem cells has been well-demonstrated. Two widely used molecules are PD 98059 (PD), an inhibitor of extracellular-signal-regulated kinase 1 (ERK), and SC1 (Pluripotin), which inhibits the RasGAP and ERK pathways. However, no studies have been conducted to compare their effects on the pluripotency and derivation of embryonic stem (ES) cells from inbred mice C57BL/6, an important mouse strain frequently used to model behavior, cognitive functions, immune system, and metabolic disorders in humans and also the first mouse strain chosen to be sequenced for its entire genome. We found significantly increased derivation efficiency of ES cells from in vivo fertilized embryos (fES) of C57BL/6 with the use of PD (71.4% over the control of 35.3%). Because fES and ES from cloned embryos (ntES) are not distinguishable in transcription or translation profiles, we used ntES cells to compare the effect of small molecules on their in vitro characteristics, in vitro differentiation ability, and the ability to generate full-term ntES-4N pups by tetraploid complementation. NtES cells exhibited typical ES characteristics and up-regulated Sox2 expression in media with either small-molecule. Higher rates of full term ntES-4N pup were generated by the supplementation of PD or SC1. We obtained the highest efficiency of ntES-4N pup generation ever reported from this strain by supplementing ES medium with SC1. Lastly, we compared the pluripotency of fES, ntES and induced pluripotent stem (iPS) cells of C57BL/6 background using the tetraploid complementation assay. A significant increase in implantation sites and the number of full-term pups were obtained when fES, ntES, and iPS cells were cultured with SC1 compared to the control ES medium. In conclusion, supplementing ES cell culture medium with PD and SC1 increases the derivation efficiency and pluripotency, respectively, of stem cells

  12. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    Science.gov (United States)

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  13. The CXC chemokine stromal cell-derived factor 1 is not responsible for CD8+ T cell suppression of syncytia-inducing strains of HIV-1

    OpenAIRE

    1997-01-01

    Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4+ T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory pro...

  14. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    Science.gov (United States)

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.

  15. Mitochondrial proteomics of the acetic acid – induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii – derived hybrid strain

    Directory of Open Access Journals (Sweden)

    Joana F Guerreiro

    2016-01-01

    Full Text Available Very high concentrations of acetic acid at low pH induce programmed cell death (PCD in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid – induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1, with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3 was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD.

  16. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80.

    Science.gov (United States)

    Yang, Xu; Hang, Xiaomin; Zhang, Min; Liu, Xianglong; Yang, Hong

    2015-06-01

    The acid tolerance is particularly important for bifidobacteria to function as probiotics because they usually encounter acidic environments in food products and gastrointestinal tract passage. In this study, two acid-resistant derivatives Bifidobacterium longum JDY1017dpH and Bifidobacterium breve BB8dpH, which displayed a stable acid-resistant phenotype, were generated. The relationship between acid tolerance and cell membrane was investigated by comparing the two acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. The fold increase in acid tolerance of the two acid-resistant derivatives relative to their parental strains was much higher when cells were grown in medium with Tween 80 (10(4) ~ 10(5)-fold) than without Tween 80 (181- and 245-fold). Moreover, when cells were grown in medium with Tween 80, the two acid-resistant derivatives exhibited more C18:1 and cycC19:0, higher mean fatty acid chain length, lower membrane fluidity, and higher expression of cfa gene encoding cyclopropane fatty acid synthase than their parental strains. No significant differences in cell membrane were observed between the two acid-resistant derivatives and their parental strains when cells were grown in medium without Tween 80. The present study revealed that, when cells were grown in medium with Tween 80, the significant fold increase in acid tolerance of the two acid-resistant derivatives was mainly ascribed to the pronounced changes in cell membrane compared with their parental strains. Results presented here could provide a basis for developing new strategies of cell membrane modification to enhance acid tolerance in bifidobacteria.

  17. Parameters influencing derivation of embryonic stem cells from murine embryos.

    Science.gov (United States)

    Batlle-Morera, Laura; Smith, Austin; Nichols, Jennifer

    2008-12-01

    The derivation of ES cells is poorly understood and varies in efficiency between different strains of mice. We have investigated potential differences between embryos of permissive and recalcitrant strains during diapause and ES cell derivation. We found that in diapause embryos of the recalcitrant C57BL/6 and CBA strains, the epiblast failed to expand during the primary explant phase of ES cell derivation, whereas in the permissive 129 strain, it expanded dramatically. Epiblasts from the recalcitrant strains could be expanded by reducing Erk activation. Isolation of 129 epiblasts facilitated very efficient derivation of ES cell lines in serum- and feeder-free conditions, but reduction of Erk activity was required for derivation of ES cells from isolated C57BL/6 or CBA epiblasts. The results suggest that the discrepancy in ES cell derivation efficiency is not attributable merely to variable prodifferentiative effects of the extra-embryonic lineages but also to an intrinsic variability within the epiblast to maintain pluripotency.

  18. Myocardial Strain and Strain Rate Imaging: Comparison between Doppler Derived Strain Imaging and Speckle Tracking Echocardiography

    Directory of Open Access Journals (Sweden)

    Anita Sadeghpour

    2013-05-01

    Full Text Available Regional myocardial function has been traditionally assessed by visual estimation (1. Echocardiographic strain imaging which is known as deformation imaging, has been emerged as a quantitative technique to accurately estimate regional myocardial function and contractility. Currently, strain imaging has been regarded as a research tool in the most echocardiography laboratories. However, in recent years, strain imaging has gain momentum in daily clinical practice (2. The following two techniques have dominated the research arena of echocardiography: (1 Doppler based tissue velocity measurements, frequently referred to tissue Doppler or myocardial Doppler, and (2 speckle tracking on the basis of displacement measurements (3. Over the past two decades, Tissue Doppler Imaging (TDI and Doppler –derived strain (S and strain rate (SR imaging were introduced to quantify regional myocardial function. However, Doppler–derived strain variables faced criticisms, with regard to the angle dependency, noise interference, and substantial intraobserver and interobserver variability. The angle dependency is the major weakness of Doppler based methodology; however, it has the advantage of online measurements of velocities and time intervals with excellent temporal resolution, which is essential for the assessment of ischemia (4. Speckle-tracking echocardiography (STE or Non Doppler 2D strain echocardiography is a relatively new, largely angle-independent technique that analyzes motion by tracking natural acoustic reflections and interference patterns within an ultrasonic window. The image-processing algorithm tracks elements with approximately 20 to 40 pixels containing stable patterns and are described as ‘‘speckles’’ or ‘‘fingerprints’’. The speckles seen in grayscale B-mode (2D images are tracked consecutively frame to frame (5, 6. Assessment of 2D strain by STE is a semiautomatic method that requires definition of the myocardium

  19. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives.

    Science.gov (United States)

    Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara

    2016-10-01

    Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.

  20. A mixture of bacterial mechanical lysates is more efficient than single strain lysate and of bacterial-derived soluble products for the induction of an activating phenotype in human dendritic cells.

    Science.gov (United States)

    Morandi, Barbara; Agazzi, Alessia; D'Agostino, Antonella; Antonini, Francesca; Costa, Gregorio; Sabatini, Federica; Ferlazzo, Guido; Melioli, Giovanni

    2011-07-01

    Dendritic cells (DCs), following an optimal maturation, are able to drive an efficient immune-response. For this, both co-stimulatory molecules (CD80 and CD86), activation molecules (CD83) and peptide presenting molecules (HLA) are over-expressed. The in vitro treatment of immature DC with fragments of bacterial strains, obtained by using a mechanical lysis as well as with bacterial-derived molecules (such as lipopolysaccharide and protido-glycan), induced the maturation of DCs and the secretion of a panel of cytokines and chemokines. Of note, ex vivo treated circulating DCs and plasmacytoid DCs were also activated by these bacterial bodies. However, while the particulate fraction of single bacterial strains or soluble bacterial-derived molecules induced a sub-optimal maturation (as evaluated by the expression of an activating phenotype on DCs and the amount of cytokine secretion), the addition of the mixture of the particulate fractions of the different bacterial strains was able to mediate an optimal maturation. These results were also confirmed by using the secretion of both cytokines and chemokines as markers of DC activation. All these findings suggest that the particulate fraction of bacterial lysate mixtures, because of their ability to interact with different surface structures, might be exploited not only as an immunogen, but also as an adjuvant treatment to boost an immune-response to poorly "antigenic" proteins, such as cancer antigens or allergens.

  1. Cells as strain-cued automata

    Science.gov (United States)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in

  2. Survey of radiosensitivity in a variety of human cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Harcourt, S.A.

    1980-03-01

    Gamma-ray sensitivity for cell killing was assayed in 54 human cell strains, including some derived from individuals suffering from certain hereditary diseases. The overall range of Do values in this study was 38 to 180 rads, indicating a considerable range of variability in humans. The normal sensitivity was described by a range of Do values of 97 to 180 rads. All ten ataxia telangiectasia cell strains tested proved radiosensitive and gave a mean Do value of 57 +- 15 (S.E.) rads, and these represent the most radiosensitive human skin fibroblasts currently available. Representative cell strains from familial retinoblastoma, Fanconi's anemia, and Hutchinson-Gilford progeria occupied positions of intermediate sensitivity, as did one of two ataxia telangiectasia heterozygotes. Six xeroderma pigmentosum cell strains together with two Cockayne's syndrome cell strains (all known to be sensitive to ultraviolet light) fell into the normal range, indicating an absence of cross-sensitivity between ultraviolet light and gamma-irradiation.

  3. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  4. On strain and stress in living cells

    Science.gov (United States)

    Cox, Brian N.; Smith, David W.

    2014-11-01

    Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known

  5. Three New 2-pyranone Derivatives from Mangrove Endophytic Actinomycete Strain Nocardiopsis sp. A00203

    Directory of Open Access Journals (Sweden)

    Yuemao Shen

    2010-10-01

    Full Text Available Three new 2-pyranone derivatives, namely Norcardiatones A (1, B (2 and C (3, were isolated from the agar cultures of the strain Nocardiopsis sp. A00203, a mangrove endophytic actinomycete. Their structures were elucidated by spectroscopic and mass-spectrometric analyses, including 1D-, 2D-NMR and HR Q-TOF-MS. Compound 1 showed week cytotoxicity against HeLa cells in MTT assay.

  6. Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp.

    Science.gov (United States)

    Cheikh-Ali, Zakaria; Glynou, Kyriaki; Ali, Tahir; Ploch, Sebastian; Kaiser, Marcel; Thines, Marco; Bode, Helge B; Maciá-Vicente, Jose G

    2015-10-01

    Members of the fungal genus Exophiala are common saprobes in soil and water environments, opportunistic pathogens of animals, or endophytes in plant roots. Their ecological versatility could imply a capacity to produce diverse secondary metabolites, but only a few studies have aimed at characterizing their chemical profiles. Here, we assessed the secondary metabolites produced by five Exophiala sp. strains of a particular phylotype, isolated from roots of Microthlaspi perfoliatum growing in different European localities. Exophillic acid and two previously undescribed compounds were isolated from these strains, and their structures were elucidated by spectroscopic methods using MS, 1D and 2D NMR. Bioassays revealed a weak activity of these compounds against disease-causing protozoa and mammalian cells. In addition, 18 related structures were identified by UPLC/MS based on comparisons with the isolated structures. Three Exophiala strains produced derivatives containing a β-d-glucopyranoside moiety, and their colony morphology was distinct from the other two strains, which produced derivatives lacking β-d-glucopyranoside. Whether the chemical/morphological strain types represent variants of the same genotype or independent genetic populations within Exophiala remains to be evaluated.

  7. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl pairs in the Escherichia coli BL21(DE3 cell strain.

    Directory of Open Access Journals (Sweden)

    Keturah A Odoi

    Full Text Available Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl pairs and cross recognition between nonsense codons and various tRNA(Pyl anticodons in the Escherichia coli BL21(DE3 cell strain are reported. tRNA(CUA(Pyl is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS and charged with a PylRS substrate, N(ε-tert-butoxycarbonyl-L-lysine (BocK. Similar to tRNA(CUA(Pyl, tRNA(UUA(Pyl is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA(Pyl is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA(Pyl pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA(Pyl pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU(Pyl fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli.

  8. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  9. Genetic stability of a Vero-cell-derived, inactivated Japanese encephalitis vaccine (P3 strain)%乙型脑炎Vero细胞灭活疫苗毒株的遗传稳定性

    Institute of Scientific and Technical Information of China (English)

    张海燕; 曹晗; 王俊荣; 张名; 梁疆莉; 马艳; 顾琴; 杨卉娟; 孙明波

    2014-01-01

    Objective To investigate genetic stability of P3 strain of Vero cell derived inactivated Japanese encephalitis vaccine.Methods The nucleotide and amino acid sequences of E protein of Japanese encephalitis virus (JEV) P3 strain at different culture period including the mouse brain one passage seed,master seed,working seed the vaccine lot in addition to its 5 passages lot were determined,while the E gene and protein sequences were compared with JEV wide stain (AF036919) from the GenBank.Furthermore,the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were determined for virus titer,antigen concentration and the vaccine potency.Results The E gene and protein sequences of the above 5 passages of vaccine strain prepared for JEV vaccine showed no difference with homologies of 100%.When the 5 passages of vaccine stain compared with those JEV wide stain (AF036919),the gene sequence at E9,E10,E324,E330,E1223,E1338 showed difference with homologies of 99.73%.No silent mutation were investigated except the amino acid mutation at aE408 (L→S) but was no virulence-associated sites with homologies of 99.80%.The virus titers of the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were higher than 8.0 lgLD50/ml,while the antigen concentrations and the vaccine potency showed no difference.Conclusion The virus seed bank of P3 strain for Vero cell derived inactivated Japanese encephalitis vaccine showed high genetic stable.%目的 研究流行性乙型脑炎Vero细胞灭活疫苗毒种(P3毒株)在生产过程中的遗传稳定性,为疫苗的安全性和免疫原性评价提供依据.方法 检测P3毒株鼠脑传代一代毒株、主种子、工作种子、疫苗及疫苗续传5代后病毒E蛋白基因核苷酸及氨基酸序列,并与GenBank中乙脑病毒P3株(AF036919)进行比对分析,同时比较主种子、工作种子、疫苗及疫苗续传5代后毒株的病毒滴度、抗原含量及效价.结果 以上5代次病毒

  10. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    Directory of Open Access Journals (Sweden)

    Dipti S. Hattangady

    2015-02-01

    Full Text Available Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL than strain 13136p−m+V5 (MIC = 8 µg/mL. Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.

  11. Biological characterization of clones derived from the edmonston strain of measles virus in comparison with schwarz and CAM-70 vaccine strains

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Junqueira Borges

    1996-08-01

    Full Text Available Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF. Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.

  12. Differential infectivity by the oral route of Trypanosoma cruzi lineages derived from Y strain.

    Directory of Open Access Journals (Sweden)

    Cristian Cortez

    Full Text Available BACKGROUND: Diversity of T. cruzi strains is a central problem in Chagas disease research because of its correlation with the wide range of clinical manifestations and the biogeographical parasite distribution. The role played by parasite microdiversity in Chagas disease epidemiology is still debatable. Also awaits clarification whether such diversity is associated with the outcome of oral T. cruzi infection, responsible for frequent outbreaks of acute Chagas disease. METHODS AND FINDINGS: We addressed the impact of microdiversity in oral T. cruzi infection, by comparative analysis of two strains, Y30 and Y82, both derived from Y strain, a widely used experimental model. Network genealogies of four nuclear genes (SSU rDNA, actin, DHFR-TS, EF1α revealed that Y30 is closely related to Discrete Typing Unit TcII while Y82 is more closely related to TcVI, a group containing hybrid strains. Nevertheless, excepting one A-G transition at position 1463, Y30 and Y82 SSU rDNAs were identical. Y82 strain, expressing the surface molecule gp82, infected mice orally more efficiently than Y30, which expresses a related gp30 molecule. Both molecules are involved in lysosome exocytosis-dependent host cell invasion, but exhibit differential gastric mucin-binding capacity, a property critical for parasite migration toward the gastric mucosal epithelium. Upon oral infection of mice, the number of Y30 and Y82 parasites in gastric epithelial cells differed widely. CONCLUSIONS: We conclude that metacyclic forms of gp82-expressing Y82 strain, closely related to TcVI, are better adapted than Y30 strain (TcII to traverse the stomach mucous layer and establish oral route infection. The efficiency to infect target cell is the same because gp82 and gp30 strains have similar invasion-promoting properties. Unknown is whether differences in Y30 and Y82 are natural parasite adaptations or a product of lab-induced evolution by differential selection along the 60 years elapsed

  13. Generating embryonic stem cells from the inbred mouse strain DBA/2J, a model of glaucoma and other complex diseases.

    Directory of Open Access Journals (Sweden)

    Laura G Reinholdt

    Full Text Available Mouse embryonic stem (ES cells are derived from the inner cell mass of blastocyst stage embryos and are used primarily for the creation of genetically engineered strains through gene targeting. While some inbred strains of mice are permissive to the derivation of embryonic stem cell lines and are therefore easily engineered, others are nonpermissive or recalcitrant. Genetic engineering of recalcitrant strain backgrounds requires gene targeting in a permissive background followed by extensive backcrossing of the engineered allele into the desired strain background. The inbred mouse strain DBA/2J is a recalcitrant strain that is used as a model of many human diseases, including glaucoma, deafness and schizophrenia. Here, we describe the generation of germ-line competent ES cell lines derived from DBA/2J mice. We also demonstrate the utility of DBA/2J ES cells with the creation of conditional knockout allele for Endothelin-2 (Edn2 directly on the DBA/2J strain background.

  14. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Institute of Scientific and Technical Information of China (English)

    Sudha; S; Masilamani; Selvam; M

    2012-01-01

    Objective:To investigate the cytotoxic activity of actinomycete isolated from marine sediment.Methods:In the present study the DNA was isolated and the ITS region of 16s rRNA was amplified by polymerase chain reaction,using two universal bacterial primers,1492K(5’-GGTTACCTTG’TTAC GACTT-3’)and Eubac27F(5’-AGAGTTTGATCCTGGCTC AG-3’).The amplified products were purified using TIANgel mini purification kit,ligated to MD18-T simple vector(TaKaRa),and transformed into competent cells of Escherichia coli DH5α.16S rRNA gene fragment was sequenced using forward primer M13F(-47)and reverse primer M13R(-48).Blast search sequence similarity was found against the existing non-redundanl nucleotide sequence database thus,identified as Streptomyces sp SU,Streptomyces rubralavandulae strain SU1,Streptomyces cacaoi strain SU2,Streptomyces cavourensis strain SU3,Streptomyces avidinii strain SU4,Streptomyces globisporus strain SU5,Streptomyces variabilis strain SU6,Streptomyces coelicolor strain SU 7.Among the eight identified isolates,one actinomycete Streptomyces avidinii strain SU4 was selected for further study.Results:Crude extract of the actinomycete isolate exhibited IC50in 64.5μg against Hep-2 cell line,250μg in VERO cell line.This value is very close to the criteria of cytotoxicity activity for the crude extracts,as established by the American National Cancer Institute(NCI)is in IC50<30μg/mL.The CC MS analysis showed that the active principle might be 1,2-benzenedicarboxylic acid,bis(2-methylpropyl)ester(12.17%),isooctyl phthalate(15.29%)with the retention time 15.642 and 21.612,respectively.Conclusions:This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs.These results help us to conclude that the potential of using metabolic engineering and post genomic

  15. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Institute of Scientific and Technical Information of China (English)

    Sudha S; Masilamani Selvam M

    2012-01-01

    To investigate the cytotoxic activity of actinomycete isolated from marine sediment. Methods: In the present study the DNA was isolated and the ITS region of 16s rRNA was amplified by polymerase chain reaction, using two universal bacterial primers, 1492R (5′-GGTTACCTTGTTAC GACTT-3′) and Eubac27F (5′-AGAGTTTGATCCTGGCTC AG-3′). The amplified products were purified using TIANgel mini purification kit, ligated to MD18-T simple vector (TaKaRa), and transformed into competent cells of Escherichia coli DH5α. 16S rRNA gene fragment was sequenced using forward primer M13F (-47) and reverse primer M13R (-48). Blast search sequence similarity was found against the existing non-redundant nucleotide sequence database thus, identified as Streptomyces sp SU, Streptomyces rubralavandulae strain SU1, Streptomyces cacaoi strain SU2, Streptomyces cavourensis strain SU3, Streptomyces avidinii strain SU4, Streptomyces globisporus strain SU5, Streptomyces variabilis strain SU6, Streptomycescoelicolor strain SU 7. Among the eight identified isolates, one actinomycete Streptomyces avidinii strain SU4 was selected for further study. Results: Crude extract of the actinomycete isolate exhibited IC50 in 64.5 μg against Hep-2 cell line, 250 μg in VERO cell line. This value is very close to the criteria of cytotoxicity activity for the crude extracts, as established by the American National Cancer Institute (NCI) is in IC50 < 30 μg /mL. The GC MS analysis showed that the active principle might be 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (12.17%), isooctyl phthalate (15.29%) with the retention time 15.642 and 21.612, respectively. Conclusions: This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs. These results help us to conclude that the potential of using metabolic engineering and post genomic

  16. Sarcoma derived from cultured mesenchymal stem cells.

    Science.gov (United States)

    Tolar, Jakub; Nauta, Alma J; Osborn, Mark J; Panoskaltsis Mortari, Angela; McElmurry, Ron T; Bell, Scott; Xia, Lily; Zhou, Ning; Riddle, Megan; Schroeder, Tania M; Westendorf, Jennifer J; McIvor, R Scott; Hogendoorn, Pancras C W; Szuhai, Karoly; Oseth, Leann; Hirsch, Betsy; Yant, Stephen R; Kay, Mark A; Peister, Alexandra; Prockop, Darwin J; Fibbe, Willem E; Blazar, Bruce R

    2007-02-01

    To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole-body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain-specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon-related genetic abnormality, and p53 was not overexpressed. Infusion of MSC-derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.

  17. Monocyte-Derived Suppressor Cells in Transplantation.

    Science.gov (United States)

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  18. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  19. Assessment of Retrograde Coronary Venous Infusion of Mesenchymal Stem Cells Combined with Basic Fibroblast Growth Factor in Canine Myocardial Infarction Using Strain Values Derived from Speckle-Tracking Echocardiography.

    Science.gov (United States)

    Sun, Qi-Wei; Zhen, Lei; Wang, Qin; Sun, Yan; Yang, Jiao; Li, Yi-Jia; Li, Rong-Juan; Ma, Ning; Li, Zhi-An; Wang, Lu-Ya; Nie, Shao-Ping; Yang, Ya

    2016-01-01

    Speckle-tracking echocardiography was used to assess retrograde coronary venous infusion of mesenchymal stem cells (MSCs) combined with basic fibroblast growth factor (bFGF) in a canine model of acute myocardial infarction (AMI). AMI was induced by ligation of the left anterior descending coronary artery. Coronary venous retroperfusion was performed at 1 wk after AMI. Twenty-eight animals were randomized into four groups: saline, bFGF+saline, saline+MSCs and bFGF+MSCs. Echocardiography was performed before AMI, at 7 d post-AMI and 40 d after retroperfusion. Apoptotic cardiomyocytes in the border zone of the ischemic region were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Vascular endothelial growth factor and factor VIII concentrations were measured by western blotting. The left ventricular end-systolic volume increased significantly, whereas the left ventricular ejection fraction and global and segmental strain values decreased significantly after AMI. After retroperfusion, the strain values of the infarct zone, but not conventional echocardiographic parameters, were significantly different between control and bFGF+MSC groups. Cardiomyocyte apoptosis decreased, whereas vascular endothelial growth factor and factor VIII concentrations were higher in the bFGF+MSC, bFGF and MSC groups. Cardiomyocyte apoptosis was well correlated with the strain values. Although retrograde coronary venous infusion of bFGF and MSCs promoted neo-vascularization of the infarcted myocardium and inhibited apoptosis, there was only a slight strain improvement without a substantial increase in global cardiac functions.

  20. Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3.

    Science.gov (United States)

    Umehara, Hiroki; Kimura, Tohru; Ohtsuka, Satoshi; Nakamura, Toshinobu; Kitajima, Kenji; Ikawa, Masahito; Okabe, Masaru; Niwa, Hitoshi; Nakano, Toru

    2007-11-01

    Embryonic stem (ES) cells are derived from the inner cell mass (ICM) of blastocysts. The use of ES cells as a source of differentiated cells holds great promise for cell transplantation therapy. The efficiency of ES cell derivation is affected by genetic variation in mice; that is, some mouse strains, such as C57BL/6, are amenable to ES cell derivation, whereas others, such as BALB/c, are refractory. Developing an efficient method to establish ES cells from strains of various genetic backgrounds should be valuable for derivation of ES cells in various mammalian species, including human. Although it is well-established that various signaling pathways, including phosphoinositide 3-kinase (PI3K)/Akt and Wnt/beta-catenin, regulate the maintenance of ES cell pluripotency, little is known about the signaling pathways involved in the derivation of ES cells from ICMs. In this study, we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3), one of the crucial molecules in the regulation of the Wnt/beta-catenin, Hedgehog, and Notch signaling pathways, dramatically augmented ES cell derivation from both C57BL/6 and BALB/c mouse strains. In contrast, Akt signaling activation enhanced the growth of ICM but did not increase the efficiency of ES cell derivation. Our study establishes an efficient means for ES cell derivation by pharmacological inhibition of GSK-3.

  1. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

    OpenAIRE

    Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W; Roder, J C

    1993-01-01

    Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and...

  2. Ultrasonic Derivative Measurements of Bone Strain During Exercise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations, Inc., in collaboration with the SUNY Stony Brook, proposes to extend ultrasonic pulsed phase locked loop (PPLL) derivative measurements to the...

  3. Established preblastocyst- and blastocyst-derived ES cell lines have highly similar gene expression profiles, despite their differing requirements for derivation culture conditions.

    Science.gov (United States)

    Kim, Chul; Park, Joonghoon; Amano, Tomokazu; Xu, Ren-He; Lin, Ge; Carter, Mark G; Tian, Xiuchun Cindy

    2012-02-01

    The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.

  4. Strain and Stress: Derivation, Implementation, and Application to Organic Crystals

    OpenAIRE

    Knuth, F.

    2015-01-01

    Organic semiconductors form an active and promising field of research since they can be used to develop and construct highly efficient and flexible (opto)electronic devices with tailored structural and electronic properties, e.g., band gaps and conductivities. Typically, these properties do not only depend on the chemical composition but also on the growth conditions, e.g., on the strain or pressure applied during fabrication. However, little is yet known about these dependencies since a syst...

  5. Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages.

    Science.gov (United States)

    Zhu, Xiaochun; Tu, Zheng J; Coussens, Paul M; Kapur, Vivek; Janagama, Harish; Naser, Saleh; Sreevatsan, Srinand

    2008-10-01

    In this study we analyzed the macrophage-induced gene expression of three diverse genotypes of Mycobacterium avium subsp. paratuberculosis (MAP). Using selective capture of transcribed sequences (SCOTS) on three genotypically diverse MAP isolates from cattle, human, and sheep exposed to primary bovine monocyte derived macrophages for 48 h and 120 h we created and sequenced six cDNA libraries. Sequence annotations revealed that the cattle isolate up-regulated 27 and 241 genes; the human isolate up-regulated 22 and 53 genes, and the sheep isolate up-regulated 35 and 358 genes, at the two time points respectively. Thirteen to thirty-three percent of the genes identified did not have any annotated function. Despite variations in the genes identified, the patterns of expression fell into overlapping cellular functions as inferred by pathway analysis. For example, 10-12% of the genes expressed by all three strains at each time point were associated with cell-wall biosynthesis. All three strains of MAP studied up-regulated genes in pathways that combat oxidative stress, metabolic and nutritional starvation, and cell survival. Taken together, this comparative transcriptional analysis suggests that diverse MAP genotypes respond with similar modus operandi for survival in the host.

  6. Novel synthesis of a strained para-cyclophane derivative

    Institute of Scientific and Technical Information of China (English)

    Zhi Hao Shi; Yun Yang Wei

    2007-01-01

    A [P. Rajakumar, A.M.A. Rasheed, Tetrahedron 61(22) (2005) 5351] para-cyclophane derivative was synthesized via intramolecular esterification of a dipeptide surrogate containing asparagine to form tetrahydropyrimidinone ring. The structures of the product and intermediates were characterized by 1H NMR, 13C NMR and mass spectrum.

  7. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  8. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies.

  9. GPS derived Crustal Deformation and Strain determination in India

    Directory of Open Access Journals (Sweden)

    Abhay P. Singh,

    2011-06-01

    Full Text Available The theory of Plate tectonics has revolutionized the way thinking about the processes of Earth. According to this theory, the surface of the Earth is broken into large plates. The size and position of these plates change over time. The edges of these plates, where they move against each other, are sites of intense tectonic activity, suchas earthquakes, volcanism, and mountain building. It is well known that Indian Plate is currently moving in the northeast direction, while the Eurasian Plate is moving north. This is causing the Indian and Eurasian Plate to deform at the point of contact besides its interior. Modern geophysical and space geodetic techniques such asseismology and GPS (Global Positioning system, have become important tools in the study of the deformation in the Earth due to tectonic processes, leading to earthquakes. Geodesy has provided an important role for plate tectonics study with high temporal resolution of the plate movements, particular from space technologies such as GPS and VLBI. The Global Positioning System (GPS provides accurate measurements of the rate of displacement of crustal. Indeed, the GPS velocity field can only be compared to finite strain if one assumes adeformation mechanism and that the style of deformation has been the same over long periods of geological time. For study of crustal deformation National Center of Mineralogy and Petrology, University of Allahabad, Allahabad installed highly efficient and accurate LEICA GRX1200 Pro receiver at Ghoorpur near to Allahabad. This instrument is also equipped withMET3A sensor to record pressure, temperature, humidity at regular interval of 30 second. The Latitude and longitude of the GPS sites is 25.21N, 81.28E.

  10. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  11. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  12. Comparison of Direct and Array-Derived Strain and Rotation at the Pinon Flat Observatory, California

    Science.gov (United States)

    Lin, Chin-Jen; Vernon, Frank; Wassermann, Joachim; Gebauer, André; Schreiber, Ulrich; Carr Agnew, Duncan; Igel, Heiner

    2016-04-01

    To fully understand the wave motion of a deformable body, we need 12 components in total: 3 components of translation, 3 components of rotation, and 6 components of strain. Translation are routinely recorded in the seismology community. Strain measurements are rare and do not routinely enter the inversion procedures for structure and source from seismic observations. Single-component rotational ground motions have been measured just recently. In principle, strains and rotations can be derived from an array of seismic stations, under uniform strain assumption across the array. In a unique instrument setting at the PFO (Pinon Flat Observatory, California), a dense small-aperture seismic array is in the vicinity of a sensor measuring rotations around a vertical axis (ring laser) and three horizontal strain meters. This enables us to compare array derived strain/rotation with observations for 10/12 components of complete ground motion. We show the comparison results between array-derived ground motion and direct observation for tele-seismic events. Several possible errors like tilt couplings, array size, seismometer noise are discussed.

  13. Familial Follicular-Cell Derived Carcinoma

    Directory of Open Access Journals (Sweden)

    Eun Ju eSon

    2012-05-01

    Full Text Available Follicular cell-derived well-differentiated thyroid cancer, papillary (PTC and follicular thyroid carcinomas (FTC compose 95% of all thyroid malignancies. Familial follicular cell-derived well-differentiated thyroid cancers contribute to 5% of those cases. These familial follicular cell derived carcinomas or non-medullary thyroid carcinomas (NMTC divide into two clinical-pathological groups. One group, syndromic-associated, composed by predominately non-thyroidal tumors, is comprised of Pendred syndrome, Warner syndrome, Carney complex type 1, PTEN-hamartoma tumor syndrome (Cowden disease; PHTS, familial adenomatous polyposis (FAP/Gardner syndrome. Additionally other less established links correlated to the development of follicular cell-derived tumors have also included Ataxia-teleangiectasia syndrome, McCune Albright syndrome, and Peutz-Jeghers syndrome. The subsequent group encompasses syndromes typified by non-medullary thyroid carcinomas or NMTC, as well as, pure familial (f PTC with or without oxyphilia, fPTC with multinodular goiter and fPTC with papillary renal cell carcinoma. This heterogeneous group of diseases has not a established genotype-phenotype correlation as the well-known genetic events identified in the familial C-cell-derived tumors or medullary thyroid carcinomas (MTC. Clinicians should be have the knowledge to identify the likelihood of a patient presenting with thyroid cancer having an additional underlying familial syndrome stemming from characteristics through morphological findings that would alert the pathologist to have the patient undergo subsequent molecular genetics evaluations. This review will discuss the clinical and pathological findings of the patients with familial papillary thyroid carcinoma, such as familial adenomatous polyposis, Carney complex, Werner syndrome, and Pendred syndrome and the heterogeneous group of familial papillary thyroid carcinoma.

  14. The Frequency of Proliferative Stromal Cells in Adipose Tissue Varies Between Inbred Mouse Strains

    Directory of Open Access Journals (Sweden)

    Mo J

    2009-01-01

    Full Text Available Stromal cells derived from adipose tissue (ASCs can proliferate as undifferentiated cells with a fibroblast-like morphology in cell culture, or can be induced to differentiate into a variety of cell types including, adipipogenic, myogenic, neurogenic, osteogenic, chondrogenic and hepatic cells. There is increasing interest to understand the factors controlling the proliferation of ASCs since these cells might provide a readily available source of autologous stem/progenitor cells for cell therapy applications. To explore potential genetic factors that modify the properties of ASCs, we tried to identify relevant properties of ASCs that differ between inbred mouse strains. Plating cells in a modified colony forming assay indicates that the percentage of high proliferative cells among ASCs differs more than 2-fold between 129x1/svj and C57Bl/6J mice. The identification of genetic factors affecting the proliferative capacity of stem cell populations could improve the efficacy of cell therapy.

  15. 羊布氏菌强毒株16M感染小鼠骨髓树突状细胞模型的建立%Establishment of Bone Marrow-derived Dendritic Cell Model of Mice Infected with Virulent Brucella melitensi 16M Strain

    Institute of Scientific and Technical Information of China (English)

    李晓艳; 王景龙; 张瑞; 孙春辉; 郎需龙; 杨艳玲; 屈海龙; 赵勇坤; 王兴龙

    2011-01-01

    Objective To establish a bone marrow-derived dendritic cell (DC) model of mice infected with virulent Brucella melitensi 16M strain. Methods Primary bone marrow cells of C57 mice were isolated in vitro, of which the differentiation was induced by granulocyte monocyte colony stimulating factor (GM-CSF) and recombinant human interleukin-4 (rhIL-4), then observed for morphology of DCs under invert microscope, and determined for differentiation level by flow cytometry. The DC model of mice infected with virulent B. melitensi 16M strain was established in vitro, identified by IFA and transmission electron microscopy, and subjected to re-culture and staining of B. melitensi 16M strain after infection. Results On the 5th day after culture, the morphology of cells was consistent with that of bone marrow-derived DCs, with long dendritic and pseudopod-like enations. On the 7th day, the cells were semi-suspended, with a large quantity of enations all around. The purity of DCs cultured in vitro reached about 70%,which met the requirements for test. DCs showed the strongest phagocytosis and the smallest amount of intracellular bacteria 12 h after infection. Typically bacterial morphology orB. melitensi 16M strain was observed by staining after re-culture. Conclusion The bone marrow-derived DC model of mice infected with virulent B. melitensi 16M strain was successfully constructed, which laid a foundation of further study on interaction of B. melitensi and DCs as well as the mechanism of intracellular parasitism.%目的 建立羊布氏菌强毒株16M感染小鼠骨髓树突状细胞(Dendritic cell,DC)的模型.方法 体外分离C57小鼠骨髓原代细胞,经粒细胞-巨噬细胞集落刺激因子(Granulocyte monocyte colony stimulating factor,GM-CSF)和重组人白细胞介素-4(Recombinant human interleukin-4,rhIL-4)诱导分化后,倒置显微镜观察DC形态,流式细胞术鉴定其分化程度.在体外建立羊布氏菌16M感染小鼠骨髓DC模型,间接免疫荧

  16. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  17. Neoplasms derived from plasmacytoid dendritic cells.

    Science.gov (United States)

    Facchetti, Fabio; Cigognetti, Marta; Fisogni, Simona; Rossi, Giuseppe; Lonardi, Silvia; Vermi, William

    2016-02-01

    Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.

  18. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  19. Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains.

    Science.gov (United States)

    Fernández-Cruz, E; Álvarez-Fernández, M A; Valero, E; Troncoso, A M; García-Parrilla, M C

    2017-02-15

    Melatonin is a neurohormone involved in the regulation of circadian rhythms in humans. Evidence has recently been found of its occurrence in wines and its role in the winemaking process. The yeast Saccharomyces cerevisiae is consequently thought to be important in Melatonin synthesis, but limited data and reference texts are available on this synthetic pathway. This paper aims to elucidate whether the synthetic pathway of Melatonin in Saccharomyces and non-Saccharomyces strains involves these intermediates. To this end, seven commercial strains comprising Saccharomyces cerevisiae (Red Fruit, ES488, Lalvin QA23, Uvaferm BC, and Lalvin ICV GRE) and non-Saccharomyces (Torulaspora delbrueckii and Metschnikowia pulcherrima) were monitored, under controlled fermentation conditions, in synthetic must, for seven days. Samples were analysed using a UHPLC-HRMS system (Qexactive). Five out of the seven strains formed Melatonin during the fermentation process: three S. cerevisiae strains and the two non-Saccharomyces. Additionally, other compounds derived from l-tryptophan occurred during fermentation.

  20. African horse sickness in The Gambia: circulation of a live-attenuated vaccine-derived strain.

    Science.gov (United States)

    Oura, C A L; Ivens, P A S; Bachanek-Bankowska, K; Bin-Tarif, A; Jallow, D B; Sailleau, C; Maan, S; Mertens, P C; Batten, C A

    2012-03-01

    African horse sickness virus serotype 9 (AHSV-9) has been known for some time to be circulating amongst equids in West Africa without causing any clinical disease in indigenous horse populations. Whether this is due to local breeds of horses being resistant to disease or whether the AHSV-9 strains circulating are avirulent is currently unknown. This study shows that the majority (96%) of horses and donkeys sampled across The Gambia were seropositive for AHS, despite most being unvaccinated and having no previous history of showing clinical signs of AHS. Most young horses (horses. Sequence analysis revealed the presence of an AHSV-9 strain showing 100% identity to Seg-2 of the AHSV-9 reference strain, indicating that the virus circulating in The Gambia was highly likely to have been derived from a live-attenuated AHSV-9 vaccine strain.

  1. Effect of Magnetic Field on L-Strain Cells

    CERN Document Server

    Ulakoglu, G; Atak, C; Rzakoulieva, A; Danilov, V I; Alikamanoglu, S

    2000-01-01

    The effects of electromagnetic and magnetic fields are currently being made useful in many fields, especially in medicine. In this research work, L-Strain cells which are a type of fibrosarcoma cells were exposed to a magnetic flow of 2-26 mT in periods of 1, 2, 3 and 4 minutes. The L-Strain cells, which were exposed to the magnetic field for these periods, were counted after 24 and 48 hours, when compared with the controls, it was observed that in groups of 1 and 4 minutes exposure a significant decrease (P < 0.05) in the number of cells occurred. The per cent of labelling index of L-Strain cells exposed to the magnetic field for 1 and 4 minutes decreased significantly also in comparison to the controls.

  2. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  3. Cell-mediated infection of cervix derived epithelial cells with primary isolates of human immunodeficiency virus.

    Science.gov (United States)

    Tan, X; Phillips, D M

    1996-01-01

    We have previously demonstrated that HIV-infected transformed T-cells or monocytes adhere to monolayers of CD4-negative epithelial cells. Adhesion is soon followed by budding of HIV from infected mononuclear cells onto the surface of epithelial cells. Epithelial cells subsequently take up virus and become productively infected. Based on these findings, we proposed that sexual transmission of HIV may involve cell-mediated infection of intact mucosal epithelia of the urogenital tract. However, it has become increasingly clear that primary cells and HIV strains isolated from patients are more appropriate models for HIV infection than established cell lines and lab strains of virus. In the studies described here, we infected cervix-derived epithelial monolayers with primary monocytes infected with patient isolates of non-syncytial inducing (NSI) macrophage-tropic strains of HIV. Under the culture conditions employed, HIV-infected primary monocytes do not remain adherent to the apical surface of the epithelium, as did HIV-infected transformed cells. Instead, following adherence, the primary cells migrate between epithelial cells. Virus is secreted from a pseudopod as HIV-infected primary monocytes pass between cells of the epithelium. Productive infection of the epithelium was detected by p24 ELISA and PCR Southern blot analysis. Infection can be blocked by sera from HIV-seropositive individuals or by certain sulfated polysaccharides. These findings support the supposition that transmission of HIV may occur via cell-mediated infection of intact epithelia. The observations also hint at the possibility that-HIV-infected monocyte/macrophages in semen or cervical-vaginal secretions could cross intact epithelia by passing between epithelial cells. Blocking studies suggest that it may be possible to inhibit sexual transmission of HIV either by antibodies in genital tract secretions or by a topical formulation containing certain sulfated polysaccharides.

  4. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  5. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  6. Genetic regulation of life span, metabolism, and body weight in Pohn, a new wild-derived mouse strain.

    Science.gov (United States)

    Yuan, Rong; Flurkey, Kevin; Meng, Qingying; Astle, Mike C; Harrison, David E

    2013-01-01

    Quantitative trait loci (QTL) of longevity identified in human and mouse are significantly colocalized, suggesting that common mechanisms are involved. However, the limited number of strains that have been used in mouse longevity studies undermines the ability to identify longevity genes. We crossed C57BL/6J mice with a new wild-derived strain, Pohn, and identified two life span QTL-Ls1 and Ls2. Interestingly, homologous human longevity QTL colocalize with Ls1. We also defined new QTL for metabolic heat production and body weight. Both phenotypes are significantly correlated with life span. We found that large clone ratio, an in vitro indicator for cellular senescence, is not correlated with life span, suggesting that cell senescence and intrinsic aging are not always associated. Overall, by using Pohn mice, we identified new QTL for longevity-related traits, thus facilitating the exploration of the genetic regulation of aging.

  7. Patulin and secondary metabolite production by marine-derived Penicillium strains

    DEFF Research Database (Denmark)

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie

    2012-01-01

    of Penicillium expansum, and was also isolated from Penicillium antarcticum cultures, whose secondary metabolome is still to be done. These detections constituted the first descriptions of patulin in marine strains of Penicillium, highlighting the risk for shellfish and their consumers due to the presence......Genus Penicillium represents an important fungal group regarding to its mycotoxin production. Secondary metabolomes of eight marine-derived strains belonging to subgenera Furcatum and Penicillium were investigated using dereplication by liquid chromatography (LC)–Diode Array Detector (DAD...

  8. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    Directory of Open Access Journals (Sweden)

    Alex Galanis

    2015-10-01

    Full Text Available Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD Sequenced Characterized Amplified Region (SCAR analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  9. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    Science.gov (United States)

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  10. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage

    Directory of Open Access Journals (Sweden)

    Luiz Keller

    2015-08-01

    Full Text Available Zearalenone (ZEA and its derivatives are mycotoxins with estrogenic effects on mammals. The biotransformation for ZEA in animals involves the formation of two major metabolites, α- and β-zearalenol (α-ZOL and β-ZOL, which are subsequently conjugated with glucuronic acid. The capability of Saccharomyces cerevisiae strains isolated from silage to eliminate ZEA and its derivatives α-ZOL and β-ZOL was investigated as, also, the mechanisms involved. Strains were grown on Yeast Extract-Peptone-Dextrose medium supplemented with the mycotoxins and their elimination from medium was quantified over time by HPLC-FL. A significant effect on the concentration of ZEA was observed, as all the tested strains were able to eliminate more than 90% of the mycotoxin from the culture medium in two days. The observed elimination was mainly due to ZEA biotransformation into β-ZOL (53% and α-ZOL (8% rather than to its adsorption to yeast cells walls. Further, the biotransformation of α-ZOL was not observed but a small amount of β-ZOL (6% disappeared from culture medium. ZEA biotransformation by yeasts may not be regarded as a full detoxification process because both main end-products are still estrogenic. Nonetheless, it was observed that the biotransformation favors the formation of β-ZOL which is less estrogenic than ZEA and α-ZOL. This metabolic effect is only possible if active strains are used as feed additives and may play a role in the detoxification performance of products with viable S. cerevisiae cells.

  11. Hypocrol A, a new tyrosol derivative from a sponge-derived strain of the fungus Hypocrea koningii.

    Science.gov (United States)

    Ding, Li-Jian; Yuan, Wei; Li, Ying-Xin; Liao, Xiao-Jian; Sun, Huan; Peng, Qi; Han, Bing-Nan; Lin, Hou-Wen; Li, Zhi-Yong; Yang, Fan; Xu, Shi-Hai

    2016-07-01

    In continuation of our search for new antibacterial and antioxidant metabolites from sponge-derived fungi, one new tyrosol derivative, hypocrol A (1), together with four known congeners, trichodenol B (2), 4-hydroxyphenethyl acetate (3), 4-hydroxyphenethyl tetradecanoate (4) and 1-oleyltyrosol (5), was isolated from the strain Hypocrea koningii PF04. Their planar structures were unequivocally elucidated by spectroscopic methods and comparison with the literature data. All the compounds displayed weak antibacterial activities against Staphylococcus aureus, methicillin-resistant S. aureus and Escherichia coli, whereas compounds 1 and 2 exhibited a moderate antioxidant efficacy in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay with IC50 values of 48.5 and 97.4 μg/mL, respectively.

  12. Exosomes Derived from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2014-03-01

    Full Text Available The functional mechanisms of mesenchymal stem cells (MSCs have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.

  13. Cell-derived microparticles and the lung

    Directory of Open Access Journals (Sweden)

    Dario Nieri

    2016-09-01

    Full Text Available Cell-derived microparticles are small (0.1–1 μm vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension.

  14. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    Science.gov (United States)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  15. Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks

    Institute of Scientific and Technical Information of China (English)

    WEI Xueying; HAO Hong

    2006-01-01

    In this paper,numerical method is used to study the strain rate effect on masonry materials.A typical unit of masonry is selected to serve as a representative volume element (RVE).Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests.The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials.Dynamic loads of different loading rates are applied to RVE.The equivalent homogenized uniaxial compressive strength,threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE.The strain rate effect on the masonry material with clay brick and mortar,such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.

  16. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  17. Derivation of induced pluripotent stem cells from pig somatic cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  18. Inhibition spectrum studies of microthecin and other anhydrofructose derivatives using selected strains of Gram-positive and –negative bacteria, yeast and moulds, and investigation of the cytotoxicity of microthecin to malignant blood cell lines

    DEFF Research Database (Denmark)

    Fiskesund, R.; Thomas, L.V.; Schobert, M.;

    2009-01-01

    activity. Conclusions: Microthecin was active 100–2000 ppm against GP and GN bacteria including Ps. aeruginosa, but was inactive against yeasts and moulds. Microthecin was also a cytotoxin to some mammalian cell lines. Significance and Impact of the Study: Microthecin might have potential for development...

  19. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  20. Pluripotent stem cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Schwartz, R E; Fleming, H E; Khetani, S R; Bhatia, S N

    2014-01-01

    Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are

  1. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    Full Text Available Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK, derived from a patient with Gerstmann-Sträussler-Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.

  2. Cell culture and animal infection with distinct Trypanosoma cruzi strains expressing red and green fluorescent proteins.

    Science.gov (United States)

    Pires, S F; DaRocha, W D; Freitas, J M; Oliveira, L A; Kitten, G T; Machado, C R; Pena, S D J; Chiari, E; Macedo, A M; Teixeira, S M R

    2008-03-01

    Different strains of Trypanosoma cruzi were transfected with an expression vector that allows the integration of green fluorescent protein (GFP) and red fluorescent protein (RFP) genes into the beta-tubulin locus by homologous recombination. The sites of integration of the GFP and RFP markers were determined by pulse-field gel electrophoresis and Southern blot analyses. Cloned cell lines selected from transfected epimastigote populations maintained high levels of fluorescent protein expression even after 6 months of in vitro culture of epimastigotes in the absence of drug selection. Fluorescent trypomastigotes and amastigotes were observed within Vero cells in culture as well as in hearts and diaphragms of infected mice. The infectivity of the GFP- and RFP-expressing parasites in tissue culture cells was comparable to wild type populations. Furthermore, GFP- and RFP-expressing parasites were able to produce similar levels of parasitemia in mice compared with wild type parasites. Cell cultures infected simultaneously with two cloned cell lines from the same parasite strain, each one expressing a distinct fluorescent marker, showed that at least two different parasites are able to infect the same cell. Double-infected cells were also detected when GFP- and RFP-expressing parasites were derived from strains belonging to two distinct T. cruzi lineages. These results show the usefulness of parasites expressing GFP and RFP for the study of various aspects of T. cruzi infection including the mechanisms of cell invasion, genetic exchange among parasites and the differential tissue distribution in animal models of Chagas disease.

  3. Enriched retinal ganglion cells derived from human embryonic stem cells

    Science.gov (United States)

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  4. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    Science.gov (United States)

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  5. Cell Factory Stability and Genetic Circuits for Improved Strain Development

    DEFF Research Database (Denmark)

    Rugbjerg, Peter

    Development of new chemical-­‐producing microbial cell factories is an iterative trial-­and-­error process, and to screen candidate cells at high throughput, genetic biosensor systems are appealing. Each biosensor has distinct biological parameters, making modular tuning networks attractive....... However, all synthetic gene systems -­ including the target metabolic pathways themselves -­ represent a possible fitness burden to the cell and thus constitute a threat to strain stability. In this thesis, several studies served to develop genetic systems for optimizing cell factory development...... factories in future....

  6. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.

  7. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  8. Producing fully ES cell-derived mice from eight-cell stage embryo injections.

    Science.gov (United States)

    DeChiara, Thomas M; Poueymirou, William T; Auerbach, Wojtek; Frendewey, David; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    In conventional methods for the generation of genetically modified mice, gene-targeted embryonic stem (ES) cells are injected into blastocyst-stage embryos or are aggregated with morula-stage embryos, which are then transferred to the uterus of a surrogate mother. F0 generation mice born from the embryos are chimeras composed of genetic contributions from both the modified ES cells and the recipient embryos. Obtaining a mouse strain that carries the gene-targeted mutation requires breeding the chimeras to transmit the ES cell genetic component through the germ line to the next (F1) generation (germ line transmission, GLT). To skip the chimera stage, we developed the VelociMouse method, in which injection of genetically modified ES cells into eight-cell embryos followed by maturation to the blastocyst stage and transfer to a surrogate mother produces F0 generation mice that are fully derived from the injected ES cells and exhibit a 100% GLT efficiency. The method is simple and flexible. Both male and female ES cells can be introduced into the eight-cell embryo by any method of injection or aggregation and using all ES cell and host embryo combinations from inbred, hybrid, and outbred genetic backgrounds. The VelociMouse method provides several unique opportunities for shortening project timelines and reducing mouse husbandry costs. First, as VelociMice exhibit 100% GLT, there is no need to test cross chimeras to establish GLT. Second, because the VelociMouse method permits efficient production of ES cell-derived mice from female ES cells, XO ES cell subclones, identified by screening for spontaneous loss of the Y chromosome, can be used to generate F0 females that can be bred with isogenic F0 males derived from the original targeted ES cell clone to obtain homozygous mutant mice in the F1 generation. Third, as VelociMice are genetically identical to the ES cells from which they were derived, the VelociMouse method opens up myriad possibilities for creating mice with

  9. Orthopoxvirus species and strain differences in cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Bengali, Zain; Satheshkumar, P.S. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States); Moss, Bernard, E-mail: bmoss@nih.gov [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210 (United States)

    2012-11-25

    Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 'fusion-suppressor' proteins, impact entry properties.

  10. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells

    OpenAIRE

    Trumbull, Andrew; Subramanian, Gayathri; Yildirim-Ayan, Eda

    2016-01-01

    Musculoskeletal tissues are constantly under mechanical strains within their microenvironment. Yet, little is understood about the effect of in vivo mechanical milieu strains on cell development and function. Thus, this review article outlines the in vivo mechanical environment of bone, muscle, cartilage, tendon, and ligaments, and tabulates the mechanical strain and stress in these tissues during physiological condition, vigorous, and moderate activities. This review article further discusse...

  11. Patulin and secondary metabolite production by marine-derived Penicillium strains.

    Science.gov (United States)

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie; Fossi Tankoua, Olivia; Robiou Du Pont, Thibaut; Joubert, Yolaine; Monteau, Fabrice; Le Bizec, Bruno; Frisvad, Jens C; Pouchus, Yves François; Grovel, Olivier

    2012-09-01

    Genus Penicillium represents an important fungal group regarding to its mycotoxin production. Secondary metabolomes of eight marine-derived strains belonging to subgenera Furcatum and Penicillium were investigated using dereplication by liquid chromatography (LC)-Diode Array Detector (DAD)-mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites. Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts of Penicillium expansum, and was also isolated from Penicillium antarcticum cultures, whose secondary metabolome is still to be done. These detections constituted the first descriptions of patulin in marine strains of Penicillium, highlighting the risk for shellfish and their consumers due to the presence of these fungi in shellfish farming areas. Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts.

  12. Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains.

    Science.gov (United States)

    Cascioferro, Stella; Maggio, Benedetta; Raffa, Demetrio; Raimondi, Maria Valeria; Cusimano, Maria Grazia; Schillaci, Domenico; Manachini, Barbara; Plescia, Fabiana; Daidone, Giuseppe

    2016-11-10

    The ability of several N-phenyl-1H-pyrazole-4-carboxamide derivatives and other pyrazoles opportunely modified at the positions 3, 4 and 5, to reduce the formation of the biofilm in some Staphylococcus aureus strains (ATCC 29213, ATCC 25923 and ATCC 6538) were investigated. All the tested compounds were able, although to a different extent, to reduce the biofilm formation of the three bacterial strains considered. Among these, the 1-(2,5-dichlorophenyl)-5-methyl-N-phenyl-1H-pyrazole-4-carboxamide 14 resulted as the best inhibitor of biofilm formation showing an IC50 ranging from 2.3 to 32 μM, against all the three strains of S. aureus. Compound 14 also shows a good protective effect in vivo by improving the survival of wax moth larva (Galleria mellonella) infected with S. aureus ATCC 29213. These findings indicate that 14d is a potential lead compound for the development of new anti-virulence agents against S. aureus infections.

  13. Development and characterization of candidate rotavirus vaccine strains derived from children with diarrhoea in Vietnam.

    Science.gov (United States)

    Luan, Le T; Trang, Nguyen V; Phuong, Nguyen M; Nguyen, Huong T; Ngo, Huong T; Nguyen, Huong T M; Tran, Hanh B; Dang, Ha N; Dang, Anh D; Gentsch, Jon R; Wang, Yuhuan; Esona, Mathew D; Glass, Roger I; Steele, A Duncan; Kilgore, Paul E; Nguyen, Man V; Jiang, Baoming; Nguyen, Hien D

    2009-11-20

    In Vietnam, rotavirus infection accounts for more than one-half of all hospitalizations for diarrhoea among children less than 5 years of age. While new vaccines to prevent rotavirus diarrhoea have been developed and introduced into some countries by multinational manufacturers, the ability for developing countries such as Vietnam to introduce several new and important vaccines into the routine infant immunization schedule may be challenging. In order to be partially self-sufficient in vaccine production, Vietnam has pursued the development of several rotavirus strains as candidate vaccines using isolates obtained from Vietnamese children with diarrhoea. This paper describes the origin, isolation and characterization of 3 human rotavirus strains being considered for further vaccine development in Vietnam. The goal is to prepare a monovalent G1P [8] rotavirus vaccine using one of these strains obtained in Vietnam and naturally attenuated by multiple passages in cell culture. While this is an ambitious project that will require several years' work, we are using the lessons learned to improve the overall quality of vaccine production including the use of Vero cell techniques for the manufacture of other vaccines in Vietnam.

  14. Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: In vitro activity including against the multidrug-resistant tuberculosis strain T113.

    Science.gov (United States)

    Gonçalves, Raoni S B; Kaiser, Carlos R; Lourenço, Maria C S; Bezerra, Flavio A F M; de Souza, Marcus V N; Wardell, James L; Wardell, Solange M S V; Henriques, Maria das Graças M de O; Costa, Thadeu

    2012-01-01

    Ten new mefloquine-oxazolidine derivatives, 4-[(1S,8aR)-3-(aryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline (1: aryl=substituted phenyl) and 4-[(1S,8aR)-3-(heteroaryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline [2: heteroaryl=5-nitrothien-2-yl (2a); 5-nitrofuran-2-yl (2b) and 4H-imidazol-2-yl) (2c)], have been synthesized and evaluated against Mycobacterium tuberculosis. Compounds 1f (aryl=3-ethoxyphenyl), 1g (Ar=3,4,5-(MeO)(3)-C(6)H(2)) and 2c were slightly more active than mefloquine (MIC=33μM) with MICs=24.5, 22.5 and 27.4, respectively, whereas compounds 1e (aryl=3,4-(MeO)(2)-C(6)H(3)) and 2a (MICs=11.9 and 12.1μM, respectively) were ca. 2.7 times more active than mefloquine, with a better tuberculostatic activity than the first line tuberculostatic agent ethambutol (MIC=15.9). The compounds were also assayed against the MDR strain T113 and the same MICs were observed. Thus the new derivatives have advantages over such anti-TB drugs as isoniazid, rifampicin, ethambutol and ofloxacin, for which this strain is resistant. The most active compounds were not cytotoxic to Murine Macrophages Cells in a concentration near their MIC values.

  15. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  16. The rat pink-eyed dilution (p) mutation: an identical intragenic deletion in pink-eye dilute-coat strains and several Wistar-derived albino strains.

    Science.gov (United States)

    Kuramoto, Takashi; Gohma, Hiroshi; Kimura, Kunio; Wedekind, Dirk; Hedrich, Hans J; Serikawa, Tadao

    2005-09-01

    We identified the rat pink-eyed dilution (p) and pink eye Mishima (p(m)) mutations. The p(m) mutation, which was isolated from a wild rat caught in Mishima Japan in 1961 and is carried in the NIG-III strain, is a splice donor site mutation in intron 5. The p mutation, which was first described in 1914 and is carried in several p/p rats including the RCS and BDV strains, is an intragenic deletion including exons 17 and 18. In addition to RCS and BDV strains, several albino strains, KHR, KMI and WNA, all descendants of albino stock of the Wistar Institute, are homozygous for the p allele. Analyses revealed that the colored p strains and the Wistar-derived albino p strains had the same marker haplotype spanning approximately 4 Mb around the P locus. This indicates that these p strains share a common ancestor and the p allele did not arise independently via recurrent mutations. The historical relationship among the p strains suggests that the p deletion had been maintained in stock heterogeneous for the C and P loci and then was inherited independently by the ancestor of the Wistar albino stock and the ancestor of the pink-eyed agouti rats in Europe.

  17. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  18. Second trimester ultrasound: reference values for two-dimensional speckle tracking-derived longitudinal strain, strain rate and time to peak deformation of the fetal heart

    NARCIS (Netherlands)

    Kapusta, L.; Mainzer, G.; Weiner, Z.; Deutsch, L.; Khoury, A.; Haddad, S.; Lorber, A.

    2012-01-01

    BACKGROUND: Data on myocardial deformation during the internationally widely used second-trimester screening are scarce and confusing. Reference values of time to peak strain are missing. The aims of this study were to assess reference values derived from two-dimensional speckle-tracking echocardiog

  19. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  20. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    Science.gov (United States)

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  1. Bone marrow-derived dendritic cells.

    Science.gov (United States)

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  2. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  3. In vitro interaction of Stenotrophomonas maltophilia with human monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Emanuela eRoscetto

    2015-07-01

    Full Text Available Stenotrophomonas maltophilia is increasingly identified as an opportunistic pathogen in immunocompromised, cancer and cystic fibrosis (CF patients. Knowledge on innate immune responses to S. maltophilia and its potential modulation is poor. The present work investigated the ability of 12 clinical S. maltophilia strains (5 from CF patients, 7 from non-CF patients and one environmental strain to survive inside human monocyte-derived dendritic cells (DCs. The effects of the bacteria on maturation of and cytokine secretion by DCs were also measured. S. maltophilia strains presented a high degree of heterogeneity in internalization and intracellular replication efficiencies as well as in the ability of S. maltophilia to interfere with normal DCs maturation. By contrast, all S. maltophilia strains were able to activate DCs, as measured by increase in the expression of surface maturation markers and proinflammatory cytokines secretion.

  4. New antibacterial isocoumarin glycosides from a wetland soil derived fungal strain Metarhizium anisopliae.

    Science.gov (United States)

    Tian, Jie-Feng; Li, Peng-Ju; Li, Xiao-Xia; Sun, Ping-Hua; Gao, Hao; Liu, Xing-Zhong; Huang, Peng; Tang, Jin-Shan; Yao, Xin-Sheng

    2016-03-01

    Eight new isocoumarin glycosides (1-8) were obtained from the solid culture of the wetland soil-derived fungus Metarhizium anisopliae (No. DTH12-10). Their chemical structures were elucidated by analyses of HR ESI-TOF MS, (1)H, (13)C NMR, (1)H-(1)H COSY, HSQC, and HMBC spectra. The absolute configurations were determined by single crystal X-ray diffraction, circular dichroism (CD) spectrum, and chemical derivatization methods. In addition, inhibition of the biofilm formation and the secretion of virulence factor of the new isocoumarin glycosides against Pseudomonas aeruginosa strain PAOA (clinical isolates) were evaluated. The result revealed that compound 1 showed antibacterial activity comparable with (Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BF).

  5. Inactive vaccine derived from velogenic strain of local Newcastle disease virus .

    Directory of Open Access Journals (Sweden)

    Darminto

    1996-03-01

    Full Text Available The objective of this research is to evaluate an application of an inactive Newcastle disease (ND vaccine derived from velogenic strain of local Newcastle disease virus (NDV. In this research . the Ira strain of velogenic ND virus was grown in specific pathogen free (SPF eggs and then was inactivated by formalin at a final concentration of 1 :1,000 at 4°C. The inactive antigen was then emulsified with an oil adjuvant or aluminium hydroxide gel before being administered for vaccination in layers and compared to a commercial inactive ND vaccine . Results indicated that application of these inactivated ND vaccines for booster vaccination following vaccination with an active lentogenic ND virus in pullets nearly producing eggs, resulted in high antibody titre which persisted for considerable long period of time and capable of protecting layers from sick of ND and from reducing egg production . Hence, it could be concluded that the inactivated vaccine emulsified in either oil-adjuvant (lanolin-paraffin or aluminium hydroxide gel were considered to be highly immunogenic and capable of protecting layers from sick of ND and from reducing egg production

  6. A national reference for inactivated polio vaccine derived from Sabin strains in Japan.

    Science.gov (United States)

    Shirato, Haruko; Someya, Yuichi; Ochiai, Masaki; Horiuchi, Yoshinobu; Takahashi, Motohide; Takeda, Naokazu; Wakabayashi, Kengo; Ouchi, Yasumitsu; Ota, Yoshihiro; Tano, Yoshio; Abe, Shinobu; Yamazaki, Shudo; Wakita, Takaji

    2014-09-08

    As one aspect of its campaign to eradicate poliomyelitis, the World Health Organization (WHO) has encouraged development of the inactivated polio vaccine (IPV) derived from the Sabin strains (sIPV) as an option for an affordable polio vaccine, especially in low-income countries. The Japan Poliomyelitis Research Institute (JPRI) inactivated three serotypes of the Sabin strains and made sIPV preparations, including serotypes 1, 2 and 3 D-antigens in the ratio of 3:100:100. The National Institute of Infectious Diseases, Japan, assessed the immunogenic stability of these sIPV preparations in a rat potency test, according to an evaluation method recommended by the WHO. The immunogenicity of the three serotypes was maintained for at least 4 years when properly stored under -70°C. Based on these data, the sIPV preparations made by JPRI have been approved as national reference vaccines by the Japanese national control authority and used for the quality control of the tetracomponent sIPV-containing diphtheria-tetanus-acellular pertussis combination vaccines that were licensed for a routine polio immunization in Japan.

  7. Antimicrobial and anti-pathogenic activity of some thioureides derivatives against Erwinia amylovora phytopathogenic strains.

    Science.gov (United States)

    Măruţescu, Luminiţa; Niţulescu, Mihai-George; Bucur, Marcela; Diţu, Lia-Mara; Mihăescu, Grigore; Lazăr, Veronica; Sesan, Tatiana

    2011-01-01

    A series of N-(1-methyl-1 Hpyrazole-4-carbonyl)-thiourea derivatives were assessed for their in vitro antimicrobial and anti-pathogenic activity against twenty-two strains of Erwinia amylovora isolated from different regions in Romania. The compounds were solubilised in dimethylsulfoxide and screened for their in vitro antimicrobial activity. The qualitative screening of the susceptibility spectra of various strains to the compounds was performed by adapted diffusion techniques (distribution of the tested compound solution directly on the solid medium previously seeded with the bacterial inoculums). The quantitative assay of the minimal inhibitory concentration (MIC, microg/mL) was based on liquid medium two-fold microdilutions. The subinhibitory concentrations of the tested substances were investigated for their influence on biofilm development on inert substrata. The present study showed that six new thiourea compounds exhibited a low antibacterial activity (MIC values > 500 microg/ml), but the subinhibitory concentrations inhibited the biofilm development on inert substrata. Thus, these results could suggest the usefulness of the tested compounds as control agents for preventing the first stage (colonization) of the infection with the fire blight pathogen.

  8. Emergence of hyper-resistant Escherichia coli MG1655 derivative strains after applying sub-inhibitory doses of individual constituents of essential oils

    Directory of Open Access Journals (Sweden)

    Beatriz eChueca

    2016-03-01

    Full Text Available The improvement of food preservation by using essential oils (EOs and their individual constituents (ICs is attracting enormous interest worldwide. Until now, researchers considered that treatments with such antimicrobial compounds did not induce bacterial resistance via a phenotypic (i.e. transient response. Nevertheless, the emergence of genotypic (i.e. stable resistance after treatment with these compounds had not been previously tested. Our results confirm that growth of Escherichia coli MG1655 in presence of sub-inhibitory concentrations of the ICs carvacrol, citral, and (+-limonene oxide do not increase resistance to further treatments with either the same IC (direct resistance or with other preservation treatments (cross-resistance such as heat or pulsed electric fields (PEF. Bacterial mutation frequency was likewise lower when those IC’s were applied; however, after 10 days of re-culturing cells in presence of sub-inhibitory concentrations of the ICs, we were able to isolate several derivative strains (i.e. mutants displaying an increased minimum inhibitory concentration to those ICs. Furthermore, when compared to the wild type (WT strain, they also displayed direct resistance and cross-resistance. Derivative strains selected with carvacrol and citral also displayed morphological changes involving filamentation along with cell counts at late-stationary growth phase that were lower than the WT strain. In addition, co-cultures of each derivative strain with the WT strain resulted in a predominance of the original strain in absence of ICs, indicating that mutants would not out-compete WT cells under optimal growth conditions. Nevertheless, growth in the presence of ICs facilitated the selection of these resistant mutants. Thus, as a result, subsequent food preservation treatments of these bacterial cultures might be less effective than expected for WT cultures. In conclusion, this study recommends that treatment with ICs at sub

  9. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146.

    Directory of Open Access Journals (Sweden)

    Fabien Coze

    Full Text Available Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2 strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and (13C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.

  10. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity.

    Science.gov (United States)

    Soni, Chetna; Domeier, Phillip P; Wong, Eric B; Shwetank; Khan, Tahsin N; Elias, Melinda J; Schell, Stephanie L; Lukacher, Aron E; Cooper, Timothy K; Rahman, Ziaur S M

    2015-09-01

    The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.

  11. Accuracy of heart strain rate calculation derived from Doppler tissue velocity data

    Science.gov (United States)

    Santos, Andres; Ledesma-Carbayo, Maria J.; Malpica, Norberto; Desco, Manuel; Antoranz, Jose C.; Marcos-Alberca, Pedro; Garcia-Fernandez, Miguel A.

    2001-05-01

    Strain Rate (SR) Imaging is a recent imaging technique that provides information about regional myocardial deformation by measuring local compression and expansion rates. SR can be obtained by calculating the local in-plane velocity gradients along the ultrasound beam from Doppler Tissue velocity data. However, SR calculations are very dependent on the image noise and artifacts, and different calculation algorithms may provide inconsistent results. This paper compares techniques to calculate SR. 2D Doppler Tissue Images (DTI) are acquired with an Acuson Sequoia scanner. Noise was measured with the aid of a rotating phantom. Processing is performed on polar coordinates. For each image, after removal of black spot artifacts by a selective median filter, two different SR calculation methods have been implemented. In the first one, SR is computed as the discrete velocity derivative, and noise is reduced with a variable-width gaussian filter. In the second method a smoothing cubic spine is calculated for every scan line according to the noise level and the derivative is obtained from an analytical expression. Both methods have been tested with DTI data from synthetic phantoms and normal volunteers. Results show that noise characteristics, border effects and the adequate scale are critical to obtain meaningful results.

  12. Multiple Effects of Berberine Derivatives on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Luis Miguel Guamán Ortiz

    2014-01-01

    Full Text Available The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.

  13. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  14. Elliptical posts allow for detailed control of non-equibiaxial straining of cell cultures

    DEFF Research Database (Denmark)

    Olesen, Christian Gammelgaard; Pennisi, Cristian Pablo; de Zee, Mark

    2013-01-01

    Background A modification of the Flexcell system that allows imposition of homogenous, controlled non-equibiaxial strains to cell cultures is developed and experimentally validated. The Flexcell system by default applies equibiaxial strain to cell cultures, meaning no shear strain, while soft tis...

  15. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  16. Mouse Reporter Strain for Noninvasive Bioluminescent Imaging of Cells that have Undergone Cre-Mediated Recombination

    Directory of Open Access Journals (Sweden)

    Michal Safran

    2003-10-01

    Full Text Available Conditional alleles containing LoxP recombination sites, in conjunction with Cre recombinase delivered by a variety of means, allows for spatial and temporal control of gene expression in mouse models. Here we describe a mouse strain in which a luciferase (Luc cDNA, preceded by a LoxP-stop-LoxP (L-S-L cassette, was introduced into the ubiquitously expressed ROSA26 locus. Mouse embryo fibroblasts derived from this strain expressed luciferase after Cre-mediated recombination in vitro. ROSA26 L-S-L-Luc/+ mice expressed luciferase in a diffuse or liver-restricted pattern, as determined by noninvasive, bioluminescent imaging, when crossed to transgenic mice in which Cre was under the control of a zygotically expressed (EIIA-Cre, or a liver-restricted (albumin-Cre, promoter, respectively. Organ-specific luciferase expression was also seen after intraparenchymal administration of an adenovirus encoding Cre. The ROSA26 L-S-L-Luc/+ strain should be useful for characterizing Cre mouse strains and for following the fate of cells that have undergone Cre-mediated recombination in vivo.

  17. Strain identification and quorum sensing inhibition characterization of marine-derived Rhizobium sp. NAO1

    Science.gov (United States)

    Chang, Hong; Zhu, Xiaoshan; Yu, Shenchen; Chen, Lu; Jin, Hui; Cai, Zhonghua

    2017-01-01

    A novel strategy for combating pathogens is through the ongoing development and use of anti-quorum sensing (QS) treatments such as therapeutic bacteria or their anti-QS substances. Relatively little is known about the bacteria that inhabit the open ocean and of their potential anti-pathogenic attributes; thus, in an initiative to identify these types of therapeutic bacteria, planktonic microbes from the North Atlantic Ocean were collected, isolated, cultured and screened for anti-QS activity. Screening analysis identified one such strain, Rhizobium sp. NAO1. Extracts of Rhizobium sp. NAO1 were identified via ultra-performance liquid chromatography (UPLC) analysis. They were shown to contain N-acyl homoserine lactone (AHL)-based QS analogues (in particular, the N-butyryl homoserine lactone (C4-AHL) analogue) and could disrupt biofilm formation by Pseudomonas aeruginosa PAO1. QS inhibition was confirmed using confocal scanning laser microscopy and growth curves, and it was shown to occur in a dose-dependent manner without affecting bacterial growth. Secondary metabolites of Rhizobium sp. NAO1 inhibited PAO1 pathogenicity by downregulating AHL-mediated virulence factors such as elastase activity and siderophore production. Furthermore, as a result of biofilm structure damage, the secondary metabolite products of Rhizobium sp. NAO1 significantly increased the sensitivity of PAO1 to aminoglycoside antibiotics. Our results demonstrated that Rhizobium sp. strain NAO1 has the ability to disrupt P. aeruginosa PAO1 biofilm architecture, in addition to attenuating P. aeruginosa PAO1 virulence factor production and pathogenicity. Therefore, the newly identified ocean-derived Rhizobium sp. NAO1 has the potential to serve as a QS inhibitor and may be a new microbial resource for drug development.

  18. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  19. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology.

    Science.gov (United States)

    Husain, Zaheed; Seth, Pankaj; Sukhatme, Vikas P

    2013-11-01

    Many malignant cells produce increased amounts of lactate, which promotes the development of myeloid-derived suppressor cells (MDSCs). MDSCs, lactate, and a low pH in the tumor microenvironment inhibit the function of natural killer (NK) cells and T lymphocytes, hence allowing for disease progression. Ketogenic diets can deplete tumor-bearing animals from MDSCs and regulatory T cells, thereby improving their immunological profile.

  20. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy

    DEFF Research Database (Denmark)

    Perin, Emerson C; Sanz-Ruiz, Ricardo; Sánchez, Pedro L

    2014-01-01

    AIMS: Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocar...

  1. Naphthalenones and Depsidones from a Sponge-Derived Strain of the Fungus Corynespora cassiicola

    Directory of Open Access Journals (Sweden)

    Dong-Lin Zhao

    2016-01-01

    Full Text Available Two new naphthalenones, corynenones A and B (1 and 2, and one new depsidone, corynesidone E (3, together with one known depsidone, corynesidone A (4 and two known diphenyl ethers, corynethers A (5 and B (6, were isolated from the sponge-derived fungus Corynespora cassiicola XS-20090I7. Their structures including absolute configurations were determined by spectroscopic data and electronic circular dichroism (ECD spectra. Compounds 4 and 5 showed cytotoxicity against human promyelocytic leukemia HL-60 and human cervical carcinoma HeLa cell lines.

  2. Autoantibodies against bromelainized mouse erythrocyte: strain distribution of serum idiotype expression and relative peritoneal cell activity.

    Science.gov (United States)

    Kaushik, A; Poncet, P; Bussard, A

    1986-10-15

    Previously, we demonstrated that the naturally occurring mouse autoantibodies directed against bromelainized mouse red blood cells (BrMRBC) comprised a family of structurally related molecules bearing a common idiotypic determinant (CP) based on structural and idiotypic analysis of a series of anti-BrMRBC monoclonal autoantibodies derived from a fusion of peritoneal cells (PerC) with plasmacytomas. In the present studies, we have evaluated the quantitative expression of circulating CP idiotype related to autoantibodies against BrMRBC in relation to specific PerC anti-BrMRBC plaque-forming activity in an individual mouse of different strains. The data presented here show no direct relationship between serum CP idiotype expression and PerC anti-BrMRBC plaque-forming activity in an individual mouse of all strains tested. However, the circulating CP idiotype content is higher in strains, viz., CBA/J, NZB, C3H, BXSB, and Biozzi high responder (H) mice which exhibit a high perC autoantibody secretory activity against BrMRBC. The strains such as BALB/c, DBA2, SJL/J, CBA/N, and Biozzi low responder (L) express little or no circulating CP idiotype with a corresponding small or no PerC anti-BrMRBC activity. Furthermore, the PerC "auto"-immune phenomenon is markedly expressed in the normal CBA/J strain since these mice show a higher percentage ratio of CP idiotype over serum IgM (2.68%) as well as highest PerC anti-BrMRBC plaque-forming activity (11,319 +/- 18,029 plaques per million viable cells) compared to other normal and autoimmune strains tested. Nevertheless, the highest circulating serum CP idiotype (49.4 micrograms/ml) is observed in the autoimmune NZB mouse. The immunodeficient CBA/N mice fail to express detectable levels of CP idiotype in their serum. The experiments conducted in genetically selected outbred Biozzi (H and L) strain have revealed remarkable differences in serum CP idiotype expression as well as PerC anti-BrMRBC plaque-forming activity in these two

  3. Derivation, propagation and differentiation of human embryonic stem cells.

    Science.gov (United States)

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  4. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, ptissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  5. Cytopathogenesis of Naegleria fowleri Thai strains for cultured human neuroblastoma cells.

    Science.gov (United States)

    Tiewcharoen, Supathra; Malainual, Nat; Junnu, Virach; Chetanachan, Pruksawan; Rabablert, Jundee

    2008-04-01

    The aim of this study is to evaluate cellular interaction between free-living amoebae Naegleria fowleri strains and mammalian target cells in vitro. Two Thai strains of N. fowleri; Khon Kaen strain from the environment and Siriraj strain from the patient's cerebrospinal fluid and the Center of Disease Control VO 3081 strain from Atlanta (US) were studied. Human neuroblastoma (SK-N-MC) and African Green monkey Kidney (Vero) cells were used as target cells. Each cell line was inoculated with each strain of N. fowleri at a ratio of 1:1 and observed for 7 days. The uninoculated target cells and each strain of N. fowleri were used as control. The numbers of the challenged and unchallenged cells as well as the free-living amoebae were counted three times by trypan blue exclusion method. The inoculation began when the amoebae attached to the cell membrane and ingested the target cells. In this study, extensive cytopathogenesis with many floating inoculated cells and abundant number of amoebae were observed. The destruction pattern of both inoculated SK-N-MC and Vero target cells were similar. Interestingly, SK-N-MC was more susceptible to N. fowleri strains than the Vero cell. In addition, N. fowleri Siriraj strain showed the highest destruction pattern for each target cell. Our findings suggest that the SK-N-MC should be used as a base model for studying the neuropathogenesis in primary amoebic meningoencephalitis patients.

  6. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  7. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    Science.gov (United States)

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.

  8. Biochemical classification of Clostridium botulinum type C and D strains and their nontoxigenic derivatives.

    OpenAIRE

    OGUMA, K.; Yamaguchi, T.; Sudou, K; Yokosawa, N; Fujikawa, Y.

    1986-01-01

    The biochemical properties of 11 toxigenic and 10 nontoxigenic type C and D strains of Clostridium botulinum were studied. All of the strains examined were motile and hemolytic and produced lipase and liquid gelatin. Fermentation of several sugars and the production of lecithinase, indole, and hydrogen sulfide varied with the strain. The strains were classified into four groups based on their sugar fermentation profiles. The resulting classification was identical to the classification which h...

  9. Microporous and mesoporous carbide-derived carbons for strain modification of electromechanical actuators.

    Science.gov (United States)

    Torop, Janno; Arulepp, Mati; Sugino, Takushi; Asaka, Kinji; Jänes, Alar; Lust, Enn; Aabloo, Alvo

    2014-03-18

    Low-voltage stimuli-responsive actuators based on carbide-derived carbon (CDC) porous structures were demonstrated. Bending actuators showed a differential electromechanical response defined by the porosity of the CDC used in the electrode layer. Highly porous CDCs prepared from TiC (mainly microporous), B4C (micromesoporous), and Mo2C (mainly mesoporous) precursors were selected to demonstrate the influence of porosity parameters on the electromechanical performance of actuators. CDC-based bending-type actuators showed a porosity-driven displacement response over a frequency range of 200 to 0.005 Hz at an applied excitation voltage of ±2 V. The displacement response of the CDC actuators increased with an increasing number of mesopores in the electrode layer, and the generated strain of the bending actuators was proportional to the total porosity (micropores and mesopores) of the CDC. The modifiable electromechanical response that arises from the precise porosity control attained through tailoring the CDC architecture demonstrates that these actuators hold great promise for smart, low-voltage-driven actuation devices.

  10. Synbiotic administration of canine-derived strain Lactobacillus fermentum CCM 7421 and inulin to healthy dogs.

    Science.gov (United States)

    Strompfová, Viola; Lauková, Andrea; Cilik, Dušan

    2013-05-01

    The canine-derived strain Lactobacillus fermentum CCM 7421 has been demonstrated to exert certain health benefits as a probiotic in dogs. Synbiotic combinations are widely used but are rarely studied in dogs. In this study the prebiotic inulin in combination with L. fermentum CCM 7421 was tested for its effects on faecal microbial populations, faecal characteristics, and blood biochemistry in canine experiments. Healthy adult dogs (n = 36) were randomly assigned to 1 of 3 treatment groups (12 dogs/treatment): (i) the control group (C), (ii) the probiotic group (LF group: L. fermentum CCM 7421, 10(8) CFU/mL of Ringer buffer, 0.1 mL/kg of body mass), and (iii) the synbiotic group (LF+I group: L. fermentum CCM 7421 + inulin (I; Raftifeed IPS) added as 1% of diet). The experiment lasted for 7 weeks with a 2-week treatment period. We detected a significant increase of lactic acid bacteria (LF versus C, day 7; LF versus C and LF versus LF+I, days 28 and 49), a decrease of clostridia (LF versus C, day 14), a lower pH value (LF versus LF+I, day 28), and a higher ammonia concentration (LF versus LF+I, days 14 and 49) in faecal samples. The synbiotic LF+I combination did not intensify the probiotic L. fermentum CCM 7421 efficacy, but its slight laxative effect can be useful to prevent constipation, e.g., in senior dogs.

  11. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    Science.gov (United States)

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido

    2017-01-13

    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  12. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pfunction (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, pmyocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  13. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pmyocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  14. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  15. Dedifferentiated adipocyte-derived progeny cells (DFAT cells)

    OpenAIRE

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J.; Rasmussen, Theodore P; Bergen, Werner G.; Dodson, Michael V.

    2013-01-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, ...

  16. Short communication: Antiproliferative effect of 8 different Lactobacillus strains on K562 cells.

    Science.gov (United States)

    Tuo, Yanfeng; Jiang, Shujuan; Qian, Fang; Mu, Guangqing; Liu, Peng; Guo, Yuanji; Ma, Changlu

    2015-01-01

    Some strains of Lactobacillus genus have antiproliferative activities against cancer cells. However, until now, the exact effector molecules of Lactobacillus strains with anticancer activity have not been identified. The aim of the present study was to explore which fraction of the Lactobacillus cells exerts the highest antiproliferative effect. For this purpose, the heat-killed bacterial cells, bacterial cell wall extract, and genomic DNA of 8 Lactobacillus strains were prepared to assess their antiproliferative activities against human myeloid leukemia cell lines K562. The heat-killed bacterial cells of the 8 lactobacilli strains exerted antiproliferative effect on K562 cells, and the inhibition rates exerted by the heat-killed bacterial cells of the strains G15AL, M5AL, SB31AL, SB5AL, and T3AL were significantly higher than those exerted by the cell walls and genomic DNA of the strains. The bacterial DNA of G15AL exerted higher antiproliferative effect on K562 cells. The exact effector molecules and the effect mechanism of the strains should be further explored for the application of these strains as probiotic strains or bioactive probiotic molecules.

  17. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  18. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Tomohisa Seki

    Full Text Available Induced pluripotent stem cells (iPSCs have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.

  19. Challenges for the therapeutic use of pluripotent stem derived cells

    Directory of Open Access Journals (Sweden)

    Magda eForsberg

    2012-02-01

    Full Text Available Human embryonic stem cells (hESC and induced pluripotent stem cells (hiPSC are an attractive cell source for regenerative medicine. These cells can be expanded to vast numbers and can be differentiated to many cell types to generate pluripotent stem cells (PSC derived therapeutic cells. These cells are desired for cell transplantations. Cell replacement is promising, but it has many challenges. The challenge of introduction of exogenous cells in a recipient requires addressing several different topics; the immunological response and possible rejection, cleanliness, exclusion of tumor formation and functionality of the PSC derived therapeutic cells. Immunological rejection can be addressed with immunomodulation of the cells and the recipient. Cleanliness can be optimized using good manufacturing practice (GMP quality systems. Tumor formation requires the removal of any PSC remaining after differentiation. At last, the functionality of the cells must be tested in in-vitro and in animal models. After addressing these challenges, precise strategies are developed to monitor the status of the cells at different times and in case of undesired results, corresponding counteracting strategies must exist before any clinical attempt.

  20. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    Science.gov (United States)

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  1. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  2. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential.

    Science.gov (United States)

    Matsumoto, Taro; Kano, Koichiro; Kondo, Daisuke; Fukuda, Noboru; Iribe, Yuji; Tanaka, Nobuaki; Matsubara, Yoshiyuki; Sakuma, Takahiro; Satomi, Aya; Otaki, Munenori; Ryu, Jyunnosuke; Mugishima, Hideo

    2008-04-01

    When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability. We refer to these cells as dedifferentiated fat (DFAT) cells. In the present study, we examined the multilineage differentiation potential of DFAT cells. DFAT cells obtained from adipose tissues of 18 donors exhibited a fibroblast-like morphology and sustained high proliferative activity. Flow cytometric analysis revealed that DFAT cells comprised a highly homogeneous cell population compared with that of adipose-derived stem/stromal cells (ASCs), although the cell-surface antigen profile of DFAT cells was very similar to that of ASCs. DFAT cells lost expression of mature adipocytes marker genes but retained or gained expression of mesenchymal lineage-committed marker genes such as peroxisome proliferator-activated receptor gamma (PPARgamma), RUNX2, and SOX9. In vitro differentiation analysis revealed that DFAT cells could differentiate into adipocytes, chondrocytes, and osteoblasts under appropriate culture conditions. DFAT cells also formed osteoid matrix when implanted subcutaneously into nude mice. In addition, clonally expanded porcine DFAT cells showed the ability to differentiate into multiple mesenchymal cell lineages. These results indicate that DFAT cells represent a type of multipotent progenitor cell. The accessibility and ease of culture of DFAT cells support their potential application for cell-based therapies.

  3. A New Acetylenic Compound and Other Bioactive Metabolites from a Shark Gill-derived Penicillium Strain

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-01-01

    Full Text Available Nine chiral compounds (1−9 were isolated from the static fermentation culture of a shark gill-derived fungus Penicillium polonicum AP2T1. These compounds include a new acetylenic aromatic ether (1 , (--WA , four alkaloids ( a urantiomide C ( 2 , fructigenine A (3, cyclopenin (4 and cyclopenol (5 and four oxygenated compounds ((R-penipratynolene (6, (3S,4S-3,4-dihydro-3,4,8-trihydroxyl-naphthalenone (7, verrucosidin (8 and norverrucosidin (9. Their structures were elucidated by MS, NMR , optical rotation and circular dichroism (CD . In antimicrobial tests , compounds 1–4, 6 and 8–9 showed weak antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and/or Escherichia coli.Compounds 3, 8 and 9 also exhibited moderate toxicity against Artemia salina larva , and showed cytotoxicity against human colon cancer cell line HCT116.

  4. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  5. Mx1 causes resistance against influenza A viruses in the Mus spretus-derived inbred mouse strain SPRET/Ei.

    Science.gov (United States)

    Vanlaere, Ineke; Vanderrijst, Ananza; Guénet, Jean-Louis; De Filette, Marina; Libert, Claude

    2008-04-01

    Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.

  6. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  7. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  8. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates

    Directory of Open Access Journals (Sweden)

    Hedrich Hans J

    2005-11-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is an important model for studying many aspects of human health and disease. Detailed knowledge on genetic variation between strains is important from a biomedical, particularly pharmacogenetic point of view and useful for marker selection for genetic cloning and association studies. Results We show that Single Nucleotide Polymorphisms (SNPs in commonly used rat strains are surprisingly well represented in wild rat isolates. Shotgun sequencing of 814 Kbp in one wild rat resulted in the identification of 485 SNPs as compared with the Brown Norway genome sequence. Genotyping 36 commonly used inbred rat strains showed that 84% of these alleles are also polymorphic in a representative set of laboratory rat strains. Conclusion We postulate that shotgun sequencing in a wild rat sample and subsequent genotyping in multiple laboratory or domesticated strains rather than direct shotgun sequencing of multiple strains, could be the most efficient SNP discovery approach. For the rat, laboratory strains still harbor a large portion of the haplotypes present in wild isolates, suggesting a relatively recent common origin and supporting the idea that rat inbred strains, in contrast to mouse inbred strains, originate from a single species, R. norvegicus.

  9. [Construction of cDNA infectious clones of EV71 highly-pathogenic and cell-culture-adapted strains].

    Science.gov (United States)

    Zhang, Yong-xin; Li, Xiao-yu; Huang, Yu-ming; Zhou, Yong-dong; Bi, Sheng-li; Cen, Shan

    2014-11-01

    The highly-pathogenic EV71 strain is the primary cause of mortality in hand-foot-and-mouth disease (HFMD) associated with neurological symptoms, for which no clinically effective drugs or vaccines exist. This study aimed to construct infectious cDNA clones of the EV71 highly-pathogenic strain and the cell-culture adapted strain using a reverse genetics approach. The genomic RNAs of EV71 parent strains were used as the templates for RT-PCR amplification, and then the PCR products that overlapped the full-length genome were connected into the pBR322 vector to produce infectious clones of pEV71 (HP) and pEV71 (CCA), respectively. The results showed that the HP strain propagated much more quickly than the CCA strain. The rescued viruses derived from the infectious clones not only maintained their consistency with their parent strains in terms of genomic sequences, but also retained their respective biological phenotypes. This research will contribute to our understanding of EV71 pathogenesis and the development of novel vaccines against HFMD.

  10. Dedifferentiated adipocyte-derived progeny cells (DFAT cells)

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-01-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review. PMID:23991357

  11. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  12. Derivation and application of pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Wang, Jiaqiang; Zhou, Qi

    2016-06-01

    Pluripotent stem cells (PSCs) are cells that can differentiate into any type of cells in the body, therefore have valuable promise in regenerative medicine of cell replacement therapies and tissue/organ engineering. PSCs can be derived either from early embryos or directly from somatic cells by epigenetic reprogramming that result in customized cells from patients. Here we summarize the methods of deriving PSCs, the various types of PSCs generated with different status, and their versatile applications in both clinical and embryonic development studies. We also discuss an intriguing potential application of PSCs in constructing tissues/organs in large animals by interspecies chimerism. All these emerging findings are likely to contribute to the breakthroughs in biological research and the prosperous prospects of regenerative medicine.

  13. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  14. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  15. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    Science.gov (United States)

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration.

  16. OVCAR-3 spheroid-derived cells display distinct metabolic profiles.

    Directory of Open Access Journals (Sweden)

    Kathleen A Vermeersch

    Full Text Available Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells.To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines.These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines.Overall, we demonstrate for the first time that metabolism

  17. Current horizontal strain field in Chinese mainland derived from GPS data

    Institute of Scientific and Technical Information of China (English)

    杨国华; 李延兴; 韩月萍; 胡新康; 巩曰沐

    2002-01-01

    The current crustal horizontal strain field is given in the paper based on the horizontal movement rates obtained from about 400 GPS stations located in Chinese mainland and its surrounding areas. The results show: a) The horizontal strain in Chinese mainland is "strong in the west and weak in the east" and the shear strain is larger than the normal strain (absolute magnitude). The general strain magnitude is 10-8/a and in local regions is 10-7/a, but the strain distribution is not homogeneous; b) The regions with the most significant NS-trending strains are the Himalayas belt along the western segment of Chinese southern boundary, the segment of 36°N~42°N along the western boundary and the northern margin of Qaidam block; c) The EW-trending strain variation along the western margin is the maximum and it is characterized by the alternatively positive and negative variations from the west to the east; d) The regions with larger magnitudes of REN (NE-trending shear strain) and Rmax (maximum shear strain) are Himalayas belt, the segment of 36°N~42°N along the western boundary, the western part of Qaidam block, Sichuan-Yunnan (Chuan-Dian) rhombic block and the border area of Alxa, Qilian and Tarim blocks; e) The surrounding area of Qinghai-Xizang (Qingzang) block is mainly superfacial contraction and its interior is basically superfacial expansion. The area to its north is mainly superfacial contraction with the maximum magnitude along the western boundary and the minimum magnitude in the eastern part (except Yanshan tectonic zone); f) In the west of the western part, the principal compressive strain is in the SN direction and the principal tensile strain is in the EW direction, while in the eastern margin area of the western part, the principal compressive strain is proximate EW and the principal tensile strain is about SN. The principal strain direction of Chuan-Dian rhombic block has changed greatly. In the northern part, it is compression in the EW and

  18. Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains

    Science.gov (United States)

    Sharova, Lioudmila V.; Sharov, Alexei A.; Piao, Yulan; Shaik, Nabeebi; Sullivan, Terry; Stewart, Colin L.; Hogan, Brigid L.M.; Ko, Minoru S.H.

    2007-01-01

    Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin and genetic background. These data indicate that ESCs and EGCs are indistinguishable based on global gene expression patterns alone. On the other hand, a detailed comparison between a group of ESC lines and a group of EGC lines identified 20 signature genes whose average expression levels were consistently higher in ESC lines, and 84 signature genes whose average expression levels were consistently higher in EGC lines, irrespective of mouse strains. Similar analysis identified 250 signature genes whose average expression levels were consistently higher in a group of 129 cell lines, and 337 signature genes whose average expression levels were consistently higher in a group of C57BL/6 cell lines. Although none of the genes was exclusively expressed in either ESCs versus EGCs or 129 versus C57BL/6, in combination these signature genes provide a reliable separation and identification of each cell type. Differentiation-promoting conditions also revealed some minor differences between the cell

  19. Heritability of in vitro phenotypes exhibited by murine adipose-derived stromal cells.

    Science.gov (United States)

    Jiang, Zixuan; Harrison, David E; Parsons, Makayla E; McClatchy, Susan; Jacobs, Lawrence; Pazdro, Robert

    2016-10-01

    Adipose-derived stromal cells (ADSCs) exhibit significant potential as therapeutic agents to promote tissue regeneration. Success of ADSC-based therapies is dependent upon efficient cell expansion in vitro as well as postinjection survival in the caustic milieu of damaged tissue. Genetic background regulates ADSC proliferative capacity and stress resistance, but the extent of the genetic effect size is not completely defined. The present study aimed to quantify phenotypic ranges and heritability of in vitro ADSC characteristics. ADSCs were isolated from mice representing 16 genetically diverse inbred mouse strains, including 12 classical inbred strains and four wild-derived strains. Cells were grown in vitro, and proliferative capacity and oxidative stress resistance were assessed. The fold change for ADSC growth ranged from 0.87 (BALB/cByJ) to 23.60 (POHN/DehJ), relative to original seeding density. The heritability of proliferative capacity was estimated to be 0.6462 (p = 9.967 × 10(-15)), and this phenotype was not associated with other ADSC traits. Cell viability following H2O2 treatment ranged from 39.81 % (CAST/EiJ) to 91.60 % (DBA/2 J), and the heritability of this phenotype was calculated as 0.6146 (p = 1.22 × 10(-12)). Relationships between cell viability and weight of the donor fat pad were also discovered. Donor genetic background is a major determinant of in vitro ADSC phenotypes. This study supports the development of forward genetics strategies to identify genes that underlie ADSC phenotypic diversity, which will inform efforts to improve cell-based therapies.

  20. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Institute of Scientific and Technical Information of China (English)

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang

    2006-01-01

    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  1. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  2. Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation.

    Science.gov (United States)

    Nair, Rekha; Santos, Lívia; Awasthi, Siddhant; von Erlach, Thomas; Chow, Lesley W; Bertazzo, Sergio; Stevens, Molly M

    2014-07-15

    Embryonic stem cells (ESCs) can differentiate into all cell types of the body and, therefore, hold tremendous promise for cell-based regenerative medicine therapies. One significant challenge that should be addressed before using ESCs in the clinic is to improve methods of efficiently and effectively directing the differentiation of this heterogeneous cell population. The work presented here examines the potential of harnessing naturally derived extracellular vesicles to deliver genetic material from mature cells to undifferentiated ESCs for the purpose of manipulating stem cell fate. Vesicles were isolated from preosteoblast cells and were found to be ∼170 nm in diameter and to express the CD40 surface marker. Multiple interactions were visualized between vesicles and ESCs using confocal microscopy, and no significant difference in cell viability was noted. Incubation with vesicles caused significant changes in ESC gene expression, including persistence of pluripotent gene levels as well as increased neurectoderm differentiation. Genetic cargo of the vesicles as well as the cells from which they were derived were examined using a small microRNA (miRNA) gene array. Interestingly, ∼20% of the examined miRNAs were increased more than twofold in the vesicles compared with preosteoblast cells. Together, these results suggest that extracellular vesicles may be utilized as a novel method of directing stem cell differentiation. Future work examining methods for controlled delivery of vesicles may improve the clinical potential of these physiological liposomes for therapeutic applications.

  3. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.

  4. Strain and culture medium optimization for production enhancement of prodiginines from marine-derived Streptomyces sp. GQQ-10

    Science.gov (United States)

    Li, Xueping; Zhang, Guojian; Zhu, Tianjiao; Li, Dehai; Gu, Qianqun

    2012-09-01

    A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  5. Efficacy of marker vaccine candidate CP7 E2alf in piglets with maternally derived C-strain antibodies

    DEFF Research Database (Denmark)

    Rangelova, Desislava Yordanova; Nielsen, Jens; Strandbygaard, Bertel

    2012-01-01

    virus (CSFV) strain “Koslov”. CP7_E2alf provided clinical protection upon challenge as no severe clinical signs or mortality was observed in the vaccinated piglets. Post mortem examination revealed pathological changes associated to CSFV only in the mock-vaccinated piglets. No infectious CSFV could...... intramuscularly with C-strain vaccine 4 weeks before farrowing. Thus, these piglets were vaccinated intramuscularly with CP7_E2alf at the age of 5 or 8 weeks. Subsequently, the piglets and their mock-vaccinated littermate controls were challenged 2 weeks post vaccination with highly virulent Classical swine fever...... to be effective in preventing mortality, severe clinical signs and pathological lesions in 5 or 8 weeks old piglets positive for maternal antibodies derived from sows vaccinated intramuscularly 4 weeks before farrowing with one dose of C-strain vaccine....

  6. Strain and Culture Medium Optimization for Production Enhancement of Prodiginines from Marine-Derived Streptomyces sp.GQQ-10

    Institute of Scientific and Technical Information of China (English)

    LI Xueping; ZHANG Guojian; ZHU Tianjiao; LI Dehai; GU Qianqun

    2012-01-01

    A mutant(GQQ-M6)of a Sponge-Derived streptomyces sp.GQQ-10 obtained by UV-induced mutation was used for producing prodiginines(PGs).Single factor experiments and orthogonal array design(OAD)methods were employed for medium optimization.In the single factor method,the effects of soluble starch,glucose,soybean flour,yeast extract and sodium acetate on PGs production were investigated individually.In the subsequent OAD experiments,the concentrations of these 5 key nutritional components combined with salinity were further adjusted.The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain;OAD experiments offered a PGs yield of 61mgL-1,which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  7. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  8. Large Scale Production of Stem Cells and Their Derivatives

    Science.gov (United States)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  9. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes.

    Science.gov (United States)

    Dighe, Vikas; Clepper, Lisa; Pedersen, Darlene; Byrne, James; Ferguson, Betsy; Gokhale, Sumita; Penedo, M Cecilia T; Wolf, Don; Mitalipov, Shoukhrat

    2008-03-01

    Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.

  10. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pstem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  11. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  12. Optimized protocol for derivation of human embryonic stem cell lines.

    Science.gov (United States)

    Camarasa, María Vicenta; Galvez, Víctor Miguel; Brison, Daniel Roy; Bachiller, Daniel

    2012-09-01

    For the past 12 years, the biology and applications of human embryonic stem cells (hESCs) have received great attention from the scientific community. Derivatives of the first hESC line obtained by J. Thomson's group (Science 282(5391):1145-1147, 1998) have been used in clinical trials in patients with spinal cord injury, and other hESC lines have now been used to generate cells for use in treating blindness (Lancet 379(9817):713-720, 2012). In addition to the classical protocol based on mouse or human feeder layers using open culture methods (In Vitro Cellular & Developmental Biology - Animal 46(3-4):386-394, 2010; Stem Cells 23(9):1221-1227, 2005; Nature Biotechnology 24(2):185-187, 2006; Human Reproduction 21(2):503-511, 2006; Human Reproduction 20(8):2201-2206, 2005; Fertility and Sterility 83(5):1517-1529, 2005), novel hESC lines have been derived xeno-free (without using animal derived reagents) (PLoS One 5 (4):1024-1026, 2010), feeder-free (without supporting cell monolayers) (Lancet 365(9471):1601-1603, 2005), in microdrops under oil (In Vitro Cellular & Developmental Biology - Animal 46(3-4):236-41, 2010) and in suspension with ROCK inhibitor (Nature Biotechnology 28(4):361-4, 2010). Regardless of the culture system, successful hESC derivation usually requires optimization of embryo culture, the careful and timely isolation of its inner cell mass (ICM), and precise culture conditions up to the establishment of pluripotent cell growth during hESC line derivation. Herein we address the crucial steps of the hESC line derivation protocol, and provide tips to apply quality control to each step of the procedure.

  13. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    -level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous...... alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories...... for production of fatty acids derived products and even aldehyde-derived chemicals of high value....

  14. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  15. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  16. Adipose-derived stem cells: selecting for translational success.

    Science.gov (United States)

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  17. Therapeutic targeting of myeloid-derived suppressor cells.

    Science.gov (United States)

    Ugel, Stefano; Delpozzo, Federica; Desantis, Giacomo; Papalini, Francesca; Simonato, Francesca; Sonda, Nada; Zilio, Serena; Bronte, Vincenzo

    2009-08-01

    Myeloid-derived suppressor cells (MDSCs) represent a subset of myeloid cells that expand under pathological conditions, such as cancer development, acute and chronic infections, trauma, bone marrow transplantations, and some autoimmune diseases. MDSCs mediate a negative regulation of the immune response by affecting different T lymphocyte subsets. Potential mechanisms, which underlie this inhibitory activity range from those requiring direct cell-to-cell contact with others, more indirect, and mediated by the modification of the microenvironment. Pharmacological inhibition of MDSC suppressive pathways is a promising strategy to overcome disease-induced immune defects, which might be a key step in enhancing the effectiveness of immune-based therapies.

  18. Derivation of human embryonic stem cell line Genea022

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1–60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.95, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  19. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates

    OpenAIRE

    Hedrich Hans J; Wedekind Dirk; Zeegers Dimphy; Guryev Victor; Smits Bart MG; Cuppen Edwin

    2005-01-01

    Abstract Background The laboratory rat (Rattus norvegicus) is an important model for studying many aspects of human health and disease. Detailed knowledge on genetic variation between strains is important from a biomedical, particularly pharmacogenetic point of view and useful for marker selection for genetic cloning and association studies. Results We show that Single Nucleotide Polymorphisms (SNPs) in commonly used rat strains are surprisingly well represented in wild rat isolates. Shotgun ...

  20. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  1. Generation of Neurospheres from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Erfang Yang

    2015-01-01

    Full Text Available Transplantation of neural stem cells (NSCs to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF, and epidermal growth factor (EGF; the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.

  2. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  3. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains.

    Science.gov (United States)

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Kondo, Hidehiro; Hirono, Ikuo; Rodkhum, Channarong

    2015-12-01

    Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts.

  4. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  5. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro.

    Science.gov (United States)

    Ghosh, Kaustabh; Thodeti, Charles K; Dudley, Andrew C; Mammoto, Akiko; Klagsbrun, Michael; Ingber, Donald E

    2008-08-12

    Tumor blood vessels exhibit abnormal structure and function that cause disturbed blood flow and high interstitial pressure, which impair delivery of anti-cancer agents. Past efforts to normalize the tumor vasculature have focused on inhibition of soluble angiogenic factors, such as VEGF; however, capillary endothelial (CE) cell growth and differentiation during angiogenesis are also influenced by mechanical forces conveyed by the extracellular matrix (ECM). Here, we explored the possibility that tumor CE cells form abnormal vessels because they lose their ability to sense and respond to these physical cues. These studies reveal that, in contrast to normal CE cells, tumor-derived CE cells fail to reorient their actin cytoskeleton when exposed to uniaxial cyclic strain, exhibit distinct shape sensitivity to variations in ECM elasticity, exert greater traction force, and display an enhanced ability to retract flexible ECM substrates and reorganize into tubular networks in vitro. These behaviors correlate with a constitutively high level of baseline activity of the small GTPase Rho and its downstream effector, Rho-associated kinase (ROCK). Moreover, decreasing Rho-mediated tension by using the ROCK inhibitor, Y27632, can reprogram the tumor CE cells so that they normalize their reorientation response to uniaxial cyclic strain and their ability to form tubular networks on ECM gels. Abnormal Rho-mediated sensing of mechanical cues in the tumor microenvironment may therefore contribute to the aberrant behaviors of tumor CE cells that result in the development of structural abnormalities in the cancer microvasculature.

  6. Amniotic fluid-derived stem cells in regenerative medicine research.

    Science.gov (United States)

    Joo, Sunyoung; Ko, In Kap; Atala, Anthony; Yoo, James J; Lee, Sang Jin

    2012-02-01

    The stem cells isolated from amniotic fluid present an exciting possible contribution to the field of regenerative medicine and amniotic fluid-derived stem (AFS) cells have significant potential for research and therapeutic applications. AFS cells are multipotent, showing the ability to differentiate into cell types from all three embryonic germ layers. They express both embryonic and adult stem cell markers, expand extensively without feeder cells, double in 36 h, and are not tumorigenic. The AFS cells can be maintained for over 250 population doublings and preserve their telomere length and a normal karyotype. They differentiate easily into specific cell lineages and do not require human embryo tissue for their isolation, thus avoiding the current controversies associated with the use of human embryonic stem (ES) cells. The discovery of the AFS cells has been recent, and a great deal of work remains to be performed on the characterization and use of these cells. This review describes the various differentiated lineages that AFS cells can form and the future of these promising new stem cells in regenerative medicine research.

  7. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  8. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  9. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  10. Bone marrow-derived cells are present in Mooren's ulcer.

    Science.gov (United States)

    Ye, Juan; Chen, Jian; Kim, Jae Chan; Yao, Ke

    2004-01-01

    To investigate whether bone marrow-derived cells are present in Mooren's ulcer and involved in its destructive and regenerative disease course, tissue specimens were collected from 3 eyes of 3 patients with Mooren's ulcer that underwent lamellar keratectomy. Three normal donor limbal corneoscleras served as controls. Immunohistochemical staining patterns were analyzed by using the following antibodies: CD34 (a marker of hematopoietic progenitor cells and endothelium), c-kit (a marker of hematopoietic and stromal progenitor cells) and STRO-1 (a differentiation antigen present on bone marrow fibroblast cells and on various nonhematopoietic progenitor cells). Strong positive CD34, c-kit and STRO-1 cells were revealed in Mooren's ulcer specimens, especially in the superficial stroma. A few weakly expressed CD34 stromal cells were seen in normal limbal cornea, but no immunoreactivity for c-kit and STRO-1 was found. Bone marrow-derived cells are present in Mooren's ulcer and contribute to its destructive and regeneration process by synergizing with other factors. Specific therapeutic strategies that target the role of these cells in Mooren's ulcer are anticipated.

  11. Coelomic epithelium-derived cells in visceral morphogenesis.

    Science.gov (United States)

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans.

  12. Molecular Characterization of Dendritic Cell-Derived Exosomes

    OpenAIRE

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, w...

  13. Effects of equiaxial strain on the differentiation of dental pulp stem cells without using biochemical reagents.

    Science.gov (United States)

    Tabatabaei, F S; Jazayeri, M; Ghahari, P; Haghighipour, N

    2014-09-01

    During orthodontic treatments, applied mechanical forces create strain and result in tooth movement through the alveolar bone. This response to mechanical strain is a fundamental biological reaction. The present study evaluated the effect of equiaxial strain within the range of orthodontic forces on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). Following isolation and culture of hDPSCs, 3rd passage cells were transferred on a silicone membrane covered with collagen. Cell adhesion to the membrane was evaluated under scanning electron microscope (SEM). Cells were divided into three groups: the first group was placed in a conventional culture medium, transferred to an equiaxial stretching device (3% strain for 2 weeks). The positive control was placed in an osteogenic medium with no mechanical strain. The negative control group was placed in the conventional culture medium with no mechanical strain either. Study groups were evaluated for expression ofosteogenic markers (Alkaline phosphatase and Osteopontin) with immunofluorescence and real time PCR. SEM images revealed optimal adhesion of cells to the silicone membrane. Immunofluorescence study demonstrated that osteocalcin expression occurred after 2 weeks in the two groups under mechanical and chemical signals. After application of equiaxial strain, level of expression of osteogenic markers was significantly higher than in the negative and positive control groups. Based on the study results, static equiaxial strain which mimics the types of orthodontic forces can result in differentiation of hDPSCs to osteoblasts. The results obtained may be used in cell therapy and tissue engineering.

  14. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  15. Immune Suppressive Effects of Tonsil-Derived Mesenchymal Stem Cells on Mouse Bone-Marrow-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Minhwa Park

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs on the differentiation, maturation, and function of dendritic cells (DCs. We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM- derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+ T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF, RANTES, interleukin-6 (IL-6, and monocyte chemoattractant protein-1 (MCP-1. Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.

  16. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization

    Institute of Scientific and Technical Information of China (English)

    Xue-man Lv; Yan Liu; Fei Wu; Yi Yuan; Min Luo

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  17. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  18. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  19. Human embryonic stem cell derivation and directed differentiation.

    Science.gov (United States)

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  20. Tumor-Induced Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  1. Contribution of bone marrow derived cells to pancreatic carcinogenesis

    Directory of Open Access Journals (Sweden)

    Christopher J Scarlett

    2013-03-01

    Full Text Available Pancreatic cancer is a complex, aggressive and heterogeneous malignancy driven by the multifaceted interactions within the tumor microenvironment. While it is known that the tumor microenvironment accommodates many cell types, each playing a key role in tumorigenesis, the major source of these stromal cells is not well understood. This review examines the contribution of bone marrow-derived cells (BMDC to pancreatic carcinogenesis, with respect to their role in constituting the tumor microenvironment. In particular, their role in supporting fibrosis, immunosuppression and neovascularisation will be discussed.

  2. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells.

    Science.gov (United States)

    Nikolay, Alexander; Castilho, Leda R; Reichl, Udo; Genzel, Yvonne

    2017-03-23

    The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21SUS) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKV(PE)) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21SUS cells with ZIKV(PE) in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×10(3)PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×10(7)cells/mL, and virus titers of 3.9×10(7)PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards

  3. Draft Genome Sequence of Marine-Derived Aeromonas caviae CHZ306, a Potential Chitinase Producer Strain

    Science.gov (United States)

    Zimpel, Cristina Kraemer; Guimaraes, Ana Marcia Sa; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2016-01-01

    We report here a draft genome sequence of Aeromonas caviae CHZ306, a marine-derived bacterium with the ability to hydrolyze chitin and express high levels of chitinases. The assembly resulted in 65 scaffolds with approximately 4.78 Mb. Genomic analysis revealed different genes encoding chitin-degrading enzymes that can be used for chitin derivative production. PMID:27856589

  4. Interaction of Aeromonas strains with lactic acid bacteria via Caco-2 cells.

    Science.gov (United States)

    Hatje, E; Neuman, C; Katouli, M

    2014-01-01

    The genus Aeromonas includes some species that have now been identified as human pathogens of significant medical importance. We investigated the ability of 13 selected Aeromonas strains belonging to nine species isolated from clinical cases (n = 5), environmental waters (n = 5), and fish (n = 3) to adhere to and translocate Caco-2 cells in the absence and presence of two lactic acid bacteria (LAB), i.e., Lactobacillus acidophilus and Bifidobacterium breve. Aeromonas isolates were also assessed for their cytotoxicity, the presence of virulence genes, and hemolysin production. Among the clinical isolates, one strain of Aeromonas veronii biovar veronii and two strains of Aeromonas hydrophila carried cytotoxin (act), heat-labile toxin (alt), hemolysin (hlyA), and aerolysin (aerA) genes, were cytotoxic to Vero cells, produced hemolysin, and showed higher adherence to Caco-2 cells. In contrast, this was seen in only one environmental strain, a strain of A. veronii biovar sobria. When Aeromonas strains were coinoculated with LAB onto Caco-2 cells, their level of adhesion was reduced. However, their rate of translocation in the presence of LAB increased and was significantly (P Aeromonas and LAB strains could have a detrimental effect on the Caco-2 cells, allowing the Aeromonas to translocate more readily, or the presence of the LAB stimulated the Aeromonas strains to produce more toxins and/or increase their translocation rate.

  5. Myeloid-derived suppressor cell heterogeneity in human cancers.

    Science.gov (United States)

    Solito, Samantha; Marigo, Ilaria; Pinton, Laura; Damuzzo, Vera; Mandruzzato, Susanna; Bronte, Vincenzo

    2014-06-01

    The dynamic interplay between cancer and host immune system often affects the process of myelopoiesis. As a consequence, tumor-derived factors sustain the accumulation and functional differentiation of myeloid cells, including myeloid-derived suppressor cells (MDSCs), which can interfere with T cell-mediated responses. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important not only to determine the presence of all MDSC subsets in each cancer patient, but also which MDSC subsets have clinical relevance in each tumor environment. In this review, we describe the differences between MDSC populations expanded within different tumor contexts and evaluate the prognostic significance of MDSC expansion in peripheral blood and within tumor masses of neoplastic patients.

  6. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates

    NARCIS (Netherlands)

    Smits, B.M.; Guryev, V.; Zeegers, D.; Wedekind, D.; Hedrich, H.J.; Cuppen, E.

    2005-01-01

    BACKGROUND: The laboratory rat (Rattus norvegicus) is an important model for studying many aspects of human health and disease. Detailed knowledge on genetic variation between strains is important from a biomedical, particularly pharmacogenetic point of view and useful for marker selection for genet

  7. Fungal depside, guisinol, from a marine derived strain of Emericella unguis

    DEFF Research Database (Denmark)

    Nielsen, Joan; Nielsen, Per Halfdan; Frisvad, Jens Christian

    1999-01-01

    A marine isolate of the fungus Emericella unguis gave a new antibacterial depside, guisinol (1). The structure determination was based on mass spectrometry and NMR spectroscopical studies. Structurally 1 resembles the depsidones emeguisin A --> C previously isolated from another strain of the same...... rights reserved....

  8. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Biju Parekkadan

    Full Text Available Modulation of the immune system may be a viable alternative in the treatment of fulminant hepatic failure (FHF and can potentially eliminate the need for donor hepatocytes for cellular therapies. Multipotent bone marrow-derived mesenchymal stem cells (MSCs have been shown to inhibit the function of various immune cells by undefined paracrine mediators in vitro. Yet, the therapeutic potential of MSC-derived molecules has not been tested in immunological conditions in vivo. Herein, we report that the administration of MSC-derived molecules in two clinically relevant forms-intravenous bolus of conditioned medium (MSC-CM or extracorporeal perfusion with a bioreactor containing MSCs (MSC-EB-can provide a significant survival benefit in rats undergoing FHF. We observed a cell mass-dependent reduction in mortality that was abolished at high cell numbers indicating a therapeutic window. Histopathological analysis of liver tissue after MSC-CM treatment showed dramatic reduction of panlobular leukocytic infiltrates, hepatocellular death and bile duct duplication. Furthermore, we demonstrate using computed tomography of adoptively transferred leukocytes that MSC-CM functionally diverts immune cells from the injured organ indicating that altered leukocyte migration by MSC-CM therapy may account for the absence of immune cells in liver tissue. Preliminary analysis of the MSC secretome using a protein array screen revealed a large fraction of chemotactic cytokines, or chemokines. When MSC-CM was fractionated based on heparin binding affinity, a known ligand for all chemokines, only the heparin-bound eluent reversed FHF indicating that the active components of MSC-CM reside in this fraction. These data provide the first experimental evidence of the medicinal use of MSC-derived molecules in the treatment of an inflammatory condition and support the role of chemokines and altered leukocyte migration as a novel therapeutic modality for FHF.

  9. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Yoshiaki [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Kubota, Satoshi; Kawata, Kazumi [Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Takigawa, Masaharu [Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan)

    2011-06-03

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  10. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  11. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  12. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  13. In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains.

    Science.gov (United States)

    Pignolet, Béatrice; Duteyrat, Jean-Luc; Allemandou, Aude; Gelfi, Jacqueline; Foucras, Gilles; Bertagnoli, Stéphane

    2007-09-27

    Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1) and a vaccinal strain (SG33) of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC) occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.

  14. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  15. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance.

    Directory of Open Access Journals (Sweden)

    John Koren

    Full Text Available MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB. Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.

  16. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance.

    Science.gov (United States)

    Koren, John; Miyata, Yoshinari; Kiray, Janine; O'Leary, John C; Nguyen, Lana; Guo, Jianping; Blair, Laura J; Li, Xiaokai; Li, Xiokai; Jinwal, Umesh K; Cheng, Jin Q; Gestwicki, Jason E; Dickey, Chad A

    2012-01-01

    MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB). Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.

  17. Nanomechanics of human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Jungmann, Pia M; Mehlhorn, Alexander T; Schmal, Hagen

    2012-01-01

    OBJECTIVES: Human adipose-derived stem cells (ASCs) show gene expression of chondrogenic markers after three-dimensional cultivation. However, hypertrophy and osteogenic transdifferentiation are still limiting clinical applications. The aim of this study was to investigate the impact of small...... stem cells by single-cell elasticity measurements using atomic force microscopy. Results were matched with single-cell size measurements (diameter and volume) and quantitative real time-polymerase chain reaction for osteogenic and hypertrophic (alkaline phosphatase [ALP], collagen type X) as well...... a significantly lower deformability than chondrocytes (Young's modulus: 294.4 vs. 225.1 Pa; ANOVA: pstem cell elasticity to chondrocyte values (221.7 Pa). All other chondrogenic differentiated ASCs presented intermediate elasticity (BMP-2 stimulation: 269.1 Pa...

  18. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  19. PDGF mediates derivation of human embryonic germ cells.

    Science.gov (United States)

    Li, Yang; Hong, Wan Xing; Lan, Baojin; Xu, Xiaoyan; Liu, Yinan; Kong, Lin; Li, Yaxuan; Zhou, Shixin; Liu, Ying; Feng, Ruopeng; Jiang, Sibo; He, Qihua; Tan, Jichun

    2013-01-01

    Human embryonic germ cells (hEGCs) are a valuable and underutilized source of pluripotent stem cells. Unlike embryonic stem cells, which have been extensively studied, little is known about the factors that regulate hEGC derivation and maintenance. This study demonstrates for the first time a central role for selective activation of PDGFR signaling in the derivation and maintenance of pluripotency in hEGCs. In the study, hEGCs were found to express PDGF receptor α at high levels compared to human embryonic stem cells (hESCs). PDGF significantly improved formation of alkaline phosphatase (AP) positive hEGC colonies. We subsequently determined that PDGF activates the phosphatidylinositol-3-kinase (PI3K) pathway as phosphorylation of AKT was up-regulated in response to PDGF. Furthermore, inhibition of PI3K signaling using small molecular inhibitor LY294002 led to significantly decreased AP positive hEGC colony formation whereas inhibition of MAPK pathway using U0126 had a negligible effect. We established a primary mechanism for PDGF mediated derivation and maintenance of hEGCs by demonstrating that OCT4 was upregulated and PTEN was suppressed in a dose dependent manner in response to PDGF.

  20. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  1. Generation of congenic mouse strains by introducing the virus-resistant genes, Mx1 and Oas1b, of feral mouse-derived inbred strain MSM/Ms into the common strain C57BL/6J.

    Science.gov (United States)

    Moritoh, Kanako; Yamauchi, Hideto; Asano, Atsushi; Yoshii, Kentaro; Kariwa, Hiroaki; Takashima, Ikuo; Isoda, Norikazu; Sakoda, Yoshihiro; Kida, Hiroshi; Sasaki, Nobuya; Agui, Takashi

    2009-08-01

    Mx1 (Myxovirus resistance protein) and Oaslb (Oligoadenylate synthetase-1), induced by type 1 interferon (IFN), play a role in early antiviral innate immunity by inhibiting the replication of viruses. In mice, Mx1 and Oas1b confer resistance to the infection of orthomyxoviruses including influenza viruses and flaviviruses including West Nile viruses, respectively. Laboratory mice have been used to study the mechanisms of the pathogenesis of these virus infections; however, it is possible that they are not a suitable model system to study these viruses, since most of the inbred laboratory mouse strains lack both genes. It has been reported that feral mouse-derived inbred strains show resistance to the infection of these viruses due to the presence of intact both genes. In this study, we generated congenic strains in which the Mx or Oas locus of the MSM/Ms (MSM) mouce was introduced to the most widely used mouse strain, C57BL/6J (B6). B6.MSM-Mx mice showed resistance to the infection of influenza virus but not of West Nile virus. On the other hand, B6.MSM-Oas mice showed resistance to the infection of West Nile virus but not of influenza virus. Our results indicate that Mx1 and Oaslb show highly antiviral specificity in mice possessing the same genetic background. Therefore, these congenic mice are useful for not only infection study but also investigation of host defense mechanism to these viruses.

  2. Biocatalytic Resolution of para-Nitrostyrene Oxide by Resting Cells of Different Aspergillus niger Strains

    Institute of Scientific and Technical Information of China (English)

    金浩; 李祖义; 王清

    2001-01-01

    Biocatalytic resolution of racemic para-nitrostyrene oxide was accomplished by employing the epoxide hydrolases from the whole cells of several Aspergillus niger (A. niger) strains. In the cases investigated, excellent selectivity was achieved with such strains as A, niger 5450, A. niger 5320.

  3. Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity

    Science.gov (United States)

    Fokoua, Landry; Conti, Sergio; Ortiz, Michael

    2014-01-01

    We perform an optimal-scaling analysis of ductile fracture in metals. We specifically consider the deformation up to failure of a slab of finite thickness subject to monotonically increasing normal opening displacements on its surfaces. We show that ductile fracture emerges as the net outcome of two competing effects: the sublinear growth characteristic of the hardening of metals and strain-gradient plasticity. We also put forth physical arguments that identify the intrinsic length of strain-gradient plasticity and the critical opening displacement for fracture. We show that, when Jc is renormalized in a manner suggested by the optimal scaling laws, the experimental data tends to cluster—with allowances made for experimental scatter—within bounds dependent on the hardening exponent but otherwise material independent.

  4. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  5. Applicability of tooth derived stem cells in neural regeneration

    Institute of Scientific and Technical Information of China (English)

    Ludovica Parisi; Edoardo Manfredi

    2016-01-01

    Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and otfen to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the re-search of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowa-days the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we brielfy introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and ifnally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  6. Characterization of a new TEM-derived beta-lactamase produced in a Serratia marcescens strain.

    OpenAIRE

    Perilli, M.; Felici, A.; Franceschini, N; De Santis, A; Pagani, L.(Physics Department, Università degli Studi and INFN, 16146 Genova, Italy); Luzzaro, F.; Oratore, A; Rossolini, G. M.; Knox, J R; Amicosante, G

    1997-01-01

    A natural TEM variant beta-lactamase was isolated from an epidemic strain of Serratia marcescens. Nucleotide gene sequencing revealed multiple point mutations located in the 42-to-44 tripeptide and positions 145 to 146, 178, and 238. In addition, a glutamic acid 212 deletion was also found. The purified enzyme was studied from a kinetic point of view, revealing the highest catalytic efficiency (k[cat]/Km) values for ceftazidime and aztreonam compared with the TEM-1 prototype enzyme. The in vi...

  7. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  8. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  9. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Science.gov (United States)

    Zhao, Dongxin; Chen, Song; Cai, Jun; Guo, Yushan; Song, Zhihua; Che, Jie; Liu, Chun; Wu, Chen; Ding, Mingxiao; Deng, Hongkui

    2009-07-31

    The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  10. [Induced-division of neurons derived from neural stem cells].

    Science.gov (United States)

    Lin, Qiu-Xia; Que, Hai-Ping; Lu, Shuang-Hong; Liu, Shao-Jun

    2004-04-25

    In order to explore if mature neurons derived from neural stem cells have the potentiality to divide, we utilized the chemical digestion method to disperse the adult rat brain tissue into single cells, and culture them in serum-free medium. After being cultured for about eight days in vitro, the neural stem cells were induced to differentiate into neurons. The neurons were further induced to divide. Utilizing the method of serial photograph and NF-160 immunocytochemistry, the processes of division of some neurons were recorded. At the same time, PCNA+NF-160 (or Chat, GABA, GAD) double label were used to investigate if the dividing-neurons were mature ones. After the neural stem cells were induced to differentiate in vitro for eight days, they possessed the shape and character of mature neurons. The differentiated neuron had a big nucleus and one or two distinct nucleolus in the nuclear. Within the perikaryon,there were a large amount of dense and Nissl body-like structure. Several long processes emerged from various locations of the cell body. Then, EGF and bFGF were added into the medium to induce division. After two days of induced-division, neuron-like cells were observed to divide; moreover, the number of neuron-like cells in the region increased continually. Immunocytochemistry demonstrated these cells were NF-160-positive. Serial photographs of dividing-process of neuron-like cells were obtained and their daughter cells were also NF-160-positive. After PCNA+NF-160 (or Chat, GABA, GAD) double label, some cells showed brown cell plasma and black nucleus. The above-mentioned results indicate that neurons, which were previously thought to be end-differentiated, can be re-called into cell cycle under appropriate conditions. Mature neurons still have the potential to divide, proliferate and self-renew.

  11. Neuropharmacological properties of neurons derived from human stem cells.

    Science.gov (United States)

    Coyne, Leanne; Shan, Mu; Przyborski, Stefan A; Hirakawa, Ryoko; Halliwell, Robert F

    2011-09-01

    Human pluripotent stem cells have enormous potential value in neuropharmacology and drug discovery yet there is little data on the major classes and properties of receptors and ion channels expressed by neurons derived from these stem cells. Recent studies in this lab have therefore used conventional patch-clamp electrophysiology to investigate the pharmacological properties of the ligand and voltage-gated ion channels in neurons derived and maintained in vitro from the human stem cell (hSC) line, TERA2.cl.SP12. TERA2.cl.SP12 stem cells were differentiated with retinoic acid and used in electrophysiological experiments 28-50 days after beginning differentiation. HSC-derived neurons generated large whole cell currents with depolarizing voltage steps (-80 to 30 mV) comprised of an inward, rapidly inactivating component and a delayed, slowly deactivating outward component. The fast inward current was blocked by the sodium channel blocker tetrodotoxin (0.1 μM) and the outward currents were significantly reduced by tetraethylammonium ions (TEA, 5 mM) consistent with the presence of functional Na and K ion channels. Application of the inhibitory neurotransmitters, GABA (0.1-1000 μM) or glycine (0.1-1000 μM) evoked concentration dependent currents. The GABA currents were inhibited by the convulsants, picrotoxin (10 μM) and bicuculline (3 μM), potentiated by the NSAID mefenamic acid (10-100 μM), the general anaesthetic pentobarbital (100 μM), the neurosteroid allopregnanolone and the anxiolytics chlordiazepoxide (10 μM) and diazepam (10 μM) all consistent with the expression of GABA(A) receptors. Responses to glycine were reversibly blocked by strychnine (10 μM) consistent with glycine-gated chloride channels. The excitatory agonists, glutamate (1-1000 μM) and NMDA (1-1000 μM) activated concentration-dependent responses from hSC-derived neurons. Glutamate currents were inhibited by kynurenic acid (1 mM) and NMDA responses were blocked by MgCl(2) (2 mM) in a

  12. Production of the medaka derived from vitrified whole testes by germ cell transplantation

    Science.gov (United States)

    Seki, Shinsuke; Kusano, Kazunari; Lee, Seungki; Iwasaki, Yoshiko; Yagisawa, Masaru; Ishida, Mariko; Hiratsuka, Tadashi; Sasado, Takao; Naruse, Kiyoshi; Yoshizaki, Goro

    2017-01-01

    The medaka (Oryzias latipes) is a teleost model distinguished from other model organisms by the presence of inbred strains, wild stocks, and related species. Cryopreservation guarantees preservation of these unique biological resources. However, because of their large size, cryopreservation techniques for their eggs and embryos have not been established. In the present study, we established a methodology to produce functional gametes from cryopreserved testicular cells (TCs). Whole testes taken from medaka were cryopreserved by vitrification. After thawing, the cells dissociated from cryopreserved testicular tissues were intraperitoneally transplanted into sterile triploid hatchlings. Some cells, presumably spermatogonial stem cells, migrated into the genital ridges of recipients and resulted in the production of eggs or sperm, based on sex of the recipient. Mating of recipients resulted in successful production of cryopreserved TC-derived offspring. We successfully produced individuals from the Kaga inbred line, an endangered wild population in Tokyo, and a sub-fertile mutant (wnt4b−/−) from cryopreserved their TCs. This methodology facilitates semi-permanent preservation of various medaka strains. PMID:28256523

  13. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Aki eTakahashi

    2014-06-01

    Full Text Available The Japanese wild-derived mouse strain MSM/Ms (MSM retains a wide range of traits related to behavioral wildness, including high levels of emotionality and avoidance of humans. In this study, we observed that MSM showed a markedly higher level of aggression than the standard laboratory strain C57BL/6J. Whereas almost all MSM males showed high frequencies of attack bites and pursuit in the resident-intruder test, only a few C57BL/6J males showed aggressive behaviors, with these behaviors observed at only a low frequency. Sexually mature MSM males in their home cages killed their littermates, or sometimes female pair-mates. To study the genetic and neurobiological mechanisms that underlie the escalated aggression observed in MSM mice, we analyzed reciprocal F1 crosses and five consomic strains of MSM (Chr 4, 13, 15, X and Y against the background of C57BL/6J. We identified two chromosomes, Chr 4 and Chr 15, which were involved in the heightened aggression observed in MSM. These chromosomes had different effects on aggression: whereas MSM Chr 15 increased agitation and initiation of aggressive events, MSM Chr 4 induced a maladaptive level of aggressive behavior. Expression analysis of mRNAs of serotonin receptors, serotonin transporter and Tph2, an enzyme involved in serotonin synthesis in seven brain areas, indicated several differences among MSM, C57BL/6J, and their consomic strains. We found that Tph2 expression in the midbrain was increased in the Chr 4 consomic strain, as well as in MSM, and that there was a strong positive genetic correlation between aggressive behavior and Tph2 expression at the mRNA level. Therefore, it is possible that increased expression of the Tph2 gene is related to escalated aggression observed in MSM.

  14. BCG strain S4-Jena: An early BCG strain is capable to reduce the proliferation of bladder cancer cells by induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hermann Inge-Marie

    2010-06-01

    Full Text Available Abstract Background Intravesical immunotherapy with Mycobacterium bovis bacillus Calmette-Guérin has been established as the most effective adjuvant treatment for high risk non-muscle-invasive bladder cancer (NMIBC. We investigated the differences between the S4-Jena BCG strain and commercially available BCG strains. We tested the genotypic varieties between S4-Jena and other BCG strains and analysed the effect of the BCG strains TICE and S4-Jena on two bladder cancer cell lines. Results In contrast to commercially available BCG strains the S4-Jena strain shows genotypic differences. Spoligotyping verifies the S4-Jena strain as a BCG strain. Infection with viable S4-Jena or TICE decreased proliferation in the T24 cell line. Additionally, hallmarks of apoptosis were detectable. In contrast, Cal29 cells showed only a slightly decreased proliferation with TICE. Cal29 cells infected with S4-Jena, though, showed a significantly decreased proliferation in contrast to TICE. Concordantly with these results, infection with TICE had no effect on the morphology and hallmarks of apoptosis of Cal29 cells. However, S4-Jena strain led to clearly visible morphological changes and caspases 3/7 activation and PS flip. Conclusions S4-Jena strain has a direct influence on bladder cancer cell lines as shown by inhibition of cell proliferation and induction of apoptosis. The data implicate that the T24 cells are responder for S4-Jena and TICE BCG. However, the Cal29 cells are only responder for S4-Jena and they are non-responder for TICE BCG. S4-Jena strain may represent an effective therapeutic agent for NMIBC.

  15. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    Directory of Open Access Journals (Sweden)

    Hensel Michael

    2010-10-01

    Full Text Available Abstract Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains.

  16. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  17. Derivation of human embryonic stem cell line Genea019

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  18. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  19. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  20. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  1. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  2. Proteomic analyses of human cytomegalovirus strain AD169 derivatives reveal highly conserved patterns of viral and cellular proteins in infected fibroblasts.

    Science.gov (United States)

    Reyda, Sabine; Büscher, Nicole; Tenzer, Stefan; Plachter, Bodo

    2014-01-07

    Human cytomegalovirus (HCMV) particle morphogenesis in infected cells is an orchestrated process that eventually results in the release of enveloped virions. Proteomic analysis has been employed to reveal the complexity in the protein composition of these extracellular particles. Only limited information is however available regarding the proteome of infected cells preceding the release of HCMV virions. We used quantitative mass spectrometry to address the pattern of viral and cellular proteins in cells, infected with derivatives of the AD169 laboratory strain. Our analyses revealed a remarkable conservation in the patterns of viral and of abundant cellular proteins in cells, infected for 2 hours, 2 days, or 4 days. Most viral proteins increased in abundance as the infection progressed over time. Of the proteins that were reliably detectable by mass spectrometry, only IE1 (pUL123), pTRS1, and pIRS1 were downregulated at 4 days after infection. In addition, little variation of viral proteins in the virions of the different viruses was detectable, independent of the expression of the major tegument protein pp65. Taken together these data suggest that there is little variation in the expression program of viral and cellular proteins in cells infected with related HCMVs, resulting in a conserved pattern of viral proteins ultimately associated with extracellular virions.

  3. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  4. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Directory of Open Access Journals (Sweden)

    Eri O Maruyama

    Full Text Available The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER was targeted to the prolactin-induced protein (Pip gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  5. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Science.gov (United States)

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  6. Drug Discovery via Human-Derived Stem Cell Organoids

    Science.gov (United States)

    Liu, Fangkun; Huang, Jing; Ning, Bo; Liu, Zhixiong; Chen, Shen; Zhao, Wei

    2016-01-01

    Patient-derived cell lines and animal models have proven invaluable for the understanding of human intestinal diseases and for drug development although both inherently comprise disadvantages and caveats. Many genetically determined intestinal diseases occur in specific tissue microenvironments that are not adequately modeled by monolayer cell culture. Likewise, animal models incompletely recapitulate the complex pathologies of intestinal diseases of humans and fall short in predicting the effects of candidate drugs. Patient-derived stem cell organoids are new and effective models for the development of novel targeted therapies. With the use of intestinal organoids from patients with inherited diseases, the potency and toxicity of drug candidates can be evaluated better. Moreover, owing to the novel clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 genome-editing technologies, researchers can use organoids to precisely modulate human genetic status and identify pathogenesis-related genes of intestinal diseases. Therefore, here we discuss how patient-derived organoids should be grown and how advanced genome-editing tools may be applied to research on modeling of cancer and infectious diseases. We also highlight practical applications of organoids ranging from basic studies to drug screening and precision medicine. PMID:27713700

  7. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.

  8. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells

    Directory of Open Access Journals (Sweden)

    Yannick Simonin

    2016-10-01

    Full Text Available The recent Zika virus (ZIKV epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.

  9. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout–derived cell line, RTG-2

    Science.gov (United States)

    Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon

    2010-01-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  10. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout-derived cell line, RTG-2.

    Science.gov (United States)

    Park, J W; Moon, C H; Wargo, A R; Purcell, M K; Kurath, G

    2010-07-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout-derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  11. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells.

    Science.gov (United States)

    Choudhary, Parul; Whiting, Paul John

    2016-09-02

    Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.

  12. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  13. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes

    OpenAIRE

    Jakubzick, Claudia; Bogunovic, Milena; Bonito, Anthony J.; Kuan, Emma L.; Merad, Miriam; Randolph, Gwendalyn J.

    2008-01-01

    Observations that dendritic cells (DCs) constitutively enter afferent lymphatic vessels in many organs and that DCs in some tissues, such as the lung, turnover rapidly in the steady state have led to the concept that a major fraction of lymph node DCs are derived from migratory DCs that enter the lymph node through upstream afferent lymphatic vessels. We used the lysozyme M–Cre reporter mouse strain to assess the relationship of lymph node and nonlymphoid organ DCs. Our findings challenge the...

  14. Genetic analysis of Mycobacterium avium complex strains used for producing purified protein derivatives

    NARCIS (Netherlands)

    Semret, M.; Bakker, D.; Smart, N.; Olsen, I.; Haslov, K.; Behr, M.A.

    2006-01-01

    For over a century, purified protein derivatives (PPD) have been used to detect mycobacterial infections in humans and livestock. Among these, reagents to detect infections by Mycobacterium avium complex organisms have been produced, but the utility of these reagents has not been clearly established

  15. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4

    Directory of Open Access Journals (Sweden)

    S Sudha

    2012-10-01

    Conclusion: This study clearly proves that the marine sediment derived actinomycetes with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical and anticancer screening programs. These results help us to conclude that the potential of using metabolic engineering and post genomic approaches to isolate more bioactive compounds and make their possible commercial application is not far off.

  16. Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008-2015)

    Science.gov (United States)

    Sánchez-Alzola, A.; Martí, J.; García-Yeguas, A.; Gil, A. J.

    2016-11-01

    In this paper we present the current crustal deformation model of Tenerife Island derived from daily CGPS time series processing (2008-2015). Our results include the position time series, a global velocity estimation and the current crustal deformation on the island in terms of strain tensors. We detect a measurable subsidence of 1.5-2 mm/yr. in the proximities of the Cañadas-Teide-Pico Viejo (CTPV) complex. These values are higher in the central part of the complex and could be explained by a lateral spreading of the elastic lithosphere combined with the effect of the drastic descent of the water table in the island experienced during recent decades. The results show that the Anaga massif is stable in both its horizontal and vertical components. The strain tensor analysis shows a 70 nstrain/yr. E-W compression in the central complex, perpendicular to the 2004 sismo-volcanic area, and 50 nstrain/yr. SW-NE extension towards the Northeast ridge. The residual velocity and strain patterns coincide with a decline in volcanic activity since the 2004 unrest.

  17. Marked increase in biofilm-derived rough pneumococcal variants and rifampin-resistant strains not due to hex gene mutations.

    Science.gov (United States)

    McEllistrem, M Catherine; Scott, Jennifer R; Zuniga-Castillo, Jacobo; Khan, Saleem A

    2009-06-01

    Otitis, pneumonia, and meningitis are tissue-based pneumococcal infections that can be associated with biofilms. The emergence of phenotypic rough variants, also known as acapsular small-colony variants, is essential for pneumococcal biofilm formation. These rough variants can increase nearly 100-fold in biofilms over time and can arise through single nucleotide polymorphisms (SNPs), deletions, or tandem duplications in the first gene of the capsular operon, cps3D. We detected a 100-fold increase in rifampin-resistant (Rif(r)) mutants in biofilms compared to planktonic cultures using a nonvaccine serotype 3 strain, which is causing an increasing number of cases of otitis in the 7-valent pneumococcal conjugate vaccine era. Since both rough variants and Rif(r) strains can arise through SNPs, they could emerge due to alteration of the mismatch repair (MMR) system. The Hex system, a pneumococcal MMR system, repairs mismatches during replication and transformation. In this study, no mutations were detected in the hexAB gene sequences among several rough variants with unique mutations in the cps3D gene. Within a hexA null mutant grown in broth, we detected only a 17.5-fold increase in rough variants compared to the wild-type parental strain. Taken together, these data suggest that mutations in the hex genes and modulation of hexA activity are unlikely to account for the generation of biofilm-derived rough variants.

  18. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  19. [Composition of cell walls of 2 mutant strains of Streptomyces chrysomallus].

    Science.gov (United States)

    Zaretskaia, M Sh; Nefelova, M V; Baratova, L A; Polin, A N

    1984-12-01

    The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.

  20. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  1. clickECM: Development of a cell-derived extracellular matrix with azide functionalities.

    Science.gov (United States)

    Ruff, S M; Keller, S; Wieland, D E; Wittmann, V; Tovar, G E M; Bach, M; Kluger, P J

    2016-12-10

    In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.

  2. Human iPSC-Derived Endothelial Cell Sprouting Assay in ...

    Science.gov (United States)

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th

  3. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A; van der Graaf, Adrianus C; Henning, Robert H; Krenning, Guido

    2017-01-01

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  4. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury:a biomechanical evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun Zhang; Ya-jun Li; Xiao-guang Liu; Feng-xiao Huang; Tie-jun Liu; Dong-mei Jiang; Xue-man Lv; Min Luo

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, max-imum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neu-rotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These ifndings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, im-prove biomechanical properties, and contribute to the recovery after injury.

  5. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  6. Construction and characterization of a new simian/human immunodeficiency viruses clone carrying an env gene derived from a CRF07_BC strain

    Institute of Scientific and Technical Information of China (English)

    LI Yue; YANG Gui-bo; CHEN Qi-min; LIU Qiang; MENG Zhe-feng; GENG Yun-qi; QIAO Wen-tao; SHAO Yi-ming

    2009-01-01

    Background The CRF07_BC recombinant strain has been one of the most predominantly circulated HIV-1 strains in China, it is therefore necessary and urgent to develop a relevant animal model to evaluate candidate vaccines targeting HIV-1 CRF07_BC. A highly replication-competent simian/human immunodeficiency viruses (SHIV) construct containing the Chinese CRF07_BC HIV-1 env gene with the ability to infect Chinese rhesus monkeys would serve as an important tool in the development of HIV vaccines. The aim of this study was to examine whether SHIV XJDC6431 with the env fragment from a Chinese HIV-1 isolate virus could infect the human and monkey peripheral blood mononuclear cell (PBMC), establish infection in Chinese rhesus macaque.Methods A SHIV strain was constructed by replacing the rev/env genes of SHIV KB9 with the corresponding fragment derived from the HIV-1 CRF07_BC strain. The infectious activity of the SHIV clones was determined in vitro in PBMCs from both non-human primate animals and humans. Finally, one Chinese rhesus macaques (Macaca mulatto) was infected with one SHIV via intravenous infusion.Results One SHIV clone designated as SHIV XJDC6431, was generated that could infect macaque and human PBMC. The virus produced from this clone also efficiently infected the CCR5-expressing GHOST cell lines, indicating that it uses CCR5 as its coreceptor. Finally, the virus was intravenously inoculated into one Chinese rhesus macaque. Eventually, the animal became infected as shown by the occurrence of viremia within 3 of infection. The viral load reached 10~5 copies of viral RNA per ml of plasma during the acute phase of infection and lasted for 10 weeks post infection. Conclusions We conclude that SHIV XJDC6431 is an R5-tropic chimeric virus, which can establish infection not only in vitro but also in vivo in the Chinese rhesus macaque. Although the animal inoculated with SHIV XJDC6431 became infected without developing a pathologic phenotype, the virus efficiently

  7. Human hemarthrosis-derived progenitor cells can differentiate into osteoblast-like cells in vitro.

    Science.gov (United States)

    Niikura, Takahiro; Miwa, Masahiko; Sakai, Yoshitada; Lee, Sang Yang; Kuroda, Ryosuke; Fujishiro, Takaaki; Kubo, Seiji; Doita, Minoru; Kurosaka, Masahiro

    2005-11-04

    We hypothesized that intraarticular osteochondral fracture-induced hemarthrosis could be a useful cell source for bone regeneration, as it is thought to contain osteoprogenitor cells derived from bone marrow. Therefore, we investigated whether human hemarthrosis-derived cells have the potential to differentiate into osteoblast-like cells in vitro. We aspirated hemarthrosis from patients suffering from osteochondral fractures of knee joints, and cultured hemarthrosis-derived cells in a medium supplemented with dexamethasone, beta-glycerophosphate, and ascorbic acid, or without them as control. The morphology of the treated cells appeared to be cuboidal shape, differing from spindle-like shape observed in the control. Matrix mineralization was observed only in the treated culture. Alkaline phosphatase activity and gene expression of alkaline phosphatase, parathyroid hormone receptor, osteopontin, and osteocalcin were up-regulated compared with the control. These studies demonstrate that human hemarthrosis-derived cells can differentiate into osteoblast-like cells, i.e., they contain osteoprogenitor cells and are a useful cell source for bone regeneration.

  8. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  9. Myeloid-derived suppressor cell heterogeneity and subset definition.

    Science.gov (United States)

    Peranzoni, Elisa; Zilio, Serena; Marigo, Ilaria; Dolcetti, Luigi; Zanovello, Paola; Mandruzzato, Susanna; Bronte, Vincenzo

    2010-04-01

    Myeloid derived suppressor cells (MDSCs) are defined in mice on the basis of CD11b and Gr-1 marker expression and the functional ability to inhibit T lymphocyte activation. Nevertheless the term 'heterogeneous' remains the first, informal feature commonly attributed to this population. It is clear that CD11b(+)Gr-1(+) cells are part of a myeloid macropopulation, which comprises at least two subsets of polymorphonuclear and monocytic cells with different immunosuppressive properties. While recent literature shows substantial agreement on the immunoregulatory property of the monocytic MDSC subset, there is still contrasting evidence on the role of the granulocytic fraction. Moreover, this dichotomy holds true for human MDSCs. We attempt here to summarize conflicting findings in the field and provide some possible, unifying explanations.

  10. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    Science.gov (United States)

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  11. Planar cell polarity aligns osteoblast division in response to substrate strain.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Savery, Dawn; Taipaleenmaki, Hanna; Delisser, Peter; Stein, Gary S; Copp, Andrew J; van Wijnen, Andre J; Lanyon, Lance E; Price, Joanna S

    2015-03-01

    Exposure of bone to dynamic strain increases the rate of division of osteoblasts and also influences the directional organization of the cellular and molecular structure of the bone tissue that they produce. Here, we report that brief exposure to dynamic substrate strain (sufficient to rapidly stimulate cell division) influences the orientation of osteoblastic cell division. The initial proliferative response to strain involves canonical Wnt signaling and can be blocked by sclerostin. However, the strain-related orientation of cell division is independently influenced through the noncanonical Wnt/planar cell polarity (PCP) pathway. Blockade of Rho-associated coiled kinase (ROCK), a component of the PCP pathway, prevents strain-related orientation of division in osteoblast-like Saos-2 cells. Heterozygous loop-tail mutation of the core PCP component van Gogh-like 2 (Vangl2) in mouse osteoblasts impairs the orientation of division in response to strain. Examination of bones from Vangl2 loop-tail heterozygous mice by µCT and scanning electron microscopy reveals altered bone architecture and disorganized bone-forming surfaces. Hence, in addition to the well-accepted role of PCP involvement in response to developmental cues during skeletal morphogenesis, our data reveal that this pathway also acts postnatally, in parallel with canonical Wnt signaling, to transduce biomechanical cues into skeletal adaptive responses. The simultaneous and independent actions of these two pathways appear to influence both the rate and orientation of osteoblast division, thus fine-tuning bone architecture to meet the structural demands of functional loading.

  12. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain.

    Science.gov (United States)

    Milner, Jaques S; Grol, Matthew W; Beaucage, Kim L; Dixon, S Jeffrey; Holdsworth, David W

    2012-03-22

    Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  13. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  14. Tannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications.

    Science.gov (United States)

    Friedrich, Valentin; Janesch, Bettina; Windwarder, Markus; Maresch, Daniel; Braun, Matthias L; Megson, Zoë A; Vinogradov, Evgeny; Goneau, Marie-France; Sharma, Ashu; Altmann, Friedrich; Messner, Paul; Schoenhofen, Ian C; Schäffer, Christina

    2016-12-16

    Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.

  15. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.

    NARCIS (Netherlands)

    Lindau, D.S.U.; Gielen, P.R.; Kroesen, M.; Wesseling, P.; Adema, G.J.

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical repo

  16. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  17. Adipose tissue-derived stem cells in neural regenerative medicine.

    Science.gov (United States)

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  18. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  19. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  20. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Igor Cestari

    Full Text Available The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1 which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2 the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3 whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.

  1. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    Science.gov (United States)

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  2. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    Science.gov (United States)

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  3. Translationally-controlled tumor protein activates the transcription of Oct-4 in kidney-derived stem cells.

    Science.gov (United States)

    Jing, Ying; He, Liang-Liang; Mei, Chang-Lin

    2017-01-01

    The molecular mechanisms underlying translationally-controlled tumor protein (TCTP) in the activation of octamer-binding transcription factor 4 (Oct-4) in kidney-derived stem cells have not been characterized. The aim of the present study was to identify the transcriptional activation of Oct-4 by TCTP in kidney-derived stem cells. Homology-directed repair cDNA inserted into Fisher 344 transgenic (Tg) rats and the mouse strain 129/Svj were used for the experiments. Diphtheria toxin (DT; 10 ng/kg) injected into the Tg rats created the kidney injury, which was rapidly restored by the activation of kidney-derived stem cells. Kidney-derived stem cells were isolated from the DT-injured Tg rats using cell culture techniques. The co-expression of Oct-4 and TCTP were observed in the isolated kidney-derived stem cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis of TCTP null mutant (TCTP(-)/(-)) embryos at day 9.5 (E9.5) demonstrated the absence of co-expression of Oct-4 and TCTP, but expression of paired box-2 was detected. This was in contrast with the E9.5 control embryos, which expressed all three proteins. In conclusion, the results of the present study demonstrated that TCTP activates the transcription of Oct-4 in kidney-derived stem cells, as TCTP(-)/(-) embryos exhibited knock down of TCTP and Oct-4 without disturbing the expression of Pax-2 The characteristics and functional nature of TCTP in association with Oct-4 in kidney-derived stem cells was identified.

  4. Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells

    Institute of Scientific and Technical Information of China (English)

    Juliane Ladhoff; Michael Bader; Sabine Br(o)sel; Elke Effenberger; Dirk Westermann; Hans-Dieter Volk; Martina Seifert

    2009-01-01

    Embryonic stem cells (ESC) are suggested to be immune-privileged, but they carry the risk of uncontrolled expansion and malignancy. Upon differentiation they lose their tumor-forming capacity, but they become immunogenic by the expression of a normal set of MHC molecules. This immunogenicity might trigger rejection after application in regenerative therapies. In this study MHC expression of and immune responses to endothelial derivatives of rat embryonic stem cell-like cells (RESC) under inflammatory conditions were determined in comparison to primary rat aortic endothelial cells (ECs). Cellular as well as humoral allo-recognition was analyzed in vitro. In addition, immune reactions in vivo were assessed by allo-antibody production and determination of interferon-γ (IFNγ)-secreting allo-reactive T cells. RESC derivatives expressed low but significant levels of MHC class I, and no MHC class II. In response to IFNγ MHC class I expression was enhanced, while class II transactivator induction failed completely in these cells; MHC class II expression remained consistently absent. Functionally, the RESC derivatives showed a reduced allo-stimulatory capacity, protection against humoral allo-recognition in vitro and a slightly diminished susceptibility to cytotoxic T cell lysis. Furthermore, in vivo experiments demonstrated that these cells do not trigger host immune reactions, characterized by no allo-antibody production and no induction of allo-reactive memory T cells. Our results show that endothelial derivatives of RESC have a distinctive reduced immunogenic potency even under inflammatory conditions.

  5. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; Topol, Eric J.; Penn, Marc S.

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  6. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells.

    Science.gov (United States)

    Rayner, Benjamin S; Love, Dominic T; Hawkins, Clare L

    2014-06-01

    Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.

  7. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Institute of Scientific and Technical Information of China (English)

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.

  8. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  9. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  10. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ.

    Science.gov (United States)

    Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao

    2015-06-05

    In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs.

  11. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells.

    Directory of Open Access Journals (Sweden)

    Yanting Xue

    Full Text Available Induced pluripotent stem cell (iPS cell holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.

  12. Large-scale generation of cell-derived nanovesicles

    Science.gov (United States)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  13. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  14. The SGBS cell strain as a model for the in vitro study of obesity and cancer.

    LENUS (Irish Health Repository)

    Allott, Emma H

    2012-10-01

    The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans.

  15. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  16. Tnhibitory effect of Fuzheng Yiliuyin in combination with chemotherapeutics on human gastric carcinoma cell strain

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Rui Wang; Gen-Quan Qiu; Ke-Jun Nan; Xi-Cai Sun

    2006-01-01

    AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain.METHODS: Fuzheng Yiliuyin (ZY) combined with various kinds of chemotherapeutics was put into two kinds of cultivated human gastric carcinoma cell strains,then its inhibitory effects on human gastric carcinoma cell strains were determind by the MTT method. Flow cytometer was used to assay the apoptosis rate, and the ultrastructure of gastric carcinoma cells was observed under transmission electron microscope.RESULTS: Obvious apoptosis was seen in gastric carcinoma cells after treatment with ZY for 72 h. ZY and chemical drugs had synergistic inhibition effects on the cultivated gastric carcinoma cells, but the effects were different on various cell strains. The inhibitory effects of ZY could be strengthened by cytotoxic action and apoptosis. ZY combined with fluorouracil, etoposide and cisplatin (EFP) chemotherapeutics had better inhibitory effects on SGC-7901, while ZY combined with EFP or with DDP chemotherapeutics had better inhibitory effects than other drugs on MGC-803.CONCLUSION: ZY induces apoptosis and inhibits the growth of gastric carcinoma cells. ZY has the synergistic function of chemotherapeutics.

  17. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs induce immune modulatory profile in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Fernando de Sá Silva

    Full Text Available BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+Foxp3(+ T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs, with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+ and CD8(+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+Foxp3(+IL-10(+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ, and an increase in the anti-inflammatory molecule IL-10. CONCLUSION/SIGNIFICANCE: This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4(+Foxp3(+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs

  18. Analysis of oocyte-like cells differentiated from porcine fetal skin-derived stem cells.

    Science.gov (United States)

    Dyce, Paul W; Shen, Wei; Huynh, Evanna; Shao, Hua; Villagómez, Daniel A F; Kidder, Gerald M; King, W Allan; Li, Julang

    2011-05-01

    We previously reported the differentiation of cells derived from porcine female fetal skin into cells resembling germ cells and oocytes. A subpopulation of these cells expressed germ cell markers and formed aggregates resembling cumulus-oocyte complexes. Some of these aggregates extruded large oocyte-like cells (OLCs) that expressed markers consistent with those of oocytes. The objective of the current study was to further characterize OLCs differentiated from porcine skin-derived stem cells. Reverse transcriptase (RT)-polymerase chain reaction and Western blot revealed the expression of connexin37 and connexin43, both of which are characteristic of ovarian follicles. The expression of meiosis markers DMC1 and synaptonemal complex protein, but not STRA8 and REC8, was detected in the OLC cultures. Immunofluorescence with an antibody against synaptonemal complex protein on chromosome spreads revealed a very small subpopulation of stained OLCs that had a similar pattern to leptotene, zytotene, or pachytene nuclei during prophase I of meiosis. Sodium bisulfite sequencing of the differentially methylated region of H19 indicated that this region is almost completely demethylated in OLCs, similar to in vivo-derived oocytes. We also investigated the differentiation potential of male skin-derived stem cells in the same differentiation medium. Large cells with oocyte morphology were generated in the male stem cell differentiation cultures. These OLCs expressed oocyte genes such as octamer-binding transcription factor 4 (OCT4), growth differentiation factor-9b (GDF9B), deleted in azoospermia-like (DAZL), VASA, zona pellucida B (ZPB), and zona pellucida C (ZPC). It was concluded that skin-derived stem cells from both male and female porcine fetuses are capable of entering an oocyte differentiation pathway, but the culture system currently in place is inadequate to support the complete development of competent oocytes.

  19. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells.

    Science.gov (United States)

    DeRosa, Brooke A; Van Baaren, Jessica M; Dubey, Gaurav K; Lee, Joycelyn M; Cuccaro, Michael L; Vance, Jeffery M; Pericak-Vance, Margaret A; Dykxhoorn, Derek M

    2012-05-10

    Induced pluripotent stem cells (iPSCs) hold tremendous potential both as a biological tool to uncover the pathophysiology of disease by creating relevant cell models and as a source of stem cells for cell-based therapeutic applications. Typically, iPSCs have been derived by the transgenic overexpression of transcription factors associated with progenitor cell or stem cell function in fibroblasts derived from skin biopsies. However, the need for skin punch biopsies to derive fibroblasts for reprogramming can present a barrier to study participation among certain populations of individuals, including children with autism spectrum disorders (ASDs). In addition, the acquisition of skin punch biopsies in non-clinic settings presents a challenge. One potential mechanism to avoid these limitations would be the use of peripheral blood mononuclear cells (PBMCs) as the source of the cells for reprogramming. In this article we describe, for the first time, the derivation of iPSC lines from PBMCs isolated from the whole blood of autistic children, and their subsequent differentiation in GABAergic neurons.

  20. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    Science.gov (United States)

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  1. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Annalisa Pezzolo; Silvia Deaglio; Fabio Malavasi; Vito Pistoia; Federica Parodi; Danilo Marimpietri; Lizzia Raffaghello; Claudia Cocco; Angela Pistorio; Manuela Mosconi; Claudio Gambini; Michele Cillj

    2011-01-01

    Neuroblastoma (NB)-associated endothelial microvessels (EMs) may be lined by tumor-derived endothelial cells (TECs),that are genetically unstable and chemoresistant.Here we have addressed the identification of TEC progenitors in NB by focusing on Octamer-binding transcription factor 4 (Oct-4) as a putative marker.Oct-4+ cells were detected in primary NB samples (n = 23),metastatic bone marrow aspirates (n = 10),NB cell lines (n = 4),and orthotopic tumors (n = 10) formed by the HTLA-230 NB cell line in immunodeficient mice.Most Oct-4+ cells showed a perivascular distribution,with 5% of them homing in perinecrotic areas.All Oct-4+ cells were tumor-derived since they shared amplification of MYCN oncogene with malignant cells.Perivascular Oct-4+ cells expressed stem cellrelated,neural progenitor-related and NB-related markers,including surface Tenascin C (TNC),that was absent from perinecrotic Oct-4+ cells and bulk tumor cells.TNC+ but not TNC- HTLA-230 cells differentiated in vitro into endothelial-like cells expressing vascular-endothellal-cadherin,prostate-specific membrane antigen and CD31 upon culture in medium containing vascular endothelial growth factor (VEGF).TNC+ but not TNC- HTLA-230 cells formed neurospheres when cultured in serum-free medium.Both cell fractions were tumorigenic,but only tumors formed by TNC+ cegs contained EMs fined by TECs.In conclusion,we have identified in NB tumors two putative niches containing Oct-4+ tumor cells.Oct-4+/TNC+ perivascular NB cells displayed a high degree of plasticity and served as progenitors of TECs.Therapeutic targeting of Oct4+/TNC+ progenitors may counteract the contribution of NB-derived ECs to tumor relapse and chemoresistance.

  2. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anett K Larsen

    Full Text Available Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis and cetaceans (B. ceti from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17 by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1, two murine macrophage cell lines (RAW264.7 and J774A.1, and a human malignant epithelial cell line (HeLa S3 were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3, suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  3. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts.

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli; Greeley, Jeff; More, Karren; Yu, Chengfei; Liu, Zengcai; Kaya, Sarp; Nordlund, Dennis; Ogasawara, Hirohito; Toney, Michael F; Nilsson, Anders

    2010-06-01

    Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

  4. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  5. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes☆

    Science.gov (United States)

    Yang, Li-Jun

    2012-01-01

    Consistent with the common embryonic origin of liver and pancreas as well the similar glucose-sensing systems in hepatocytes and pancreatic β-cells, it should not be surprising that liver stem cells/hepatocytes can transdifferentiate into insulin-producing cells under high-glucose culture conditions or by genetic reprogramming. Persistent expression of the pancreatic duodenal homeobox-1 (Pdx1) transcription factor or its super-active form Pdx1-VP16 fusion protein in hepatic cells reprograms these cells into pancreatic β-cell precursors. In vitro culture at elevated glucose concentrations or in vivo exposure to a hyperglycemia are required for further differentiation and maturation of liver-derived pancreatic β-cell precursor into functional insulin-producing pancreatic β-like cells. Under appropriate conditions, multiple pancreatic transcription factors can work in concert to reprogram liver stem/adult liver cells into functional insulin-producing cells. If such autologous liver-derived insulin-producing cells can be made to escape the type 1 diabetes-associated autoimmunity, they may serve as a valuable cell source for future cell replacement therapy without the need for life-long immunosuppression. PMID:16890895

  6. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...... SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. DESIGN: Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics...... at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. RESULTS: Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg...

  7. Dye-sensitized solar cells based on bisindolylmaleimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Zhijun NING; Hongcui PEI; Wenjun WU

    2009-01-01

    Three organic dyes based on bisindolylmaleimide derivatives (11, 12 and 13) were synthesized and investigated as sensitizers for the application in nanocrystalline TiO2 solar cells. The indole group,maleimide group and carboxylic group functioned as electron donor, acceptor and anchoring group, respec-tively. Solar-to-electrical energy conversion efficiencies under simulated amplitude-modulated 1.5 irradiation based on 12 and of 1.87% and 1.50% for 13 and 11,respectively. The open circuit voltage Voc was demon-strated to be enhanced by the introduction of dodecyl or benzyl moieties on the indole groups. The nonplanar structure of bisindolylmaleimide was proven to be effective in aggregation resistance. This work suggests that organic sensitizers with maleimide as electron acceptor are promising candidates as organic sensiti-zers in dye-sensitized solar cells.

  8. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro.

    Science.gov (United States)

    Zhou, Quan; Wang, Mei; Yuan, Yan; Wang, Xuepeng; Fu, Rui; Wan, Haifeng; Xie, Mingming; Liu, Mingxi; Guo, Xuejiang; Zheng, Ying; Feng, Guihai; Shi, Qinghua; Zhao, Xiao-Yang; Sha, Jiahao; Zhou, Qi

    2016-03-03

    In vitro generation of functional gametes is a promising approach for treating infertility, although faithful replication of meiosis has proven to be a substantial obstacle to deriving haploid gamete cells in culture. Here we report complete in vitro meiosis from embryonic stem cell (ESC)-derived primordial germ cells (PGCLCs). Co-culture of PGCLCs with neonatal testicular somatic cells and sequential exposure to morphogens and sex hormones reproduced key hallmarks of meiosis, including erasure of genetic imprinting, chromosomal synapsis and recombination, and correct nuclear DNA and chromosomal content in the resulting haploid cells. Intracytoplasmic injection of the resulting spermatid-like cells into oocytes produced viable and fertile offspring, showing that this robust stepwise approach can functionally recapitulate male gametogenesis in vitro. These findings provide a platform for investigating meiotic mechanisms and the potential generation of human haploid spermatids in vitro.

  9. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun;

    2012-01-01

    for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease......Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  10. [Thiamine and its derivatives in the regulation of cell metabolism].

    Science.gov (United States)

    Tylicki, Adam; Siemieniuk, Magdalena

    2011-07-06

    For over 70 years thiamine (vitamin B1) has aroused the interest of biologists, biochemists and medical doctors because of its multilateral participation in key biochemical and physiological processes. The thiamine molecule is composed of pyrimidine and thiazole rings which are linked by a methylene bridge. It is synthesized by microorganisms, fungi and plants, whereas animals and humans have to obtain it from food. There are several known forms of vitamin B1 inside cells: free thiamine, three phosphate esters (mono-, di-, and triphosphate), and the recently found adenosine thiamine triphosphate. Thiamine has a dual, coenzymatic and non-coenzymatic role. First of all, it is a precursor of thiamin diphosphate, which is a coenzyme for over 20 characterized enzymes which are involved in cell bioenergetic processes leading to the synthesis of ATP. Moreover, these enzymes take part in the biosynthesis of pentose (required for the synthesis of nucleotides), amino acids and other organic compounds of cell metabolism. On the other hand, recent discoveries show the non-coenzymatic role of thiamine derivatives in the process of regulation of gene expression (riboswitches in microorganisms and plants), the stress response, and perhaps so far unknown signal transduction pathways associated with adverse environmental conditions, or transduction of nerve signals with participation of thiamine triphosphate and adenosine thiamine triphosphate. From the clinical point of view thiamine deficiency is related to beri-beri, Parkinson disease, Alzheimer disease, Wernicke-Korsakoff syndrome and other pathologies of the nervous system, and it is successfully applied in medical practice. On the other hand, identifying new synthetic analogues of thiamine which could be used as cytostatics, herbicides or agents preventing deficiency of vitamin B1 is currently the major goal of the research. In this paper we present the current state of knowledge of thiamine and its derivatives, indicating

  11. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    Science.gov (United States)

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

  12. Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains.

    Science.gov (United States)

    Chevalier, Jacqueline; Mahamoud, Abdallah; Baitiche, Milad; Adam, Elissavet; Viveiros, Miguel; Smarandache, Adriana; Militaru, Andra; Pascu, Mihail L; Amaral, Leonard; Pagès, Jean-Marie

    2010-08-01

    Amongst the three series of quinazoline derivatives synthesised and studied in this work, some molecules increase the antibiotic susceptibility of Gram-negative bacteria presenting multidrug-resistant phenotypes. N-alkyl compounds induced an increase in the activity of chloramphenicol, nalidixic acid and sparfloxacin, which are substrates of the AcrAB-TolC and MexAB-OprM efflux pumps in clinical isolates. These molecules are able to increase the intracellular concentration of chloramphenicol in efflux pump-overproducing strains. Their activity depends on the antibiotic structure, suggesting that different sites may be involved for the recognition of substrates by a given efflux pump. Quinazoline molecules exhibiting a nitro functional group are more active, and structure-activity relationship studies may be undertaken to identify the pharmacophoric group involved in the AcrB and MexB affinity sites.

  13. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    Science.gov (United States)

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-04-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer.

  14. [Proliferation characteristics of a PK-15 cell-adapted strain of porcine parvovirus].

    Science.gov (United States)

    Wu, Yun-Fei; Zhu, Ling; Xu, Zhi-Wen; Fu, Meng-Jin; Chen, Lei; Yang, Ai-Guo; Guo, Wan-Zhu

    2013-06-01

    To study the proliferation characteristics of PPV in differently infected way and the variance of concentrations in different cells. A strain of porcine parvovirus(PPV) was adapted to PK-15 cells, and a Real-time fluorescent quantitative PCR (FQ-PCR) assay was developed based on the specific region of the NS1 gene of PPV to quantify the PPV. The FQ-PCR was used to measure the viral concentration of virus-infected cells by simultaneous or step by step inoculation and plot one-step growth curves. The proliferation characteristics of PPV strain in different cells lines (HeLa, MDBK, PK-15 ,ST, F81, BHK-21 and Marc-145) was also compared. The results showed the PK-15 cell -adapted strain of PPV produced CPE after 12 passages, and maintained stable CPE at the following 10 messages. The one-step growth curve showed that the virus concentration of simultaneous inoculation was higher than that of the step-by-step inoculation, and the proliferation cycle of step-by-step inoculation was shorter. The proliferation ability of PPV strain in different cells showed that CPE appeared first inPK-15, followed by ST, HeLa and MDBK, and the virus concentration was highest in ST, followed byPK-15, MDBK and HeLa. NO proliferation was observed in F81, BHK-21 and Marc-145 cells. These findings lay a material foundation for the basic researches on PPV and the development of vaccine.

  15. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  16. Case Reports of Adipose-derived Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Min Su Jung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medicalprofessionals or inexperienced physicians resulting in complications are also increasing. Weherein report 2 patients who experienced acute complications after receiving filler injectionsand were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 wasa 23-year-old female patient who received a filler (Restylane injection in her forehead,glabella, and nose by a non-medical professional. The day after her injection, inflammationwas observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who receiveda filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a privateclinic. She developed erythema and swelling in the filler-injected area A solution containingADSCs harvested from each patient’s abdominal subcutaneous tissue was injected intothe lesion at the subcutaneous and dermis levels. The wounds healed without additionaltreatment. With continuous follow-up, both patients experienced only fine linear scars 6months postoperatively. By using adipose-derived stem cells, we successfully treated theacute complications of skin necrosis after the filler injection, resulting in much less scarring,and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  17. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  18. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  19. Identification of Stem Leydig Cells Derived from Pig Testicular Interstitium

    Science.gov (United States)

    Yu, Shuai; Zhang, Pengfei; Dong, Wuzi; Zeng, Wenxian

    2017-01-01

    Stem Leydig cells (SLCs), located in the testicular interstitial compartment in the mammalian testes, are capable of differentiating to testosterone-synthesizing Leydig cells (LCs), thus providing a new strategy for treating testosterone deficiency. However, no previous reports have identified and cultured SLCs derived from the pig. The aim of the current study was to isolate, identify, and culture SLCs from pigs. Haematoxylin and eosin staining and immunochemical analysis showed that SLCs were present and that PDGFRα was mainly expressed in the pig testicular interstitium, indicating that PDGFRα was a marker for SLCs in the neonatal pig. In addition, reverse transcription-PCR results showed that SLC markers were expressed in primary isolated LCs, indicating that they were putative SLCs. The putative SLCs were subsequently cultured with a testicular fluid of piglets (pTF) medium. Clones formed after 7 days and the cells expressed PDGFRα. However, no clones grew in the absence of pTF, but the cells expressed CYP17A1, indicating that pTF could sustain the features of porcine SLCs. To summarize, we isolated porcine SLCs and identified their basic characteristics. Taken together, these results may help lay the foundation for research in the clinical application of porcine SLCs.

  20. Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Chun-Meng Shi; Tian-Min Cheng

    2004-01-01

    AIM: To observe the plasticity of whether dermis-derived multipotent cells to differentiate into insulin-producing pancreatic cells in vitro.METHODS: A donal population of dermis-derived multipotent stem cells (DMCs) from newborn rat with the capacity to produce osteocytes, chondrocytes, adipocytes and neurons was used. The gene expression of cultured DMCs was assessed by DNA microarray using rat RGU34A gene expression probe arrays. DMCs were further cultured in the presence of insulin complex components (Insulintransferrin-selenium, ITS) to observe whether DMCs could be induced into insulin-producing pancreatic cells in vitro.RESULTS: DNA microarray analysis showed that cultured DMCs simultaneously expressed several genes associated with pancreatic cell, neural cell, epithelial cell and hepatocyte,widening its transcriptomic repertoire. When cultured in the specific induction medium containing ITS for pancreatic cells, DMCs differentiated into epithelioid cells that were positive for insulin detected by immunohistochemistry.CONCLUSION: Our data indicate that dermal multipotent cells may serve as a source of stem/progenitor cells for insulin-producing pancreatic cells.

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  2. Universal quantifier derived from AFM analysis links cellular mechanical properties and cell-surface integration forces with microbial deposition and transport behavior.

    Science.gov (United States)

    Li, Yueyun; Wang, Xin; Onnis-Hayden, Annalisa; Wan, Kai-tak; Gu, April Z

    2014-01-01

    In this study, we employed AFM analysis combined with mathematical modeling for quantifying cell-surface contact mechanics and magnitude and range of cell-surface interaction forces for seven bacterial strains with a wide range of cell morphology, dimension, and surface characteristics. Comprehensive cell-surface characterization including surface charge, extracellular polymeric substance content, hydrophobicity, and cell-cell aggregation analyses were performed. Flow-through column tests were employed to determine the attachment efficiency and deposition-transport behavior of these bacterial strains. No statistically significant correlation between attachment efficiency and any single-cell surface property was identified. Single-cell characterization by atomic force microscopy (AFM) yielded the mechanical deformation and elastic modulus, penetration resistance to AFM probe penetration by cellular surface substances (CSS), range and magnitude of the repulsive-attractive intersurface forces, and geometry of each strain. We proposed and derived a universal dimensionless modified Tabor's parameter to integrate all these properties that account for their collective behavior. Results showed that the Tabor parameter derived from AFM analysis correlated well with experimentally determined attachment efficiency (α), which therefore is able to link microscale cell-surface properties with macroscale bacterial transport behavior. Results suggested that the AFM tests performed between a single cell and a surface captured the key quantities of the interactions between the cell and the surface that dictate overall cell attachment behavior. Tabor's parameter therefore can be potentially incorporated into the microbial transport model.

  3. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3)-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv).

    Science.gov (United States)

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chow, Vincent T K; Chua, Kaw Bing

    2014-01-01

    Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1) and viral RNA-dependent RNA polymerase (3D). Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  4. Phenotypic and genotypic characteristics of novel mouse cell line (NIH/3T3-adapted human enterovirus 71 strains (EV71:TLLm and EV71:TLLmv.

    Directory of Open Access Journals (Sweden)

    Carla Bianca Luena Victorio

    Full Text Available Since its identification in 1969, Enterovirus 71 (EV71 has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71 is hampered by the virus's inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv, which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1 and viral RNA-dependent RNA polymerase (3D. Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136-150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.

  5. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  6. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tomokiyo, Atsushi; Hynes, Kim; Ng, Jia; Menicanin, Danijela; Camp, Esther; Arthur, Agnes; Gronthos, Stan; Mark Bartold, Peter

    2017-02-01

    Neural crest cells (NCC) hold great promise for tissue engineering, however the inability to easily obtain large numbers of NCC is a major factor limiting their use in studies of regenerative medicine. Induced pluripotent stem cells (iPSC) are emerging as a novel candidate that could provide an unlimited source of NCC. In the present study, we examined the potential of neural crest tissue-derived periodontal ligament (PDL) iPSC to differentiate into neural crest-like cells (NCLC) relative to iPSC generated from a non-neural crest derived tissue, foreskin fibroblasts (FF). We detected high HNK1 expression during the differentiation of PDL and FF iPSC into NCLC as a marker for enriching for a population of cells with NCC characteristics. We isolated PDL iPSC- and FF iPSC-derived NCLC, which highly expressed HNK1. A high proportion of the HNK1-positive cell populations generated, expressed the MSC markers, whilst very few cells expressed the pluripotency markers or the hematopoietic markers. The PDL and FF HNK1-positive populations gave rise to smooth muscle, neural, glial, osteoblastic and adipocytic like cells and exhibited higher expression of smooth muscle, neural, and glial cell-associated markers than the PDL and FF HNK1-negative populations. Interestingly, the HNK1-positive cells derived from the PDL-iPSC exhibited a greater ability to differentiate into smooth muscle, neural, glial cells and adipocytes, than the HNK1-positive cells derived from the FF-iPSC. Our work suggests that HNK1-enriched NCLC from neural crest tissue-derived iPSC more closely resemble the phenotypic and functional hallmarks of NCC compared to the HNK1-low population and non-neural crest iPSC-derived NCLC. J. Cell. Physiol. 232: 402-416, 2017. © 2016 Wiley Periodicals, Inc.

  7. Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina.

    Directory of Open Access Journals (Sweden)

    Diana Katsman

    Full Text Available Cell-derived microvesicles (MVs, recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation.

  8. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available BACKGROUND: Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. METHODOLOGY/PRINCIPAL FINDINGS: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection. CONCLUSIONS/SIGNIFICANCE: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple

  9. Predicting cell viability within tissue scaffolds under equiaxial strain: multi-scale finite element model of collagen-cardiomyocytes constructs.

    Science.gov (United States)

    Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda

    2017-01-16

    Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.

  10. Strain-balanced MQW pin solar cells grown using a robot-loading showerhead reactor

    Science.gov (United States)

    Roberts, J. S.; Airey, R.; Hill, G.; Calder, C.; Barnham, K. W. J.; Lynch, M.; Tibbits, T.; Johnson, D.; Pakes, A.; Grantham, T.

    2007-01-01

    A touch-screen controlled, robot-loading system for the Thomas Swan 7×2 flip-top showerhead reactor has been developed. The reactor has been configured for the growth of GaAs and InP materials and has been used to prepare strain-balanced MQW (SBMQW) pin solar cell material on GaAs substrates. Both material characterisation and solar cell performance for SBMQW pin cells are described.

  11. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  12. The labeling of C57BL/6j derived embryonic stem cells with enhanced green fluorescent protein

    Institute of Scientific and Technical Information of China (English)

    滕路; 张崇本; 尤洁芳; 尚克刚; 顾军

    2003-01-01

    Objective To labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.Methods The EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/ chicken beta-actin promoter/ beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.Results We generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the "green" ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The "green" embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence. Conclusions The hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.

  13. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  14. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  15. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    Science.gov (United States)

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  16. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Science.gov (United States)

    Zhu, Qian; Lu, Qiqi; Gao, Rong

    2016-01-01

    Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration. PMID:28090209

  17. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2016-01-01

    Full Text Available Neural crest stem cells (NCSCs represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.

  18. Isolation and analysis of SSEA-4 positive cells derived from fetal marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Daqing; PEI Xuetao; YANG Yinxiang; GAO Yanhong; YUAN Hongfeng; QIN Lipeng; WANG Yunfang; NAN Xue; SHI Shuangshuang; YUE Wen

    2006-01-01

    A big issue in stem cell research is to derive prospective totipotential stem cells. In this study, fMSC-SSEA-4 cells expressing SSEA-4 antigen were isolated from fetal marrow masenchymal stem cells (fMSCs) using immunomagnetic bead sorting technique. The totipotent cells were identified and their biological characteristics were further studied. The expression of Oct-4 and SSEA-4, carcino- genicity, and the ability to differentiation of fMSC- SSEA-4 cells were evaluated to verify the totipotent potential. fMSC-SSEA-4 cells were isolated successfully from fMSCs (2.5% among fMSCs), while no obvious differences were seen in morphology, growth curve, cell cycle and immunophenotype, Oct-4 and SSEA-4 expression between fMSC-SSEA-4 cells and fMSCs. fMSC-SSEA-4 cells showed normal diploid chromosome karyotype and no carcinoma was induced after inoculation into nude mice. fMSC- SSEA-4 cells could be induced to fat cells, osteogenic cells and neuron-like cells in vitro with different induced factors. The results indicated that there may be a few totipotent cells among the fMSCs and it may offer the experimental basis for the further study and application of fMSCs.

  19. In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Vágvölgyi Csaba

    2011-05-01

    Full Text Available Abstract Background Candida parapsilosis typically is a commensal of human skin. However, when host immune defense is compromised or the normal microflora balance is disrupted, C. parapsilosis transforms itself into an opportunistic pathogen. Candida-derived lipase has been identified as potential virulence factor. Even though cellular components of the innate immune response, such as dendritic cells, represent the first line of defense against invading pathogens, little is known about the interaction of these cells with invading C. parapsilosis. Thus, the aim of our study was to assess the function of dendritic cells in fighting C. parapsilosis and to determine the role that C. parapsilosis-derived lipase plays in the interaction with dendritic cells. Results Monocyte-derived immature and mature dendritic cells (iDCs and mDCs, respectively co-cultured with live wild type or lipase deficient C. parapsilosis strains were studied to determine the phagocytic capacity and killing efficiency of host cells. We determined that both iDCs and mDCs efficiently phagocytosed and killed C. parapsilosis, furthermore our results show that the phagocytic and fungicidal activities of both iDCs and mDCs are more potent for lipase deficient compared to wild type yeast cells. In addition, the lipase deficient C. parapsilosis cells induce higher gene expression and protein secretion of proinflammatory cytokines and chemokines in both DC types relative to the effect of co-culture with wild type yeast cells. Conclusions Our results show that DCs are activated by exposure to C. parapsilosis, as shown by increased phagocytosis, killing and proinflammatory protein secretion. Moreover, these data strongly suggest that C. parapsilosis derived lipase has a protective role during yeast:DC interactions, since lipase production in wt yeast cells decreased the phagocytic capacity and killing efficiency of host cells and downregulated the expression of host effector molecules.

  20. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Fan, Yanzhen; Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey)

    2008-05-15

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains. (author)

  1. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  2. Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior.

    Directory of Open Access Journals (Sweden)

    Harrison T Muturi

    Full Text Available Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1000 nm in diameter, which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter, derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.

  3. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Jie Du; Xiaoqing Gao; Li Deng; Nengbin Chang; Huailin Xiong; Yu Zheng

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro-tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su-pernatant were signiifcantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes-enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen-chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.

  4. Unequivocal identification of subpopulations in putative multiclonal Trypanosoma cruzi strains by FACs single cell sorting and genotyping.

    Directory of Open Access Journals (Sweden)

    Helder Magno Silva Valadares

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease, is a polymorphic species. Evidence suggests that the majority of the T. cruzi populations isolated from afflicted humans, reservoir animals, or vectors are multiclonal. However, the extent and the complexity of multiclonality remain to be established, since aneuploidy cannot be excluded and current conventional cloning methods cannot identify all the representative clones in an infection. To answer this question, we adapted a methodology originally described for analyzing single spermatozoids, to isolate and study single T. cruzi parasites. Accordingly, the cloning apparatus of a Fluorescence-Activated Cell Sorter (FACS was used to sort single T. cruzi cells directly into 96-wells microplates. Cells were then genotyped using two polymorphic genomic markers and four microsatellite loci. We validated this methodology by testing four T. cruzi populations: one control artificial mixture composed of two monoclonal populations--Silvio X10 cl1 (TcI and Esmeraldo cl3 (TcII--and three naturally occurring strains, one isolated from a vector (A316A R7 and two others derived from the first reported human case of Chagas disease. Using this innovative approach, we were able to successfully describe the whole complexity of these natural strains, revealing their multiclonal status. In addition, our results demonstrate that these T. cruzi populations are formed of more clones than originally expected. The method also permitted estimating of the proportion of each subpopulation of the tested strains. The single-cell genotyping approach allowed analysis of intrapopulation diversity at a level of detail not achieved previously, and may thus improve our comprehension of population structure and dynamics of T. cruzi. Finally, this methodology is capable to settle once and for all controversies on the issue of multiclonality.

  5. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  6. Bone marrow-derived cells contribute to NDEA-induced lung squamous cell carcinoma.

    Science.gov (United States)

    Luo, Dan; Liu, Dengqun; Zhou, Xiangdong; Yang, Shiming; Tang, Chunlan; Liu, Guoxiang

    2013-02-01

    Bone marrow-derived stem cells (BMDCs) have the ability to differentiate into lung epithelial cells in response to damage; however, their role in squamous cell carcinoma (SCC) formation is unknown. This study aimed to determine whether BMDC-derived lung epithelial cells could contribute to SCC formation. A model of lung SCC induced with N-nitrosodiethylamine (NDEA) in recipient female mice transplanted with green fluorescent protein (GFP)-positive BMDCs from male donors was established. Incorporation of BMDCs in lung tissue was determined using immunohistochemistry and immunofluorescence to detect GFP expression and fluorescence in situ hybridization to Y chromosomes. BMDC appeared at three stages of lung SCC progression: metaplasia, dysplasia, and carcinoma. There was a significantly higher proportion of GFP-positive (GFP(+)) cells within SCC than was found in metaplasia and dysplasia 16 weeks post-transplantation (both P cells in SCC were pancytokeratin-positive (PCK(+)) epithelial cells, and some exhibited proliferative activity as determined by Ki67 staining (9.7 ± 3.92 %). The presence of GFP(+)Ki67(+)PCK(+) cells within SCC nests suggested that some donor BMDCs differentiated into proliferating epithelial cells. Finally, analysis of p63 expression, a marker of SCC cells, indicated that the presence of GFP(+)p63(+) cells (green) in inner parts of the SCC. These findings strongly suggest that BMDC-derived lung epithelial cells could participate in lung SCC formation and partially contribute to tumor growth, which might have significant potential implications for both clinical cancer therapy using BMDCs.

  7. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy

    Science.gov (United States)

    Sarang, Shabari; Viswanathan, Chandra

    2016-01-01

    Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes. PMID:27426087

  8. Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, Peter

    2011-08-19

    We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

  9. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells.

    Science.gov (United States)

    White, Mark P; Rufaihah, Abdul J; Liu, Lei; Ghebremariam, Yohannes T; Ivey, Kathryn N; Cooke, John P; Srivastava, Deepak

    2013-01-01

    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized, and defined growth factors were used to generate KDR(+) EC progenitors. Magnetic purification of a KDR(+) progenitor subpopulation resulted in an expanding, homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders.

  10. Interaction between the Bacterium Pseudomonas fluorescens strain CHA0, its genetic derivatives and vermiculite: Effects on chemical, mineralogical and mechanical properties of vermiculite

    Science.gov (United States)

    Mueller, Barbara

    2016-04-01

    Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.

  11. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse.

    Science.gov (United States)

    Markoulaki, Styliani; Meissner, Alexander; Jaenisch, Rudolf

    2008-06-01

    Addressing the fundamental questions of nuclear equivalence in somatic cells has fascinated scientists for decades and has resulted in the development of somatic cell nuclear transfer (SCNT) or animal cloning. SCNT involves the transfer of the nucleus of a somatic cell into the cytoplasm of an egg whose own chromosomes have been removed. In the mouse, SCNT has not only been successfully used to address the issue of nuclear equivalence, but has been used as a model system to test the hypothesis that embryonic stem cells (ESCs) derived from NT blastocysts have the potential to correct--through genetic manipulations--degenerative diseases. This paper aims to provide a comprehensive description of SCNT in the mouse and the derivation of ESCs from blastocysts generated by this technique. SCNT is a very challenging and inefficient procedure because it is technically complex, it bypasses the normal events of gamete interactions and egg activation, and it depends on adequate reprogramming of the somatic cell nucleus in vivo. Improvements in any or all those aspects may enhance the efficiency and applicability of SCNT. ESC derivation from SCNT blastocysts, on the other hand, requires the survival of only a few successfully reprogrammed cells, which have the capacity to proliferate indefinitely in vitro, maintain correct genetic and epigenetic status, and differentiate into any cell type in the body--characteristics that are essential for transplantation therapy or any other in vivo application.

  12. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Zou

    2015-02-01

    Full Text Available We generated a RUNX2-yellow fluorescent protein (YFP reporter system to study osteogenic development from human embryonic stem cells (hESCs. Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development.

  13. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    Science.gov (United States)

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina

    2012-01-01

    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  14. In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains

    Directory of Open Access Journals (Sweden)

    Foucras Gilles

    2007-09-01

    Full Text Available Abstract Myxoma virus (MYXV, a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1 and a vaccinal strain (SG33 of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.

  15. Cyclic strain alters the expression and release of angiogenic factors by human tendon cells.

    Science.gov (United States)

    Mousavizadeh, Rouhollah; Khosravi, Shahram; Behzad, Hayedeh; McCormack, Robert G; Duronio, Vincent; Scott, Alex

    2014-01-01

    Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.

  16. Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Walter, Anna; Šarić, Tomo; Hescheler, Jürgen; Papadopoulos, Symeon

    2016-01-01

    The possibility to generate cardiomyocytes (CMs) from disease-specific induced pluripotent stem cells (iPSCs) is a powerful tool for the investigation of various cardiac diseases in vitro. The pathological course of various cardiac conditions, causatively heterogeneous, often converges into disturbed cellular Ca(2+) cycling. The gigantic Ca(2+) channel of the intracellular Ca(2+) store of CMs, the ryanodine receptor type 2 (RyR2), controls Ca(2+) release and therefore plays a crucial role in Ca(2+) cycling of CMs. In the present protocol we describe ways to measure and analyze global as well as local cellular Ca(2+) release events in CMs derived from a patient carrying a CPVT-causing RyR2 mutation.

  17. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Chuah, Yon Jin [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Lee, Wu Chean [University Hospital Conventry & Warwickshire NHS Trust, Clifford Bridge Road, West Midlands CV2, 2DX (United Kingdom); Wong, Hee Kit [Department of Orthopedic Surgery, National University Health System, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228 (Singapore); Kang, Yuejun, E-mail: yuejun.kang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Hee, Hwan Tak, E-mail: HTHee@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Pinnacle Spine & Scoliosis Centre, 3 Mount Elizabeth, Mount Elizabeth Medical Centre, #04-07, Singapore 228510 (Singapore); School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637459 (Singapore)

    2015-02-01

    Prior research has investigated the immediate response after application of tensile strain on annulus fibrosus (AF) cells for the past decade. Although mechanical strain can produce either catabolic or anabolic consequences to the cell monolayer, little is known on how to translate these findings into further tissue engineering applications. Till to date, the application and effect of tensile pre-strained cells to construct a three-dimensional (3D) AF tissue remains unknown. This study aims to investigate the effect of tensile pre-strained exposure of 1 to 24 h on the development of AF pellet culture for 3 weeks. Equibiaxial cyclic tensile strain was applied on AF monolayer cells over a period of 24 h, which was subsequently developed into a cell pellet. Investigation on cellular proliferation, phenotypic gene expression, and histological changes revealed that tensile pre-strain for 24 h had significant and lasting effect on the AF tissue development, with enhanced cell proliferation, and up-regulation of collagen type I, II, and aggrecan expression. Our results demonstrated the regenerative ability of AF cell pellets subjected to 24 h tensile pre-straining. Knowledge on the effects of tensile pre-strain exposure is necessary to optimize AF development for tissue reconstruction. Moreover, the tensile pre-strained cells may further be utilized in either cell therapy to treat mild disc degeneration disease, or the development of a disc construct for total disc replacement. - Highlights: • Establishment of tensile pre-strained cell line population for annulus development. • Tensile strain limits collagen gene expression declination in monolayer culture. • Tensile pre-strained cells up-regulate their matrix protein in 3D pellet culture.

  18. Effects of navelbine and docetaxel on gene expression in lung cancer cell strains

    Institute of Scientific and Technical Information of China (English)

    Li CAI; Hai-ying DONG; Guang-jie SUI

    2005-01-01

    Aim: To search genes sensitivity to the anti-cancer drugs navelbine (NVB) and docetaxel (DOC) in small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cell strains. Methods: The sensitivity of 4 strains of SCLC and 6 strains of NSCLC to NVB and DOC was evaluated using the MTT assay. The expression of 1291 sensitive-related genes to the anti-cancer drugs in 10 lung cancer cell strains was measured using cDNA macroarrays and the relationship was analyzed.Results: In total, there were 56 (r≥0.4) genes sensitive to NVB and DOC. For NVB: 36 genes were sensitive to NVB, 20 co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 27 expressed genes and 7 specially expressed genes in the SCLC+NSCLC set; and 29 expressed genes and 9 specially expressed genes in the NSCLC set. For DOC, 50 genes were sensitive to DOC, 12co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 24expressed genes and 12 specially expressed genes in the SCLC+NSCLC set; and 38 expressed genes and 26 specially expressed genes in the NSCLC set. The genes sensitive to NVB and DOC in lung-cancer cell stains were mainly divided into the following 4 categories: signal transduction molecules, cell factors, transcription factors and metabolism-related enzymes and inhibitors. Conclusions:There were obvious differences in genes related to NVB and DOC between SCLC and NSCLC cell strains, but the same as categories of function.

  19. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  20. Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derived Endothelial Cells

    OpenAIRE

    2013-01-01

    Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based ...

  1. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling

    Directory of Open Access Journals (Sweden)

    Takuya Matsumoto

    2016-03-01

    Full Text Available Modeling of neurological diseases using induced pluripotent stem cells (iPSCs derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs. We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases.

  2. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain.

    Science.gov (United States)

    Fairbank, Nigel J; Connolly, Sarah C; Mackinnon, James D; Wehry, Kathrin; Deng, Linhong; Maksym, Geoffrey N

    2008-09-01

    Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.

  3. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells.

  4. A biomechanical model for fluidization of cells under dynamic strain.

    Science.gov (United States)

    Wu, Tenghu; Feng, James J

    2015-01-06

    Recent experiments have investigated the response of smooth muscle cells to transient stretch-compress (SC) and compress-stretch (CS) maneuvers. The results indicate that the transient SC maneuver causes a sudden fluidization of the cell while the CS maneuver does not. To understand this asymmetric behavior, we have built a biomechanical model to probe the response of stress fibers to the two maneuvers. The model couples the cross-bridge cycle of myosin motors with a viscoelastic Kelvin-Voigt element that represents the stress fiber. Simulation results point to the sensitivity of the myosin detachment rate to tension as the cause for the asymmetric response of the stress fiber to the CS and SC maneuvers. For the SC maneuver, the initial stretch increases the tension in the stress fiber and suppresses myosin detachment. The subsequent compression then causes a large proportion of the myosin population to disengage rapidly from actin filaments. This leads to the disassembly of the stress fibers and the observed fluidization. In contrast, the CS maneuver only produces a mild loss of myosin motors and no fluidization.

  5. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all tissue types.It has been shown that embryonic stem cells can be induced to differentiate into neurons and glia by treatment with retinoic acid or basic fibroblast growth factor. It has been studied that the diseases as Motor Neuron Disease, Parkinson, Alzheimer and degeneration of medulla spinalis and also paralysises could be treated with transplantation of cord blood-dericed stem cells.

  6. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.

    Science.gov (United States)

    Liu, Qi; Zhang, Ru-zhi; Li, Di; Cheng, Sai; Yang, Yu-hua; Tian, Ting; Pan, Xiao-ru

    2016-04-01

    A new type of mesenchymal stem cells (MSCs) that expresses stage-specific embryonic antigen 3 (SSEA-3) and the mesenchymal cell marker CD105 are known as multilineage-differentiating stress-enduring (Muse) cells. Studies have shown that stem cells in suspension cultures are more likely to generate embryoid body-like stem cell spheres and maintain an undifferentiated phenotype and pluripotency. We separated Muse cells derived from human dermal fibroblasts by long-term trypsin incubation (LTT) through suspension cultures in methylcellulose. The Muse cells obtained expressed several pluripotency markers, including Nanog, Oct4, Sox2, and SSEA-3, and could differentiate in vitro into cells of the three germ layers, such as hepatocytes (endodermal), neural cells (ectodermal) and adipocytes, and osteocytes (mesodermal cells). These cells showed a low level of DNA methylation and a high nucleo-cytoplasmic ratio. Our study provides an innovative and exciting platform for exploring the potential cell-based therapy of various human diseases using Muse cells as well as their great possibility for regenerative medicine.

  7. Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal chromosome 17.

    Science.gov (United States)

    Vyskocilová, Martina; Prazanová, Gabriela; Piálek, Jaroslav

    2009-02-01

    The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm x C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS x STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes.

  8. Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM.

    Science.gov (United States)

    Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-09-01

    Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water.

  9. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  10. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway.

    Science.gov (United States)

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-13

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies.

  11. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway

    Science.gov (United States)

    Kim, You-Sun; Kim, Ji-Young; Cho, RyeonJin; Shin, Dong-Myung; Lee, Sei Won; Oh, Yeon-Mok

    2017-01-01

    Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies. PMID:28082743

  12. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing

    OpenAIRE

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi,Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-01-01

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the con...

  13. Advances in pluripotent stem cell-derived endothelial cells: from biomaterials to organ regeneration.

    Science.gov (United States)

    Lui, Kathy O

    2014-01-01

    Human embryonic stem cells (ESCs), by virtue of their capability to self-renew and differentiate into a variety of cell types, represent the first type of pluripotent stem cells (PSCs) to be used in clinical transplantation during recent phase-I trials; however, it is still unclear whether hESC-derived tissues can self-organize and form part of the vascularized, functional organ following transplantation. Recently, endothelial cells (ECs) or angiogenic factors such as VEGFA have been demonstrated to support development and regeneration of multiple organ systems, including the heart, pancreas, liver, lung and bone marrow. Therefore, co-transplantation of ECs derived from the same parental PSCs that differentiate into cell types of interest; or overexpression of the inductive angiogenic factors responsible for organ regeneration might be beneficial to support function of hPSC-derived tissues. In this special issue, we discuss how protein kinases (Ng and colleagues); DNA methylation and histone modification (Tsui and colleagues) regulate cellular pluripotency and cell-fate specification of PSCs. In addition, we discuss how ECs and angiogenic factors could contribute to repair and regeneration of organs such as the heart (Yuan and colleagues), the cardiovascular system (Tse and colleagues) and the pancreas (Lui). We also discuss the role of mesenchymal stem cells or paracrine factors secreted by them in tissue repair (Li and colleagues). Lastly, we discuss how to generate self-organized and vascularized tissues derived from PSCs in a 2- or 3-dimensional format by fusing tissue bioengineering approaches with stem cell technology (Chen).

  14. A protocol for embryonic stem cell derivation by somatic cell nuclear transfer into human oocytes

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Dieter Egli & Gloryn Chia ### Abstract Here we describe detailed methods that allowed us to derive embryonic stem cell lines by nuclear transfer of fibroblasts from a newborn and from a type 1 diabetic adult. The protocol is based on the insight that 1) agents for cell fusion can act as potent mediators of oocyte activation by compromising maintaining plasma membrane integrity; minimizing the concentration at which they are used, and at least transiently remove calcium f...

  15. Reinnervation of hair cells by neural stem cell-derived neurons

    Institute of Scientific and Technical Information of China (English)

    Yuan Yasheng; Wang Yang; Chi Fanglu

    2014-01-01

    Background Replacement of spiral ganglion neurons would be one prioritized step in an attempt to restore sensory neuronal hearing loss.However,the possibility that transplanted neurons could regenerate new synaptic connections to hair cells has not been explored.The objective of this study was to test whether neural stem cell (NSC)-derived neurons can form synaptic connections with hair cells in vitro.Methods NSCs were mechanically separated from the hippocampus in SD rat embryos (E12-E14) and cultured in a serum-free medium containing basic fibroblast growth factor and epidermal growth factor.Rat NSCs were co-cultured with explants of cochlea sensory epithelia obtained from postnatal Day 3 rats under transway filter membrane.Results At Day 3,the NSCs began to show chemotactic differentiation and grew toward cochlea sensory epithelia.After 9-day co-culture,neurites of NSC-derived neurons predominantly elongated toward hair cells.Immunohistochemical analyses revealed the fibers overlapped with synapsin and hair cells,indicating the formation of new synaptic connections.After 14-day culture,triple staining revealed the fibers overlapped with PSD95 (postsynaptic density) which is juxtaposed with CtBP2 (presynaptic vesicle),indicating the formation of new ribbon synapse.Conclusions NSC-derived neurons can make synaptic connections with hair cells and provide a model for studying synaptic plasticity and regeneration.Whether the newly forming synapse is functional merits further electrophysiological study.

  16. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Directory of Open Access Journals (Sweden)

    Stolzing Alexandra

    2011-08-01

    Full Text Available Abstract Background Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L, astrocyte-conditioned medium (ACM and GM-CSF on the differentiation to microglia-like cells. Methods We assessed in vitro-derived microglia differentiation by marker expression (CD11b/CD45, F4/80, but also for the first time for functional performance (phagocytosis, oxidative burst and in situ migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices. Results The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation. Conclusion We conclude that in vitro-derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.

  17. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mondal Debasis

    2011-01-01

    Full Text Available Abstract Background Tissue resident mesenchymal stem cells (MSCs are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD cells derived from ASCs could productively be infected with HIV-1. Results HD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-. Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10. Conclusions Considering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.

  18. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Tokunori Ikeda

    Full Text Available We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs using two models of autoimmune disease, namely non-obese diabetic (NOD mice and experimental autoimmune encephalomyelitis (EAE. Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases.

  19. Stem Cells Derived from Tooth Periodontal Ligament Enhance Functional Angiogenesis by Endothelial Cells

    Science.gov (United States)

    Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J.; Tarle, Susan A.

    2014-01-01

    In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential

  20. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.

    Science.gov (United States)

    Martínez, Laura E; Hardcastle, Joseph M; Wang, Jeffrey; Pincus, Zachary; Tsang, Jennifer; Hoover, Timothy R; Bansil, Rama; Salama, Nina R

    2016-01-01

    The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.

  1. Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Chen-Hsi Hsieh

    2013-01-01

    Full Text Available Cancer stem cells (CSCs existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance, invasion, metastasis, and relapse. Self-renewal pathways, Wnt/β-catenin, Sonic hedgehog (Shh, and the Notch signaling pathway play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR is an unfavorable factor causing the failure of treatments against cancer cells. The most important and thoroughly studied mechanism involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence that Norcantharidin (NCTD, a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the medicinal insect blister beetle (Mylabris phalerata Pallas, is capable of chemoprevention and tumor inhibition. We summarize investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

  2. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice

    Directory of Open Access Journals (Sweden)

    Raikwar Sudhanshu P

    2012-10-01

    Full Text Available Abstract Background Type 1 diabetes can be treated by the transplantation of cadaveric whole pancreata or isolated pancreatic islets. However, this form of treatment is hampered by the chronic shortage of cadaveric donors. Embryonic stem (ES cell-derived insulin producing cells (IPCs offer a potentially novel source of unlimited cells for transplantation to treat type 1 and possibly type 2 diabetes. However, thus far, the lack of a reliable protocol for efficient differentiation of ES cells into IPCs has hindered the clinical exploitation of these cells. Methods To efficiently generate IPCs using ES cells, we have developed a double transgenic ES cell line R1Pdx1AcGFP/RIP-Luc that constitutively expresses pancreatic β-cell-specific transcription factor pancreatic and duodenal homeobox gene 1 (Pdx1 as well as rat insulin promoter (RIP driven luciferase reporter. We have established several protocols for the reproducible differentiation of ES cells into IPCs. The differentiation of ES cells into IPCs was monitored by immunostaining as well as real-time quantitative RT-PCR for pancreatic β-cell-specific markers. Pancreatic β-cell specific RIP became transcriptionally active following the differentiation of ES cells into IPCs and induced the expression of the luciferase reporter. Glucose stimulated insulin secretion by the ES cell-derived IPCs was measured by ELISA. Further, we have investigated the therapeutic efficacy of ES cell-derived IPCs to correct hyperglycemia in syngeneic streptozotocin (STZ-treated diabetic mice. The long term fate of the transplanted IPCs co-expressing luciferase in syngeneic STZ-induced diabetic mice was monitored by real time noninvasive in vivo bioluminescence imaging (BLI. Results We have recently demonstrated that spontaneous in vivo differentiation of R1Pdx1AcGFP/RIP-Luc ES cell-derived pancreatic endoderm-like cells (PELCs into IPCs corrects hyperglycemia in diabetic mice. Here, we investigated whether R1Pdx1Ac

  3. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration.

  4. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  5. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

    Science.gov (United States)

    Rezania, Alireza; Bruin, Jennifer E; Arora, Payal; Rubin, Allison; Batushansky, Irina; Asadi, Ali; O'Dwyer, Shannon; Quiskamp, Nina; Mojibian, Majid; Albrecht, Tobias; Yang, Yu Hsuan Carol; Johnson, James D; Kieffer, Timothy J

    2014-11-01

    Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.

  6. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  7. Quasi-monolithic planar load cells using built-in resonant strain gauges

    NARCIS (Netherlands)

    Tilmans, Harrie A.C.; Elwenspoek, Miko

    1993-01-01

    Two load cell designs are presented using resonant strain gauges providing a frequency output. One design is based on a four-point beam deflection jig. It offers high sensitivity, but suffers from robustness and impractical geometries for a broad force range. A modified planar design (typical dimens

  8. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Directory of Open Access Journals (Sweden)

    Michał Arabski

    2012-01-01

    Full Text Available Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed.

  9. Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU.

    Science.gov (United States)

    Ibrahim, Salihu; Shukor, Mohd Y; Syed, Mohd A; Johari, Wan L W; Shamaan, Nor A; Sabullah, Mohd K; Ahmad, Siti A

    2016-01-01

    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.

  10. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  11. Procedures for Derivation and Characterisation of Human Embryonic Stem Cells from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Kassem, Moustapha

    2012-01-01

    In 1998, a development occurred in stem cell biology with the fi rst report of the derivation of a human embryonic stem cell (hESC) line. Since then a number of techniques have been used to derive and characterise hESCs. Here, we describe the derivation methods used by our laboratory for isolation...

  12. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Naylor, Richard W.; McGhee, Charles N. J.; Cowan, Chad A.; Davidson, Alan J.; Holm, Teresa M.; Sherwin, Trevor

    2016-01-01

    Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies. PMID:27792791

  13. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    Science.gov (United States)

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  14. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.

    Science.gov (United States)

    Taka, Thanachai; Huang, Liming; Wongnoppavich, Ariyaphong; Tam-Chang, Suk-Wah; Lee, T Randall; Tuntiwechapikul, Wirote

    2013-02-15

    Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.

  15. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  16. In-vitro stem cell derived red blood cells for transfusion: are we there yet?

    Science.gov (United States)

    Kim, Hyun Ok

    2014-03-01

    To date, the use of red blood cells (RBCs) produced from stem cells in vitro has not proved practical for routine transfusion. However, the perpetual and widespread shortage of blood products, problems related to transfusion-transmitted infections, and new emerging pathogens elicit an increasing demand for artificial blood. Worldwide efforts to achieve the goal of RBC production through stem cell research have received vast attention; however, problems with large-scale production and cost effectiveness have yet to prove practical usefulness. Some progress has been made, though, as cord blood stem cells and embryonic stem cells have shown an ability to differentiate and proliferate, and induced pluripotent stem cells have been shown to be an unlimited source for RBC production. However, transfusion of stem cell-derived RBCs still presents a number of challenges to overcome. This paper will summarize an up to date account of research and advances in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs from cord blood, and introduce the technological developments and limitations to current RBC production practices.

  17. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  18. X-ray sensitivity of fifty-three human diploid fibroblast cell strains from patients with characterized genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-03-01

    The in vitro response of 53 human diploid fibroblast strains to x-irradiation was studied using a clonogenic survival assay. The strains, derived from patients with a variety of characterized clinical conditions, most with a genetic component, ranged in Do (a measure of the slope of the survival curve) from 43 to 168 rads. The mean Do's of six strains from normal individuals was 140 to 152 rads, with an overall range, based on the extremes of their standard errors, of 128 to 164 rads. Three-quarters of the strains studied fell within this range. Strains identified as sensitive came from patients with ataxia telangiectasia, progeria, the two genetic forms of retinoblastoma, and partial trisomy of chromosome 13. No marked radiosensitivity was found among strains derived from patients with a number of other conditions associated with a predisposition to malignancy.

  19. Tiliroside-derivatives enhance GLUT4 translocation via AMPK in muscle cells.

    Science.gov (United States)

    Shi, Lihuan; Qin, Nan; Hu, Lijuan; Liu, Linjuan; Duan, Hongquan; Niu, Wenyan

    2011-05-01

    Tiliroside isolated from Chinese herb Potentilla chinensis showed therapeutic activities in diabetes. We synthesized 7 tiliroside-derivatives and examined their effects on surface GLUT4myc levels in muscle cells. Derivatives 2a and 3 increased surface GLUT4myc levels, and derivative 3 has the greatest potential. AMPK may be involved in tiliroside-derivatives-regulated GLUT4myc traffic.

  20. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders. PMID:27992514

  1. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies

    Science.gov (United States)

    Gray, L R; Cowley, D; Welsh, C; Lu, H K; Brew, B J; Lewin, S R; Wesselingh, S L; Gorry, P R; Churchill, M J

    2016-01-01

    Latency-reversing agents (LRAs), including histone deacetylase inhibitors (HDACi), are being investigated as a strategy to eliminate latency in HIV-infected patients on suppressive antiretroviral therapy. The effectiveness of LRAs in activating latent infection in HIV strains derived from the central nervous system (CNS) is unknown. Here we show that CNS-derived HIV-1 strains possess polymorphisms within and surrounding the Sp transcription factor motifs in the long terminal repeat (LTR). These polymorphisms result in decreased ability of the transcription factor specificity protein 1 to bind CNS-derived LTRs, reducing the transcriptional activity of CNS-derived viruses. These mutations result in CNS-derived viruses being less responsive to activation by the HDACi panobinostat and romidepsin compared with lymphoid-derived viruses from the same subjects. Our findings suggest that HIV-1 strains residing in the CNS have unique transcriptional regulatory mechanisms, which impact the regulation of latency, the consideration of which is essential for the development of HIV-1 eradication strategies. PMID:26303660

  2. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  3. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  4. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    Science.gov (United States)

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future.

  5. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  6. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    Full Text Available DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC. After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  7. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Science.gov (United States)

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  8. Exposure to Varying Strain Magnitudes Influences the Conversion of Normal Skin Fibroblasts Into Hypertrophic Scar Cells.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Cai, Xia; Liu, Tao

    2016-04-01

    Mechanical strain is a key contributor in the pathogenesis of hypertrophic scarring, whose optimal stretch magnitudes to initiate the differentiation of normal skin fibroblasts into aberrant fibroblasts phenotype remains largely unresolved. Influence of varying cyclic strain magnitudes on cultured human normal skin fibroblasts and its transformation into hypertrophic scar fibroblast-like phenotype is investigated in this study. Cultured fibroblasts isolated from hypertrophic scar and normal skin tissue were subjected to cyclic mechanical stretching under individual 10%, 15%, and 20% strain magnitudes at a frequency of 0.1 Hz for 24 hours. Stretched normal skin fibroblasts demonstrated significantly increased rates of cell proliferation, and also apparently oriented away nearly perpendicular to the applied stretching direction. Interestingly, the applied 10% strains magnitude resulted in a markedly enhanced cell proliferative ability compared with that of 20% strain magnitude. Parameters involving the mechanotransduction signaling, such as integrin β1 and P130Cas, were significantly improved at both mRNA and protein levels in the stretched normal skin fibroblasts, which was demonstrated in a negative magnitude-dependent manner. In addition, 10% strains magnitude triggered the highest expression levels of growth factor TGF-β1 and collagen matrix in stretched normal skin fibroblasts. Collectively, these results indicate that the 10% stretching magnitude, of the 3 strain magnitudes studied, is most effective for triggering the optimal mechanotransduction effects and biological responses inside cultured skin fibroblasts. The demonstrable conversion of normal skin fibroblasts into hypertrophic scar fibroblasts was also observed when 10% stretching magnitude was applied to cultured fibroblasts in vitro.

  9. In Vitro Differentiation Potential of Human Placenta Derived Cells into Skin Cells

    Directory of Open Access Journals (Sweden)

    Ruhma Mahmood

    2015-01-01

    Full Text Available Skin autografting is the most viable and aesthetic technique for treatment of extensive burns; however, this practice has potential limitations. Harvesting cells from neonatal sources (such as placental tissue is a simple, inexpensive, and noninvasive procedure. In the current study authors sought to evaluate in vitro potential of human placenta derived stem cells to develop into skin-like cells. After extensive washing, amniotic membrane and umbilical cord tissue were separated to harvest amniotic epithelial cells (AECs and umbilical cord mesenchymal stem cells (UC-MSCs, respectively. Both types of cells were characterized for the expression of embryonic lineage markers and their growth characteristics were determined. AECs and UC-MSCs were induced to differentiate into keratinocytes-like and dermal fibroblasts-like cells, respectively. After induction, morphological changes were detected by microscopy. The differentiation potential was further assessed using immunostaining and RT-PCR analyses. AECs were positive for cytokeratins and E-Cadherin while UC-MSCs were positive for fibroblast specific makers. AECs differentiated into keratinocytes-like cells showed positive expression of keratinocyte specific cytokeratins, involucrin, and loricrin. UC-MSCs differentiated into dermal fibroblast-like cells indicated expression of collagen type 3, desmin, FGF-7, fibroblast activation protein alpha, procollagen-1, and vimentin. In conclusion, placenta is a potential source of cells to develop into skin-like cells.

  10. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    Science.gov (United States)

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596.

  11. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    Directory of Open Access Journals (Sweden)

    Preeti N. Tallur

    2015-09-01

    Full Text Available Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF, polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  12. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    Science.gov (United States)

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  13. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang

    2011-01-01

    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  14. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    Science.gov (United States)

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  15. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells.

    Science.gov (United States)

    Benga, L; Goethe, R; Rohde, M; Valentin-Weigand, P

    2004-09-01

    Streptococcus suis is a porcine and human pathogen causing invasive diseases, such as meningitis or septicaemia. Host cell interactions of S. suis have been studied mainly with serotype 2 strains, but multiple capsular serotypes as well as non-typeable strains exist with diverse virulence features. At present, S. suis is considered an extracellular pathogen. However, whether or not it can also invade host cells is a matter of controversial discussions. We have assessed adherence and invasion of S. suis for HEp-2 epithelial cells by comparing 10 serotype 2 strains and four non-typeable (NT) strains. Only the NT strains and a non-encapsulated serotype 2 mutant strain, but none of the serotype 2 strains, adhered strongly and were invasive. Invasion seemed to be affected by environmental signals, as suggested from comparison of strains grown in different media. Further phenotypic and genotypic characterization revealed a high diversity among the different strains. Electron microscopic analysis of invasion of selected invasive NT strains indicated different uptake mechanisms. One strain induced large invaginations comparable to those seen in 'caveolae' mediated uptake, whereas invasion of the other strains was accompanied by formation of filipodia-like membrane protrusions. Invasion of all strains, however, was similarly susceptible to hypertonic sucrose, which inhibits receptor-mediated endocytosis. Irrespective of the uptake pathway, streptococci resided in acidified phago-lysosome like vacuoles. All strains, except one, survived intracellularly as well as extracellular acidic conditions. Survival seemed to be associated with the AdiS protein, an environmentally regulated arginine deiminase of S. suis. Concluding, invasion and survival of NT strains of S. suis in epithelial cells revealed novel evidence that S. suis exhibits a broad variety of virulence-associated features depending on genetic variation and regulation.

  16. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  17. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  18. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  19. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  20. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  1. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  2. Elements of a neural stem cell niche derived from embryonic stem cells.

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Morrison, Jason A; Maruniak, Joel A; Katz, Martin L; Kirk, Mark D

    2007-12-01

    Recent studies show that adult neural tissues can harbor stem cells within unique niches. In the mammalian central nervous system, neural stem cell (NSC) niches have been identified in the dentate gyrus and the subventricular zone (SVZ). Stem cells in the well-characterized SVZ exist in a microenvironment established by surrounding cells and tissue components, including transit-amplifying cells, neuroblasts, ependymal cells, blood vessels, and a basal lamina. Within this microenvironment, stem cell properties, including proliferation and differentiation, are maintained. Current NSC culture techniques often include the addition of molecular components found within the in vivo niche, such as mitogenic growth factors. Some protocols use bio-scaffolds to mimic the physical growth environment of living tissue. We describe a novel NSC culture system, derived from embryonic stem (ES) cells, that displays elements of an NSC niche in the absence of exogenously applied mitogens or complex physical scaffolding. Mouse ES cells were neuralized with retinoic acid and plated on an entactin-collagen-laminin-coated glass surface at high density (250,000 cells/cm(2)). Six to eight days after plating, complex multicellular structures consisting of heterogeneous cell types developed spontaneously. NSC and progenitor cell proliferation and differentiation continued within these structures. The identity of cellular and molecular components within the cultures was documented using RT-PCR, immunocytochemistry, and neurosphere-forming assays. We show that ES cells can be induced to form structures that exhibit key properties of a developing NSC niche. We believe this system can serve as a useful model for studies of neurogenesis and stem cell maintenance in the NSC niche as well as for applications in stem cell transplantation.

  3. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains.

    Science.gov (United States)

    Vadyvaloo, Viveka; Arous, Safia; Gravesen, Anne; Héchard, Yann; Chauhan-Haubrock, Ramola; Hastings, John W; Rautenbach, Marina

    2004-09-01

    Strains of the food-borne pathogen Listeria monocytogenes, showing either intermediate or high-level resistance to class IIa bacteriocins, were investigated to determine characteristics that correlated with their sensitivity levels. Two intermediate and one highly resistant spontaneous mutant of L. monocytogenes B73, a highly resistant mutant of L. monocytogenes 412, and a highly resistant, defined (mptA) mutant of L. monocytogenes EGDe were compared with their respective wild-type strains in order to investigate the contribution of different factors to resistance. Decreased mannose-specific phosphotransferase system gene expression (mptA, EIIAB(Man) component) was implicated in all levels of resistance, confirming previous studies by the authors' group. However, a clear correlation between d-alanine content in teichoic acid (TA), in particular the alanine : phosphorus ratio, and a more positive cell surface, as determined by cytochrome c binding, were found for the highly resistant strains. Furthermore, two of the three highly resistant strains showed a significant increase in sensitivity towards d-cycloserine (DCS). However, real-time PCR of the dltA (d-alanine esterification), and dal and ddlA genes (peptidoglycan biosynthesis) showed no change in transcriptional levels. The link between DCS sensitivity and increased d-alanine esterification of TA may be that DCS competes with alanine for transport via the alanine transporter. A possible tendency towards increased lysinylation of membrane phospholipid in the highly resistant strains was also found. A previous study reported that cell membranes of all the resistant strains, including the intermediate resistant strains, contained more unsaturated phosphatidylglycerol, which is an indication of a more fluid cell membrane. The results of that study correlate with the possible lysinylation, decreased mptA expression, d-alanine esterification of TA and more positive cell surface charge found in this study for

  4. Dedifferentiated adipocyte-derived progeny cells (DFAT cells): Potential stem cells of adipose tissue.

    Science.gov (United States)

    Wei, Shengjuan; Zan, Linsen; Hausman, Gary J; Rasmussen, Theodore P; Bergen, Werner G; Dodson, Michael V

    2013-07-01

    Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.

  5. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3).

    Science.gov (United States)

    Daegelen, Patrick; Studier, F William; Lenski, Richard E; Cure, Susan; Kim, Jihyun F

    2009-12-11

    Antecedents of Escherichia coli B have been traced through publications, inferences, and personal communication to a strain from the Institut Pasteur in Paris used by d'Herelle in his studies of bacteriophages as early as 1918 (a strain not in the current collection). This strain appears to have passed from d'Herelle to Bordet in 1920, and from Bordet to at least three other laboratories by 1925. The strain that Gratia received from Bordet was apparently passed to Bronfenbrenner by 1924 and from him to Luria around 1941. Delbrück and Luria published the first paper calling this strain B in 1942. Its choice as the common host for phages T1-T7 by the phage group that developed around Delbrück, Luria, and Hershey in the 1940s led to widespread use of B along with E. coli K-12, chosen about the same time for biochemical and genetic studies by Tatum and Lederberg. Not all currently available strains related to B are descended from the B of Delbrück and Luria; at least three strains with somewhat different characteristics were derived independently by Hershey directly from the Bronfenbrenner strain, and a strain that appears to have passed from Bordet to Wollman is in the current Collection of the Institut Pasteur. The succession of manipulations and strains that led from the B of Delbrück and Luria to REL606 and BL21(DE3) is given, established in part through evidence from their recently determined complete genome sequences.

  6. Strain-specific differentiation of lactococci in mixed starter culture populations using randomly amplified polymorphic DNA-derived probes.

    Science.gov (United States)

    Erlandson, K; Batt, C A

    1997-07-01

    A hydrophobic grid membrane filtration (HGMF) colony hybridization assay was developed that allows strain-specific differentiation of defined bacterial populations. The randomly amplified polymorphic DNA (RAPD) fingerprinting technique was used to identify potential signature nucleic acid sequences unique to each member of a commercial cheese starter culture blend. The blend consisted of two closely related Lactococcus lactis subsp. cremoris strains, 160 and 331, and one L. lactis subsp. lactis strain, 210. Three RAPD primers (OPX 1, OPX 12, and OPX 15) generated a total of 32 products from these isolates, 20 of which were potential strain-specific markers. Southern hybridization analyses revealed, that the RAPD-generated signature sequences OPX15-0.95 and a 0.36-kb HaeIII fragment of OPX1-1.0b were specific for strains 331 and 210, respectively, within the context of the test starter culture blend. These strain-specific probes were used in a HGMF colony hybridization assay. Colony lysis, hybridization, and nonradioactive detection parameters were optimized to allow specific differentiation and quantitation of the target strains in the mixed starter culture population. When the 210 and 331 probes were tested at their optimal hybridization temperatures against single cultures, they detected 100% of the target strain CFUs, without cross-reactivity to the other strains. The probes for strains 210 and 331 also successfully detected their targets in blended cultures even with a high background of the other two strains.

  7. Osteogenic Cells Derived From Embryonic Stem Cells Produced Bone Nodules in Three-Dimensional Scaffolds

    Directory of Open Access Journals (Sweden)

    Chaudhry G. R.

    2004-01-01

    Full Text Available An approach for 3D bone tissue generation from embryonic stem (ES cells was investigated. The ES cells were induced to differentiate into osteogenic precursors, capable of proliferating and subsequently differentiating into bone-forming cells. The differentiated cells and the seeded scaffolds were characterized using von Kossa and Alizarin Red staining, electron microscopy, and RT-PCR analysis. The results demonstrated that ES-derived bone-forming cells attached to and colonized the biocompatible and biodegradable scaffolds. Furthermore, these cells produced bone nodules when grown for 3–4 weeks in mineralization medium containing ascorbic acid and beta-glycerophosphate both in tissue culture plates and in scaffolds. The differentiated cells also expressed osteospecific markers when grown both in the culture plates and in 3D scaffolds. Osteogenic cells expressed alkaline phosphatase, osteocalcin, and osteopontin, but not an ES cell-specific marker, oct-4. These findings suggest that ES cell can be used for in vitro tissue engineering and cultivation of graftable skeletal structures.

  8. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential.

    Science.gov (United States)

    Ishii, Tetsuya

    2014-10-13

    Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS) cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART) that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  9. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  10. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishii

    2014-10-01

    Full Text Available Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  11. ES cells derived from cloned embryos in monkey - a jump toward human therapeutic cloning

    Institute of Scientific and Technical Information of China (English)

    Xiangzhong Yang; Sadie L Smith

    2007-01-01

    @@ Therapeutic cloning refers to the derivation of embryonic stem cells (ntESC) from embryos derived from somatic cell nuclear transfer (SCNT) also known as cloning. Cloning involves transplanting a differentiated cell into an oocyte that has had its nucleus (DNA) removed.

  12. Tip cell-derived RTK signaling initiates cell movements in the Drosophila stomatogastric nervous system anlage.

    Science.gov (United States)

    González-Gaitán, M; Jäckle, H

    2000-10-01

    The stomatogastric nervous system (SNS) of Drosophila is a simply organized neural circuitry that innervates the anterior enteric system. Unlike the central and the peripheral nervous systems, the SNS derives from a compact epithelial anlage in which three invagination centers, each giving rise to an invagination fold headed by a tip cell, are generated. Tip cell selection involves lateral inhibition, a process in which Wingless (Wg) activity adjusts the range of Notch signaling. Here we show that RTK signaling mediated by the Drosophila homolog of the epidermal growth factor receptor, DER, plays a key role in two consecutive steps during early SNS development. Like Wg, DER signaling participates in adjusting the range of Notch-dependent lateral inhibition during tip cell selection. Subsequently, tip cells secrete the DER ligand Spitz and trigger local RTK signaling, which initiates morphogenetic movements resulting in the tip cell-directed invaginations within the SNS anlage.

  13. Prediction of stress-strain behavior of ceramic matrix composites using unit cell model

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2015-01-01

    Full Text Available In this study, the elastic modulus and the stress-strain curve of ceramic matrix composites (CMCs were predicted by using the unit cell model that consists of fiber bundles and matrix. The unit cell model was developed based on the observation of cross sections of CMCs. The elastic modulus of CMCs was calculated from the results of finite element analysis using the developed model. The non-linear behavior of stress-strain curve of CMCs was also predicted by taking the degradation of the elastic modulus into consideration, where the degradation was related to the experimentally measured crack density in CMCs. The approach using the unit cell model was applied to two kinds of CMCs, and good agreement was obtained between the experimental and the calculated results.

  14. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Ha-young LEE; Eun-ha SHIN; Yoe-sik BAE

    2006-01-01

    Aim: To investigate the effects of Sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. Methods: Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. Results: We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphin-gosine-1-phosphate (SIP) receptors, we checked the effect of an SIP receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. Conclusion: The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from SIP receptors, is involved in SPC-induced chemotaxis.

  15. Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®.

    Science.gov (United States)

    Nivoliez, Adrien; Veisseire, Philippe; Alaterre, Elina; Dausset, Caroline; Baptiste, Fabrice; Camarès, Olivier; Paquet-Gachinat, Marylise; Bonnet, Muriel; Forestier, Christiane; Bornes, Stéphanie

    2015-01-01

    The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products' properties would therefore represent an essential step in evaluating the effects of probiotic strains.

  16. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  17. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), I