Sample records for cell steroidogenesis oocyte

  1. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Barboni Barbara


    Full Text Available Abstract Background The possibility to predict the ability of a germ cell to properly sustain embryo development in vitro or in vivo as early as possible is undoubtedly the main problem of reproductive technologies. To date, only the achievement of nuclear maturation and cumulus expansion is feasible, as all the studies on cytoplasmic maturation are too invasive and have been complicated by the death of the cells analyzed. The authors studied the possibility to test the cytoplasmic quality of pig oocytes by evaluating their ability to produce steroidogenesis enabling factor(s. To this aim, oocytes matured under different culture conditions that allowed to obtain gradable level of cytoplasmic maturation, were used to produce conditioned media (OCM. The secretion of the factor(s in conditioned media was then recorded by evaluating the ability of the spent media to direct granulosa cells (GC steroidogenesis. Methods In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique. Results Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by

  2. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. (United States)

    Miyoshi, Tomoko; Otsuka, Fumio; Nakamura, Eri; Inagaki, Kenichi; Ogura-Ochi, Kanako; Tsukamoto, Naoko; Takeda, Masaya; Makino, Hirofumi


    Although kit ligand (KL)-c-kit interaction is known to be critical for oogenesis and folliculogenesis, its role in ovarian steroidogenesis has yet to be elucidated. We studied the impact of KL-c-kit interaction in regulation of steroidogenesis using rat oocyte/granulosa cell co-culture. In the presence of oocytes, soluble KL suppressed FSH-induced estradiol production and aromatase mRNA expression without affecting FSH-induced progesterone production. The KL effect on steroidogenesis was interrupted by an anti-c-kit neutralizing antibody, suggesting that KL-c-kit interaction is involved in suppression of estrogen by granulosa cells through oocyte c-kit action. The cAMP-PKA pathway activity was not directly involved in the estrogen regulation by KL-c-kit action. It was of note that KL treatment increased the expression levels of oocyte-derived FGF-8, GDF-9 and BMP-6, while it reduced the expression levels of oocyte-derived BMP-15 in the oocyte-granulosa cell co-culture. Given the findings that FGF-8, but not GDF-9, BMP-6 or -15, suppressed FSH-induced estrogen production by granulosa cells, oocyte-derived FGF-8 is linked to suppression of FSH-induced estrogen production through the KL-c-kit interaction. Furthermore, the suppression of FSH-induced estrogen production by KL in the co-culture was reversed by a FGF receptor kinase inhibitor and the effect of the inhibitor was enhanced in combination with extracellular-domain protein of BMPRII, which interferes with BMP-15 and GDF-9 activities. Thus, the actions of endogenous oocyte factors including FGF-8 and BMP-15/GDF-9 were involved in the KL activity that inhibited FSH-induced estradiol production. Collectively, the results indicate that KL-c-kit interaction plays a role in estrogenic regulation through oocyte-granulosa cell communication.

  3. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)


    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  4. Mutual regulation of growth hormone and bone morphogenetic protein system in steroidogenesis by rat granulosa cells. (United States)

    Nakamura, Eri; Otsuka, Fumio; Inagaki, Kenichi; Miyoshi, Tomoko; Matsumoto, Yoshinori; Ogura, Kanako; Tsukamoto, Naoko; Takeda, Masaya; Makino, Hirofumi


    GH induces preantral follicle growth and differentiation with oocyte maturation. However, the effects of GH on ovarian steroidogenesis and the mechanisms underlying its effects have yet to be elucidated. In this study, we investigated the actions of GH on steroidogenesis by rat granulosa cells isolated from early antral follicles by focusing on the ovarian bone morphogenetic protein (BMP) system. We found that GH suppressed FSH-induced estradiol production with reduction in aromatase expression and, in contrast, GH increased FSH-induced progesterone level with induction of steroidogenic acute regulatory protein, side chain cleavage cytochrome P450, and 3β-hydroxysteroid dehydrogenase. The effects of GH on steroidogenesis by granulosa cells were enhanced in the presence of the BMP antagonist noggin. Coculture of GH with oocytes did not alter GH regulation of steroidogenesis. Steroid production induced by cAMP donors was not affected by GH treatment and the GH effects on FSH-induced steroid production were not accompanied by changes in cAMP synthesis, suggesting that GH actions were not directly mediated by the cAMP-protein kinase A pathway. GH exerted synergistic effects on MAPK activation elicited by FSH, which regulated FSH-induced steroidogenesis. In addition, GH-induced signal transducer and activator of transcription phosphorylation was involved in the induction of IGF-I expression. GH increased IGF-I, IGF-I receptor, and FSH receptor expression in granulosa cells, and inhibition of IGF-I signaling restored GH stimulation of FSH-induced progesterone production, suggesting that endogenous IGF-I is functionally involved in GH effects on progesterone induction. BMP inhibited IGF-I effects that increased FSH-induced estradiol production with suppression of expression of the GH/IGF-I system, whereas GH/IGF-I actions impaired BMP-Sma and Mad related protein 1/5/8 signaling through down-regulation of the expression of BMP receptors. Thus, GH acts to modulate estrogen

  5. Regulatory role of BMP-9 in steroidogenesis by rat ovarian granulosa cells. (United States)

    Hosoya, Takeshi; Otsuka, Fumio; Nakamura, Eri; Terasaka, Tomohiro; Inagaki, Kenichi; Tsukamoto-Yamauchi, Naoko; Hara, Takayuki; Toma, Kishio; Komatsubara, Motoshi; Makino, Hirofumi


    BMPs expressed in the ovary differentially regulate steroidogenesis by granulosa cells. BMP-9, a circulating BMP, is associated with cell proliferation, apoptosis and differentiation in various tissues. However, the effects of BMP-9 on ovarian function have yet to be elucidated. Here we investigated BMP-9 actions on steroidogenesis using rat primary granulosa cells. BMP-9 potently suppressed FSH-induced progesterone production, whereas it did not affect FSH-induced estradiol production by granulosa cells. The effects of BMP-9 on FSH-induced steroidogenesis were not influenced by the presence of oocytes. FSH-induced cAMP synthesis and FSH-induced mRNA expression of steroidogenic factors, including StAR, P450scc, 3βHSD2 and FSHR, were suppressed by treatment with BMP-9. BMP-9 mRNA expression was detected in granulosa cells but not in oocytes. BMP-9 readily activated Smad1/5/8 phosphorylation and Id-1 transcription in granulosa cells. Analysis using ALK inhibitors indicated that BMP-9 actions were mediated via type-I receptors other than ALK-2, -3 and -6. Furthermore, experiments using extracellular domains (ECDs) for BMP type-I and -II receptor constructs revealed that the effects of BMP-9 were reversed by ECDs for ALK-1 and BMPRII. Thus, the functional receptors for BMP-9 in granulosa cells were most likely to be the complex of ALK-1 and BMPRII. Collectively, the results of the present study showed that BMP-9 can affect luteinization and that there are two possible sources of BMP-9, serum and granulosa cells in the ovary.

  6. STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. (United States)

    LaVoie, Holly A; Whitfield, Nicole E; Shi, Bo; King, Steven R; Bose, Himangshu S; Hui, Yvonne Y


    STARD6 is a member of the StAR-related lipid transfer (START) domain family of proteins whose function thus far remains obscure. While it recently was shown to facilitate steroidogenesis in a cell-free setting, it has not been localized to steroidogenic cells of normal reproductive tissues. In a recent microarray study, we detected STARD6 mRNA in cultured porcine ovarian granulosa cells which are steroidogenic. In the present study, we examined regulation of STARD6 mRNA in porcine granulosa cultures, and found that it was not regulated by cyclic AMP, but it was reduced by combined knockdown of the transcription factors GATA4 and GATA6. We detected both STARD6 mRNA and protein in fresh granulosa cells and whole antral follicles and different stage corpora lutea of pig. The highest levels were discovered in the mid-luteal phase corpus luteum. Immunolocalization within ovarian tissues indicated robust STARD6 immunoreactivity in steroidogenic cells of the corpus luteum. Relatively lesser amounts of STARD6 signal were found in granulosa cells, theca cells, and oocytes. To test the ability of STARD6 to facilitate de novo steroidogenesis, non-steroidogenic COS-1 cells were co-transfected with components of the P450 cholesterol side-chain cleavage system, enabling them to make pregnenolone, and STARD6. STARD6 increased pregnenolone production by two- to three-fold over the empty vector control. In summary, STARD6 is found in the pig ovary, exhibits the strongest expression in highly steroidogenic luteal cells, and significantly enhances pregnenolone production in transfected COS cells independent of cyclic AMP treatment. Collectively, these findings indicate that STARD6 may contribute to steroidogenesis in ovarian cells, but also suggests other cellular functions that require cholesterol trafficking.

  7. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis. (United States)

    Pagotto, Romina Maria; Pereyra, Elba Nora; Monzón, Casandra; Mondillo, Carolina; Pignataro, Omar Pedro


    Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

  8. Glucocorticoid control of steroidogenesis in isolated rat adrenocortical cells. (United States)

    Carsia, R V; Malamed, S


    The role of end-product glucocorticoids in the regulation of corticosteroidogenesis in isolated adrenocortical cells was investigated. Trypsin-isolated cells from male rat adrenal glands were incubated with or without corticotropin (ACTH) and with or without corticosterone. Endogenous corticosterone production was determined by radioimmunoassay at the end of incubation. Cessation of ACTH-induced corticosterone production was apparent after 2-4 h of incubation. The suppression occurred later with lower cell concentrations. Corticosterone production was partially restored after washing the suppressed cells. Supernatant fluid from suppressed cell suspensions also suppressed steroidogenesis of a fresh population of cells. However, the suppressing property of the supernatant fluid was abolished after the removal of corticosterone by charcoal-dextran treatment, suggesting that corticosterone or other steroids caused the suppression. Exogenous corticosterone induced suppression over a wide range of ACTH concentrations, but did not change the half-maximal steroidogenic concentration of ACTH, indicating that the suppression does not change the sensitivity of the cells to ACTH. Suppression occurred within 30-60 min after corticosterone had been added to the incubation medium either at the start of incubation or while steroidogenesis was in progress. Suppression varied directly with the concentration of exogenous corticosterone. These data indicate that glucocorticoids can directly and acutely suppress corticosteroidogenesis and thus control adrenocortical function in concert with other regulators such as ACTH and Ca2+.

  9. Molecular Mechanism of Isocupressic Acid Supresses MA-10 Cell Steroidogenesis

    Directory of Open Access Journals (Sweden)

    Kuan-Hao Tsui


    Full Text Available Consumption of ponderosa pine needles causes late-term abortions in cattle and is a serious poisonous plant problem in foothill and mountain rangelands. Isocupressic acid (IA is the component of pine needles responsible for the abortifacient effect, its abortifacient effect may be due to inhibition of steroidogenesis. To investigate the more detail molecular mechanism, we used MA-10 cell, which is wild used to investigate molecular mechanism of steroidogenesis, to characterize the molecular mechanisms underlying the actions of IA in more detail. In this report, we focus on the function of IA on important steroidogenic genes, including steroidogenic acute regulatory protein (StAR, cytochrome P450 cholesterol side-chain cleavage (P450scc, and 3β-hydroxysteroid dehydrogenase (3β-HSD. We found that IA does not affect enzyme activities of these genes but inhibits transcription of P450scc and translation of StAR and P450scc through attenuating cAMP-PKA signaling. Thus, steroid productions of cells were suppressed.

  10. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells. (United States)

    Degger, Natalie; Tse, Anna C K; Wu, Rudolf S S


    Despite the influx of silver nanoparticles (nAg) into the marine environment, their effects on fish reproduction remain completely unexplored. Using ovarian primary cells from marine medaka (Oryzias melastigma), in vitro studies were carried out to evaluate the effects of two differently coated nAg particles (Oleic Acid, (OA) nAg and Polyvinylpyrrolidone, (PVP) nAg) on fish ovarian tissues, using AgNO3 as a positive control. Cytotoxicity was evaluated by MTT assay and expression of key genes regulating steroidogenesis (StAR, CYP 19a, CYP 11a, 3βHSD and 20βHSD) were determined by Q-RT-PCR. EC50 values for PVP nAg, OA nAg and AgNO3 were 7.25μgL(-1), 924.4μgL(-1), and 42.0μgL(-1) respectively, showing that toxicity of silver was greatly enhanced in the PVP coated nano-form. Down regulation of CYP 19a was observed in both nAg and AgNO3 treatments, while down regulation of 3βHSD was only found in the OA nAg and AgNO3 treatments. For the first time, our results demonstrated that nAg can affect specific genes regulating steroidogenesis, implicating nAg as a potential endocrine disruptor.

  11. Effects of granulosa cells on steroidogenesis, proliferation and apoptosis of stromal cells and theca cells derived from the goat ovary. (United States)

    Qiu, Mingning; Quan, Fusheng; Han, Chengquan; Wu, Bin; Liu, Jun; Yang, Zhongcai; Su, Feng; Zhang, Yong


    The aim of this study was to investigate the effect of granulosa cells from small antral follicles on steroidogenesis, proliferation and apoptosis of goat ovarian stromal and theca cells in vitro. Using Transwell co-culture system, we evaluated androgen production, LH responsiveness, cell proliferation and apoptosis and some molecular expression regarding steroidogenic enzyme and apoptosis-related genes in stromal and theca cells. The results indicated that the co-culture with granulosa cells increased steroidogenesis, LH responsiveness and bcl-2 gene expression as well as decreased apoptotic bax and bad expressions in stromal and theca cells. Thus, granulosa cells had a capacity of promoting steroidogenesis in stromal cell and LH responsiveness in cortical stromal cells, maintaining steroidogenesis in theca cells, inhibiting apoptosis of cortical stromal cells and improving anti-apoptotic abilities of stromal and theca cells.

  12. Human steroidogenesis

    DEFF Research Database (Denmark)

    Andersen, Claus Y; Ezcurra, Diego


    steroid concentrations cause alterations in endometrial development, affecting oocyte viability in assisted reproductive technology. Furthermore, it has been proposed that elevated progesterone levels have a negative effect on the reproductive outcome of COS. This may arise from an asynchrony between...... reviews current knowledge of the regulation of progesterone in the human ovary during the follicular phase and highlights areas where knowledge remains limited. In this review, we provide in-depth information outlining the regulation and function of gonadotropins in the complicated area of steroidogenesis...

  13. Relationship between the number of cells surrounding oocytes and energy states of oocytes. (United States)

    Munakata, Yasuhisa; Ichinose, Tomoya; Ogawa, Kaori; Itami, Nobuhiko; Tasaki, Hidetaka; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka


    Lipid content, ATP content, and histone acetylation are thought to reflect the energy state of cells. In addition, the energy state closely associates with growth and developmental ability of oocytes. Oocyte growth is accompanied by active proliferation of the surrounding granulosa cells (GCs), and GCs play a key role in the provision of energy substrates to the oocytes. In the present study, we first examined the relationship among the average number of GCs per follicle, the average number of cumulus cells (CCs) per oocyte, and the average lipid content in oocytes that developed in vivo within individual donor gilts. Second, we validated the relationship between the number of cells surrounding oocytes and the energy states of oocytes by using an IVC system of oocyte granulosa cell complexes (OGCs) derived from early antral follicles. We collected cumulus cells and oocyte complexes (COCs) from antral follicles (3-5 mm in diameter) and found that average lipid content in oocytes significantly correlated with the average number of both GCs/follicle and CCs/oocyte (P cell number of OGCs, as well as the lipid content, ATP content, and acetylation level of H4K12 in oocytes grown in vitro. In addition, glucose consumption by OGCs was calculated from the sample media collected at Days 13 and 14. The lipid content of oocytes grown in vitro, significantly correlated with the number of cells surrounding the oocytes (P number of cells surrounding the oocytes (P number of cells surrounding the oocytes, and glucose uptake by OGCs is crucial for lipid content and ATP content, and H4K12 acetylation in oocytes.

  14. A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. (United States)

    Abdou, Houssein S; Bergeron, Francis; Tremblay, Jacques J


    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.

  15. Paracrine Regulation of Steroidogenesis in Theca Cells by Granulosa Cells Derived from Mouse Preantral Follicles. (United States)

    Liu, Xiaoqiang; Qiao, Pengyun; Jiang, Aifang; Jiang, Junyi; Han, Haiyan; Wang, Li; Ren, Chune


    Interaction partners of follicular cells play a significant role in steroidogenesis, follicular formation, and development. Androgen secreted by theca cells (TCs) can initiate follicle development and ovulation and provide precursor materials for estrogen synthesis. Therefore, studies on ovarian microenvironment will not only lead to better understanding of the steroidogenesis but also have clinical significance for ovarian endocrine abnormalities such as hyperandrogenism in polycystic ovary syndrome (PCOS). This study applied the Transwell coculture model to investigate if the interaction between granulosa and theca cells may affect androgen production in theca cells. Concentrations of testosterone and androstenedione in the spent medium were measured by radioimmunoassay and enzyme linked immunosorbent assay, respectively. The results show that the coculture with granulosa cells (GCs) increases steroidogenesis in TCs. In addition, testosterone and androstenedione productions in response to LH stimulation were also increased in the coculture model. Significantly increased mRNA expressions of steroidogenic enzymes (Star, Cyp11a1, Cyp17a1, and Hsd3b2) were observed in the cocultured TCs. Thus, GCs were capable of promoting steroidogenesis and LH responsiveness in TCs. This study provided a basis for further exploration of ovarian endocrine mechanism and pathologies.

  16. Paracrine Regulation of Steroidogenesis in Theca Cells by Granulosa Cells Derived from Mouse Preantral Follicles

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu


    Full Text Available Interaction partners of follicular cells play a significant role in steroidogenesis, follicular formation, and development. Androgen secreted by theca cells (TCs can initiate follicle development and ovulation and provide precursor materials for estrogen synthesis. Therefore, studies on ovarian microenvironment will not only lead to better understanding of the steroidogenesis but also have clinical significance for ovarian endocrine abnormalities such as hyperandrogenism in polycystic ovary syndrome (PCOS. This study applied the Transwell coculture model to investigate if the interaction between granulosa and theca cells may affect androgen production in theca cells. Concentrations of testosterone and androstenedione in the spent medium were measured by radioimmunoassay and enzyme linked immunosorbent assay, respectively. The results show that the coculture with granulosa cells (GCs increases steroidogenesis in TCs. In addition, testosterone and androstenedione productions in response to LH stimulation were also increased in the coculture model. Significantly increased mRNA expressions of steroidogenic enzymes (Star, Cyp11a1, Cyp17a1, and Hsd3b2 were observed in the cocultured TCs. Thus, GCs were capable of promoting steroidogenesis and LH responsiveness in TCs. This study provided a basis for further exploration of ovarian endocrine mechanism and pathologies.

  17. In vitro induction of oocyte maturation and steroidogenesis by gonadotropins, insulin, calcitonin and growth factor in an estuarine flat head grey mullet, Mugil cephalus L. (United States)

    Das, Puranjan; Pramanick, Kousik; Mukherjee, Dilip; Maiti, B R


    In this article, an in vitro investigation was carried out to ascertain the roles of hormones and growth factor in the inductions of oocyte maturation and steroidogenesis of the postvitellogenic follicles in an Indian estuarine grey mullet, Mugil cephalus L. Oocyte maturation was evaluated by scoring the germinal vesicle breakdown (GVBD) percent of the postvitellogenic follicles. All the sex [17α,20β-dihydroxy-4-pregnane-3-one (DHP), estradiol 17β (E₂), progesterone (P), 17α-OH progesterone (17-OH-P) and testosterone] and other [bovine-insulin and salmon-calcitonin, human chorionic gonadotropin (hCG), luteinizing hormone (LH) or hCG+DHP] hormones and insulin-like growth factor-I (IGF-I) significantly increased GVBD% in 9 h culture. DHP had a maximum effect (75 %) compared to other effectors. Some effectors (hCG: 82.14 %, LH: 78.94 %, hCG plus DHP: 81.81 %, E₂: 80 % and IGF-I: 74.19 %) including DHP (79 %) further increased GVBD% in 15-h culture. All the hormones (except DHP) and IGF-I increased DHP, E₂ and testosterone productions by the postvitellogenic ovarian follicles in vitro. DHP and testosterone productions were increased with the increase of incubation time from 9 h through 15 h. E₂ production was not further increased beyond 12 h. DHP production was highest by hCG compared to other effectors. The hCG of all the test compounds was most effective in both the induction of GVBD% and steroid production. DHP is the most potent inducer of oocyte maturation in Indian estuarine flat head grey mullet. Involvement of estrogen in mullet oocyte maturation is indicated. hCG, like DHP, is equally potent and induces oocyte maturation via DHP production in vitro. hCG with DHP has synergistic action on oocyte maturation in mullet ovary. Interplay of several hormones (hCG, LH, and probably E₂ and testosterone) and IGF-I on oocyte maturation is suggested in the mullet.

  18. Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells. (United States)

    Lai, Meng-Shao; Cheng, Yu-Sheng; Chen, Pei-Rong; Tsai, Shaw-Jenq; Huang, Bu-Miin


    Fibroblast growth factor 9 (FGF9) is a multifunctional polypeptide belonging to the FGF family and has functions related to bone formation, lens-fiber differentiation, nerve development, gap-junction formation and sex determination. In a previous study, we demonstrated that FGF9 stimulates the production of testosterone in mouse Leydig cells. In the present study, we used both primary mouse Leydig cells and MA-10 mouse Leydig tumor cells to further investigate the molecular mechanism of FGF9-stimulated steroidogenesis. Results showed that FGF9 significantly activated steroidogenesis in both mouse primary and tumor Leydig cells (psteroidogenesis in mouse Leydig cells. In conclusion, FGF9 specifically activated the Akt and ERK1/2 in normal mouse Leydig cells and the Akt, JNK and ERK1/2 in MA-10 mouse Leydig tumor cells to stimulate steroidogenesis.

  19. Steroid control of steroidogenesis in isolated adrenocortical cells: molecular and species specificity. (United States)

    Carsia, R V; Macdonald, G J; Malamed, S


    The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.

  20. Effects of Fenvalerate on Steroidogenesis in Cultured Rat Granulosa Cells

    Institute of Scientific and Technical Information of China (English)



    Objective This study was designed to examine the in vitro effects of fenvalerate on steroid production and steroidogenic enzymes mRNA expression level in rat granulosa cells. Methods Using primary cultured rat granulosa cells (rGCs) as model, fenvalerate of various concentrations (0, 1, 5, 25, 125, 625 μmol/L) was added to the medium for 24 h. In some cases, optimal concentrations of 22(R)-hydroxycholesterol (25 μmol/L), Follicle stimulating hormone (FSH, 2 mg/L), or 8-Bromo-cAMP (1 mmol/L) were provided. Concentrations of 17β-estradiol(E2) and progesterone (P4) in the medium from the same culture wells were measured by RIA and the steroidogenic enzyme mRNA level was quantified by semi-quantitative RT-PCR. Results Fenvalerate decreased both P4 and E2 production in a dose-dependent manner while it could significantly stimulate rGCs proliferation. This inhibition was stronger in the presence of FSH. Furthermore, it could not be reversed by 22(R)-hydroxycholesterol or 8-Bromo-cAMP. RT-PCR revealed that fenvalerate had no significant effect on 3β-HSD, but could increase the P450scc mRNA level. In addition, 17β-HSD mRNA level was dramatically reduced with the increase of fenvalerate dose after 24 h treatment. Conclusion Fenvalerate inhibits both P4 and E2 production in rGCs. These results support the view that fenvalerate is considered as a kind of endocrine-disrupting chemicals. The mechanism of its disruption may involve the effects on steroidogenesis signaling cascades and/or steroidogenic enzyme's activity.

  1. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. (United States)

    Walczak, Elisabeth M; Kuick, Rork; Finco, Isabella; Bohin, Natacha; Hrycaj, Steven M; Wellik, Deneen M; Hammer, Gary D


    Wnt/β-catenin (βcat) signaling is critical for adrenal homeostasis. To elucidate how Wnt/βcat signaling elicits homeostatic maintenance of the adrenal cortex, we characterized the identity of the adrenocortical Wnt-responsive population. We find that Wnt-responsive cells consist of sonic hedgehog (Shh)-producing adrenocortical progenitors and differentiated, steroidogenic cells of the zona glomerulosa, but not the zona fasciculata and rarely cells that are actively proliferating. To determine potential direct inhibitory effects of βcat signaling on zona fasciculata-associated steroidogenesis, we used the mouse ATCL7 adrenocortical cell line that serves as a model system of glucocorticoid-producing fasciculata cells. Stimulation of βcat signaling caused decreased corticosterone release consistent with the observed reduced transcription of steroidogenic genes Cyp11a1, Cyp11b1, Star, and Mc2r. Decreased steroidogenic gene expression was correlated with diminished steroidogenic factor 1 (Sf1; Nr5a1) expression and occupancy on steroidogenic promoters. Additionally, βcat signaling suppressed the ability of Sf1 to transactivate steroidogenic promoters independent of changes in Sf1 expression level. To investigate Sf1-independent effects of βcat on steroidogenesis, we used Affymetrix gene expression profiling of Wnt-responsive cells in vivo and in vitro. One candidate gene identified, Ccdc80, encodes a secreted protein with unknown signaling mechanisms. We report that Ccdc80 is a novel βcat-regulated gene in adrenocortical cells. Treatment of adrenocortical cells with media containing secreted Ccdc80 partially phenocopies βcat-induced suppression of steroidogenesis, albeit through an Sf1-independent mechanism. This study reveals multiple mechanisms of βcat-mediated suppression of steroidogenesis and suggests that Wnt/βcat signaling may regulate adrenal homeostasis by inhibiting fasciculata differentiation and promoting the undifferentiated state of progenitor

  2. Regulation of Steroidogenesis, Development, and Cell Differentiation by Steroidogenic Factor-1 and Liver Receptor Homolog-1. (United States)

    Yazawa, Takashi; Imamichi, Yoshitaka; Miyamoto, Kaoru; Khan, Md Rafiqul Islam; Uwada, Junsuke; Umezawa, Akihiro; Taniguchi, Takanobu


    Steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1) belong to the nuclear receptor superfamily and are categorized as orphan receptors. In addition to other nuclear receptors, these play roles in various physiological phenomena by regulating the transcription of target genes. Both factors share very similar structures and exhibit common functions. Of these, the roles of SF-1 and LRH-1 in steroidogenesis are the most important, especially that of SF-1, which was originally discovered and named to reflect such roles. SF-1 and LRH-1 are essential for steroid hormone production in gonads and adrenal glands through the regulation of various steroidogenesis-related genes. As SF-1 is also necessary for the development of gonads and adrenal glands, it is also considered a master regulator of steroidogenesis. Recent studies have clearly demonstrated that LRH-1 also represents another master regulator of steroidogenesis, which similarly to SF-1, can induce differentiation of non-steroidogenic stem cells into steroidogenic cells. Here, we review the functions of both factors in these steroidogenesis-related phenomena.

  3. Lutropin regulation of steroidogenesis and specific protein synthesis in rat Leydig cells

    NARCIS (Netherlands)

    F.H.A. Janszen (Felix)


    textabstractIn the testis steroidogenesis takes place in the Leydig cells (Hooker, 1970) and is under the control of lutropin, a glycoprotein hormone with a mol. wt. of about 30,000 consisting of 2 nonidentical subunits, which is secreted by the anterior pituitary (Hall, 1970). The main steroid secr

  4. Resveratrol inhibits steroidogenesis in human fetal adrenocortical cells at the end of first trimester

    DEFF Research Database (Denmark)

    Savchuk, Iuliia; Morvan, Marie-Line; Søeborg, Tue


    steroidogenesis at gestational weeks (GW) 9-12. METHODS AND RESULTS: Adrenals from aborted fetuses (GW10-12) were used to prepare primary cultures of human fetal adrenocortical cells (HFAC). HFAC were treated in the presence or absence of ACTH (10 ng/ml) with or without resveratrol (10 μM) for 24 hours...

  5. Expression of steroidogenesis-related genes in murine male germ cells. (United States)

    Culty, Martine; Liu, Ying; Manku, Gurpreet; Chan, Wai-Yee; Papadopoulos, Vassilios


    For decades, only few tissues and cell types were defined as steroidogenic, capable of de novo steroid synthesis from cholesterol. However, with the refinement of detection methods, several tissues have now been added to the list of steroidogenic tissues. Besides their critical role as long-range acting hormones, steroids are also playing more discreet roles as local mediators and signaling molecules within the tissues they are produced. In testis, steroidogenesis is carried out by the Leydig cells through a broad network of proteins, mediating cholesterol delivery to CYP11A1, the first cytochrome of the steroidogenic cascade, and the sequential action of enzymes insuring the production of active steroids, the main one being testosterone. The knowledge that male germ cells can be directly regulated by steroids and that they express several steroidogenesis-related proteins led us to hypothesize that germ cells could produce steroids, acting as autocrine, intracrine and juxtacrine modulators, as a way to insure synchronized progression within spermatogenic cycles, and preventing inappropriate cell behaviors between neighboring cells. Gene expression and protein analyses of mouse and rat germ cells from neonatal gonocytes to spermatozoa showed that most steroidogenesis-associated genes are expressed in germ cells, showing cell type-, spermatogenic cycle-, and age-specific expression profiles. Highly expressed genes included genes involved in steroidogenesis and other cell functions, such as Acbd1 and 3, Tspo and Vdac1-3, and genes involved in fatty acids metabolism or synthesis, including Hsb17b4 10 and 12, implying broader roles than steroid synthesis in germ cells. These results support the possibility of an additional level of regulation of spermatogenesis exerted between adjacent germ cells.

  6. Expression of the human apolipoprotein E gene suppresses steroidogenesis in mouse Y1 adrenal cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyland, M.E.; Forgez, P.; Prack, M.M.; Williams, D.L. (State Univ. of New York, Stony Brook (United States)); Gwynne, J.T. (Univ. of North Carolina, Chapel Hill (United States))


    The lipid transport protein, apolipoprotein E (apoE), is expressed in many peripheral tissues in vivo including the adrenal gland and testes. To investigate the role of apoE in adrenal cholesterol homeostasis, the authors have expressed a human apoE genomic clone in the Y1 mouse adrenocortical cell line. Y1 cells do not express endogenous apoE mRNA or protein. Expression of apoE in Y1 cells resulted in a dramatic decrease in basal steroidogenesis; secretion of fluorogenic steroid was reduced 7- to {gt}100-fold relative to Y1 parent cells. Addition of 5-cholesten-3{beta},25-idol failed to overcome the suppression of steroidogenesis in these cells. Cholesterol esterification under basal conditions, as measured by the production of cholesteryl ({sup 14}C)oleate, was similar in the Y1 parent and the apoE-transfected cell lines. Upon incubation with adrenocorticotropin or dibutyryl cAMP, production of cholesteryl ({sup 14}C)oleate decreased 5-fold in the Y1 parent cells but was unchanged in the apoE-transfected cell lines. These results suggest that apoE may be an important modulator of cholesterol utilization and steroidogenesis in adrenal cells.

  7. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT) (United States)

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  8. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. (United States)

    Odermatt, Alex; Strajhar, Petra; Engeli, Roger T


    In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.

  9. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. (United States)

    Lin, Ye; Hou, Xiaoming; Shen, Wen-Jun; Hanssen, Ruth; Khor, Victor K; Cortez, Yuan; Roseman, Ann N; Azhar, Salman; Kraemer, Fredric B


    Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.

  10. Short-term stimulatory effect of Sertoli cell conditioned medium on Leydig cell steroidogenesis is not mediated by inhibin

    NARCIS (Netherlands)

    A.J. Grootenhuis (Arijan); R. Melsert (R.); M.A. Timmerman (Marianna); J.W. Hoogerbrugge (Jos); F.F.G. Rommerts (Focko); F.H. de Jong (Frank)


    markdownabstractAbstract Addition of concentrated rat Sertoli cell conditioned medium (rSCCM) to isolated Leydig cells from immature rats stimulated steroid production more than 13-fold within 4h. LH-stimulated steroidogenesis was not enhanced by addition of rSCCM. The biological activity of the c

  11. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. (United States)

    Wang, Chang; Ruan, Ting; Liu, Jiyan; He, Bin; Zhou, Qunfang; Jiang, Guibin


    Perfluorinated iodine alkanes (PFIs) are used widely in the organic fluorine industry. Increased production of PFIs has caused environmental health concerns. To evaluate the potential endocrine-disrupting effect of PFIs, we investigated the effects of perfluorooctyl iodide (PFOI) on steroidogenesis in human adrenocortical carcinoma cells (H295R). Levels of aldosterone, cortisol, 17β-estradiol, and testosterone were measured in H295R culture medium upon treatment with perfluorooctanoic acid (PFOA) and PFIs. Expression of 10 steroidogenic genes (StAR, HMGR, CYP11A1, 3βHSD2, 17βHSD, CYP17, CYP21, CYP11B1, CYP11B2, and CYP19) was measured by real-time polymerase chain reaction. Levels of cyclic adenosine monophosphate (cAMP) and adenylate cyclase (AC) activity were measured to understand the underlying mechanism of steroidogenic perturbations. Levels of production of aldosterone, cortisol, and 17β-estradiol were elevated significantly, and the level of testosterone generation decreased upon treatment with 100 μM PFOI. Similar to the effect induced by forskolin (AC activator), expression of all 10 genes involved in the synthesis of steroid hormones was upregulated significantly upon exposure to 100 μM PFOI. PFOA had no effect on steroid hormone production or steroidogenic gene expression even though it is highly structurally similar with PFOI. Therefore, the terminal -CF2I group in PFOI could be a critical factor for mediation of steroidogenesis. PFOI increased AC activity and cAMP levels in H295R cells, which implied an underlying mechanism for the disturbance of steroidogenesis. These data suggest that PFOI may act as an AC activator, thereby stimulating steroidogenesis by activating a cAMP signaling pathway.

  12. Screening Chemical Effects on Steroidogenesis in H295R Human Adrenocortical Carcinoma Cells (SOT) (United States)

    Proper endocrine function requires steroid hormone biosynthesis and metabolism (steroidogenesis). Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. This study is the first to estab...

  13. Cox7a2 mediates steroidogenesis in TM3 mouse Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Zhong-Cheng Xin; Xin Li; Long Tian; Yi-Ming Yuan; Gang Liu; Xue-Jun Jiang; Ying-Lu Guo


    Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to pDsRedExpress-N1 and transfected back into TM3 mouse Leydig cells for Cox7a2 overexpression by transient gene transfection.Steroidogenesis affected by overexpressed Cox7a2 was studied by ELISA. To elicit the mechanism of this effect,expression of steroidogenic acute regulatory (StAR) protein and reactive oxygen species (ROS) were examined by Western blot and fluorometer, respectively. Results: The cDNA of Cox7a2 (249 bp) was cloned from Leydig cells and confirmed by DNA sequencing. After constructed pDsRed-Express-Nl-Cox7a2 was transfected back into TM3 mouse Leydig cells, Cox7a2 inhibited not only luteinizing hormone (LH)-induced secretion of testosterone but also the expression of StAR protein. At the same time, Cox7a2 increased the activity of ROS in TM3 mouse Leydig cells. Conclusion:Cox7a2 inhibited LH-induced StAR protein expression, and consequent testosterone production, at least in part, by increasing ROS activity in TM3 mouse Leydig cells.

  14. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. (United States)

    Ritter, Lesley J; Sugimura, Satoshi; Gilchrist, Robert B


    Oocytes progressively acquire the competence to support embryo development as oogenesis proceeds with ovarian folliculogenesis. The objectives of this study were to investigate oocyte-secreted factor (OSF) participation in the development of somatic cell epidermal growth factor (EGF) responsiveness associated with oocyte developmental competence. A well-established porcine model was employed using oocytes from small (4 mm) antral follicles, representing low vs moderate developmental competence, respectively. Cumulus-oocyte complexes (COCs) were treated in vitro with inducers of oocyte maturation, and cumulus cell functions and oocyte developmental competence were assessed. COCs from small follicles responded to FSH but, unlike COCs from larger follicles, were incapable of responding to EGF family growth factors known to mediate oocyte maturation in vivo, exhibiting perturbed cumulus expansion and expression of associated transcripts (HAS2 and TNFAIP6). Low and moderate competence COCs expressed equivalent levels of EGF receptor (EGFR) mRNA; however, the former had less total EGFR protein leading to failed activation of phospho-EGFR and phospho-ERK1/2, despite equivalent total ERK1/2 protein levels. Native OSFs from moderate, but not from low, competence oocytes established EGF responsiveness in low competence COCs. Four candidate recombinant OSFs failed to mimic the actions of native OSFs in regulating cumulus expansion. Treatment with OSFs and EGF enhanced oocyte competence but only of the low competence COCs. These data suggest that developmental acquisition by the oocyte of capacity to regulate EGF responsiveness in the oocyte's somatic cells is a major milestone in the oocyte's developmental program and contributes to coordinated oocyte and somatic cell development.

  15. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. (United States)

    Ahn, Seung Won; Gang, Gil-Tae; Kim, Yong Deuk; Ahn, Ryun-Sup; Harris, Robert A; Lee, Chul-Ho; Choi, Hueng-Sik


    Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states.

  16. Atrazine-Mediated Disruption of Steroidogenesis in BLTK1 Murine Leydig Cells. (United States)

    Karmaus, Agnes L; Zacharewski, Timothy R


    Atrazine (ATR) is a broad-spectrum triazine herbicide that disrupts steroidogenesis resulting in reproductive and developmental toxicity at high doses. Mouse BLTK1 Leydig cells were used as a steroidogenic model to investigate the effects of ATR on testosterone (T) biosynthesis. Induction of steroidogenesis by 3 ng/ml recombinant human chorionic gonadotropin (rhCG) induced intracellular 3',5' cyclic adenosine monophosphate (cAMP) approximately 20-fold and T approximately 3-fold at 4 h. Co-treatment with 300 μM ATR super-induced cAMP levels 100-fold yet antagonized rhCG-mediated induction of T approximately 20% at 4 h. ATR inhibited cAMP-specific phosphodiesterase (cPDE) with an IC50 of ≥98 μM, suggesting cPDE inhibition contributes to the super-induction of cAMP. However, concentrations of up to 3 mM db-cAMP did not antagonize rhCG induction of T levels, suggesting cAMP super-induction alone does not decrease T biosynthesis. Western analysis of cAMP-activated protein kinase A (PKA) target proteins identified ATR-mediated concentration-dependent alterations in phosphorylation including phospho-CREB. These results suggest the cPDE inhibition by ATR and super-induction of cAMP are independent of effects on T levels, and that altered phosphorylation of key steroidogenic regulatory proteins may underlie ATR-mediated disruption of steroidogenesis.

  17. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  18. Inhibitory actions of mibefradil on steroidogenesis in mouse Leydig cells: involvement of Ca(2+) entry via the T-type Ca(2+) channel. (United States)

    Lee, Jae-Ho; Kim, Jong-Uk; Kim, Changhoon; Min, Churl K


    Intracellular cAMP and Ca(2+) are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human chorionic gonadotropin (hCG). However, the identification of Ca(2+) entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca(2+) channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca(2+) channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (StAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L(-1) extracellular Ca(2+), hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca(2+) currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca(2+) entry carried out by the T-type Ca(2+) channel in the Leydig cells of mice.

  19. Mural granulosa cell gene expression associated with oocyte developmental competence

    Directory of Open Access Journals (Sweden)

    Jiang Jin-Yi


    Full Text Available Abstract Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC. Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox and nerve growth factor receptor associated protein 1 (Ngfrap1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2, which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and

  20. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil


    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  1. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells. (United States)

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T


    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis.

  2. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells.

    Directory of Open Access Journals (Sweden)

    Hua-Cheng Liu

    Full Text Available Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1 and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1. The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established.Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3-30 μM for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity.In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50 values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM, it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In

  3. In vitro exposure of Leydig cells to an environmentally relevant mixture of organochlorines represses early steps of steroidogenesis. (United States)

    Enangue Njembele, Annick N; Bailey, Janice L; Tremblay, Jacques J


    Leydig cell steroidogenesis is mainly regulated by LH via increased cAMP production leading to STAR protein activation. STAR is essential for cholesterol shuttling inside mitochondria where steroidogenesis is initiated. Accumulating evidence suggest that persistent organochlorine compounds disrupt testicular function, but the mechanism of action remains poorly characterized. Here we report that in vitro exposure of MA-10 and MLTC-1 Leydig cells to an environmentally relevant mixture of 15 organochlorines impairs steroidogenesis. While having no effect on cell viability and basal steroid production, the organochlorine mixture caused a 50% decrease in cAMP-induced progesterone production. The mixture also reduced cAMP-induced 30 kDa STAR protein by 50% while having no effect on basal STAR protein. Basal or cAMP-induced Star mRNA levels and promoter activity were unaffected by the mixture, indicating that the organochlorine mixture acted at the translational/posttranslational level. Further supporting this is the fact that in COS-7 cells overexpressing STAR, the organochlorine mixture caused a decrease in the 30 kDa form of STAR and an accumulation of the 37 kDa forms. In addition to STAR, we found that the organochlorine mixture also decreases the levels of CYP11A1 and ADXR, two proteins essential for the conversion of cholesterol into pregnenolone. In conclusion, our data show that organochlorine exposure disrupts Leydig cell function by targeting different components of the steroidogenic pathway.

  4. Gonadotropin-releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Bing Yao; Hai-Yan Liu; Yu-Chun Gu; Shan-Shan Shi; Xiao-Qian Tao; Xiao-Jun Li; Yi-Feng Ge; Ying-Xia Cui; Guo-Bin Yang


    Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L-1 after 24 h, activation of ERK1/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERK1/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSDgene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.

  5. Gonadotrophin-releasing hormone-Ⅰand -Ⅱ stimulate steroidogenesis in prepubertal murine Leydig cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yung-Ming Lin; Ming-Yie Liu; Song-Ling Poon; Sew-Fen Leu; Bu-Miin Huang


    Aim: To study the effect and mechanism of gonadotrophin-releasing hormone (GnRH) on murine Leydig cell steroidogenesis. Methods: Purified murine Leydig cells were treated with CmRH-Ⅰ and -Ⅱ agonists, and testosterone production and steroidogenic enzyme expressions were determined. Results: GnRH-Ⅰand -Ⅱ agonists significantly stimulated murine Leydig cell steroidogenesis 60%-80% in a dose- and time-dependent manner (P < 0.05). The mRNA expressions of steroidogenic acute regulatory (STAR) protein, P450scc, 3β-hydroxysteroid dehydrogenase (HSD), but not 17α-hydroxylase or 17β-HSD, were significantly stimulated by both GnRH agortists with a 1.5- to 3-fold increase (P < 0.05). However, only 3β-HSD protein expression was induced by both GnRH agonists, with a 1.6- to 2-fold increase (P < 0.05). Conclusion: GnRH directly stimulated murine Leydig cell steroidogenesis by activating 3β-HSD enzyme expression.

  6. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT) (United States)

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  7. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra


    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  8. Role of ALADIN in human adrenocortical cells for oxidative stress response and steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Ramona Jühlen

    Full Text Available Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome.

  9. Steroidogenesis in MA-10 Mouse Leydig Cells Is Altered via Fatty Acid Import into the Mitochondria1 (United States)

    Rone, Malena B.; Midzak, Andrew S.; Martinez-Arguelles, Daniel B.; Fan, Jinjiang; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios


    ABSTRACT Mitochondria are home to many cellular processes, including oxidative phosphorylation and fatty acid metabolism, and in steroid-synthesizing cells, they are involved in cholesterol import and metabolism, which is the initiating step in steroidogenesis. The formation of macromolecular protein complexes aids in the regulation and efficiency of these mitochondrial functions, though because of their dynamic nature, they are hard to identify. To overcome this problem, we used Blue-Native PAGE with whole-gel mass spectrometry on isolated mitochondria from control and hormone-treated MA-10 mouse tumor Leydig cells. The presence of multiple mitochondrial protein complexes was shown. Although these were qualitatively similar under control and human chorionic gonadotropin (hCG)-stimulated conditions, quantitative differences in the components of the complexes emerged after hCG treatment. A prominent decrease was observed with proteins involved in fatty acid import into the mitochondria, implying that mitochondrial beta-oxidation is not essential for steroidogenesis. To confirm this observation, we inhibited fatty acid import utilizing the CPT1a inhibitor etomoxir, resulting in increased steroid production. Conversely, stimulation of mitochondrial beta-oxidation with metformin resulted in a dose-dependent reduction in steroidogenesis. These changes were accompanied by changes in mitochondrial respiration and in the lactic acid formed during glycolysis. Taken together, these results suggest that upon hormonal stimulation, mitochondria efficiently import cholesterol for steroid production at the expense of other lipids necessary for energy production, specifically fatty acids required for beta-oxidation. PMID:25210128

  10. Steroidogenesis in primary cultures of neonatal porcine Leydig cells from Duroc and Norwegian Landrace breeds. (United States)

    Lervik, S; von Krogh, K; Karlsson, C; Olsaker, I; Andresen, Ø; Dahl, E; Verhaegen, S; Ropstad, E


    Breed differences in steroidogenic activity between primary Leydig cells derived from neonatal purebred Duroc and Norwegian Landrace boars were investigated in vitro. Concentrations of testosterone, estradiol, androstenone, cortisol and progesterone produced into the medium were determined. To explore underlying mechanisms the cellular expression of a suite of genes relevant in steroidogenesis was measured using reverse transcription and quantitative PCR (RT-qPCR). Basal steroid concentrations indicated a larger production capacity for steroids in unstimulated Duroc cells. Stimulation of the cells with LH increased steroid hormone secretion significantly in both breeds in a dose dependent manner. Testosterone and androstenone concentrations increased approximately 50- and 15-fold, respectively, whereas concentrations of estradiol, cortisol and progesterone increased to a lesser extent. At levels of maximal LH stimulation, absolute steroid concentrations were higher in Duroc. However, the relative increase in hormone concentrations was significantly lower in Duroc cells for estradiol, progesterone and cortisol when compared to basal levels. LH exposure was associated with a general up-regulation of mRNA levels for steroidogenic genes, stronger in Duroc than in Norwegian Landrace. This was in agreement with the higher absolute concentrations of steroid hormones measured in culture medium from the LH-stimulated Duroc Leydig cells, but did not concur with the fact that the relative increase in hormone production was lower in Duroc than in Norwegian Landrace Leydig cells for some hormones. It was concluded that breed differences in steroid hormone concentrations and gene expression between Norwegian Landrace and Duroc are complex and cannot be explained by a simple mechanism of action.

  11. The cytoskeleton proteins and LH-regulated steroidogenesis in porcine luteal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gregoraszczuk, Ewa L.; Slomczynska, Maria [Uniwersytet Jagiellonski, Cracow (Poland)


    The involvement of microtubules (MT) and microflilaments (MF) in LH-regulation of luteal cell stereoidogenesis was assessed at the middle stage of corpus luteum development. The influence microtubule- and microfilament-altering agents on basal and LH-stimulated progesterone (P4) production and secretion into the incubation medium was determined by RIA. LH-stimulated P4 production was 2.5 times higher than in the control cultures. Cytochalasis B (Cyt B) was without effect on basal P4 synthesis but increased the basal fraction of P4 secreted into the incubation medium, while colchicine (Col) increased both basal P4 synthesis and the fraction of P4 secreted into the incubation medium. LH-stimulated progesterone synthesis was reduced by Col, but the fraction secreted into the incubation medium increased. Cyt B had no effect on LH-stimulated synthesis but it decreased the fraction of P4 secreted into the incubation medium. Our findings demonstrate significant differences in the effect of Cyt B and Col on steroidogenesis in corpus luteum. We conclude that microtubules play an important role in the process of LH-stimulated P4 synthesis, while microfilaments act in the process of basal and LH-stimulated P4 secretion. (author). 23 refs, 4 figs.

  12. Corona cell RNA sequencing from individual oocytes revealed transcripts and pathways linked to euploid oocyte competence and live birth. (United States)

    Parks, Jason C; Patton, Alyssa L; McCallie, Blair R; Griffin, Darren K; Schoolcraft, William B; Katz-Jaffe, Mandy G


    Corona cells surround the oocyte and maintain a close relationship through transzonal processes and gap junctions, and may be used to assess oocyte competence. In this study, the corona cell transcriptome of individual cumulus oocyte complexes (COCs) was investigated. Isolated corona cells were collected from COCs that developed into euploid blastocysts and were transferred in a subsequent frozen embryo transfer. Ten corona cell samples underwent RNA-sequencing to generate unique gene expression profiles. Live birth was compared with negative implantation after the transfer of a euploid blastocyst using bioinformatics and statistical analysis. Individual corona cell samples produced a mean of 21.2 million sequence reads, and 307 differentially expressed transcrpits (P corona cell transcriptome was successfully generated using RNA-sequencing. Key genes and signalling pathways were identified in association with implantation outcome after the transfer of a euploid blastocyst in a frozen embryo transfer. These data could provide novel biomarkers for the non-invasive assessment of embryo viability.

  13. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes (United States)

    Wigglesworth, Karen; Lee, Kyung-Bon; O’Brien, Marilyn J.; Peng, Jia; Matzuk, Martin M.; Eppig, John J.


    Coordinated regulation of oocyte and ovarian follicular development is essential for fertility. In particular, the progression of meiosis, a germ cell-specific cell division that reduces the number of chromosomes from diploid to haploid, must be arrested until just before ovulation. Follicular somatic cells are well-known to impose this arrest, which is essential for oocyte–follicle developmental synchrony. Follicular somatic cells sustain meiotic arrest via the natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system, and possibly also via high levels of the purine hypoxanthine in the follicular fluid. Upon activation by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces cyclic guanosine monophosphate (cGMP), which maintains meiotic arrest after transfer to the oocyte via gap junctions. Here we report that both the NPPC/NPR2 system and hypoxanthine require the activity of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme required for the production of guanylyl metabolites and cGMP. Furthermore, oocyte-derived paracrine factors, particularly the growth differentiation factor 9–bone morphogenetic protein 15 heterodimer, promote expression of Impdh and Npr2 and elevate cGMP levels in cumulus cells. Thus, although the somatic compartment of ovarian follicles plays an essential role in the maintenance of oocyte meiotic arrest, as has been known for many years, this function of the somatic cells is surprisingly regulated by signals from the oocyte itself. PMID:23980176

  14. Analysis of oocyte-like cells differentiated from porcine fetal skin-derived stem cells. (United States)

    Dyce, Paul W; Shen, Wei; Huynh, Evanna; Shao, Hua; Villagómez, Daniel A F; Kidder, Gerald M; King, W Allan; Li, Julang


    We previously reported the differentiation of cells derived from porcine female fetal skin into cells resembling germ cells and oocytes. A subpopulation of these cells expressed germ cell markers and formed aggregates resembling cumulus-oocyte complexes. Some of these aggregates extruded large oocyte-like cells (OLCs) that expressed markers consistent with those of oocytes. The objective of the current study was to further characterize OLCs differentiated from porcine skin-derived stem cells. Reverse transcriptase (RT)-polymerase chain reaction and Western blot revealed the expression of connexin37 and connexin43, both of which are characteristic of ovarian follicles. The expression of meiosis markers DMC1 and synaptonemal complex protein, but not STRA8 and REC8, was detected in the OLC cultures. Immunofluorescence with an antibody against synaptonemal complex protein on chromosome spreads revealed a very small subpopulation of stained OLCs that had a similar pattern to leptotene, zytotene, or pachytene nuclei during prophase I of meiosis. Sodium bisulfite sequencing of the differentially methylated region of H19 indicated that this region is almost completely demethylated in OLCs, similar to in vivo-derived oocytes. We also investigated the differentiation potential of male skin-derived stem cells in the same differentiation medium. Large cells with oocyte morphology were generated in the male stem cell differentiation cultures. These OLCs expressed oocyte genes such as octamer-binding transcription factor 4 (OCT4), growth differentiation factor-9b (GDF9B), deleted in azoospermia-like (DAZL), VASA, zona pellucida B (ZPB), and zona pellucida C (ZPC). It was concluded that skin-derived stem cells from both male and female porcine fetuses are capable of entering an oocyte differentiation pathway, but the culture system currently in place is inadequate to support the complete development of competent oocytes.

  15. Effects and Interactions of Prostaglandins and Interferon-γ on Steroidogenesis of Human Luteal Cells

    Institute of Scientific and Technical Information of China (English)

    王寒正; 沈维维; 孙志达; 张翔; 龚岳亭


    Previous work from our laboratory has demonstrated that T lymphocyte-derived cytokine, interferon-gamma (IFN-γ) may play a role in human luteal regression by inhibiting luteal progesterone production. Prostaglandin F2a has been known as an important luteolytic factor in a wide range of mammalian species. It was of interest to investigate the effects of IFN-γ on prostaglandin synthesis and their possible interaction with the inhibition on human luteal steroidogenesis. Human luteal cells were cultured for four days in the presence or absence of IFN-γ. Simultaneously, the productions of progesterone, prostaglandin F2a ( PGF2a ), prostaglandin E2 ( PGE2 ), and 6-ketoprostaglandin F1a(PGF1a) were evaluated. Concomitant with the inhibition of progesterone production induced by IFN-γ, a biphasic pattern of response of. prostaglandin synthesis was observed, i.e. a slight decrease of PGF2a and PGF1a after a 48 h exposure to IFN-γ while an increase of PGE2 after 96 h. In a separate experiment, a luteotropic action of PGE2 and PGF2a on human luteal cells from different stages was observed during 48 and 96 h periods of culture. In addition, while indomethacin (INDO) treatment markedly blocked the prostaglandin synthesis, the basal as well as hCG stimulated progesterone production was still inhibited by IFN-γ as usual. These results suggested that prostaglandins appeared to be not responsible for the observed inhibition of progesterone production since the inhibitory effect was not influenced by concurrent treatment with INDO which suppressed prostaglandin synthesis,

  16. Exposure to an Extremely-Low-Frequency Magnetic Field Stimulates Adrenal Steroidogenesis via Inhibition of Phosphodiesterase Activity in a Mouse Adrenal Cell Line. (United States)

    Kitaoka, Kazuyoshi; Kawata, Shiyori; Yoshida, Tomohiro; Kadoriku, Fumiya; Kitamura, Mitsuo


    Extremely low-frequency magnetic fields (ELF-MFs) are generated by power lines and household electrical devices. In the last several decades, some evidence has shown an association between ELF-MF exposure and depression and/or anxiety in epidemiological and animal studies. The mechanism underlying ELF-MF-induced depression is considered to involve adrenal steroidogenesis, which is triggered by ELF-MF exposure. However, how ELF-MFs stimulate adrenal steroidogenesis is controversial. In the current study, we investigated the effect of ELF-MF exposure on the mouse adrenal cortex-derived Y-1 cell line and the human adrenal cortex-derived H295R cell line to clarify whether the ELF-MF stimulates adrenal steroidogenesis directly. ELF-MF exposure was found to significantly stimulate adrenal steroidogenesis (p steroidogenesis via an increase in intracellular cAMP caused by the inhibition of phosphodiesterase activity in Y-1 cells. The same mechanism may trigger the increase in adrenal steroid secretion in mice observed in our previous study.

  17. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. (United States)

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M


    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable.

  18. Estimation of the Mechanism of Adrenal Action of Endocrine-Disrupting Compounds Using a Computational Model of Adrenal Steroidogenesis in NCI-H295R Cells

    Directory of Open Access Journals (Sweden)

    Ryuta Saito


    Full Text Available Adrenal toxicity is one of the major concerns in drug development. To quantitatively understand the effect of endocrine-active compounds on adrenal steroidogenesis and to assess the human adrenal toxicity of novel pharmaceutical drugs, we developed a mathematical model of steroidogenesis in human adrenocortical carcinoma NCI-H295R cells. The model includes cellular proliferation, intracellular cholesterol translocation, diffusional transport of steroids, and metabolic pathways of adrenal steroidogenesis, which serially involve steroidogenic proteins and enzymes such as StAR, CYP11A1, CYP17A1, HSD3B2, CYP21A2, CYP11B1, CYP11B2, HSD17B3, and CYP19A1. It was reconstructed in an experimental dynamics of cholesterol and 14 steroids from an in vitro steroidogenesis assay using NCI-H295R cells. Results of dynamic sensitivity analysis suggested that HSD3B2 plays the most important role in the metabolic balance of adrenal steroidogenesis. Based on differential metabolic profiling of 12 steroid hormones and 11 adrenal toxic compounds, we could estimate which steroidogenic enzymes were affected in this mathematical model. In terms of adrenal steroidogenic inhibitors, the predicted action sites were approximately matched to reported target enzymes. Thus, our computer-aided system based on systems biological approach may be useful to understand the mechanism of action of endocrine-active compounds and to assess the human adrenal toxicity of novel pharmaceutical drugs.

  19. Estimation of the Mechanism of Adrenal Action of Endocrine-Disrupting Compounds Using a Computational Model of Adrenal Steroidogenesis in NCI-H295R Cells. (United States)

    Saito, Ryuta; Terasaki, Natsuko; Yamazaki, Makoto; Masutomi, Naoya; Tsutsui, Naohisa; Okamoto, Masahiro


    Adrenal toxicity is one of the major concerns in drug development. To quantitatively understand the effect of endocrine-active compounds on adrenal steroidogenesis and to assess the human adrenal toxicity of novel pharmaceutical drugs, we developed a mathematical model of steroidogenesis in human adrenocortical carcinoma NCI-H295R cells. The model includes cellular proliferation, intracellular cholesterol translocation, diffusional transport of steroids, and metabolic pathways of adrenal steroidogenesis, which serially involve steroidogenic proteins and enzymes such as StAR, CYP11A1, CYP17A1, HSD3B2, CYP21A2, CYP11B1, CYP11B2, HSD17B3, and CYP19A1. It was reconstructed in an experimental dynamics of cholesterol and 14 steroids from an in vitro steroidogenesis assay using NCI-H295R cells. Results of dynamic sensitivity analysis suggested that HSD3B2 plays the most important role in the metabolic balance of adrenal steroidogenesis. Based on differential metabolic profiling of 12 steroid hormones and 11 adrenal toxic compounds, we could estimate which steroidogenic enzymes were affected in this mathematical model. In terms of adrenal steroidogenic inhibitors, the predicted action sites were approximately matched to reported target enzymes. Thus, our computer-aided system based on systems biological approach may be useful to understand the mechanism of action of endocrine-active compounds and to assess the human adrenal toxicity of novel pharmaceutical drugs.

  20. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  1. An ideal oocyte activation protocol and embryo culture conditions for somatic cell nuclear transfer using sheep oocytes. (United States)

    Patel, Hiren; Chougule, Shruti; Chohan, Parul; Shah, Naval; Bhartiya, Deepa


    Pluripotent stem cells are possibly the best candidates for regenerative medicine, and somatic cell nuclear transfer (SCNT) is one of the viable options to make patient-specific embryonic stem cells. Till date efficacy of SCNT embryos is very low and requires further improvement like ideal oocyte activation and in vitro culture system. The aim of the present study was to evaluate ideal oocyte activation using different stimulation protocols and to study the effect of cumulus co-culture conditions on embryo development. Results demonstrate that between electric stimulation and chemical stimulation using calcium ionomycin and ionophore, best oocyte activation was obtained using calcium ionomycin (5 microM for 5 min) which resulted in 83% cleavage followed by 7% of early blastocyst which further increased to 15% when a cumulus bed was also introduced during embryo culture. Sequential modified Charles Rosenkrans 2 (mCR2) medium was used for embryo culture in which glucose levels were increased from 1 mM to 5 mM from Day 3 onwards. SCNT using cumulus cells as donor somatic cell, calcium ionomycin to activate the reconstructed oocyte and embryo culture on a cumulus bed in sequential mCR2 medium, resulted in the development of 6% embryos to early blastocyst stage. Such technological advances will make SCNT a viable option to make patient-specific pluripotent stem cell lines in near future.

  2. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells. (United States)

    Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois


    The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells.

  3. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K;


    will often engage both oocytes and mammalian cells. Efficient expression of a protein in both systems have thus far only been possible by subcloning the cDNA into two different vectors because several different molecular requirements should be fulfilled to obtain a high protein level in both mammalian cells...... and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained a dual......-function vector capable of supporting protein production in both Xenopus oocytes and CHO-K1 cells at an expression level equivalent to the levels obtained with vectors optimized for either oocyte or mammalian expression. Our functional studies have been performed with hERGI, KCNQ4, and Kv1.3 potassium channels....

  4. Next-generation steroidogenesis inhibitors, dutasteride and abiraterone, attenuate but still do not eliminate androgen biosynthesis in 22RV1 cells in vitro. (United States)

    Pham, Steven; Deb, Subrata; Ming, Dong Sheng; Adomat, Hans; Hosseini-Beheshti, Elham; Zoubeidi, Amina; Gleave, Martin; Guns, Emma S Tomlinson


    Castration resistant prostate cancer (CRPC) is often lethal and inevitably develops after androgen ablation therapy. However, in the majority of cases it remains androgen dependent. CRPC tumors have the ability to synthesize their own androgens from cholesterol by engaging in de novo steroidogenesis. We investigated the potential of 22RV1 prostate cancer cells to convert the supplemented steroid precursors within this pathway under the effects of current clinical steroidogenesis inhibitors such as abiraterone and dutasteride, either alone or in combination. Under steroid starved conditions, enzymes responsible for de novo steroidogenesis were upregulated. Testosterone and dihydrotestosterone (DHT) were formed by using both dehydroepiandrosterone (DHEA) and progesterone as substrates. Formation of testosterone and DHT was higher following incubation with DHEA compared to progesterone. Progesterone decreased the mRNA expression of enzymes responsible for steroidogenesis. Abiraterone treatment decreased testosterone production but increased several precursor steroids in both classical and backdoor pathways in the presence of progesterone. In contrast, the DHT levels were elevated following treatment with abiraterone when progesterone was absent. Dutasteride decreased the formation of testosterone, DHT and precursor steroids in the backdoor pathway but increased steroid precursors in the classical steroidogenesis pathway. The combination of abiraterone and dutasteride decreased testosterone and DHT in the presence of progesterone but increased DHT in the absence of progesterone. Abiraterone inhibited androgen receptor (AR) activation but not to the same extent as MDV3100. However, abiraterone and dutasteride treatment, either alone or in combination, were more effective in decreasing prostate specific antigen secretion into the media than MDV3100. Thus, while interventions with these drugs alone or in combination fail to completely inhibit steroidogenesis in the 22RV1

  5. Revisiting oocyte–somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence (United States)

    Li, Qinglei; McKenzie, Laurie J.; Matzuk, Martin M.


    Prediction and improvement of oocyte competence are two critical issues in assisted reproductive technology to improve infertility therapy. The lack of reliable and objective predictors of oocyte developmental competence for oocyte/embryo selection during in vitro fertilization hampers the effectiveness of this technology. Likewise, the low pregnancy rate resulting from in vitro maturation of human oocytes represents a major obstacle for its clinical application. Oocyte competence is progressively acquired during follicular development, and the oocyte plays a dominant role in regulating granulosa cell functions and maintaining the microenvironment appropriate for the development of its competence. Hence, granulosa cell functions are reflective of oocyte competence, and molecular markers of granulosa cells are potentially reliable predictors of oocyte quality. With the advent of the functional genomics era, the transcriptome of granulosa cells has been extensively characterized. Experimental data supporting granulosa cell markers as predictors of oocyte competence are now emerging in both animal models and humans. Future efforts should focus on integrating granulosa cell genetic markers as parameters for oocyte/embryo selection. Moreover, novel in vitro evidence highlights the effectiveness of exogenous oocyte-secreted factors in promoting oocyte developmental competence in animal models. The challenge in evaluating the effect of oocyte-secreted factors on oocyte quality in a clinical setting is to standardize the various preparations of these recombinant proteins and decipher their complex interactions/cooperativity within the germline-somatic cell regulatory loop. PMID:18996952

  6. Comparison of effects of different statins on growth and steroidogenesis of rat ovarian theca-interstitial cells. (United States)

    Sokalska, Anna; Stanley, Scott D; Villanueva, Jesus A; Ortega, Israel; Duleba, Antoni J


    Statins are competitive inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme of the cellular production of cholesterol and other products of the mevalonate pathway. Statins exert hepatic and extrahepatic effects, modulating the function of various tissues and organs, including ovaries. Previously, we have demonstrated that simvastatin inhibited cellular proliferation and reduced androgen production by ovarian theca-interstitial cells. The above actions are of translational relevance to the most common endocrine disorder among women in reproductive age: polycystic ovary syndrome. However, different statins may have distinctly different profiles of effects on cholesterol and androgens. The present study was designed to compare the effects of several statins on growth and steroidogenesis of rat theca-interstitial cells. The cells were incubated in the absence (control) or in the presence of simvastatin, lovastatin, atorvastatin, or pravastatin. Assessment of effects of statins on cell growth was carried out by evaluation of DNA synthesis and by estimation of the number of viable cells. Effects on steroidogenesis were evaluated by quantification of steroid production and expression of mRNA for the key enzyme regulating androgen production: Cyp17a1. Among tested statins, simvastatin exerted the greatest inhibitory effects on all tested parameters. The rank order of the effects of the tested statins is as follows: simvastatin > lovastatin > atorvastatin ≥ pravastatin. While the lipophilicity is likely to play a major role in determining the ability of statins to act on nonhepatic cells, other factors unique to individual cell types are also likely to be relevant.

  7. Characterization of the effects of metformin on porcine oocyte meiosis and on AMP-activated protein kinase activation in oocytes and cumulus cells. (United States)

    Bilodeau-Goeseels, Sylvie; Magyara, Nora; Collignon, Coralie


    The adenosine monophosphate-activated protein kinase (AMPK) activators 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin (MET) inhibit resumption of meiosis in porcine cumulus-enclosed oocytes. The objective of this study was to characterize the inhibitory effect of MET on porcine oocyte meiosis by: (1) determining the effects of an AMPK inhibitor and of inhibitors of signalling pathways involved in MET-induced AMPK activation in other cell types on MET-mediated meiotic arrest in porcine cumulus-enclosed oocytes; (2) determining whether MET and AICAR treatments lead to increased activation of porcine oocyte and/or cumulus cell AMPK as measured by phosphorylation of its substrate acetyl-CoA carboxylase; and (3) determining the effects of inhibition of the AMPK kinase, Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), and Ca2+ chelation on oocyte meiotic maturation and AMPK activation in porcine oocytes and cumulus cells. The AMPK inhibitor compound C (CC; 1 μM) did not reverse the inhibitory effect of AICAR (1 mM) and MET (2 mM) on porcine oocyte meiosis. Additionally, CC had a significant inhibitory effect on its own. eNOS, c-Src and PI-3 kinase pathway inhibitors did not reverse the effect of metformin on porcine oocyte meiosis. The level of acetyl-CoA carboxylase (ACC) phosphorylation in oocytes and cumulus cells did not change in response to culture in the presence of MET, AICAR, CC, the CaMKK inhibitor STO-609 or the Ca2+ chelator BAPTA-AM for 3 h, but STO-609 increased the percentage of porcine cumulus-enclosed oocytes (CEO) that remained at the germinal vesicle (GV) stage after 24 h of culture. These results indicate that the inhibitory effect of MET and AICAR on porcine oocyte meiosis was probably not mediated through activation of AMPK.

  8. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. (United States)

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter


    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  9. Protein modifications regulate the role of 14-3-3γ adaptor protein in cAMP-induced steroidogenesis in MA-10 Leydig cells. (United States)

    Aghazadeh, Yasaman; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios


    The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser(58) phosphorylation and 14-3-3γ Lys(49) acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser(58) or Lys(49). Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser(58) phosphorylation and Lys(49) acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser(58) phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys(49) acetylation is important for the cAMP-dependent induction of these interactions.

  10. Induction of spermatogenic cell apoptosis in prepubertal rat testes irrespective of testicular steroidogenesis: a possible estrogenic effect of di(n-butyl) phthalate. (United States)

    Alam, Mohammad Shah; Ohsako, Seiichiroh; Matsuwaki, Takashi; Zhu, Xiao Bo; Tsunekawa, Naoki; Kanai, Yoshiakira; Sone, Hideko; Tohyama, Chiharu; Kurohmaru, Masamichi


    Although di(n-butyl) phthalate (DBP), a suspected endocrine disruptor, induces testicular atrophy in prepubertal male rats, whether it exerts estrogenic activity in vivo remains a matter of debate. In the present study, we explored the estrogenic potency of DBP using 3-week-old male rats, and then examined the relationship between estrogen-induced spermatogenic cell apoptosis and testicular steroidogenesis. Daily exposure to DBP for 7 days caused testicular atrophy due to loss of spermatogenic cells, whereas testicular steroidogenesis was almost the same with the control values. A single exposure of DBP decreased testicular steroidogenesis in addition to decreasing the level of serum LH at 3 h after DBP treatment, with an extremely high incidence of apoptotic spermatogenic cells at 6 h after administration. To elucidate the estrogenic activity of DBP, we carried out an inhibition study using pure antiestrogen ICI 182,780 (ICI) in a model of spermatogenic cell apoptosis induced by DBP or estradial-3-benzoate (EB). Although both the DBP- and EB-treated groups showed a significant increase in spermatogenic cell apoptosis, ICI pretreatment significantly decreased the number of apoptotic spermatogenic cells in these two groups. In contrast, testicular steroidogenesis and serum FSH were significantly reduced in all the treated groups, even in the DBP+ICI and EB+ICI groups. Taken together, these findings led us to conclude that estrogenic compounds such as DBP and EB induce spermatogenic cell apoptosis in prepubertal rats, probably by activating estrogen receptors in testis, and that reduction in testicular steroidogenic function induced by estrogenic compounds is not associated with spermatogenic cell apoptosis.

  11. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. (United States)

    Munakata, Yasuhisa; Kawahara-Miki, Ryoka; Shiratsuki, Shogo; Tasaki, Hidetaka; Itami, Nobuhiko; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka


    Follicle development is accompanied by proliferation of granulosa cells and increasing oocyte size. To obtain high-quality oocytes in vitro, it is important to understand the processes that occur in oocytes and granulosa cells during follicle development and the differences between in vivo and in vitro follicle development. In the present study, oocytes and granulosa cells were collected from early antral follicles (EAFs, 0.5-0.7 mm in diameter), small antral follicles (SAFs, 1-3 mm in diameter), large antral follicles (LAFs, 3-7 mm in diameter), and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were cultured for 14 days after collection from EAFs. Gene expression was analyzed comprehensively using the next-generation sequencing technology. We found top upstream regulators during the in vivo follicle development and compared them with those in in vitro developed OGCs. The comparison revealed that HIF1 is among the top regulators during both in vivo and in vitro development of OGCs. In addition, we found that HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of OGCs, but the cellular metabolism differs between in vitro and in vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators between in vivo and in vitro development of OGCs, we believe that low expression levels of FLT1 (VEGFA receptor), SPP1, and PCSK6 can be considered causal factors of the suboptimal development under in vitro culture conditions.

  12. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa, E-mail:


    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  13. Effects of high levels of glucose on the steroidogenesis and the expression of adiponectin receptors in rat ovarian cells

    Directory of Open Access Journals (Sweden)

    Ramé Christelle


    Full Text Available Abstract Background Reproductive dysfunction in the diabetic female rat is associated with altered folliculogenesis and steroidogenesis. However, the molecular mechanisms involved in the reduction of steroid production have not been described. Adiponectin is an adipocytokine that has insulin-sensitizing actions including stimulation of glucose uptake in muscle and suppression of glucose production in liver. Adiponectin acts via two receptor isoforms – AdipoR1 and AdipoR2 – that are regulated by hyperglycaemia and hyperinsulinaemia in liver and muscle. We have recently identified AdipoR1 and AdipoR2 in rat ovary. However, their regulation in ovaries of diabetic female rat remains to be elucidated. Methods We incubated rat primary granulosa cells in vitro with high concentrations of glucose (5 or 10 g/l + or - FSH (10-8 M or IGF-1 (10-8 M, and we studied the ovaries of streptozotocin-induced diabetic rats (STZ in vivo. The levels of oestradiol and progesterone in culture medium and serum were measured by RIA. We used immunoblotting to assay key steroidogenesis factors (3beta HSD, p450scc, p450 aromatase, StAR, and adiponectin receptors and various elements of signalling pathways (MAPK ERK1/2 and AMPK in vivo and in vitro. We also determined cell proliferation by [3H] thymidine incorporation. Results Glucose (5 or 10 g/l impaired the in vitro production in rat granulosa cells of both progesterone and oestradiol in the basal state and in response to FSH and IGF-1 without affecting cell proliferation and viability. This was associated with substantial reductions in the amounts of 3beta HSD, p450scc, p450 aromatase and StAR proteins and MAPK ERK1/2 phosphorylation. In contrast, glucose did not affect the abundance of AdipoR1 or AdipoR2 proteins. In vivo, as expected, STZ treatment of rats caused hyperglycaemia and insulin, adiponectin and resistin deficiencies. Plasma progesterone and oestradiol levels were also reduced in STZ rats. However, the

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) blocks ovulation by a direct action on the ovary without alteration of ovarian steroidogenesis: lack of a direct effect on ovarian granulosa and thecal-interstitial cell steroidogenesis in vitro. (United States)

    Son, D S; Ushinohama, K; Gao, X; Taylor, C C; Roby, K F; Rozman, K K; Terranova, P F


    The main purpose of this study was to investigate the direct effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on ovarian function including ovulation and steroidogenesis. In vivo effects of TCDD were investigated on ovulation and alteration of circulating and ovarian steroid hormones in immature hypophysectomized rats (IHR) primed with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). In addition, in vitro effects of TCDD on the steroidogenesis of granulosa cells (GC), theca-interstitial cells (TIC), and whole ovarian dispersates derived from the ovary of IHR were investigated. In the ovulation model, rats were hypophysectomized on Day 23 of age. On Day 26, the IHR were given 20 microg TCDD/kg by gavage. The next day eCG (10 IU) was injected sc to stimulate follicular development. Fifty-two hours after eCG, 10 IU hCG was given to induce ovulation. TCDD (20 microg/kg) blocked ovulation and reduced ovarian weight in IHR. Concentrations of progesterone (P4), androstenedione (A4), and estradiol (E2) in sera and ovaries were not altered by TCDD at 12, 24, 48, and 72 h after eCG. except for a two-fold increase in ovarian concentration of A4 at 48 h after TCDD. However, this higher concentration of A4 at 48 h after TCDD did not reflect that of A4 in sera and did not correlate with E2 in either sera or ovaries. In isolated GC from untreated IHR, TCDD (0.1 to 100 nM) had no significant effect on P4 and E2 after stimulation by LH or FSH. In TIC and whole ovarian dispersates containing GC, TIC, and other ovarian cells, TCDD (0.1 to 800 nM) had no effect on A4 and P4 secretion stimulated by LH. Using RT-PCR, AhR mRNA was shown to be expressed constitutively in the whole ovary of IHR with maximum down-regulation at 6 h after TCDD (20 microg/kg). Ovarian CYP1A1 was induced maximally at 6 h after TCDD, whereas CYP1B1 could not be detected. The induction of AhR related genes by TCDD in the ovary implies the existence of AhR-mediated signal

  15. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei. (United States)

    Fu, Bo; Liu, Di; Ma, Hong; Guo, Zhen-Hua; Wang, Liang; Li, Zhong-Qiu; Peng, Fu-Gang; Bai, Jing


    Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.

  16. miRNA-200c mediates mono-butyl phthalate-disrupted steroidogenesis by targeting vimentin in Leydig tumor cells and murine adrenocortical tumor cells. (United States)

    Lu, Hongchao; Zhang, Chang; Hu, Yanhui; Qin, Heng; Gu, Aihua; Li, Yuan; Zhang, Lulu; Li, Zhong; Wang, Yubang


    The reproductive toxicity of plasticizer di-n-butyl phthalate (DBP) and its active metabolite monobutyl phthalate (MBP) has been demonstrated in rodents. The objective of this study was to explore roles of vimentin and miRNA-200c in steroidogenesis interfered by MBP. Mouse Leydig tumor cells (MLTC-1) and murine adrenocortical tumor cells (Y1) were employed and exposed to various levels of MBP (10(-7), 10(-6), 10(-5) and 10(-4)M). Steroid hormone production was increased significantly when MLTC-1 and Y1 cells were exposed to MBP at 10(-7)M. Additionally, vimentin and steroidogenic acute regulatory protein (StAR) expressions were upregulated at the same dose. It was found that MBP increased the steroidogenesis by facilitating the cholesterol transfer process by vimentin. In contrast, miRNA-200c expression was depressed at doses of MBP (10(-7)M) in both cells. Moreover, vimentin expression and progesterone production were increased in both MLTC-1 and Y1 cells after miRNA-200c expression was artificially inhibited. These results strongly suggested that MBP raised steroid hormone synthesis via upregulated vimentin by miRNA-200c.

  17. Correlation between ovarian steroidogenesis and beta-endorphin in the Lizard Uromastyx acanthinura: Immunohistochemical approach.

    Directory of Open Access Journals (Sweden)

    Jean Marie Exbrayat


    Full Text Available In Mammals, opioid peptides are involved in various physiological processes including the reproductive function. The knowledge of the distribution of beta-endorphin, one of opioid peptides in Reptiles ovaries is very limited. Therefore, the present study used the lizard ovarian follicles to further elucidate the role of this peptide in steroidogenesis. In Uromastyx acanthinura, the localization of both this peptide and sex steroid hormone was investigated by the immunohistochemical approach. This technique was used to evaluate the distribution of these substances and their relationship. The beta-endorphin is strongly distributed in the granulosa cells and oocyte cytoplasm of the previtellogenic follicles in sexually quiescent lizards (winter when steroidogenesis was interrupted. In spring, the signal became weak, or even absent, in the vitellogenic and previtellogenic follicles. The granulosa cells of the previtellogenic follicles showed an important synthesis of 17beta-estradiol. Females that did not undergo in vitellogenesis in spring showed the same profile than quiescent females of winter. These findings represent the first evidence of the presence of beta-endorphin in the ovary of this lizard. The seasonal variations observed in the reproductive cycle suggest that this opioid peptide is involved in the modulation of seasonal steroidogenesis.

  18. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie


    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  19. Comparison of the Effects of Dibutyl and Monobutyl Phthalates on the Steroidogenesis of Rat Immature Leydig Cells

    Directory of Open Access Journals (Sweden)

    Linxi Li


    Full Text Available Dibutyl phthalate (DBP is a widely used synthetic phthalic diester and monobutyl phthalate (MBP is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05–50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes.

  20. Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal. (United States)

    Lee, Eunsong; Song, Kilyoung


    The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.

  1. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Directory of Open Access Journals (Sweden)

    Looft C


    Full Text Available Abstract Background The bi-directional communication between the oocyte and its companion cumulus cells (CCs is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa. Results We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs and without (OO - CCs CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO or without (CCs - OO their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively. While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18, translation (EIF2AK1, EIF4ENIF1 and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI, protein metabolic processes (IHH, APOA1, PLOD1, steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7. Similarly, while transcripts over expressed in OO + CCs

  2. Cumulus Cell Role on Mouse Germinal Vesicle Oocyte Maturation, Fertilization, and Subsequent Embryo Development to Blastocyst Stage In Vitro

    Directory of Open Access Journals (Sweden)

    Reza Mahmodi


    Full Text Available Objective: The purpose of this study is to investigate the effect of cumulus cells on maturation,fertilization and subsequent development of mouse germinal vesicle oocytes.Materials and Methods: A total of 470 germinal vesicle (GV oocytes were obtained from26 ovaries of 3- 4 week old ICR female mice 48 hours after injection of 5 IU pregnant mareserum gonadotropin (PMSG. Collected oocytes were divided into two groups; group I: GVoocytes without cumulus cells (denuded oocyte, group II: GV oocytes with cumulus cells(cumulus-oocyte complex. The oocytes in both groups were cultured in TCM-199 mediumsupplemented with 10% fetal bovine serum (FBS for 22- 24 hours in a humidified atmosphereof 5% CO2 in air at 37°C. Oocyte maturation was scored under inverted microscope.To do in vitro fertilization, matured oocytes from each group were placed in T6 mediumand capacitated spermatozoa were added. Then the fertilized oocytes were cultured andassessed for cleavage to the 2-cell stage 24 hours and production of blastocyst 120 hoursafter fertilization. Data was analyzed by chi-square test and differences in the values wereconsiderable significant when p<0.05.Results: Maturation, fertilization, cleavage and blastocyst rates in denuded oocytes were:76.32%, 57.49%, 51.15% and 19.14% respectively. In the cumulus-oocyte complex rateswere: 89.41%, 80.76%, 75.58% and 45.62% respectively; all in the cumulus-oocyte complexwere significantly higher than those of denuded oocytes (p<0.05.Conclusion: The present study indicates that cumulus cells have important role duringmaturation, fertilization and subsequent embryo development to the blastocyst stage.

  3. A protocol for embryonic stem cell derivation by somatic cell nuclear transfer into human oocytes




    Authors: Dieter Egli & Gloryn Chia ### Abstract Here we describe detailed methods that allowed us to derive embryonic stem cell lines by nuclear transfer of fibroblasts from a newborn and from a type 1 diabetic adult. The protocol is based on the insight that 1) agents for cell fusion can act as potent mediators of oocyte activation by compromising maintaining plasma membrane integrity; minimizing the concentration at which they are used, and at least transiently remove calcium f...

  4. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  5. Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors embedded in native lipids


    Palma, Eleonora; Trettel, Flavia; Fucile, Sergio; Renzi, Massimiliano; Miledi, Ricardo; Eusebi, Fabrizio


    The Xenopus oocyte is used as a convenient cell expression system to study the structure and function of heterogenic transmitter receptors and ion channels. Recently, we introduced a method to microtransplant already assembled neurotransmitter receptors from the human brain to the plasma membrane of Xenopus oocytes. The same approach was used here to transplant neurotransmitter receptors expressed from cultured cells to the oocytes. Membrane vesicles prepared from a human embryonic kidney cel...

  6. Hydrostatic Pressure Affects In Vitro Maturation of Oocytes and Follicles and Increases Granulosa Cell Death

    Directory of Open Access Journals (Sweden)

    Isac Karimi


    Full Text Available Objective: This study examines the effects of hydrostatic pressure on in vitro maturation (IVM of oocytes derived from in vitro grown follicles.Materials and Methods: In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student’s t test.Results: The percentage of metaphase II oocytes (MII increased in hydrostatic pressure-treated follicles compared to controls (p<0.05. Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05. Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05.Conclusion: Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  7. Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. (United States)

    Hughes, Jaime; Kwong, Wing Yee; Li, Dongfang; Salter, Andrew M; Lea, Richard G; Sinclair, Kevin D


    We previously reported increased follicular fluid progesterone (P(4)) concentrations in ewes fed an n-3 compared to an n-6 polyunsaturated fatty acid (PUFA)-enriched diet, but detected no differential effect of n-3 and n-6 PUFA-enriched high-density lipoproteins (HDL) on granulosa cell (GC) steroidogenesis in vitro. Moreover, net n-6 PUFA-enriched HDL reduced early embryo development, but in the absence of a net uptake of FA. Consequently, we hypothesised that a) effects of n-3 PUFA on ovarian steroidogenesis are mediated by theca rather than GCs and b) during embryo culture lipids are acquired solely from the albumin fraction of serum, so that albumin-delivered n-3 and n-6 PUFA exert a greater differential effect on embryo development than either low-density lipoprotein (LDL)- or HDL-delivered PUFA. Data confirmed that n-3 PUFA increases P(4) production solely in theca cells and that this is associated with an increase in STAR transcript expression. Furthermore, LDL- and HDL-delivered n-3 PUFA are equally efficacious in this regard during the first 96 h of culture, but thereafter only HDL-delivered n-3 PUFA induces this effect in partially luteinised theca cells. We also demonstrate that albumin is the sole serum fraction that leads to a net uptake of FA during embryo culture. PUFA-enriched serum and albumin increased the yield of morphologically poorer quality blastocysts with increased transcript expression for the antioxidant enzyme SOD1. Important differential effects of n-3 and n-6 PUFA on ovarian steroidogenesis acting solely on theca cells are identified, but differential effects of PUFA on embryo development are less apparent.

  8. Oocyte-somatic cell communication and microRNA function in the ovary (United States)

    Hawkins, S. M.; Matzuk, M. M.


    An enormous amount of knowledge about the ovary has been generated over the last two decades, due in part to the development of strategies to genetically manipulate the mouse using embryonic stem cell technology. Our group and others have identified multiple factors that are important and essential at all stages of ovarian folliculogenesis from formation of the primordial factor to ovulation. It is obvious that an oocyte, the key cargo of the ovary, and the surrounding granulosa cells, the support cells of the follicle, entertain a dialog that is key for granulosa growth and differentiation and oocyte growth, maturation, and fertilization. In addition to the involvement of genes in these processes, small non-coding RNAs including microRNAs and siRNAs have been implicated as key regulators, especially in the oocyte. These studies have direct implications for human fertility control in the assisted reproductive technology (ART) laboratory. PMID:20362967

  9. Understanding the Effects of Atrazine on Steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells (United States)

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt r...

  10. Lineage Specification of Ovarian Theca Cells Requires Multi-Cellular Interactions via Oocyte and Granulosa Cells (United States)

    Liu, Chang; Peng, Jia; Matzuk, Martin M.; Yao, Humphrey H-C


    Organogenesis of the ovary is a highly orchestrated process involving multiple lineage determinations of ovarian surface epithelium, granulosa cells, and theca cells. While the sources of ovarian surface epithelium and granulosa cells are known, the origin(s) of theca progenitor cells have not been definitively identified. Here we show that theca cells derive from two sources: Wt1+ cells indigenous to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. These progenitors acquire theca lineage marker Gli1 in response to paracrine signals Desert hedgehog (Dhh) and Indian hedgehog (Ihh) from granulosa cells. Ovaries lacking Dhh/Ihh exhibit theca layer loss, blunted steroid production, arrested folliculogenesis, and failure to form corpora lutea. Production of Dhh/Ihh in granulosa cells requires Growth differentiation factor 9 (GDF9) from the oocyte. Our studies provide the first genetic evidence for the origins of theca cells and reveal a multicellular interaction critical for the formation of a functional theca. PMID:25917826

  11. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells. (United States)

    Cinar, Ozgur; Semiz, Olcay; Can, Alp


    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  12. Nitric oxide acts through different signaling pathways in maturation of cumulus cell-enclosed mouse oocytes

    Directory of Open Access Journals (Sweden)

    M Abbasi


    Full Text Available ABSTRACT Background: Nitric oxide (NO have a dual action in mouse oocyte meiotic maturation which depends on its concentration, but the mechanisms by which it influences oocyte maturation has not been exactly clarified. In this study different signaling mechanisms which exist for in vitro maturation of meiosis was examined in cumulus cell-enclosed oocytes (CEOs after injection of pregnant mare's serum gonadotropin (PMSG to immature female mice. Methods: The CEOs were cultured in spontaneous maturation and hypoxanthine (HX arrested model. Results: Sodium nitroprusside (SNP, an NO donor, 10mM delayed germinal vesicle breakdown (GVBD significantly during the first 5 hrs of incubation and inhibited the formation of first polar body (PB1 at the end of 24 hrs of incubation. SNP (10-5M stimulated the meiotic maturation of oocytes significantly by overcoming the inhibition of HX. Sildenafil (a cGMP stimulator, 100 nM, had a significant inhibitory effects on both spontaneous meiotic maturation and HX-arrested meiotic maturation. Forskolin (an adenylate cyclase stimulator, 6µM and SNP (10mM had the same effects on GVBD. Forskolin reversed the SNP (10-5M stimulated meiotic maturation. Conclusion: These results suggest that differences in pathways are present between SNP-inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation in mouse oocytes

  13. Implications of progesterone metabolism in MA-10 cells for accurate measurement of the rate of steroidogenesis.

    NARCIS (Netherlands)

    Rommerts, F.F.; King, S.R.; Span, P.N.


    In virtually all studies with MA-10 cells, progesterone RIAs have been used to measure steroid synthesis. To test whether progesterone is a stable end product, we investigated the metabolism of added tritiated progesterone and pregnenolone in MA-10 cells over a period of 3 h. Steroids were then extr

  14. Risk and prevention of bovine viral diarrhea virus (BVDV) transmission through embryo production via somatic cell nuclear transfer (SCNT) using oocytes from persistently infected donors. (United States)

    Gregg, K; Riddell, K P; Chen, S H; Galik, P K; Xiang, T; Guerra, T; Marley, M S; Polejaeva, I; Givens, M D


    The objective was to assess the risk of transmission of bovine viral diarrhea virus (BVDV) through embryo production via somatic cell nuclear transfer (SCNT), with oocytes obtained from persistently infected (PI) donors. Using ultrasound-guided follicular aspiration following superstimulation, oocytes were obtained from five female beef cattle, including three that were PI and two that were negative for BVDV. In the three PI cattle, seven aspirations yielded 32 oocytes (PI-1: three aspirations yielding six oocytes; PI-2: two aspirations yielding 14 oocytes; and PI-3: two aspirations yielding 12 oocytes). The oocyte recovery rate was better in negative control cattle, with 32 oocytes obtained from the two cattle in a single superstimulation and aspiration session. Oocytes were processed individually for SCNT, evaluated, and tested for BVDV. Nearly all (31/32) oocytes from the three PI donors were positive for BVDV by PCR, with detected viral RNA copy number ranging from 1 to 1.1 x 10(5). The proportion of oocytes acceptable for SCNT embryo production (based on oocyte quality and maturation status) was only 16 to 35% from PI donors, but was 81% from control donors. Therefore, routine testing of unacceptable (discarded) oocytes could be an effective approach to identify batches that might contain infected oocytes from PI donors. Identification and removal of high-risk batches of oocytes would minimize the risk of BVDV transmission through SCNT embryo production.

  15. Effects of monocrotophos pesticide on steroidogenesis and transcription of steroidogenic enzymes in rainbow trout RTG-2 cells involving the protein kinase A signal pathway. (United States)

    Wang, Zhenyu; Zhang, Xiaona; Tian, Hua; Wang, Wei; Ru, Shaoguo


    Monocrotophos (MCP) pesticide, listed as a UNEP Prior Informed Consent chemical, has been proved to exert toxic effects on the reproductive system of teleost fishes by changing the balance of sex steroid hormones. To investigate the effects of MCP on steroidogenesis in vitro, the rainbow trout (Oncorhynchus mykiss) gonadal cell line RTG-2 was exposed to different MCP concentrations for 48 h. The levels of 17 β-estradiol (E(2)) and testosterone in the medium were measured by radioimmunoassay and the expression of steroidogenic acute regulatory protein and cytochrome P450 enzymes CYP11A1, CYP17, and CYP19A was detected by quantitative real-time PCR. The results showed that 1.0 and 10.0 μg/L MCP pesticide induced E(2) levels and promoted steroidogenic enzyme expression. The possible mechanisms of MCP steroidogenic activity were investigated using inhibitors of protein kinase A (PKA) and protein kinase C. The PKA inhibitor H-89 abrogated the 10.0 μg/L MCP-induced transcriptional up-regulation of steroidogenic enzymes, suggesting an involvement of PKA-dependent mechanism in the disruption of steroidogenesis by the MCP pesticide in rainbow trout RTG-2 cells.

  16. Estrogen Promotes the Development of Mouse Cumulus Cells in Coordination with Oocyte-Derived GDF9 and BMP15 (United States)

    Sugiura, Koji; Su, You-Qiang; Li, Qinglei; Wigglesworth, Karen; Matzuk, Martin M.; Eppig, John J.


    The differentiation and function of cumulus cells depend upon oocyte-derived paracrine factors, but studies on the estrogen receptor knockout mice suggested that estrogen also participates in these processes. This study investigates the possible coordination of estrogen and oocytes in the development and function of cumulus cells using cumulus expansion and the expression of transcripts required for expansion as functional endpoints. Preantral granulosa cell-oocyte complexes developed in vitro with 17β-estradiol (E2) exhibited increased levels of cumulus expansion and Has2 transcripts, encoding hyaluronan synthase 2, compared with those developed without E2. Moreover, cumulus cell-oocyte complexes (COCs) isolated from antral follicles and maintained in culture without E2 exhibited reduced cumulus expansion and Has2 mRNA levels compared with freshly isolated COCs. Exogenous E2, provided during the maintenance culture, alleviated these deficiencies. However, when oocytes were removed from COCs, E2 supplementation did not maintain competence to undergo expansion; the presence in culture of either fully grown oocytes or recombinant growth differentiation factor 9 (GDF9) was required. Recombinant bone morphogenetic protein 15, but not fibroblast growth factor 8, augmented the GDF9 effect. Oocytes or GDF9 suppressed cumulus cell levels of Nrip1 transcripts encoding nuclear receptor-interacting protein 1, a potential inhibitor of estrogen receptor signals. Therefore, E2 and oocyte-derived paracrine factors GDF9 and bone morphogenetic protein 15 coordinate to promote the development of cumulus cells and maintain their competence to undergo expansion. Furthermore, suppression of Nrip1 expression in cumulus cells by oocyte may be one mechanism mediating cross talk between oocyte and E2 signals that promotes follicular development. PMID:21047911

  17. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying;


    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...... perivitelline space) or bad before used for PA (good and bad) or SCNT (good). The PA and SCNT were performed as before with minor modifications (Cryobiol. 64, 60; Cell. Reprogr. 13, 521) before culture for 6 days in a standard or timelapse incubator. Rates of cleavage (CL%, Day 2), blastocyst (BL%, Day 6...

  18. Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tahri-Joutei, A.; Pointis, G.


    Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.

  19. The role of sterol carrier protein 2 in the regulation of Leydig cell steroidogenesis

    NARCIS (Netherlands)

    M. Hage van Noort (Marjolein)


    textabstractThe aim of the studies described in this thesis was to clarify the rele of SCP2 in the regulation of steroid production in rat Leydig cells. The ra te of steroid production in the adrenal, the ovary, the placenta and the testis is determined by the rate of conversion of cholesterol to pr

  20. Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors embedded in native lipids (United States)

    Palma, Eleonora; Trettel, Flavia; Fucile, Sergio; Renzi, Massimiliano; Miledi, Ricardo; Eusebi, Fabrizio


    The Xenopus oocyte is used as a convenient cell expression system to study the structure and function of heterogenic transmitter receptors and ion channels. Recently, we introduced a method to microtransplant already assembled neurotransmitter receptors from the human brain to the plasma membrane of Xenopus oocytes. The same approach was used here to transplant neurotransmitter receptors expressed from cultured cells to the oocytes. Membrane vesicles prepared from a human embryonic kidney cell line (HEK293) stably expressing the rat glutamate receptor 1 were injected into oocytes, and, within a few hours, the oocyte plasma membrane acquired α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors, which had the same properties as those expressed in the original HEK cells. Analogously, oocytes injected with membranes prepared from rat pituitary GH(4)C1 cells, stably expressing homomeric human neuronal α7 nicotinic acetylcholine receptors (α7-AcChoRs), incorporated in their plasma membrane AcChoRs that behaved as those expressed in GH(4)C1 cells. Similar results were obtained with HEK cells stably expressing heteromeric human neuronal α4β2-AcChoRs. All this makes the Xenopus oocyte a powerful tool for detailed investigations of receptors and other proteins expressed in the membrane of cultured cells. PMID:12595576

  1. Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells. (United States)

    Rosati, Fabiana; Sturli, Niccolò; Cungi, Maria Chiara; Morello, Matteo; Villanelli, Fabio; Bartolucci, Gianluca; Finocchi, Claudia; Peri, Alessandro; Serio, Mario; Danza, Giovanna


    Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain.

  2. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. (United States)

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi


    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  3. The transcriptome of corona radiata cells from individual MII oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women

    DEFF Research Database (Denmark)

    Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David;


    Corona radiata cells (CRCs) refer to the fraction of cumulus cells just adjacent to the oocyte. The CRCs are closely connected to the oocyte throughout maturation and their gene expression profiles might reflect oocyte quality. Polycystic ovary syndrome (PCOS) is a common cause of infertility...

  4. Exogenous arachidonate restores the dimethoate-induced inhibition of steroidogenesis in rat interstitial cells. (United States)

    Astiz, Mariana; Hurtado de Catalfo, Graciela; de Alaniz, María J T; Marra, Carlos Alberto


    The present work studies the potential restorative effect of polyunsaturated fatty acids (PUFA, 5 μM/24 h) on the dimethoate (DMT)-induced inhibition of testosterone biosynthesis in Leydig cells isolated from rat testes. Various fatty acids (FA) from the n-6 (18:2, 20:3, 20:4, 22:4 and 22:5) and n-3 (18.3, 20:5, 22:5, 22:6) series were assayed in Leydig cells, alone (as delipidated BSA complexes) and in combination with DMT (1 ppm). The n-6 FA stimulated lipid peroxidation (LPO) and inhibited the activities of steroidogenic enzymes (3β- and 17β-hydroxysteroid dehydrogenases). The n-3 FA exerted an anti-oxidant effect, decreasing the production of thiobarbituric-acid reactive substances (TBARS) and inhibiting phospholipase A(2) activity. The biosynthesis of testosterone in DMT-treated cultures was completely normalized by ARA (20:4n-6) and partially restored by the addition of 20:3n-6, increasing ARA content inside the mitochondria. The other FA assayed failed to restore androgenesis. COX-2 protein and prostaglandin F2α and E2 production were stimulated by 20:3n-6, ARA, 18:3n-3 and 20:5 n-3. COX-2 protein decreased upon addition of 22:5n-3 and 22:6n-3. StAR protein was increased by ARA and partially increased by 20:3n-6, likely due to its metabolic conversion into ARA. Both FA increased the mitochondrial cholesterol pool available for testosterone biosynthesis. The rate of androgenesis is likely the result of various regulatory factors acting concomitantly on the physiology of Leydig cells.

  5. The use of Xenopus oocytes and embryos as a route towards cell replacement

    Indian Academy of Sciences (India)

    J B Gurdon


    When nuclei of somatic cells are transplanted to enucleated eggs of Xenopus, a complete reprogramming of nuclear function can take place. To identify mechanisms of nuclear reprogramming, somatic nuclei can be transplanted to growing meiotic oocytes of Xenopus, and stem cell genes activated without DNA replication. The combination of somatic cell nuclear transfer with morphogen signalling and the community effect may lead towards the possibility of cell replacement therapy. When mechanisms of nuclear reprogramming are understood, it may eventually be possible to directly reprogramme human somatic cell nuclei without the use of eggs.

  6. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    Directory of Open Access Journals (Sweden)

    Bentolhoda Fereydouni


    Full Text Available We use the common marmoset monkey (Callithrix jacchus as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia expressing pluripotent stem cell markers including OCT4A (POU5F1. This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs. OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.

  7. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes. (United States)

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk


    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (Pcloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  8. Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. (United States)

    Wasilewski, Michał; Semenzato, Martina; Rafelski, Susanne M; Robbins, Jennifer; Bakardjiev, Anna I; Scorrano, Luca


    During human pregnancy, placental trophoblasts differentiate and syncytialize into syncytiotrophoblasts that sustain progesterone production [1]. This process is accompanied by mitochondrial fragmentation and cristae remodeling [2], two facets of mitochondrial apoptosis, whose molecular mechanisms and functional consequences on steroidogenesis are unclear. Here we show that the mitochondria-shaping protein Optic atrophy 1 (Opa1) controls efficiency of steroidogenesis. During syncytialization of trophoblast BeWo cells, levels of the profission mitochondria-shaping protein Drp1 increase, and those of Opa1 and mitofusin (Mfn) decrease, leading to mitochondrial fragmentation and cristae remodeling. Manipulation of the levels of Opa1 reveal an inverse relationship with the efficiency of steroidogenesis in trophoblasts and in mouse embryonic fibroblasts where the mitochondrial steroidogenetic pathway has been engineered. In an in vitro assay, accumulation of cholesterol is facilitated in the inner membrane of isolated mitochondria lacking Opa1. Thus, Opa1-dependent inner membrane remodeling controls efficiency of steroidogenesis.

  9. A gene expression signature shared by human mature oocytes and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Pantesco Véronique


    Full Text Available Abstract Background The first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Results Based on a microarray compendium of 205 samples, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5, 18 different zinc finger transcription factors, including ZNF84, and several still poorly annotated genes such as KLHL7, MRS2, or the Selenophosphate synthetase 1 (SEPHS1. Interestingly, a large set of genes was also found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declined. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome. Conclusion These results shed light on the gene networks that are concurrently overexpressed by the two human cell types with somatic cell reprogramming properties.

  10. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. (United States)

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W


    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans.

  11. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. (United States)

    Nagaoka, So Iha; Hodges, Craig A; Albertini, David F; Hunt, Patricia Ann


    Segregation of homologs at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that facilitates monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC). Although univalents trigger cell-cycle arrest in the male, this is not the case in mammalian oocytes. Because the spindle assembly portion of the SAC appears to function normally, two hypotheses have been proposed to explain the lack of response to univalents: (1) reduced stringency of the oocyte SAC to aberrant chromosome behavior, and (2) the ability of univalents to satisfy the SAC by forming bipolar attachments. The present study of Mlh1 mutant mice demonstrates that metaphase alignment is not a prerequisite for anaphase onset and provides strong evidence that MI spindle stabilization and anaphase onset require stable bipolar attachment of a critical mass--but not all--of chromosomes. We postulate that subtle differences in SAC-mediated control make the human oocyte inherently error prone and contribute to the age-related increase in aneuploidy.

  12. Cumulus Cell Expansion, Its Role in Oocyte Biology and Perspectives of Measurement: A Review

    Directory of Open Access Journals (Sweden)

    Nevoral J.


    Full Text Available Cumulus expansion of the cumulus-oocyte complex is necessary for meiotic maturation and acquiring developmental competence. Cumulus expansion is based on extracellular matrix synthesis by cumulus cells. Hyaluronic acid is the most abundant component of this extracellular matrix. Cumulus expansion takes place during meiotic oocyte maturation under in vivo and in vitro conditions. Quantification and measurement of cumulus expansion intensity is one possible method of determining oocyte quality and optimizing conditions for in vitro cultivation. Currently, subjective methods of expanded area and more exact cumulus expansion measurement by hyaluronic acid assessment are available. Among the methods of hyaluronic acid measurement is the use of radioactively labelled synthesis precursors. Alternatively, immunological and analytical methods, including enzyme-linked immunosorbent assay (ELISA, spectrophotometry, and high-performance liquid chromatography (HPLC in UV light, could be utilized. The high sensitivity of these methods could provide a precise analysis of cumulus expansion without the use of radioisotopes. Therefore, the aim of this review is to summarize and compare available approaches of cumulus expansion measurement, respecting special biological features of expanded cumuli, and to suggest possible solutions for exact cumulus expansion analysis.

  13. mRNA translation during oocyte maturation plays a key role in development of primordial germ cells in Xenopus embryos

    Indian Academy of Sciences (India)

    Bahman Zeynali; Keith E Dixon


    It is believed that cytoplasmic localization in the egg is necessary for development of primordial germ cells (PGCs) in Xenopus embryos. In this study, we sought to determine if translation of maternal mRNA during oocyte maturation is involved in the development of PGCs. Donor oocytes were collected from both stimulated (those who receive gonadotropin) and unstimulated females, artificially matured and fertilized using a host transfer technique. Using chloramphenicol (50 M and 500 M RNA), RNA translation was inhibited during oocyte maturation. Our results showed that in unstimulated embryos treated with 50 M chloramphenicol, there was a significant reduction in the number of PGCs reaching genital ridges. In stimulated embryos, however, the number of PGCs was unchanged unless a higher concentration (500 M) of chloramphenicol was used. From these results it is suggested that maternal mRNA translation during oocyte maturation plays a key role in development of PGCs.

  14. Alteration of steroidogenesis in H{sub 2}95R cells by organic sediment contaminants and relationships to other endocrine disrupting effects

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, L.; Hilscherova, K.; Mazurova, E.; Hecker, M.; Jones, P.D.; Newsted, J.L.; Bradley, P.W.; Gracia, T.; Duris, Z.; Horka, I.; Holoubek, I.; Giesy, J.P. [Masaryk University, Brno (Czech Republic)


    A novel bioassay with the human adrenocortical carcinoma cell line H{sub 2}95R can be used to screen for endocrine disrupting chemicals that affect the expression of genes important in steroidogenesis. This assay was employed to study the effects of organic contaminants associated with the freshwater pond sediments collected in the Ostrava-Karvina region, Czech Republic. The modulation of ten major genes involved in the synthesis of steroid hormones (CYP11A, CYP11B2, CYP17, CYP19, 17 beta HSD1, 17 beta HSD4, CYP21, 3 beta HSD2, HMGR, StAR) after exposure of H{sub 2}95R cells to sediment extracts was investigated using quantitative real-time polymerase chain reaction (PCR). Crude sediment extracts, containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) and moderate amounts of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) significantly stimulated expression of the CYP11B2 gene (up to 10-fold induction), and suppressed expression of 3 beta HSD2 and CYP21 genes. Comparison of the results with other mechanistically based bioassays (arylhydrocarbon receptor, AhR, mediated responses in H{sub 4}IIE-luc cells, and estrogen receptor mediated effects in MVLN cells) revealed significant endocrine disrupting potencies of organic contaminants present in the sediments (most likely antiestrogenicity).

  15. Influences of 3-methylcholanthrene, phenobarbital and dexamethasone on xenobiotic metabolizing-related cytochrome P450 enzymes and steroidogenesis in human fetal adrenal cortical cells

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Min HUANG; Ren-xiu PENG; Jiang LE


    Aim: To explore the influence and possible mechanism of xenobiotics on adrenal steroidogenesis during fetal development. Methods: Primary human fetal adrenal cortical cells were prepared, cultured and treated with 3-methylcholanthrene, phenobarbital and dexamethasone. The activities of 7-ethoxyresorufin 0-dealkylase, benzphetamine, aminopyrine and erythromycin N-demethylases were measured by enzyme assays. At the same time, quantitative analysis of steroid hormones cortisol, aldosterone, testosterone and progesterone were carried out in cultural medium by radioimmunoassays. Results: The activities of benzphetamine and aminopyrine Ar-demethylase were increased in the cultural fetal adrenal cells treated with phenobarbital (0.25-1 mmol/L) for 24 h. Dexamethasone (25-100 μmol/L) also increased the activity of erythromycin W-demethylase. The activity of 7-ethoxyresorufin 0-dealkylase was undetected in the cells treated without and with 3-methylcholanthrene (0.5-2 μmol/L). Meanwhile, the contents of medium cortisol, aldosterone and progesterone were decreased after treatment with 3-methylcholanthrene. Cortisol, aldosterone and progesterone concentrations were also slightly decreased with phenobarbital. Dexamethasone enhanced the productions of cortisol and progesterone remarkably. The trend of testosterone concentration was uncertain after 3-methylcholanthrene, phenobarbital or dexamethasone treatment. Conclusion: 3-Methylcholanthrene, phenobarbital or dexamethasone could interfere with the synthesis of cortisol, aldosterone and progesterone in primary human fetal adrenal cortical cells, which likely act through xenobiotic metabolizing-related cytochrome P450 isoform activation.

  16. Effects of Bushen Tiaochong Recipe (补肾调冲方) Containing Serum on Ovarian Granulosa Cell Proliferation,Steroidogenesis and Associated Gene Expression in Rats

    Institute of Scientific and Technical Information of China (English)


    Objective: To observe the effect of Bushen Tiaochong Recipe (补肾调冲方, BSTCR) on rats' ovarian granulosa cell (GC) proliferation, steroidogenesis and follicle-stimulating hormone receptor (FSHR), and insulin-like growth factor-1 (IGF-1) mRNA expression using serum pharmacological method. Methods: Rats' GCs were incubated with 10% blank serum (as negative control group), folliclestimulating hormone (FSH)-containing serum (S-FSH, as positive control group), or BSTCR (in different dosages) containing serum (S-BSTCR, as the BSTCR groups) for 48 h. 3H-TdR incorporation was then performed; DNA was measured to analyze the distribution of GCs in the cell cycle and their proliferation index (PI) using a flow cytometer; estradiol (E2) and progesterone (P) content in the culture fluid were examined by radioimmunoassay; and levels of FSHR and IGF-1 mRNA expression in GCs were measured by real-time RT-PCR. Results: A dose-dependent increase of 3H-TdR incorporation in GC was shown in the BSTCR groups. Cells in G0/G1 phase had markedly less, while those in S phase had a significantly higher increase in the BSTCR groups compared with the negative control group. A high value of PI was also shown in the BSTCR groups, especially in the high dose group where the influence of cell proliferation was stronger than that in the positive control group. The levels of E2 and P in the BSTCR groups of all dosages were significantly higher than those in the negative control group, and did not show any significant difference compared with those in the positive control group. Levels of FSHR and IGF-1 mRNA expression in the BSTCR groups increased in a dose-dependent manner at levels higher than those in the negative control group. Conclusion: S-BSTCR can obviously stimulate the proliferation and steroidogenesis of ovarian GCs.It is speculated that BSTCR could play a regulatory action on ovarian function through two different pathways of endocrine and autocrine by promoting FSHR and IGF-1 m

  17. Inhibition of Leydig Cell Steroidogenesis: Effect of Actinomycin D Before and After Preincubation of Leydig Cells In Vitro

    NARCIS (Netherlands)

    Cooke, B.A.; F.H.A. Janszen (Felix); M. van Driel (Marjolein)


    textabstractThe effect of preincubating purified Leydig cells in Eagle's medium and the subsequent effect of the mRNA synthesis inhibitor actinomycin D on LH‐stimulated testosterone synthesis has been investigated. The inhibitory effect obtained was found to decrease with the period of preincubation

  18. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes

    Institute of Scientific and Technical Information of China (English)



    To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and 60 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of the donor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PGR and immunocytochemistry with probes that distinguish between the various species. The ntES cells maintain the capability of sustained growth in an undifferentiated state, and form embryoid bodies, which, on further induction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that express markers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NT to rabbit eggs retain phenotypes similar to those of conventional human ES cells, including the ability to undergo multilineage cellular differentiation.

  19. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi


    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  20. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)


    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  1. 2-Phenylimidazo[1,2-a]pyridine-containing ligands of the 18-kDa translocator protein (TSPO) behave as agonists and antagonists of steroidogenesis in a mouse leydig tumor cell line. (United States)

    Midzak, Andrew; Denora, Nunzio; Laquintana, Valentino; Cutrignelli, Annalisa; Lopedota, Angela; Franco, Massimo; Altomare, Cosimo D; Papadopoulos, Vassilios


    Ligands of 18-kDa translocator protein (TSPO) are known for their ability to potently and dose-dependently stimulate steroid biosynthesis in steroidogenic cells. In this study, we investigated a number of 2-phenyl-imidazo[1,2-a]pyridine acetamide derivatives, analogs of alpidem, for their ability to bind TSPO and to affect steroidogenesis in a mouse Leydig tumor cell line. We observed that not only some compounds behaved as agonists, stimulating steroidogenesis (e.g., 3 and 4) with EC50 values (15.9 and 6.99μM) close to that determined for FGIN-1-27 used as positive control (7.24μM), but two compounds, namely 5 and 6, which on the other hand are the most lipophilic ones in the investigated series, behaved as antagonists, by significantly inhibiting steroid production at concentrations at least twenty times lower than the cytotoxic ones. To our surprise, the newly synthesized compound 3, which is a strict analog of alpidem bearing at the para position of the 2-phenyl group a methoxy group instead of chlorine, achieved a ten-fold stimulation of the steroid production (for comparison FGIN-1-27 achieved 1.6-fold stimulation). Within the limits of the examined property space, some unprecedented SARs were unveiled, which can help in understanding the key molecular factors underlying the transition from agonism to antagonism in the steroidogenesis process. Besides the substitution pattern and the physicochemical features (mainly hydrogen bonding potential) of the substituents at the positions C(6) and C(8) of the imidazo[1,2-a]pyridine nucleus, and at the para position of the 2-phenyl group, the structure-activity relationship analysis suggested lipophilicity, whose increase seems to be generally related to steroidogenesis inhibition, and steric hindrance, which appeared as a stimulation-limiting factor, as two main properties to control in the design or optimization of novel imidazo[1,2-a]pyridine-based TSPO ligands endowed with potential in modulating the

  2. Testicular steroidogenesis is locally regulated by androgen via suppression of Nur77. (United States)

    Song, Chin-Hee; Gong, Eun-Yeung; Park, Ji soo; Lee, Keesook


    Steroidogenesis in the testis is regulated by a negative feedback mechanism through the hypothalamus-pituitary-testis axis. Recent studies suggest that besides this long-loop regulation, testicular steroidogenesis is also locally regulated by androgen. However, the molecular mechanism behind this additional regulatory pathway has been poorly addressed. In the present study, we demonstrate that liganded androgen receptor (AR) suppresses the transcriptional activity of Nur77 on steroidogenic enzyme gene promoters, affecting testicular steroidogenesis. AR physically interacts and colocalizes with Nur77 in the nucleus in the presence of androgen. AR inhibits Nur77 transactivation by competing mainly with coactivators such as SRC-1 for Nur77 binding. These results suggest that androgen, through binding to AR, directly acts as a signal inhibiting the expression of steroidogenic enzyme genes in Leydig cells, eventually resulting in decreased testicular steroidogenesis. These findings strongly support the hypothesis that androgen acts locally to regulate testicular steroidogenesis, and may provide its action mechanism.

  3. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. (United States)

    Shimada, M; Maeda, T; Terada, T


    Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These results suggest that the initiation of meiotic resumption, namely, the formation of networks of filamentous bivalents in germinal vesicle, is associated with the reduction of gap junctional protein connexin-43 in the outer layers of cumulus cells via the PKC and/or PI 3-kinase pathway. Moreover, the connexin-43 in the inner layers of cumulus cells is phosphorylated during meiotic progression beyond the MI stage, regardless of MAP kinase activation in cumulus cells surrounding the oocyte.

  4. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    Directory of Open Access Journals (Sweden)

    Gian Luigi Russo


    Full Text Available Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells.

  5. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes (United States)

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.


    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  6. In Vitro Developmental Potential of Cloned Embryos Derived from Bovine Somatic Cells and Rabbits Oocyte

    Institute of Scientific and Technical Information of China (English)

    LIU Ya; LI Bin; ZHAO Huan; CHENG Li-zi; ZHANG Xiao-rong; CHEN Da-yuan; ZHANG Yun-hai; ZHANG Zhi-guo; JING Ren-tao; WANG Cun-li; ZHANG Mei-lin; LI Dong-wei


    180 reconstituted embryos were produced by nuclear transplantation using bovine ear fibroblasts at G0 or non-G0 stage as donor nuclei and oocytes collected from superovulated multiparous or young rabbits as recipients. After cultivation in two kinds of medium M199+ 10%FBS or RD+ 10%FBS, 112 of them developed to 2-cell stage (62.2%) and 26 to morula stage (14.4%) and 20 of them eventually developed to blastocyst stage (11. 1% ). There is no significant difference for the cleavage rates in two groups of reconstituted embryos derived from G0-stage and non-G0 stage donor cells respectively. However, G0-stage donor cells could result in higher rate of 8-cell - 16-cell stage embryos significantly (P<0.05), as well as higher rate of blastocysts (P<0.01). It seems that using two different culture systems had no significant effects on the cleavage rate, morula rate or blastocyst rate (P>0.05).

  7. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation

    DEFF Research Database (Denmark)

    Macaulay, Angus D.; Gilbert, Isabelle; Scantland, Sara


    the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes...

  8. Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming. (United States)

    Datla, Udaya Sree; Scovill, Natasha Carol; Brokamp, Austin J; Kim, Eunsuk; Asch, Adam S; Lee, Myon-Hee


    Pumilio and FBF (PUF) proteins are conserved stem cell regulators that maintain germline stem cells (GSCs) in worms and flies. Moreover, they are also present in vertebrate stem cells. The nematode Caenorhabditis elegans has multiple PUF proteins with specialized roles. Among them, PUF-8 protein controls multiple cellular processes, including proliferation, differentiation, sperm-oocyte decision, and cell fate reprogramming, depending on the genetic context in the C. elegans germline. In this review, we describe the possible mechanisms of how PUF-8 protein systematically controls multiple cellular processes in the C. elegans germline. Since PUF proteins are evolutionarily conserved, we suggest that a similar mechanism may be involved in controlling stem cell regulation and differentiation in other organisms, including humans.

  9. Supplementation with cumulus cell masses improves the in vitro meiotic competence of porcine cumulus-oocytes complexes derived from small follicles. (United States)

    Matsunaga, R; Funahashi, H


    The present study was conducted to examine the supplemented effect of cumulus cell masses (CCMs) derived from middle follicle (MF; 3-6 mm diameter) on the morphology and the meiotic or developmental competence of oocytes from small follicles (SF; 1-2 mm diameter). The number of cumulus cells surrounding oocytes just after collection was also lower in cumulus-oocyte complexes (COCs) from SF than MF. The ooplasmic diameter of oocytes was significantly smaller in SF-derived oocytes than MF-derived ones before and after in vitro maturation (IVM), whereas the diameter significantly increased during the culture. Co-culture of SF-derived COCs with MF-derived CCMs during IVM significantly improved the meiotic competence of the oocytes to the metaphase-II stage. Furthermore, the ooplasmic diameter of SF-derived COCs during IVM was increased to the similar size of MF-derived those in the presence of MF-derived CCMs. The abilities of oocytes to be penetrated, to form male pronuclear formation and to cleave or develop to the blastocyst stage were not affected by the co-culture with CCMs. Electrophoretic analysis of CCM secretions clearly showed the presence of more protein(s) approximately 27.6 kDa in the conditioned medium when supplemented with MF-derived CCMs. In conclusion, we demonstrate that supplementation with MF-derived CCMs improves the ooplasmic diameter and meiotic competence of SF-derived oocytes.

  10. Mouse cumulus-denuded oocytes restore developmental capacity completely when matured with optimal supplementation of cysteamine, cystine, and cumulus cells. (United States)

    Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He


    Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.

  11. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard;


    The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perleca......, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics......., and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell......-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical...

  12. Induction of E-cadherin+ human amniotic fluid cell differentiation into oocyte-like cells via culture in medium supplemented with follicular fluid. (United States)

    Liu, Te; Huang, Yongyi; Bu, Yanzhen; Zhao, Yanhui; Zou, Gang; Liu, Zhixue


    Pluripotent human amniotic fluid cells (HuAFCs) can differentiate into various types of somatic cell in vitro. However, their differentiation into oocyte-like cells has never been described to the best of our knowledge. In the present study, differentiation of E-cadherin+ and E-cadherin- HuAFC sub-populations into oocyte-like cells was induced via culture in medium containing bovine follicular fluid and β-mercaptoethanol. The E-cadherin+ HuAFCs expressed DAZL highly. Post-induction, cells with an oocyte-like phenotype were found among the E-cadherin+ HuAFCs, expressing markers specific to germ cells and oocytes (VASA, ZP3 and GDF9) and meiosis (DMC1 and SCP3). When specific small interfering RNA (siRNA) was used to suppress E-cadherin in the E-cadherin+ HuAFCs, the levels of DAZL expression were reduced. Post-induction, the morphology of the siRNA‑E‑cadherin HuAFCs was poorer and the expression levels of germ cell-specific markers were lower compared with those of the siRNA-mock HuAFCs. Therefore, E-cadherin+ HuAFCs could be more easily induced to differentiate into oocyte-like cells by bovine follicular fluid and β-mercaptoethanol. In addition, the E-cadherin+ HuAFCs exhibited potential characteristics of DAZL protein expression, and thus it was conjectured that bovine follicular fluid acts on DAZL protein and promotes E-cadherin+ HuAFC differentiation into oocyte-like cells.

  13. Development of porcine embryos reconstituted with somatic cells and enucleated metaphase I and II oocytes matured in a protein-free medium

    Directory of Open Access Journals (Sweden)

    Gibbons John R


    Full Text Available Abstract Background Many cloned animals have been created by transfer of differentiated cells at G0/G1 or M phase of the cell cycle into enucleated M II oocytes having high maturation/meiosis/mitosis-promoting factor activity. Because maturation/meiosis/mitosis-promoting factor activity during oocyte maturation is maximal at both M I and M II, M I oocytes may reprogram differentiated cell nuclei as well. The present study was conducted to examine the developmental ability in vitro of porcine embryos reconstructed by transferring somatic cells (ear fibroblasts into enucleated M I or M II oocytes. Results Analysis of the cell cycle stages revealed that 91.2 ± 0.2% of confluent cells were at the G0/G1 phase and 54.1 ± 4.4% of nocodazole-treated cells were at the G2/M phase, respectively. At 6 h after activation, nuclear swelling was observed in 50.0-88.9% and 34.4-39.5% of embryos reconstituted with confluent cells and nocodazole-treated cells regardless of the recipient oocytes, respectively. The incidence of both a swollen nucleus and polar body was low (6.3-10.5% for all nocodazole-treated donor cell regardless of the recipient oocyte. When embryos reconstituted with confluent cells and M I oocytes were cultured, 2 (1.5% blastocysts were obtained and this was significantly (P Conclusions Porcine M I oocytes have a potential to develop into blastocysts after nuclear transfer of somatic cells.

  14. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro. (United States)

    Zachow, Rob; Uzumcu, Mehmet


    The exquisitely balanced hormonal mechanisms that control female fertility can be affected by several internal and external factors including pathogens, genetic maladies, and environmental agents. In the latter group are natural and synthetic agents known as endocrine disruptors. One such compound, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), is the predominant metabolite of the pesticide methoxychlor. The effects of HPTE on ovarian steroidogenesis have not been previously reported and were investigated in the present study. Granulosa cells harvested from immature rats were treated with follicle-stimulating hormone (FSH) or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP) in the presence or absence of HPTE. After 48h, progesterone (P4) and estradiol-17beta (E2) concentrations were measured in the culture media. Steady-state levels of the mRNAs encoding steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase type 1 (3beta-HSD), and P450 aromatase (P450arom) were examined using real-time PCR. Both FSH- and db-cAMP-stimulated P(4) accumulation were impaired by HPTE. In contrast, FSH-, but not db-cAMP-stimulated, E2 content was suppressed by HPTE. The FSH-dependent increase in the abundance of P450scc, 3beta-HSD, and P450arom mRNAs was blocked by HPTE; however, StAR expression was not altered. Although db-cAMP-dependent P450arom was moderately reduced by HPTE, the levels of db-cAMP-dependent StAR, P450scc, and 3beta-HSD mRNAs were increased in the presence of HPTE. These data collectively show that HPTE can disrupt P4 and E2 production in granulosa cells, with implications for sites of action both preceding and following the generation of cAMP. The steroid-modulatory effects of HPTE in granulosa cells appear to involve the general suppression of the FSH-dependent expression of mRNAs encoding steroid pathway proteins, whereas the disparate effects of HPTE on cAMP-dependent m

  15. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. (United States)

    Kang, Jae Soon; Choi, Jin-Soo; Park, June-Woo


    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most widely used perfluoroalkyl acids (PFAAs). Because of their strong persistence, they have become widely distributed throughout the environment and human bodies. PFOA and PFOS are suspected to disrupt the endocrine system based upon many in vivo studies, but the underlying mechanisms are currently unclear. In this study, we investigated the endocrine-related effects of PFOA and PFOS using in vitro estrogen receptor (ER) and androgen receptor (AR) transactivation assays and steroidogenesis assay. The results showed that PFOA and PFOS exhibited weak antagonistic ER transactivation but did not exhibit agonistic ER or AR transactivation. In the steroidogenesis assay, PFOA and PFOS induced 17β-estradiol (E2) level and reduced testosterone level, which would be caused by the induction of aromatase activity. The qPCR analysis of genes involved in steroidogenesis indicates that PFOA and PFOS associate with sex hormone synthesis by the transcriptional induction of two genes, cyp19 and 3β-hsd2. Moreover, the transcriptional induction of cyp11b2 by PFOS suggests that this chemical may underlie the disruption of several physiological functions related to aldosterone. The results of the current study suggest that PFOA and PFOS are potential endocrine disrupting chemicals (EDCs) and provide information for further studies on the molecular events that initiate the adverse endocrine effects.

  16. Influence of the adipose derived hormone resistin onsignal transducer and activator of transcription factors, steroidogenesis and proliferation of Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Stephanie Jean; David Landry; Mikella Daigle; Luc J. Martin


    Objective:To explore whether resistin, an adipose derived hormone linked to insulin resistance, influence steroidogenic genes expressions andLeydig cells function or not.Methods:Various Leydig cell lines were exposed to increasing doses of resistin with or without cAMP.Changes were monitored at the protein level for signal transducer and activator of transcription(STAT) factors and steroidogenic components, steroidogenic acute regulatory protein(STAR) and cholesterol side-chain cleavage enzyme(CYP11A1), for progesterone production and cell viability.Results:Resistin had no effect on progesterone production, despite an increase in nuclear translocation ofSTAT1,STAT3 andSTAT5 and unexpected synergy with cAMP in the synthesis ofSTAR and CYP11A1.In addition, exposure to normal levels of resistin(10 ng/mL) seemed to have beneficial effects onLeydig cell function, as it increased cells viability and proliferation.Conclusions:Our results suggest that resistin may function as an endocrine mediator linking metabolism and male reproduction.

  17. Time-Course Changes of Steroidogenic Gene Expression and Steroidogenesis of Rat Leydig Cells after Acute Immobilization Stress

    Directory of Open Access Journals (Sweden)

    Han Lin


    Full Text Available Leydig cells secrete testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid (corticosterone, CORT; in rats, which decreases circulating testosterone levels in part through a direct action by binding to the glucocorticoid receptors (NR3C1 in Leydig cells. The intratesticular CORT level is dependent on oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1 in Leydig cells. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute immobilization stress in rats. The plasma CORT levels were significantly increased 0.5, 1, 3 and 6 h after immobilization stress, while plasma testosterone levels were significantly reduced 3 and 6 h, after stress and luteinizing hormone (LH did not change. Immobilization stress caused the down-regulation of Scarb1, Star and Cyp17a1 expression levels in the rat testis starting at the first hour of stress, ahead of the significant decreases of plasma testosterone levels. Other mRNA levels, including Cyp11a1, Hsd3b1 and Hsd17b3, began to decline after 3 h. Hsd11b1 and Nos2 mRNA levels did not change during the course of stress. Administration of glucocorticoid antagonist RU486 significantly restored plasma testosterone levels. In conclusion, Scarb1, Star and Cyp17a1 expression levels are more sensitive to acute stress, and acute immobilization stress causes the decline of the steroidogenic pathway via elevating the levels of glucocorticoid, which binds to NR3C1 in Leydig cells to inhibit steroidogenic gene expression.

  18. Effect of chlorpromazine on the steroidogenesis of rat ovarian grandlose cells in vitro%氯丙嗪对大鼠卵巢颗粒细胞分泌功能的影响

    Institute of Scientific and Technical Information of China (English)

    邬静; 袁慧; 彭双清


    为研究大鼠卵巢颗粒细胞(GC)的分泌功能,用氯丙嗪染毒体外培养的大鼠GC,采用MTT法检测细胞相对活力,ELISA法检测收集培养液中孕酮(P)和雌二醇(E2)的含量,半定量RT-PCR检测激素分泌相关调控基因FSHR、StAR、P450scc和P450arom mRNA的表达,免疫细胞化学染色法检测细胞中特异卵泡刺激素受体的表达.结果表明:经0.1、1.0和10.0 μmol/L氯丙嗪染毒24 h后,与对照组相比,细胞相对活力分别为87.95%、83.96%和74.48%,E2的分泌量和StAR mRNA相对表达水平分别从对照组的6.16 pg/μtg、2.014显著下降到3.70 pg/μg、0.311,呈现明显的剂量-效应关系,表明转运蛋白StAR可能是氯丙嗪影响颗粒细胞激素分泌的关键位点之一.%To study the toxic effects and explore the possible mechanism of chlorpromazine exposure to rat ovarian granulosa cell steroidogenesis in vitro, immature ovarian granulosa cells of wistar rat was primary cultured. After exposure to chlorpromazine for 24 h, cell viability was detected by MTT assay, content of progesterone (P) and estradiol (E2) collected from medium were detected by EL1SA assay; FSHR, StAR, P450scc and P450arom mRNA expression were detected by semi-quantitative RT-PCR, and expression of follicle stimulating hormone receptor-specific receptor(FSHR) in granulosa cells was detected by immunocytochemical staining assay. The results showed that chlorpromazine could significantly decrease the viability of rat ovarian granulosa cells, thus affect steroidogenesis and StAR maybe one of the key factors to affect the steroidogenesis of granulosa cells.

  19. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, L.M.; Catt, K.J. (National Inst. of Health, Bethesda, MD (United States))


    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNA in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.

  20. Development of iPS (induced pluripotent stem cells) using natural product from extract of fish oocyte to provide stem cell for regenerative therapy (United States)

    Meilany, Sofy; Firdausiyah, Qonitha S.; Naroeni, Aroem


    In this study, we developed a method to induce pluripotency of adult cells (fibroblast) into stem cells using a natural product, extract of fish oocyte, by comparing the extract concentration, 1 mg/ml and 2 mg/ml. The analyses were done by measuring the Nanog gene expression in cells using qPCR and detecting fibroblast marker anti H2-KK. The results revealed existence of a colony of stem cells in the cell that was induced with 2mg/ml concentration of oocytes. Nanoggene expression was analyzed by qPCR and the results showed expression of Nanog gene compared to the control. Analysis of result of fibroblast using Tali Cytometer and anti H2KK antibody showed loss of expression of Anti H2KK meaning there was transformation from fibroblast type cell to pluripotent cell type.

  1. Relationship of Human Cumulus Cells and Oocyte during Oocyte Development or Maturation%人卵丘细胞与卵母细胞发育及成熟的关系

    Institute of Scientific and Technical Information of China (English)

    黄鑫; 郝翠芳


    卵丘细胞与卵母细胞共处于同一个卵泡液微环境中,卵丘细胞与卵母细胞之间复杂的“对话机制”调控着卵母细胞的成熟和卵丘细胞的增殖延伸.在窦卵泡阶段,卵丘细胞由颗粒细胞分化而来,通过缝隙连接与卵母细胞共同形成一个结构和功能上的合胞体.卵泡发育不同时期,卵丘细胞对卵母细胞的代谢调控主要表现为:在窦卵泡期,卵丘细胞为卵母细胞发育提供必需的营养,而卵母细胞分泌的信号因子亦调控着卵丘细胞的增殖和延伸;在排卵前卵泡中,卵丘细胞主要通过调控卵母细胞中cAMP水平,促使卵母细胞恢复减数分裂;在排卵后卵泡中,卵丘细胞亦影响着精-卵结合及胚胎发育的过程.另外,伴随卵泡内微环境的变化,卵丘细胞与卵母细胞间发生着复杂的信号传递,从而对卵母细胞的发育实现分子水平的调控,其中部分基因可能作为卵母细胞发育成熟、胚胎发育及妊娠结局的分子标志物.%The cumulus cells (CCs) share the same follicular microenvironment with oocyte, and the bidirectional communication between CCs and oocyte is controlling the oocyte maturation and CCs proliferation. CCs originate from granulose cells (GCs) which differentiate into mural GCs and CCs during follicular antrum formation. The signaling between the CCs and oocyte via gap junctions and then they were made up of a structural and functional unit. During the different phases of folliculogenesis, CCs controlled the oocyte development as follows: during the antral phase, CCs provided necessary nourishment to support oocyte development and oocyte secreted signal factors to control the proliferation of CCs; during the pre-ovulatory phase, CCs promoted the oocyte to resume meiosis by controlling the cAMP; during the post-ovulation, the CCs also affected fertilization or embryos development. Furthermore, as the follicular microenvironment was changing, the complex

  2. Human Wharton’s jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asgari


    Conclusion: Placental cell supplementsTransforming growth factor (TGF α, β and basic fibroblast growth factor (bFGF in a co-culture model can provide proper environment for induction of HUMSCs into PGCs and expression of oocyte-like markers.

  3. From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. (United States)

    Sardet, Christian; Paix, Alexandre; Prodon, François; Dru, Philippe; Chenevert, Janet


    The dorsoventral and anteroposterior axes of the ascidian embryo are defined before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?


    Teruko Taketo


    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resulta...

  5. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure

    Institute of Scientific and Technical Information of China (English)

    Ge Lin; Qi OuYang; Xiaoying Zhou; Yifan Gu; Ding Yuan; Wen Li; Gang Liu; Tiancheng Liu; Guanexiu Lu


    Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES-32) from a one-pronuclear oocyte following routine in vitro fertilization treatment. cAHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (>P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, c/zHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of c/zHES-32 cells was further confirmed. The results indicated that 'unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategy for obtaining homozygous hESC lines from parthenogenetic haploid oocytes.

  6. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. (United States)

    Miller, Walter L; Auchus, Richard J


    Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.

  7. Interspecies nuclear transfer using fibroblasts from leopard, tiger, and lion ear piece collected postmortem as donor cells and rabbit oocytes as recipients. (United States)

    Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao


    Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm.

  8. Effect of Collection Technique on Yield of Bovine Oocytes and the Development Potential of Oocytes from Different Grades of Oocytes

    Directory of Open Access Journals (Sweden)

    R.G Sianturi


    Full Text Available Oocyte collection technique is important to obtain a maximum number of oocytes to be employed on in vitro production of embryos. In this study, immature bovine oocytes were collected from slaughterhouse ovaries by two techniques: aspiration of 2- to 6-mm follicles and slicing. Following collection, oocyte qualities were classified into four categories (A, B, C, and D on the basis of cumulus attachment. Oocytes of each category were matured in vitro in CO2 incubator for 22-24 hours and cumulus expansion and maturation rates were observed. The total number of oocytes (group A+B+C+D and yield of good quality oocytes (only group A and B recovered per ovary by aspiration were 12.02 and 8.21, and by slicing were 29.38 and 19.65 (P<0.01, respectively. The total cumulus cells expansion rates of A, B, C and D oocytes were 97.1%, 88.3%, 6.0% and 20.6% respectively. Maturation rates for A, B and C categories of oocytes were 91.4%, 82.3% and 35.0% respectively while no matured oocyte was observed for group D oocytes. Maturation rates were significantly different between group A and C and also between B and C but not between A and B (P<0.05. In conclusion, slicing technique recovered more oocytes per ovary (2.4 times than that of aspiration and the best maturation rate was observed from category A oocytes which surrounded by more than 3 layers of cumulus cells. However oocytes of category A and B can be considered as good quality oocytes.

  9. Serous papillary adenocarcinoma possibly related to the presence of primitive oocyte-like cells in the adult ovarian surface epithelium: a case report

    Directory of Open Access Journals (Sweden)

    Virant-Klun Irma


    Full Text Available Abstract Introduction The presence of oocytes in the ovarian surface epithelium has already been confirmed in the fetal ovaries. We report the presence of SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the adult ovarian surface epithelium of a patient with serous papillary adenocarcinoma. Case presentation Ovarian tissue was surgically retrieved from a 67-year old patient. Histological analysis revealed serous papillary adenocarcinoma. A proportion of ovarian cortex sections was deparaffinized and immunohistochemically stained for the expression of markers of pluripotency SSEA-4 and SOX-2 and oocyte-specific markers VASA and ZP2. The analysis confirmed the presence of round, SSEA-4, SOX-2, VASA and ZP2-positive primitive oocyte-like cells in the ovarian surface epithelium. These cells were possibly related to the necrotic malignant tissue. Conclusion Primitive oocyte-like cells present in the adult ovarian surface epithelium persisting probably from the fetal period of life or developed from putative stem cells are a pathological condition which is not observed in healthy adult ovaries, and might be related to serous papillary adenocarcinoma manifestation in the adult ovarian surface epithelium. This observation needs attention to be further investigated.

  10. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. (United States)

    Papadopoulos, Vassilios; Aghazadeh, Yasaman; Fan, Jinjiang; Campioli, Enrico; Zirkin, Barry; Midzak, Andrew


    Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.

  11. Cholesterol transport and steroidogenesis by the corpus luteum

    Directory of Open Access Journals (Sweden)

    Christenson Lane K


    Full Text Available Abstract The synthesis of progesterone by the corpus luteum is essential for the establishment and maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into three major events; luteinization (i.e., conversion of an ovulatory follicle, luteal regression, and pregnancy induced luteal maintenance/rescue. While the factors that control these events and dictate the final steroid end products are widely varied among different species, the composition of the corpus luteum (luteinized thecal and granulosa cells and the enzymes and proteins involved in the steroidogenic pathway are relatively similar among all species. The key factors involved in luteal steroidogenesis and several new exciting observations regarding regulation of luteal steroidogenic function are discussed in this review.

  12. Supplementation with spermine during in vitro maturation of porcine oocytes improves early embryonic development after parthenogenetic activation and somatic cell nuclear transfer. (United States)

    Jin, J X; Lee, S; Khoirinaya, C; Oh, A; Kim, G A; Lee, B C


    Spermine plays an important role in protection from reactive oxygen species (ROS) in bacteria, yeast, and mammalian cells, but there are few studies on the effects of spermine on porcine oocyte maturation and subsequent embryo development. The aim of this study was to determine the effects of spermine on in vitro maturation (IVM) of porcine oocytes and their developmental competence after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). We evaluated nuclear maturation, intracellular glutathione (GSH), and ROS levels in oocytes, and their subsequent embryonic development, as well as gene expression in mature oocytes, cumulus cells, and PA blastocysts. After treatment with various concentrations of spermine in IVM culture medium, there was no significant difference in nuclear maturation rate. However, spermine treatment groups (10- 500 µM) showed significantly increased intracellular GSH levels and decreased ROS levels compared to the control ( cells ( < 0.05). was increased in spermine-treated oocytes. Levels of transcription for and were significantly increased in PA blastocysts. In conclusion, 10 µM spermine supplementation during IVM improved the development of porcine PA and SCNT embryos by increasing intracellular GSH, scavenging ROS levels, and regulating gene expression.

  13. Assessment of steroidogenesis and steroidogenic enzyme functions. (United States)

    Luu-The, Van


    There is some confusion in the literature about steroidogenesis in endocrine glands and steroidogenesis in peripheral intracrine tissues. The objective of the present review is to bring some clarifications and better understanding about steroidogenesis in these two types of tissues. Concerns about substrate specificity, kinetic constants and place of enzymes in the pathway have been discussed. The role of 17α-hydroxylase/17-20 lyase (CYP17A1) in the production of dehydroepiandrosterone and back-door pathways of dihydrotestosterone biosynthesis is also analyzed. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".

  14. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands. (United States)

    Light, Allison; Hammes, Stephen R


    Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome.

  15. Cigarette smoke impairs granulosa cell proliferation and oocyte growth after exposure cessation in young Swiss mice: an experimental study

    Directory of Open Access Journals (Sweden)

    Paixão Larissa LO


    Full Text Available Abstract Background Cigarette smoke is associated with decreased female fertility, causing damage to ovarian function and disturbing follicle development. However, the effects of cigarette toxicants on ovarian function depend on duration and intensity of exposure. The aim of this study was to assess the effects of brief, intense exposure to tobacco smoke on granulosa cell number, oocyte growth, and follicle size during puberty in female Swiss mice. Methods Ten female Swiss mice aged 35 days were exposed to tobacco smoke from 3R4F reference research cigarettes. They were exposed to an automatic smoking machine 8 h/day, 7 days/week for 15 days. Ten age-matched controls were kept in a different room and exposed to ambient air. At the end of 15 days, five mice in each group were euthanized and the ovaries were analyzed for follicular morphometry and granulosa cell count. The remaining animals were kept for an additional 30 days for further analysis as an ex-smoker group and control group. Comparison between the two groups was evaluated by the Student’s t-test or a two-way ANOVA followed by Bonferroni post-test was applied for multiple comparisons. Results We found that cigarette smoke impaired antral follicular growth even after exposure cessation (p Conclusions The negative effects of cigarette smoking seem to last even after exposure has been interrupted. Moreover, brief exposure during puberty may induce silent oocyte disruption, which could in turn lead to decreased fecundity rates.

  16. Oocyte development, meiosis and aneuploidy. (United States)

    MacLennan, Marie; Crichton, James H; Playfoot, Christopher J; Adams, Ian R


    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.

  17. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul


    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for m......RNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment...

  18. Effect of epigallocatechin-3-gallate on the in vitro developmental potential of porcine oocytes and embryos obtained parthenogenetically and by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Yunsheng Li


    Full Text Available The present study aimed to investigate the effects of epigallocatechin-3-gallate (EGCG on the in vitro development of porcine oocytes, parthenogenetic activation embryos (PA, and somatic cell nuclear transfer (SCNT embryos. In Experiment 1, 0 (control, 10, 30, and 50 μg/mL EGCG were added to in vitro maturation (IVM medium to explore the effect of EGCG on IVM of pig oocytes. The matured oocytes were then used to produce PA and SCNT embryos. Either for nuclear maturation of oocytes or for the rates of cleavage and blastocyst of PA and SCNT embryos, no significant difference was found among all groups. However, the total cell number per cloned blastocyst was significantly lower in blastocysts derived from oocytes matured in 50 μg/mL EGCG (P<0.05 as compared with the other groups. In Experiment 2, we cultured pig SCNT and PA embryos in medium containing various concentrations of EGCG to examine the effect of EGCG on preimplantation development. The cleavage and blastocyst rates and the total cell number per blastocyst did not significantly differ between PA and SCNT embryos among all groups. However, the reactive oxygen species level was significantly lower in the PA embryos cultured in 10 μg/mL EGCG than the other groups (P<0.05. Our results suggest that high doses of EGCG in IVM are harmful to the oocytes as evidenced by the decreased quality of SCNT embryos, and EGCG has no beneficial effects on in vitro development of pig cloned embryos.

  19. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells. (United States)

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S


    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P embryonic development and progressed through two-cell, four-cell, eight-cell, morula, and blastocyst-like structures, indicative of their developmental competence

  20. Culture of porcine luteal cells as a substrate for in vitro maturation of porcine cumulus oocyte complexes. Establishment and characterization

    Directory of Open Access Journals (Sweden)

    Teplitz MA


    Full Text Available The aim of this study was to establish and characterize the porcine luteal cells (PLC culture for the subsequent coculture with porcine COC. The final purpose is to promote the oocyte maturation. The PLC was established using corpora lutea obtained from slaughterhouse ovaries. Corpora lutea were dissected and luteal tissue submitted to a mechanical and enzymatic digestion with collagenase IV. The cell suspension was filtered and centrifuged and the cells obtained were diluted in 15 mL of DMEM-F12 supplemented media. Diluted cells were seeded in 3 culture flasks T25, staying in a controlled environment and changing the medium every 2 days. For the analysis and characterization, the cells were assessed by the Nile red staining to detect intracellular lipids, immunocytochemistry (ICC for 3β-hydroxy steroid dehidrogenase (3β-HSD and ELISA for P4 determination. We observed the presence of lipid intracellular droplets. Also, we observed an increase of P4 concentration at 48, 96 y 144 h of primary culture and almost all the cells were positive to the ICC evaluation for 3β-HSD, showing the steroidogenic capacity of the culture cells.

  1. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females.

    Directory of Open Access Journals (Sweden)

    Sara Andux


    Full Text Available In women, oocytes arrest development at the end of prophase of meiosis I and remain quiescent for years. Over time, the quality and quantity of these oocytes decreases, resulting in fewer pregnancies and an increased occurrence of birth defects. We used the nematode Caenorhabditis elegans to study how oocyte quality is regulated during aging. To assay quality, we determine the fraction of oocytes that produce viable eggs after fertilization. Our results show that oocyte quality declines in aging nematodes, as in humans. This decline affects oocytes arrested in late prophase, waiting for a signal to mature, and also oocytes that develop later in life. Furthermore, mutations that block all cell deaths result in a severe, early decline in oocyte quality, and this effect increases with age. However, mutations that block only somatic cell deaths or DNA-damage-induced deaths do not lower oocyte quality. Two lines of evidence imply that most developmentally programmed germ cell deaths promote the proper allocation of resources among oocytes, rather than eliminate oocytes with damaged chromosomes. First, oocyte quality is lowered by mutations that do not prevent germ cell deaths but do block the engulfment and recycling of cell corpses. Second, the decrease in quality caused by apoptosis mutants is mirrored by a decrease in the size of many mature oocytes. We conclude that competition for resources is a serious problem in aging germ lines, and that apoptosis helps alleviate this problem.

  2. Live-cell quantification and comparison of mammalian oocyte cytosolic lipid content between species, during development, and in relation to body composition using nonlinear vibrational microscopy. (United States)

    Jasensky, Joshua; Boughton, Andrew P; Khmaladze, Alexander; Ding, Jun; Zhang, Chi; Swain, Jason E; Smith, George W; Chen, Zhan; Smith, Gary D


    Cytosolic lipids participate in the growth, development, and overall health of mammalian oocytes including many roles in cellular homeostasis. Significant emphasis has been placed on the study of lipids as a dynamic organelle, which in turn requires the development of tools and techniques to quantitate and compare how lipid content relates to cellular structure, function, and normalcy. Objectives of this study were to determine if nonlinear vibrational microscopy (e.g., coherent anti-Stokes Raman scattering or CARS microscopy) could be used for live-cell imaging to quantify and compare lipid content in mammalian oocytes during development and in relation to body composition; and compare its efficacy to methods involving cellular fixation and staining protocols. Results of this study demonstrate that CARS is able to identify lipids in live mammalian oocytes, and there exists quantifiable and consistent differences in percent lipid composition across ooctyes of different species, developmental stages, and in relation to body composition. Such a method of live-cell lipid quantification has (i) experimental power in basic cell biology, (ii) practical utility for identifying developmental predictive biomarkers while advancing biology-based oocyte/embryo selection, and (iii) ability to yield rationally supporting technology for decision-making in rodents, domestic species, and human assisted reproduction and/or fertility preservation.

  3. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun


    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  4. Apoptosis in mammalian oocytes: a review. (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K


    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  5. In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice. (United States)

    Choi, Jung Kyu; Agarwal, Pranay; He, Xiaoming


    The ovarian follicle (each contains a single oocyte) is the fundamental functional tissue unit of mammalian ovaries. In humans, it has been long held true that females are born with a maximum number of follicles (or oocytes) that are not only nonrenewable, but also undergoing degeneration with time with a sharply decreased oocyte quality after the age of ∼35. Therefore, it is of importance to isolate and bank ovarian follicles for in vitro culture to obtain fertilizable oocytes later, to preserve the fertility of professional women who may want to delay childbearing, young and unmarried women who may lose gonadal function because of exposure to environmental/occupational hazards or aggressive medical treatments, such as radiation and chemotherapy, and even endangered species and breeds. Although they contributed significantly to the understanding of follicle science and biology, most studies reported to date on this topic were done using the man-made, unnatural inbred animal species. It was found in this study that the conventional two-dimensional microliter drop and three-dimensional hanging drop (HD) methods, reported to be effective for in vitro culture of preantral follicles from inbred mice, are not directly transferrable to outbred deer mice. Therefore, a modified HD method was developed in this study to achieve a much higher (>5 times compared to the best conventional methods) percentage of developing early secondary preantral follicles from the outbred mice to the antral stage, for which, the use of an ovarian cell-conditioned medium and multiple follicles per HD were identified to be crucial. It was further found that the method for in vitro maturation of oocytes in antral follicles obtained by in vitro culture of preantral follicles could be very different from that for oocytes in antral follicles obtained by hormone stimulation in vivo. Therefore, this study should provide important guidance for establishing effective protocols of in vitro follicle

  6. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R. (United States)

    Tremoen, Nina Hårdnes; Fowler, Paul A; Ropstad, Erik; Verhaegen, Steven; Krogenæs, Anette


    Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including

  7. PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). (United States)

    Tu, Lan N; Zhao, Amy H; Stocco, Douglas M; Selvaraj, Vimal


    Translocator protein (TSPO) is a mitochondrial outer membrane protein of unknown function with high physiological expression in steroidogenic cells. Using TSPO gene-deleted mice, we recently demonstrated that TSPO function is not essential for steroidogenesis. The first link between TSPO and steroidogenesis was established in studies showing modest increases in progesterone production by adrenocortical and Leydig tumor cell lines after treatment with PK11195. To reconcile discrepancies between physiological and pharmacological interpretations of TSPO function, we generated TSPO-knockout MA-10 mouse Leydig tumor cells (MA-10:TspoΔ/Δ) and examined their steroidogenic potential after exposure to either dibutyryl-cAMP or PK11195. Progesterone production in MA-10:TspoΔ/Δ after dibutyryl-cAMP was not different from control MA-10:Tspo+/+ cells, confirming that TSPO function is not essential for steroidogenesis. Interestingly, when treated with increasing concentrations of PK11195, both control MA-10:Tspo+/+ cells and MA-10:TspoΔ/Δ cells responded in a similar dose-dependent manner showing increases in progesterone production. These results show that the pharmacological effect of PK11195 on steroidogenesis is not mediated through TSPO.

  8. Oocyte-somatic cell communication and microRNA function in the ovary: Communication ovocyte-cellule somatique et fonction des microRNA dans l’ovaire



    An enormous amount of knowledge about the ovary has been generated over the last two decades, due in part to the development of strategies to genetically manipulate the mouse using embryonic stem cell technology. Our group and others have identified multiple factors that are important and essential at all stages of ovarian folliculogenesis from formation of the primordial factor to ovulation. It is obvious that an oocyte, the key cargo of the ovary, and the surrounding granulosa cells, the su...

  9. Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. (United States)

    Galli, C; Colleoni, S; Duchi, R; Lagutina, I; Lazzari, G


    Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.

  10. Ovarian steroidogenesis and the role of sex steroid hormones on ovarian growth and maturation of the Japanese eel. (United States)

    Kazeto, Yukinori; Tosaka, Ryota; Matsubara, Hajime; Ijiri, Shigeho; Adachi, Shinji


    Three sex steroid hormones, estradiol-17β (E2), 11-ketotestosterone (11-KT), and 17α,20β-dihydroxy-4-pregnen-3-one (DHP), are well established as primary estrogen, androgen, and progestin, respectively, in teleost fish. Japanese eel, Anguilla japonica, would be a suitable candidate to study ovarian steroid physiology of fish because the ovarian growth and steroidogenesis is dormant under laboratory condition but can be induced by administration of exogenous gonadotropic reagents. In this review, we summarized our work on the function and production of sex steroid hormones in the ovary of the Japanese eel during ovarian growth and oocyte maturation artificially induced by treatment with extract of salmon pituitary. In vitro and in vivo assays suggest that 11-KT and E2 play primary roles in previtellogenic and vitellogenic growth of oocytes, respectively, whereas DHP is essential for induction of final oocyte maturation. We also reviewed the correlation between ovarian steroidogenesis to produce these sex steroid hormones, serum titers and gene expression.

  11. Intratumoral steroidogenesis in castration-resistant prostate cancer: a target for therapy. (United States)

    Armandari, Inna; Hamid, Agus Rizal; Verhaegh, Gerald; Schalken, Jack


    Development of castration-resistant prostate cancer (CRPC) in a low androgen environment, arising from androgen deprivation therapy (ADT), is a major problem in patients with advanced prostate cancer (PCa). Several mechanisms have been hypothesized to explain the progression of PCa to CRPC during ADT, one of them is so called persistent intratumoral steroidogenesis. The existence of intratumoral steroidogenesis was hinted based on the residual levels of intraprostatic testosterone (T) and dihydrotestosterone (DHT) after ADT. Accumulating evidence has shown that the intraprostatic androgen levels after ADT are sufficient to induce cancer progression. Several studies now have demonstrated that PCa cells are able to produce T and DHT from different androgen precursors, such as cholesterol and the adrenal androgen, dehydroepiandrosterone (DHEA). Furthermore, up-regulation of genes encoding key steroidogenic enzymes in PCa cells seems to be an indicator for active intratumoral steroidogenesis in CRPC cells. Currently, several drugs are being developed targeting those steroidogenic enzymes, some of which are now in clinical trials or are being used as standard care for CRPC patients. In the future, novel agents that target steroidogenesis may add to the arsenal of drugs for CRPC therapy.

  12. The transcriptome of corona radiata cells from individual MII oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women

    DEFF Research Database (Denmark)

    Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David;


    individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. The transcriptomes of CRCs showed......-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed....... It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from...

  13. The transcriptome of corona radiata cells from individual MII oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women

    DEFF Research Database (Denmark)

    Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David;


    . It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from...... individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. The transcriptomes of CRCs showed...... no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR


    Abstract Glutathione (GSH) is thought to play critical roles in oocyte function including spindle maintenance and provision of reducing power needed to initiate sperm chromatin decondensation. Previous observations that GSH concentrations are higher in mature than immature o...

  15. Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes. (United States)

    Priya, D; Selokar, N L; Raja, A K; Saini, M; Sahare, A A; Nala, N; Palta, P; Chauhan, M S; Manik, R S; Singla, S K


    The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin-18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p cell proliferation rate was significantly (p cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open-pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re-expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified-warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.

  16. Human α3β4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Paraskevi Krashia

    Full Text Available BACKGROUND: The neuronal nicotinic receptors that mediate excitatory transmission in autonomic ganglia are thought to be formed mainly by the α3 and β4 subunits. Expressing this composition in oocytes fails to reproduce the properties of ganglionic receptors, which may also incorporate the α5 and/or β2 subunits. We compared the properties of human α3β4 neuronal nicotinic receptors expressed in Human embryonic kidney cells (HEK293 and in Xenopus oocytes, to examine the effect of the expression system and α:β subunit ratio. METHODOLOGY/PRINCIPAL FINDINGS: Two distinct channel forms were observed: these are likely to correspond to different stoichiometries of the receptor, with two or three copies of the α subunit, as reported for α4β2 channels. This interpretation is supported by the pattern of change in acetylcholine (ACh sensitivity observed when a hydrophilic Leu to Thr mutation was inserted in position 9' of the second transmembrane domain, as the effect of mutating the more abundant subunit is greater. Unlike α4β2 channels, for α3β4 receptors the putative two-α form is the predominant one in oocytes (at 1:1 α:β cRNA ratio. This two-α form has a slightly higher ACh sensitivity (about 3-fold in oocytes, and displays potentiation by zinc. The putative three-α form is the predominant one in HEK cells transfected with a 1:1 α:β DNA ratio or in oocytes at 9:1 α:β RNA ratio, and is more sensitive to dimethylphenylpiperazinium (DMPP than to ACh. In outside-out single-channel recordings, the putative two-α form opened to distinctive long bursts (100 ms or more with low conductance (26 pS, whereas the three-α form gave rise to short bursts (14 ms of high conductance (39 pS. CONCLUSIONS/SIGNIFICANCE: Like other neuronal nicotinic receptors, the α3β4 receptor can exist in two different stoichiometries, depending on whether it is expressed in oocytes or in mammalian cell lines and on the ratio of subunits transfected.

  17. Oversight framework over oocyte procurement for somatic cell nuclear transfer: comparative analysis of the Hwang Woo Suk case under South Korean bioethics law and U.S. guidelines for human embryonic stem cell research. (United States)

    Kim, Mi-Kyung


    We examine whether the current regulatory regime instituted in South Korea and the United States would have prevented Hwang's potential transgressions in oocyte procurement for somatic cell nuclear transfer, we compare the general aspects and oversight framework of the Bioethics and Biosafety Act in South Korea and the US National Academies' Guidelines for Human Embryonic Stem Cell Research, and apply the relevant provisions and recommendations to each transgression. We conclude that the Act would institute centralized oversight under governmental auspices while the Guidelines recommend politically-independent, decentralized oversight bodies including a special review body for human embryonic stem cell research at an institutional level and that the Guidelines would have provided more vigorous protection for the women who had undergone oocyte procurement for Hwang's research than the Act. We also suggest additional regulations to protect those who provide oocytes for research in South Korea.

  18. Fibroblast Growth Factors and Epidermal Growth Factor Cooperate with Oocyte-Derived Members of the TGFbeta Superfamily to Regulate Spry2 mRNA Levels in Mouse Cumulus Cells1 (United States)

    Sugiura, Koji; Su, You-Qiang; Li, Qinglei; Wigglesworth, Karen; Matzuk, Martin M.; Eppig, John J.


    Mouse oocytes produce members of the transforming growth factor beta (TGFbeta) superfamily, including bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), as well as fibroblast growth factors (FGFs). These growth factors cooperate to regulate cumulus cell function. To identify potential mechanisms involved in these interactions, the ability of fully grown oocytes to regulate expression of BMP or FGF antagonists in cumulus cells was examined. Oocytes promoted cumulus cell expression of transcripts encoding antagonists to TGFbeta superfamily members, including Grem2, Htra1, Htra3, and Nog mRNAs. In contrast, oocytes suppressed cumulus cell expression of Spry2 mRNA, which encodes a regulator of receptor tyrosine kinase signals, such as FGF and epidermal growth factor (EGF) receptor signals. The regulation of Spry2 mRNA levels in cumulus cells was studied further as a model for analysis of potential mechanisms for cooperativity of FGF/EGF signaling with oocyte-derived members of the TGFbeta superfamily. Oocytes suppressed basal and FGF-stimulated Spry2 mRNA levels in cumulus cells but promoted EGF-stimulated levels. Furthermore, recombinant TGFbeta superfamily proteins, including BMP15 and GDF9, mimicked these effects of oocytes. Elevated expression of Spry2 mRNA in cumulus and mural granulosa cells correlated with human chorionic gonadotropin-induced expression of mRNAs encoding EGF-like peptides. Therefore, oocyte-derived members of the TGFbeta superfamily suppress FGF-stimulated Spry2 mRNA levels before the luteinizing hormone surge but promote Spry2 mRNA levels stimulated by EGF receptor-mediated signals after the surge. PMID:19553596

  19. Cloned embryos from semen. Part 2: Intergeneric nuclear transfer of semen-derived eland (Taurotragus oryx) epithelial cells into bovine oocytes (United States)

    Nel-Themaat, L.; Gomez, M.C.; Pope, C.E.; Lopez, M.; Wirtu, G.; Jenkins, J.A.; Cole, A.; Dresser, B.L.; Bondioli, K.R.; Godke, R.A.


    The production of cloned offspring by nuclear transfer (NT) of semen-derived somatic cells holds considerable potential for the incorporation of novel genes into endangered species populations. Because oocytes from endangered species are scarce, domestic species oocytes are often used as cytoplasts for interspecies NT. In the present study, epithelial cells isolated from eland semen were used for intergeneric transfer (IgNT) into enucleated bovine oocytes and compared with bovine NT embryos. Cleavage rates of bovine NT and eland IgNT embryos were similar (80 vs. 83%, respectively; p > 0.05); however, development to the morula and blastocyst stage was higher for bovine NT embryos (38 and 21%, respectively; p < 0.0001), than for eland IgNT embryos (0.5 and 0%, respectively). DNA synthesis was not observed in either bovine NT or eland IgNT cybrids before activation, but in 75 and 70% of bovine NT and eland igNT embryos, respectively, cell-cycle resumption was observed at 16 h postactivation (hpa). For eland IgNT embryos, 13% had ???8 cells at 84 hpa, while 32% of the bovine NT embryos had ???8 cells at the same interval. However, 100 and 66% of bovine NT and eland IgNT embryos, respectively, that had ???8 cells synthesized DNA. From these results we concluded that (1) semen-derived epithelial cell nuclei can interact and be transcriptionally controlled by bovine cytoplast, (2) the first cell-cycle occurred in IgNT embryos, (3) a high frequency of developmental arrest occurs before the eight-cell stage in IgNT embryos, and (4) IgNT embryos that progress through the early cleavage stage arrest can (a) synthesize DNA, (b) progress through subsequent cell cycles, and (c) may have the potential to develop further. ?? 2008 Mary Ann Liebert, Inc.


    Montserrat, Pallas Seijas


    Cryopreservation ofhuman oocytes to delay fertility also be an option for women who are going to be subjected to a cancer/autoimmune treatment. It allows for creating a bank of oocytes for donation in assisted reproduction centers. The legislation allows the use of cryopreserved oocytes throughout the reproductive life of women with what conservation could last up to 48-50 years. Oocyte vitrification is a ultrafast freezing method in which cryoprotectants are used to prevent the formation of ice crystals within the cell. Treatment for oocyte vitrification process is similar to IVF treatment, ending at the time of obtaining the ova. The eggs obtained in the laboratory are classified according to maturity and quality. The apartments will be cryopreserved by vitrification technique tanks and maintained in liquid nitrogen until used for reproductive purposes.

  1. Follicular fluid levels of prostaglandin E2 and the effect of prostaglandin E2 on steroidogenesis in granulosa-lutein cells in women with moderate and severe endometriosis undergoing in vitro fertilization and embryo transfer

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; SHEN Xin-xin; HUANG Xiang-hua; ZHAO Zhi-ming


    Background The mechanisms of endometriosis with infertility have not been fully studied.The present study aimed to assess the follicular fluid(FF)levels of prostaglandin E2(PGE2),which plays a critical role within the ovary,and to investigate the effect of PGE2 on steroidogenesis in granulosa-lutein cells(GLCs)from women with and without endometriosis.Methods Thirty-three women with laparoscopically documented endometriosis and 40 controls undergoing in vitro fertilization(IVF)were studied.We assayed the concentrations of PGE2 in FF,the production of E2 and progesterone in FF and in culture medium,and the expression of steroidogenic acute regulatory protein(StAR)and CYP19A1 in GLCs with the intervention of PGE2.Results PGE2 and progesterone concentrations were increased and displayed positive correlation in endometriotic FF.PGE2 induced the expression of StAR and the production of progesterone in GLCs from women with endometriosis,and the expression of StAR and the production of progesterone were increased in GLCs from women with endometriosis.However,there were no significant effects of PGE2 on promoting the production of E2 or the expression of CYP19A1 in GLCs.Moreover,the production of E2 and the expression of CYP19A1 in GLCs from women with endometriosis were significantly decreased compared to the controls.Conclusions PGE2 concentrations are increased in endometriotic FF,along with concomitant increases in progesterone and StAR.In contrast,the E2 and CYP19A1 are decreased in GLCs,which may delay the development of the follicles and cause an imbalance in the follicular steroid hormone levels.These changes may have close relationship with endometriosis-associated infertility.

  2. Cumulus cells gene expression profiling in terms of oocyte maturity in controlled ovarian hyperstimulation using GnRH agonist or GnRH antagonist.

    Directory of Open Access Journals (Sweden)

    Rok Devjak

    Full Text Available In in vitro fertilization (IVF cycles controlled ovarian hyperstimulation (COH is established by gonadotropins in combination with gonadotropin-releasing hormone (GnRH agonists or antagonists, to prevent premature luteinizing hormone (LH surge. The aim of our study was to improve the understanding of gene expression profile of cumulus cells (CC in terms of ovarian stimulation protocol and oocyte maturity. We applied Affymetrix gene expression profiling in CC of oocytes at different maturation stages using either GnRH agonists or GnRH antagonists. Two analyses were performed: the first involved CC of immature metaphase I (MI and mature metaphase II (MII oocytes where 359 genes were differentially expressed, and the second involved the two GnRH analogues where no differentially expressed genes were observed at the entire transcriptome level. A further analysis of 359 differentially genes was performed, focusing on anti-Müllerian hormone receptor 2 (AMHR2, follicle stimulating hormone receptor (FSHR, vascular endothelial growth factor C (VEGFC and serine protease inhibitor E2 (SERPINE2. Among other differentially expressed genes we observed a marked number of new genes connected to cell adhesion and neurotransmitters such as dopamine, glycine and γ-Aminobutyric acid (GABA. No differential expression in CC between the two GnRH analogues supports the findings of clinical studies where no significant difference in live birth rates between both GnRH analogues has been proven.

  3. Selection of Ovine Oocytes by Brilliant Cresyl Blue Staining

    Directory of Open Access Journals (Sweden)

    Liqin Wang


    Full Text Available Sheep oocytes derived from the ovaries collected from the slaughterhouse are often used for research on in vitro embryo production, animal cloning, transgenesis, embryonic stem cells, and other embryo biotechnology aspects. Improving the in vitro culture efficiency of oocytes can provide more materials for similar studies. Generally, determination of oocyte quality is mostly based on the layers of cumulus cells and cytoplasm or cytoplasm uniformity and colors. This requires considerable experience to better identify oocyte quality because of the intense subjectivity involved (Gordon (2003, Madison et al. (1992 and De Loos et al. (1992. BCB staining is a function of glucose-6-phosphate dehydrogenase (G6PD activity, an enzyme synthesized in developing oocytes, which decreases in activity with maturation. Therefore, unstained oocytes (BCB− are high in G6PD activity, while the less mature oocytes stains are deep blue (BCB+ due to insuffcient G6PD activity to decolorize the BCB dye.

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? (United States)

    Taketo, Teruko


    The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  5. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo


    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  6. Effect of oviduct epithelial cells on the fertilization and development of sheep oocytes in vitro

    DEFF Research Database (Denmark)

    Holm, Peter; Irvine, Brendon J.; Armstrong, David T.;


    - tured embryos in both experiments showed evidence of fragmentation and/or irregular cleavage as well as a lack of firm compaction at the morula stage. Also the blastocysts that had not hatched, or hatched by 7.5 days of in vitro culture had significantly fewer cells than those cultured in vivo (P...

  7. Human oocyte maturation in vitro. (United States)

    Coticchio, Giovanni; Dal-Canto, Mariabeatrice; Guglielmo, Maria-Cristina; Mignini-Renzini, Mario; Fadini, Rubens


    Oocytes from medium-sized antral follicles have already completed their growth phase and, if released from the follicular environment and cultured in vitro, are able to resume the meiotic process and mature. However, in vitro maturation (IVM) does not entirely support all the nuclear and cytoplasmic changes that occur physiologically as an effect of the ovulatory stimulus. Regardless, oocyte IVM is widely applied for the breeding of agriculturally important species. In assisted reproduction technology, IVM has been proposed as an alternative treatment to circumvent the drawbacks of standard ovarian stimulation regimens. Initially introduced to eliminate the risks of ovarian hyperstimulation syndrome afflicting women presenting with polycystic ovaries, subsequently IVM has been suggested to represent an additional approach suitable also for normovulatory patients. So far, in children born from IVM cycles, no doubts of an increased incidence of congenital abnormalities have been raised. Many more births would be achieved if novel IVM systems, currently dominated by empiricism, could be conceived according to more physiological criteria. Recent findings shedding new light on the control of meiotic progression, the support of cumulus cells to the oocyte cellular reorganization occurring during maturation, and the modulation of the stimulus that promotes oocyte maturation downstream the mid-cycle gonadotropin signal are likely to provide crucial hints for the development of more efficient IVM systems.

  8. [Mitochondrial and oocyte development]. (United States)

    Deng, Wei-Ping; Ren, Zhao-Rui


    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  9. Maternal factors required for oocyte developmental competence in mice: transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. (United States)

    Ma, Jun-Yu; Li, Mo; Luo, Yi-Bo; Song, Shuhui; Tian, Dongmei; Yang, Jin; Zhang, Bing; Hou, Yi; Schatten, Heide; Liu, Zhonghua; Sun, Qing-Yuan


    During mouse antral follicle development, the oocyte chromatin gradually transforms from a less condensed state with no Hoechst-positive rim surrounding the nucleolus (NSN) to a fully condensed chromatin state with a Hoechst-positive rim surrounding the nucleolus (SN). Compared with SN oocytes, NSN oocytes display a higher gene transcription activity and a lower rate of meiosis resumption (G2/M transition), and they are mostly arrested at the two-cell stage after in vitro fertilization. To explore the differences between NSN and SN oocytes, and the maternal factors required for oocyte developmental competence, we compared the whole-transcriptome profiles between NSN and SN oocytes. First, we found that the NSN and SN oocytes were different in their metabolic pathways. In the phosphatidylinositol signaling pathway, the SN oocytes tend to produce diacylglycerol, whereas the NSN oocytes tend to produce phosphatidylinositol (3,4,5)-trisphosphate. For energy production, the SN oocytes and NSN oocytes differed in the gluconeogenesis and in the synthesis processes. Second, we also found that the key genes associated with oocyte meiosis and/or preimplantation embryo development were differently expressed in the NSN and SN oocytes. Our results illustrate that during the NSN-SN transition, the oocytes change their metabolic activities and accumulate maternal factors for further oocyte maturation and post-fertilization embryo development.

  10. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll


    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  11. Effect of SMP-028 on steroidogenesis in rats; mechanism of toxicological events on endocrine organs of rats. (United States)

    Nishizato, Yohei; Imai, Satoki; Yabunaka, Atsushi; Okahashi, Noriko; Kunimatsu, Takeshi; Yabuki, Masashi


    SMP-028 is a new compound for treatment of asthma. Oral administration of SMP-028 to rats was associated with toxicological events in endocrine organs. These events mainly consisted of pathological changes in the adrenal gland, testis, prostate, seminal vesicle, ovaries, and uterus. In this study, we set to clarify whether SMP-028 inhibits steroidogenesis in primary culture cells obtained from rat endocrine organs in vitro. Adrenal cells, testicular cells, and ovarian cells were treated with SMP-028 and the production of steroid hormones, i.e., progesterone, aldosterone, corticosterone, total testosterone, and estradiol from these cells was measured by radioimmunoassay. We found that the production of progesterone from these cells treated with SMP-028 at 1 μM decreased to 16-67% that of the control. These findings indicate that SMP-028 inhibits steroidogenesis in rat endocrine organs in vitro. Considering that free maximum concentration in rats treated with SMP-028 are higher than the IC50 values for the inhibition of steroidogenesis in vitro, it is therefore believed that the toxicological events seen in rats following treatment with SMP-028 are due to inhibition of steroidogenesis in vivo.

  12. Effect of Rat Medicated Serum Containing Zuo Gui Wan and/or You Gui Wan on the Differentiation of Stem Cells Derived from Human First Trimester Umbilical Cord into Oocyte-Like Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Hu


    Full Text Available Zuo Gui Wan (ZGW and You Gui Wan (YGW are two classic formulas used in clinical treatment of infertility in traditional Chinese medicine (TCM. However, the actions of the formulas remain to be proven at the cellular and molecular levels. In this study, we investigate whether the two formulas have any effect on germ cell formation and differentiation by culturing rat medicated serums containing YGW or ZGW with stem cells derived from human first trimester umbilical cord. Our results showed that while the normal rat serums had no significant effects, the rat medicated serums had significant effects on the differentiation of the stem cells into oocyte-like cells (OLCs based on (1 cell morphological changes that resembled purative cumulus-oocyte complexes (COCs; (2 expressions of specific markers that were indicative of germ cell formation and oocyte development; and (3 estradiol production by the COC-like cells. Furthermore, ZGW medicated serums exhibited more obvious effects on specific gene expressions of germ cells, whereas YGW medicated serums showed stronger effects on estradiol production. Accordingly, our study provides evidence demonstrating for the first time that one of molecular and cellular actions of YGW or ZGW in treating human reproductive dysfunctions may be through an enhancement of neooogenesis.

  13. Effect of Rat Medicated Serum Containing Zuo Gui Wan and/or You Gui Wan on the Differentiation of Stem Cells Derived from Human First Trimester Umbilical Cord into Oocyte-Like Cells In Vitro. (United States)

    Hu, Xiang; Lu, Hua; Deng, Yan-Li; Wan, Qian; Yie, Shang-Mian


    Zuo Gui Wan (ZGW) and You Gui Wan (YGW) are two classic formulas used in clinical treatment of infertility in traditional Chinese medicine (TCM). However, the actions of the formulas remain to be proven at the cellular and molecular levels. In this study, we investigate whether the two formulas have any effect on germ cell formation and differentiation by culturing rat medicated serums containing YGW or ZGW with stem cells derived from human first trimester umbilical cord. Our results showed that while the normal rat serums had no significant effects, the rat medicated serums had significant effects on the differentiation of the stem cells into oocyte-like cells (OLCs) based on (1) cell morphological changes that resembled purative cumulus-oocyte complexes (COCs); (2) expressions of specific markers that were indicative of germ cell formation and oocyte development; and (3) estradiol production by the COC-like cells. Furthermore, ZGW medicated serums exhibited more obvious effects on specific gene expressions of germ cells, whereas YGW medicated serums showed stronger effects on estradiol production. Accordingly, our study provides evidence demonstrating for the first time that one of molecular and cellular actions of YGW or ZGW in treating human reproductive dysfunctions may be through an enhancement of neooogenesis.

  14. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes (United States)

    Azarkh, Mykhailo; Okle, Oliver; Eyring, Philipp; Dietrich, Daniel R.; Drescher, Malte


    Spin-label electron paramagnetic resonance (SL-EPR) spectroscopy has become a powerful and useful tool for studying structure and dynamics of biomacromolecules. However, utilizing these methods at physiological temperatures for in-cell studies is hampered by reduction of the nitroxide spin labels and thus short half-lives in the cellular environment. Consequently, reduction kinetics of two structurally different nitroxides was investigated in cell extracts of Xenopus laevis oocytes using rapid-scan cw-experiments at X-band. The five member heterocyclic ring nitroxide PCA (3-carboxy-2,2,5,5-tetramethylpyrrolidinyl-1-oxy) under investigation features much higher stability against intracellular reduction than the six member ring analog TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxilic acid) and is therefore a suitable spin label type for in-cell EPR. The kinetic data can be described according to the Michaelis-Menten model and thus suggest an enzymatic or enzyme-mediated reduction process.

  15. Effect of leptin on oocyte maturation and subsequent pregnancy rate of cloned embryos reconstructed by somatic cell nuclear transfer in pigs

    Institute of Scientific and Technical Information of China (English)

    Hengxi Wei; Qiuyan Li; Jun Li; Yan Li; Yunping Dai; Yufang Ma; Kai Xue; Ning Li


    Cloning pigs by somatic cell nuclear transfer (SCNT) has wide applications in basic research,human medicine and agricultural production.To improve cloning efficiency,the effect of two basic maturation media,NCSU-23 and TCMI99,was compared,and TCM199 was selected for the following experiments with leptin.We systematically studied the effects of leptin supplementation on oocytes in vitro maturation (IVM),in vitro development of parthenogenetically activated (Phi) and SCNT embryos and/n vivo develop-ment of SCNT embryos after embryo transfer (ET).The results showed that supplementation of 100 or 200 ng/ml leptin into the mat-uration medium did not greatly affect nuclear maturation of oocytes,or cleavage rates of PA and SCNT (P<0.05).Blastocyst rates of PA and SCNT embryos were significantly improved when 100 or 200 ng/ml leptin was added to maturation medium,and the number of cells in PA blastocysts was also improved (P<0.05).The number of cells in blastocyst of SCNT was improved,when 100 ng/ml leptin was added (P<0.05).Furthermore,supplementation of 100 or 200 ng/ml leptin to the IVM medium may improve pregnancy rate and the delivery rate in pig cloning.

  16. Knockdown of SF-1 and RNF31 affects components of steroidogenesis, TGFβ, and Wnt/β-catenin signaling in adrenocortical carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Anna Ehrlund

    Full Text Available The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1 is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1 interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR and aromatase (CYP19 genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma.

  17. Oocyte Maturation Process and Affecting Factors

    Directory of Open Access Journals (Sweden)

    Yurdun Kuyucu


    Full Text Available Normal female fertility depends on normally occuring oogenesis and maturation progress. Oogenesis and folliculogenesis are different progresses but occure in a harmony and at the same time. Oogenesis includes the events that take place matur ovum produced from primordial germ cells. Although folliculogenesis includes the stages primordial, primary, secondary, matur (Graaf follicules in the influece of gonadotropines and local growth factors. During oocyte maturation meiosis is distrupted till the puberty. Under LH influence it starts again and first meiosis completes before ovulation. Oocyte maturation can be regarded as the process of coming metaphase II from prophase I of oocyte at the puberty and can be studied as nuclear and cytoplasmic maturation. Meiosis is completed when fertilization occures and zygot is formed. In this article oogenesis, folliculogenesis and oocyte maturation process are summerized with related studies and reiews are revised. [Archives Medical Review Journal 2009; 18(4.000: 227-240

  18. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. (United States)

    Virant-Klun, Irma; Rozman, Primoz; Cvjeticanin, Branko; Vrtacnik-Bokal, Eda; Novakovic, Srdjan; Rülicke, Thomas; Dovc, Peter; Meden-Vrtovec, Helena


    Little is known about parthenogenesis in the human ovary. What is known is related to patients with teratoma in their medical history. Ovarian surface epithelium (OSE) was often proposed as a source of ovarian stem cells with an embryonic character in the past, and was also termed "germinal epithelium." The aim of this study was to isolate putative stem cells from OSE scrapings, to set up an OSE cell culture, to follow the in vitro oogenesis and possible formation of parthenogenetic embryos in 21 postmenopausal women with no naturally present follicles and oocytes. Small round cells with a bubble-like structure and with a diameter from 2 to 4 microm were isolated from the material obtained by OSE scrapings in all women. They expressed early embryonic developmental markers such as stage-specific embryonic antigen-4 (SSEA-4) surface antigen and Oct-4, Nanog, Sox-2, and c-kit transcription factors. These cells were separated by density gradient centrifugation and grown in vitro, where they proliferated and formed embryoid body-like structures. Their markers of pluripotency such as telomerase activity were decreased during in vitro culture and they did not form teratoma after the injection into SCID mice. Some of them grew intensively and reached a diameter of approximately 20 microm after 5-7 days of culture. In the OSE cell culture, oocyte-like cells developed among them, which reached a diameter up to 95 mum, and expressed Oct-4, c-kit, VASA, and ZP2 transcription markers after 20 days of culture. Some of them expressed a zona pellucida-like structure and rarely germinal vesicle- and polar body-like structures. At the same time, parthenogenetic blastocyst-like structures developed, which expressed transcription markers Oct-4, Sox-2, and Nanog and were normal for chromosomes X, Y, 13, 16, 18, 21, and 22. In conclusion, the discovered cells expressed embryonic stem cell markers, gave rise to embryoid body-, oocyte-, and blastocyst-like structures, and might be

  19. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng


    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  20. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB. (United States)

    Li, Yuan; Hu, Yanhui; Dong, Congcong; Lu, Hongchao; Zhang, Chang; Hu, Qi; Li, Shifeng; Qin, Heng; Li, Zhong; Wang, Yubang


    Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) is a key regulator involved in the steroidogenesis. Here we found that, in addition to StAR, MBP/DBP increased the steroidogenesis by a cytoskeletal protein, vimentin. Briefly, in murine adrenocortical tumor (Y1) and the mouse Leydig tumor (MLTC-1) cells, vimentin regulated the secretion of progesterone. When these two cells were exposure to MBP, the DNA demethylation in the vimentin promoter was observed. In addition, MBP also induced the activation of nuclear factor kappa B (NF-κB, a transcriptional regulator of vimentin). These two processes improved the transcriptional elevation of vimentin. Knockdown of NF-κB/vimentin signaling blocked the DBP/MBP-induced steroidogenesis. These in vitro results were also confirmed via an in vivo model. By identifying a mechanism whereby DBP/MBP regulates vimentin, our results expand the understanding of the endocrine disrupting potential of phthalate esters.

  1. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. (United States)

    Linher-Melville, Katja; Li, Julang


    Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.

  2. Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Callesen, Henrik; Løvendahl, Peter


    , but no differences were observed in mitochondrial densities between groups. Mature postpubertal oocytes adhered to the following characteristics: presence of metaphase II, lack of contact between cumulus cells and oocyte, absence of rough endoplasmic reticulum and Golgi complexes, peripheral location of cortical...

  3. Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process. (United States)

    Jiang, Han; Wang, Ce; Guan, Jiyu; Wang, Lingyan; Li, Ziyi


    The golden hamster is an excellent animal experimental model for oocyte research. The hamster oocytes are very useful in clinical examination of human spermatozoan activity. Non-fertile oocytes can lead to time-dependent processes of aging, which will affect the results of human spermatozoa examination. As a consequence there is a need to investigate the aging and anti-aging processes of golden hamster oocytes. In order to study the aging processes and parthenogenetic activation of golden hamster oocytes, in vivo oocytes, oocytes cultured with or without cumulus cells, and oocytes treated with Trichostatin A (TSA) or caffeine were collected and investigated. We found that: (1) spontaneous parthenogenetic activation, developmental potential (cleavage rate), and zona pellucida (ZP) hardening undergo age-dependent changes in in vivo, in vitro, and after TSA or caffeine treatment; (2) in vivo, oocytes became spontaneously parthenogenetic 25 h post-hCG treatment; (3) in vitro, cumulus cells did not significantly increase the parthenogenetic activation rate of cultured hamster oocytes; and (4) TSA or caffeine could delay spontaneous oocyte parthenogenetic activation and the aging processes by at least 5h, but also accelerated the hardening of the ZP. These results define the conditions for the aging and anti-aging processes in golden hamster oocytes. TSA and caffeine play roles in controlling spontaneous activation, which could facilitate the storage and use of golden hamster oocytes for studying processes relevant to human reproduction.

  4. 干细胞向卵母细胞样细胞分化研究进展%Advancement of the oocyte-like cells differentiating from stem cells

    Institute of Scientific and Technical Information of China (English)

    范静; 姜宏


    Embryonic stem cells and adult stem cells such as bone marrow stem cells under specific culture conditions could be induced and differentiated into oocyte-like cells. But whether the cells could undertake meiosis, develop into gametes and posses fertilization ability are still uncertainty. If the adult stem cells could be differentiated into functional oocytes and finally be used in clinical practice for producing a healthy offspring, a new therapeutic approach for infertile females with lacking of egg would be born. Here, recently published literatures on the oocyte-like cells derivating from stem cells were reviewed in order to explore the possibility of it's clinical application.%胚胎干细胞和成体干细胞如骨髓间充质干细胞等在特定的培养条件下可向卵母细胞样细胞分化,但形成的卵母细胞样细胞能否进行减数分裂并进一步生成有受精能力和发育潜能的配子尚不清楚。若能在体外将成体干细胞向有功能的卵母细胞样细胞诱导分化,并通过体外受精的方式生成健康的子代,将为卵子缺乏所致不育女性提供一条新的治疗途径。本文对近年发表的有关干细胞体外向卵母细胞样细胞分化的文献进行综述,以探讨其临床应用的可行性。

  5. Cryopreservation of in vitro matured oocytes after ex vivo oocyte retrieval from gynecologic cancer patients undergoing radical surgery (United States)

    Park, Chan Woo; Lee, Sun Hee; Yang, Kwang Moon; Lee, In Ho; Lim, Kyung Teak; Lee, Ki Heon


    Objective The aim of this study was to report a case series of in vitro matured (IVM) oocyte freezing in gynecologic cancer patients undergoing radical surgery under time constraints as an option for fertility preservation (FP). Methods Case series report. University-based in vitro fertilization center. Six gynecologic cancer patients who were scheduled to undergo radical surgery the next day were referred for FP. The patients had endometrial (n=2), ovarian (n=3), and double primary endometrial and ovarian (n=1) cancer. Ex vivo retrieval of immature oocytes from macroscopically normal ovarian tissue was followed by mature oocyte freezing after IVM or embryo freezing with intracytoplasmic sperm injection. Results A total of 53 oocytes were retrieved from five patients, with a mean of 10.6 oocytes per patient. After IVM, a total of 36 mature oocytes were obtained, demonstrating a 67.9% maturation rate. With regard to the ovarian cancer patients, seven IVM oocytes were frozen from patient 3, who had stage IC cancer, whereas one IVM oocyte was frozen from patient 4, who had stage IV cancer despite being of a similar age. With regard to the endometrial cancer patients, 15 IVM oocytes from patient 1 were frozen. Five embryos were frozen after the fertilization of IVM oocytes from patient 6. Conclusion Immature oocytes can be successfully retrieved ex vivo from macroscopically normal ovarian tissue before radical surgery. IVM oocyte freezing provides a possible FP option in patients with advanced-stage endometrial or ovarian cancer without the risk of cancer cell spillage or time delays. PMID:27358831

  6. Hormonal control of mammalian oocyte meiosis at diplotene stage. (United States)

    Zhang, Meijia; Xia, Guoliang


    Mammalian oocytes grow and undergo meiosis within ovarian follicles. Fully grown oocytes are arrested at the first meiotic prophase by a mural granulosa origin "arrester" until a surge of luteinizing hormone (LH) from the pituitary at the mid-cycle stimulates the immature oocyte to resume meiosis. Recent evidence indicates that natriuretic peptide precursor type C (NPPC) produced by mural granulosa cells stimulates the generation of cyclic guanosine 3',5'-monophosphate (cGMP) by cumulus cell natriuretic peptide receptor 2 (NPR2), which diffuses into oocyte via gap junctions and inhibits oocyte phosphodiesterase 3A (PDE3A) activity and cyclic adenosine 3',5'-monophosphate (cAMP) hydrolysis and maintains meiotic arrest with a high intraoocyte cAMP level. This cAMP is generated through the activity of the Gs G-protein by the G-protein-coupled receptor, GPR3 and GPR12, and adenylyl cyclases (ADCY) endogenous to the oocyte. Further studies suggest that endocrine hormones, such as follicle-stimulating hormone (FSH), LH, 17β-estradiol (E2) and oocyte-derived paracrine factors (ODPFs), participate in oocyte meiosis possibly by the regulation of NPPC and/or NPR2. A detailed investigation of NPPC and NPR2 expression in follicle cells will elucidate the precise molecular mechanisms of gonadotropins, and control the arrest as well as resumption of meiosis.

  7. Follicle-stimulating hormone accelerates mouse oocyte development in vivo. (United States)

    Demeestere, Isabelle; Streiff, Agathe K; Suzuki, João; Al-Khabouri, Shaima; Mahrous, Enas; Tan, Seang Lin; Clarke, Hugh J


    During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.

  8. Time-Lapse Dynamics of the Mouse Oocyte Chromatin Organisation during Meiotic Resumption (United States)

    Redi, Carlo Alberto; Zuccotti, Maurizio


    In the mammalian oocyte, distinct patterns of centromeres and pericentromeric heterochromatin localisation correlate with the gamete's developmental competence. Mouse antral oocytes display two main types of chromatin organisation: SN oocytes, with a ring of Hoechst-positive chromatin surrounding the nucleolus, and NSN oocytes lacking this ring. When matured to MII and fertilised, only SN oocytes develop beyond the 2-cell, and reach full term. To give detailed information on the dynamics of the SN or NSN chromatin during meiosis resumption, we performed a 9 hr time-lapse observation. The main significant differences recorded are: (1) reduction of the nuclear area only in SN oocytes; (2) ~17 min delay of GVBD in NSN oocytes; (3) chromatin condensation, after GVBD, in SN oocytes; (4) formation of 4-5 CHCs in SN oocytes; (5) increase of the perivitelline space, ~57 min later in NSN oocytes; (6) formation of a rosette-like disposition of CHCs, ~84 min later in SN oocytes; (7) appearance of the MI plate ~40 min later in NSN oocytes. Overall, we described a pathway of transition from the GV to the MII stage that is punctuated of discrete recordable events showing their specificity and occurring with different time kinetics in the two types of oocytes. PMID:24864231

  9. Time-Lapse Dynamics of the Mouse Oocyte Chromatin Organisation during Meiotic Resumption

    Directory of Open Access Journals (Sweden)

    Martina Belli


    Full Text Available In the mammalian oocyte, distinct patterns of centromeres and pericentromeric heterochromatin localisation correlate with the gamete’s developmental competence. Mouse antral oocytes display two main types of chromatin organisation: SN oocytes, with a ring of Hoechst-positive chromatin surrounding the nucleolus, and NSN oocytes lacking this ring. When matured to MII and fertilised, only SN oocytes develop beyond the 2-cell, and reach full term. To give detailed information on the dynamics of the SN or NSN chromatin during meiosis resumption, we performed a 9 hr time-lapse observation. The main significant differences recorded are: (1 reduction of the nuclear area only in SN oocytes; (2 ~17 min delay of GVBD in NSN oocytes; (3 chromatin condensation, after GVBD, in SN oocytes; (4 formation of 4-5 CHCs in SN oocytes; (5 increase of the perivitelline space, ~57 min later in NSN oocytes; (6 formation of a rosette-like disposition of CHCs, ~84 min later in SN oocytes; (7 appearance of the MI plate ~40 min later in NSN oocytes. Overall, we described a pathway of transition from the GV to the MII stage that is punctuated of discrete recordable events showing their specificity and occurring with different time kinetics in the two types of oocytes.

  10. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. (United States)

    Egbert, Jeremy R; Shuhaibar, Leia C; Edmund, Aaron B; Van Helden, Dusty A; Robinson, Jerid W; Uliasz, Tracy F; Baena, Valentina; Geerts, Andreas; Wunder, Frank; Potter, Lincoln R; Jaffe, Laurinda A


    In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte.

  11. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. (United States)

    Hagberg Thulin, Malin; Nilsson, Maria E; Thulin, Pontus; Céraline, Jocelyn; Ohlsson, Claes; Damber, Jan-Erik; Welén, Karin


    The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.

  12. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. (United States)

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H


    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  13. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta


    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  14. Inhibitory effect of nomegestrol acetate on steroidogenesis of cultured granulosa cells from rat ovary in vitro%诺美孕酮醋酸盐对离体培养大鼠卵巢颗粒细胞分泌甾体激素的抑制作用

    Institute of Scientific and Technical Information of China (English)

    钱立晖; 杨波; 冷颖; 曹霖; 顾芝萍


    AIM: To study the effect of nomegestrol acetate, a new synthetic progesterone on granulosa cells' viability and steroidogenesis function. METHODS: Granulosa cells were cultured in McCoy's 5A medium. Trypan blue stain was used to measure viable cells. FSH and testosterone were added to stimulate the steroid secretion. Specific RIA assay was used to evaluate the estrogen and progesterone secretion respectively. RESULTS: IC50 of nomegestrol acetate to damage cells is 6.85 mg/L (95% confidence limits 5.36-8.75 mg/L). Nomegestrol acetate 0.45, 0.9, and 1.8 mg/L greatly inhibited the estrogen secretion from granulosa cells by 7.6%, 12.5%, 28.3% in the presence of testosterone 0.5 μmol/L and FSH 10 U/L without affecting the number of viable cells. The secretion of progesteron were markedly decreased by 44.5%, 53.3%, and 62.0% concurrently. CONCLUSION: Nomegestrol acetate directly inhibited the steroidogenesis of granulosa cells.%目的:观察诺美孕酮对离体培养大鼠颗粒细胞分泌雌、孕激素功能的抑制作用.方法:台盼蓝排斥法进行活细胞计数.加入FSH和睾酮刺激颗粒细胞激素分泌.放免法测定培养液中雌、孕激素含量.结果:诺美孕酮杀伤细胞的IC50为6.85mg/L(95%可信限:5.36-8.75 mg/L).诺美孕酮0.45,0.9,和1.8 mg/L在不影响活细胞数的情况下对颗粒细胞分泌雌激素的抑制率分别为7.6%,12.5%和28.3%,对其分泌孕激素的抑制率分别为44.5%,53.3%和62.0%.结论:诺美孕酮直接抑制离体培养的大鼠颗粒细胞分泌雌、孕激素.

  15. Mouse Oocytes Enable LH-Induced Maturation of the Cumulus-Oocyte Complex via Promoting EGF Receptor-Dependent Signaling (United States)

    Su, You-Qiang; Sugiura, Koji; Li, Qinglei; Wigglesworth, Karen; Matzuk, Martin M.; Eppig, John J.


    LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells. PMID:20382892

  16. Transforming growth factor-β1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77. (United States)

    Park, Eunsook; Song, Chin-Hee; Park, Jae-Il; Ahn, Ryun-Sup; Choi, Hueng-Sik; Ko, CheMyong; Lee, Keesook


    Transforming growth factor- β1 (TGF-β1) has been reported to inhibit luteinizing hormone (LH) mediated-steroidogenesis in testicular Leydig cells. However, the mechanism by which TGF-β1 controls the steroidogenesis in Leydig cells is not well understood. Here, we investigated the possibility that TGF-β1 represses steroidogenesis through cross-talk with the orphan nuclear receptor Nur77. Nur77, which is induced by LH/cAMP signaling, is one of major transcription factors that regulate the expression of steroidogenic genes in Leydig cells. TGF-β1 signaling inhibited cAMP-induced testosterone production and the expression of steroidogenic genes such as P450c17, StAR and 3β-HSD in mouse Leydig cells. Further, TGF-β1/ALK5 signaling repressed cAMP-induced and Nur77-activated promoter activity of steroidogenic genes. In addition, TGF-β1/ALK5-activated Smad3 repressed Nur77 transactivation of steroidogenic gene promoters by interfering with Nur77 binding to DNA. In primary Leydig cells isolated from Tgfbr2flox/flox Cyp17iCre mice, TGF-β1-mediated repression of cAMP-induced steroidogenic gene expression was significantly less than that in primary Leydig cells from Tgfbr2flox/flox mice. Taken together, these results suggest that TGF-β1/ALK5/Smad3 signaling represses the expression of steroidogenic genes via the suppression of Nur77 transactivation in testicular Leydig cells. These findings may provide a molecular mechanism involved in the TGF-β1-mediated repression of testicular steroidogenesis.

  17. [In vitro maturation of the oocytes of the common frog with and without follicular envelopes as affected by cholesterol]. (United States)

    Skoblina, M N; Kondrat'eva, O T


    Cholesterol was shown to induce in vitro maturation of the Rana temporaria oocytes both in the presence and in the absence of the follicle cells. The maturation of the denuded oocytes required their much shorter treatment with cholesterol. Ethidium bromide inhibited the cholesterol-induced maturation of the oocytes with follicle envelopes and either did not affect the oocyte maturation after the follicle envelope removal or stimulated it. Amino-gluthetimide inhibited the cholesterol-induced oocyte maturation irrespective of the presence of follicle cells. The mechanism inducing effect of cholesterol on follicle and oocyte is discussed.

  18. The signaling pathways by which the Fas/FasL system accelerates oocyte aging. (United States)

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He


    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

  19. Conditioned medium of mesenchymal stem cells benefits in vitro maturation of mouse oocytes%干细胞条件培养液促进小鼠卵母细胞体外成熟

    Institute of Scientific and Technical Information of China (English)

    宣恒华; 冯定庆; 刘然; 赵卫东


    目的:研究骨髓间充质干细胞(MSCs)条件培养液对小鼠未成熟卵母细胞体外成熟的作用.方法:分离、培养小鼠MSCs,获得MSCs条件培养液.收集3类生发泡期卵母细胞,分别在对照培养基和条件培养液中培养,观察卵母细胞成熟率,判断最佳时间点;FDA、Hoechst33258和PI联合染色评价细胞活力;荧光标记检测皮质颗粒分布、迁移及纺锤体复合物的形成情况.结果:条件培养液组3类生发泡期卵母细胞的成熟率高于对照培养基组;其中,完全/大部分裸露的生发泡卵母细胞和周围有疏松的颗粒细胞包裹的生发泡卵母细胞的最佳体外成熟时间为16h,有完整的数层颗粒细胞紧密包裹的生发泡卵母细胞的最佳体外成熟时间为24 h.体外成熟卵母细胞活力良好,皮质颗粒分布及纺锤体复合物形成与体内成熟卵母细胞一致.结论:MSCs条件培养液有利于小鼠体外成熟卵母细胞核、细胞质同步成熟,提高卵母细胞质量,是一种较好的体外成熟培养体系.%Objective: To investigate the effects of conditioned medium (CM) of mesenchymal stem cells (MSCs) on the in vitro maturation of mouse immature oocytes. Methods: The mouse MSCs were isolated and cultured to harvest CM. Three different oocytes from immature germinal vesicle (GV) stage were collected and cultured in the basal medium (DMEM, Stempro) and CM (DCM, SCM) respectively. The optimal time and maturation rate of invitro maturation (IVM) were surveyed, Oocytes were stained with fluorescein diacetate(FDA), Hoechst33258 and prodium iodide(PI) to evaluate the cell viability. The behaviors of cortical granules (CG) and spindle complexes were examined under a fluorescence microscope. Results : Three categories of GV oocytes cultured in CM were all achieved a higher maturation rate than those cultured in basal medium. The optimal maturation time wre 16 h for oocytes only or surrounded by loose granulosa, while 24 h for

  20. Oxidative stress and ageing of the post-ovulatory oocyte. (United States)

    Lord, Tessa; Aitken, R John


    With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.

  1. CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte

    Directory of Open Access Journals (Sweden)

    Naoko Ohnami


    When a sperm and oocyte unite into one cell upon fertilization, membranous fusion between the sperm and oocyte occurs. In mice, Izumo1 and a tetraspanin molecule CD9 are required for sperm-oocyte fusion as one of the oocyte factors, and another tetraspanin molecule CD81 is also thought to involve in this process. Since these two tetraspanins often form a complex upon cell-cell interaction, it is probable that such a complex is also formed in sperm-oocyte interaction; however, this possibility is still under debate among researchers. Here we assessed this problem using mouse oocytes. Immunocytochemical analysis demonstrated that both CD9 and CD81 were widely distributed outside the oocyte cell membrane, but these molecules were separate, forming bilayers, confirmed by immunobiochemical analysis. Electron-microscopic analysis revealed the presence of CD9- or CD81-incorporated extracellular structures in those bilayers. Finally, microinjection of in vitro-synthesized RNA showed that CD9 reversed a fusion defect in CD81-deficient oocytes in addition to CD9-deficient oocytes, but CD81 failed in both oocytes. These results suggest that both CD9 and CD81 independently work upon sperm-oocyte fusion as extracellular components.

  2. Lunar synchronization of in vitro steroidogenesis in ovaries of the golden rabbitfish, Siganus guttatus (Bloch). (United States)

    Rahman, Md Saydur; Takemura, Akihiro; Takano, Kazunori


    To assess the relationship between lunar cycle and steroidogenesis in the ovaries of the golden rabbitfish, Siganus guttatus, the intact follicles of oocytes were incubated in vitro with human chorionic gonadotropin (hCG) and seven steroid hormones, 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), 17alpha,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), 17alpha-hydroxyprogesterone (17alpha-OHP), progesterone (P), cortisol, estradiol-17beta (E2) and testosterone, during the two lunar phases, the new moon (1 week before spawning) and the first lunar quarter (just before spawning). Around the new moon, germinal vesicle breakdown (GVBD) could not be induced by addition of hCG or any steroid hormones. Around the first lunar quarter, GVBD was induced by addition of hCG, DHP, 20beta-S, 17alpha-OHP, P, and cortisol. DHP was the most potent steroid hormone. When the intact follicles of oocytes were incubated with hCG in both lunar phases, the production of E2 and DHP measured by enzyme immunoassay decreased and increased significantly from the new moon to the first lunar quarter, respectively. These results suggest that the ovarian follicles produce E2 around the new moon and DHP around the first lunar quarter and that the production/conversion of the steroid hormones is under the influence of gonadotropin(s). The synchronous increase in ovarian activity supports the hypothesis that lunar periodicity is a major factor for the ovarian development of S. guttatus.

  3. Checkpoint for DNA integrity at the first mitosis after oocyte activation. (United States)

    Liu, Lin; Trimarchi, James R; Smith, Peter J S; Keefe, David L


    Activation of oocytes, arrested at the meiosis II (MII) in mammals, initiates meiotic release, mitotic divisions, and development. Unlike most somatic cell types, MII arrested female germ cells lack an efficient DNA integrity checkpoint control. Here we present evidence showing a unique checkpoint for DNA integrity at first mitosis after oocyte activation. Mouse oocytes carrying intact DNA cleaved normally after meiotic release, whereas 50% of oocytes harboring damaged DNA manifested cytofragmentation, a morphological hallmark of apoptosis. If not activated, DNA-damaged MII oocytes did not show apoptotic fragmentation. Further, activated, enucleated oocytes or enucleated fertilized oocytes also underwent cytofragmentation, implicating cytoplasmic coordination of the fragmentation process, independent of the nucleus. Depolymerization of either actin filaments or microtubules induced no cytofragmentation, but inhibited fragmentation upon oocyte activation. During the process of fragmentation, microtubule networks formed, then microtubule asters congregated at discrete locations, around which fragmented cellular bodies formed. Mitotic spindles, however, were not formed inactivated oocytes with damaged or absent DNA; in contrast, normal mitotic spindles were formed in activated oocytes with intact DNA. These results demonstrate that damaged DNA or absence of DNA leads to cytofragmentation after oocyte activation. Further, we found a mechanism of cytoskeletal involvement in the process of cytofragmentation. In addition, possible implication of the present findings in somatic cell cloning and human clinical embryology is discussed.

  4. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR-like proteins in this process.

  5. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. (United States)

    Ayoub, Mohammed Akli; Yvinec, Romain; Jégot, Gwenhaël; Dias, James A; Poli, Sonia-Maria; Poupon, Anne; Crépieux, Pascale; Reiter, Eric


    Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to β-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as β-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and β-arrestins mediated by

  6. Effect of corpus luteum: quality and recovery rate of buffalo (Bubalus bubalis) oocytes


    SAHOO, Lakshman; Singla, Suresh K.


    Recovery rate and quality of oocytes were investigated from abattoir collected ovaries with and without corpora lutea (CL). The oocytes were categorized into four grades: grade-A, grade-B, grade-C, and grade-D based on the presence of the cumulus cells complex around the oocytes. The number of oocytes per ovary were 1.7 ±0.1 and 1.5 ±0.1, obtained from ovaries without CL and with CL, respectively. Recovery rate of different grades of oocytes from ovaries with CL and without CL were almost ide...

  7. The fertilization ability and developmental competence of bovine oocytes grown in vitro. (United States)

    Makita, Miho; Ueda, Mayuko; Miyano, Takashi


    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4-0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts.

  8. Aromatase is expressed and active in the rainbow trout oocyte during final oocyte maturation. (United States)

    Gohin, Maella; Bodinier, Pascal; Fostier, Alexis; Chesnel, Franck; Bobe, Julien


    While it is generally well accepted that the ovarian follicular sites of estradiol-17β (E2) synthesis are restricted to somatic cells, the possible contribution of the germinal compartment has received little or no attention in teleosts. In order to demonstrate the expression of ovarian aromatase in the oocyte, cyp19a1a mRNA was studied in ovarian follicles by in situ hybridization. In addition, the expression of cyp19a1a was studied in both somatic and germinal compartments of the ovarian follicle in rainbow trout (Oncorhynchus mykiss) during final oocyte maturation (i.e., maturational competence acquisition and subsequent meiosis resumption) by real-time PCR. The enzymatic activity of ovarian aromatase was also studied in both somatic and germinal compartments of the ovarian follicle. Finally, E2 levels were monitored in follicle-enclosed oocytes throughout the pre-ovulatory period. We were able to demonstrate a significant ovarian aromatase expression and activity in the late vitellogenic oocyte. Furthermore, a dramatic decrease in aromatase expression and activity occurs in the oocyte during late oogenesis, concomitantly with the trend observed in surrounding follicular layers. We also report an unexpected increase of E2 levels in the oocyte during the pre-ovulatory period. To our knowledge, these observations are reported for the first time in any teleost species. Together, our data support the hypothesis of the participation of the germinal compartment in follicular estrogen synthesis and a biological role of E2 during oocyte and/or early embryo development.

  9. Cytoplasmic Streaming in the Drosophila Oocyte. (United States)

    Quinlan, Margot E


    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  10. Mitochondrial dynamics and their intracellular traffic in porcine oocytes. (United States)

    Yamochi, T; Hashimoto, S; Amo, A; Goto, H; Yamanaka, M; Inoue, M; Nakaoka, Y; Morimoto, Y


    Meiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes.

  11. Elucidation of the mechanism of suppressed steroidogenesis during androgen deprivation therapy of prostate cancer patients using a mouse model. (United States)

    Taniguchi, H; Katano, T; Nishida, K; Kinoshita, H; Matsuda, T; Ito, S


    Androgen deprivation therapy (ADT) is the standard medical approach to the management of prostate cancer. Patients switched from a GnRH antagonist to a GnRH agonist, did not experience a testosterone surge in spite of the occurrence of luteinizing hormone (LH) surge in our protocol of clinical study. To clarify this observation, male mice pre-treated with two different doses of the GnRH antagonist degarelix for 28 days were further administered the GnRH agonist leuprolide or chorionic gonadotropin, and testosterone production of the mice was studied. Serum LH and testosterone levels, the size of Leydig cells, and expression level of steroidogenesis-related genes in the testis were analyzed. Treatment of mice with a high dose of degarelix (0.1 μg/mouse; HDG), but not a low dose (0.05 μg/mouse; LDG), for 28 days reproduced declined steroidogenesis observed in prostate cancer patients during ADT switched from a GnRH antagonist to a GnRH agonist. The size of the Leydig cells in the HDG mice was not significantly different from that in naive mice. Although expression levels of StAR, P450scc, and 17β HSD increased significantly in the LDH testis, those in the HDG testis did not change. Treatment of mice with a high dose of degarelix for 28 days reproduced the decline in steroidogenesis observed in prostate cancer patients during ADT. In this animal model, we demonstrated that initial ADT may inhibit the ability of Leydig cells to produce testosterone by suppressing the expression of genes involved in steroidogenesis, such as StAR, P450scc, and 17βHSD.

  12. Structure-activity relationship (SAR) analysis of a family of steroids acutely controlling steroidogenesis. (United States)

    Midzak, Andrew; Rammouz, Georges; Papadopoulos, Vassilios


    Steroids metabolically derive from lipid cholesterol, and vertebrate steroids additionally derive from the steroid pregnenolone. Pregnenolone is derived from cholesterol by hydrolytic cleavage of the aliphatic tail by mitochondrial cytochrome P450 enzyme CYP11A1, located in the inner mitochondrial membrane. Delivery of cholesterol to CYP11A1 comprises the principal control step of steroidogenesis, and requires a series of proteins spanning the mitochondrial double membranes. A critical member of this cholesterol translocation machinery is the integral outer mitochondrial membrane translocator protein (18kDa, TSPO), a high-affinity drug- and cholesterol-binding protein. The cholesterol-binding site of TSPO consists of a phylogenetically conserved cholesterol recognition/interaction amino acid consensus (CRAC). Previous studies from our group identified 5-androsten-3β,17,19-triol (19-Atriol) as drug ligand for the TSPO CRAC motif inhibiting cholesterol binding to CRAC domain and steroidogenesis. To further understand 19-Atriol's mechanism of action as well as the molecular recognition by the TSPO CRAC motif, we undertook structure-activity relationship (SAR) analysis of the 19-Atriol molecule with a variety of substituted steroids oxygenated at positions around the steroid backbone. We found that in addition to steroids hydroxylated at carbon C19, hydroxylations at C4, C7, and C11 contributed to inhibition of cAMP-mediated steroidogenesis in a minimal steroidogenic cell model. However, only substituted steroids with C19 hydroxylations exhibited specificity to TSPO, its CRAC motif, and mitochondrial cholesterol transport, as the C4, C7, and C11 hydroxylated steroids inhibited the metabolic transformation of cholesterol by CYP11A1. We thus provide new insights into structure-activity relationships of steroids inhibiting mitochondrial cholesterol transport and steroidogenic cholesterol metabolic enzymes.

  13. Oocyte cryopreservation in oncological patients. (United States)

    Porcu, Eleonora; Fabbri, Raffaella; Damiano, Giuseppe; Fratto, Rosita; Giunchi, Susanna; Venturoli, Stefano


    The use of chemotherapy and radiotherapy in oncological patients may reduce their reproductive potential. Sperm cryopreservation has been already used in men affected by neoplastic disease. Oocyte cryopreservation might be an important solution for these patients at risk of losing ovarian function. A program of oocyte cryopreservation for oncological patients is also present in our center. From June 1996 to January 2000, 18 patients awaiting chemotherapy and radiotherapy for neoplastic disease were included in our oocyte cryopreservation program. Our experience documents that oocyte storage may be a concrete and pragmatic alternative for oncological patients. The duration of oocyte storage does not seem to interfere with oocyte survival as pregnancies occurred even after several years of gamete cryopreservation in liquid nitrogen.

  14. A sensitive and selective LC-MS/MS analysis coupled with an online sample enrichment technique for H295R steroidogenesis assay and its application in the investigation of the effect of sildenafil on steroidogenesis. (United States)

    Kang, Soyoung; Park, Sol; Kim, Mi Jie; Oh, Seung Min; Chung, Kyu Hyuck; Lee, Sooyeun


    An in vitro steroidogenesis assay using H295R human adenocarcinoma cells is a useful tool for the fast identification of compounds that affect the production of testosterone and 17β-estradiol. Selective and sensitive hormone measurement by liquid chromatography-tandem mass spectrometry (LC-MS/MS) can make this assay more reliable. Therefore, in the present study, a sensitive and selective method for the quantification of testosterone and 17β-estradiol in the H295R steroidogenesis assay was developed and fully validated using LC-MS/MS coupled with an online sample enrichment technique. To prove its usefulness, the method developed was applied to investigate the effect of sildenafil on steroidogenesis. Cell medium samples were diluted and prepared using solid-phase extraction. The samples were prepared on ice and were not kept for more than 30 min to prevent degradation of hormones. The extracts were dried, reconstituted, filtered, and analyzed by LC-MS/MS with polarity switching electrospray ionization. The validation results for selectivity, matrix effect, recovery, linearity, precision, and accuracy were satisfactory. The limits of detection for testosterone and 17β-estradiol were 5 and 10 pg/mL, respectively, and the limit of quantification for both testosterone and 17β-estradiol was 10 pg/mL, which was in accordance with the OECD guideline. No degradation was observed under the storage conditions for 7 and 14 days at -80 °C as well as after three freeze-thaw cycles, whereas 17β-estradiol was degraded after 1 h on ice during sample processing. The method developed was successfully used for the investigation of the effect of sildenafil on steroidogenesis. This method can be very useful for the initial selection of drugs with androgenic and/or estrogenic effects for specific purposes, e.g., in the selection of drugs that are used to reverse the effects of chemical castration.

  15. Do parabens have the ability to interfere with steroidogenesis?

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Vinggaard, Anne; Hass, Ulla


    indicate that butyl paraben might have the ability to act as endocrine disruptor by interfering with the transport of cholesterol to the mitochondrion, thereby interfering with steroidogenesis, but also that the two tested parabens do not show clear endocrine disrupting capabilities in our short...

  16. Steroidogenesis in vitro : towards relevant models for endocrine disruptor screening

    NARCIS (Netherlands)

    Roelofs, M.J.E.


    Starting our search for in vitro alternative methods to screen for steroidogenesis toxicity, we focused on the effects of (suggested) endocrine disrupting compounds (EDCs) on cytochrome P450 17 (CYP17) enzyme activity. CYP17 is responsible for conversion of progestagens to dehydroepiandrosterone (DH

  17. Diving into the oocyte pool

    DEFF Research Database (Denmark)

    Kristensen, Stine G; Pors, Susanne E; Yding Andersen, Claus


    PURPOSE OF REVIEW: The ovarian reserve comprises an enormous surplus of follicles. Despite this, some women produce insufficient numbers of oocytes by conventional fertility treatments. However, recent technical accomplishments may transform assisted reproductive technology (ART) in such a way...... for revitalizing deficient oocytes may transform ART, and potentially enhance both quantity and quality of fertilizable oocytes; hereby augmenting the pregnancy potential of women with poor reproductive performance....

  18. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. (United States)

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru


    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  19. Electroactivation of Oocyte and Electrofusion of Two-cell Embryos of Mouse%小鼠卵母细胞的电激活及胚胎电融合

    Institute of Scientific and Technical Information of China (English)

    李莉; 赵浩斌; 魏庆信


    The electric impulse was applied in oocyte electroactivation and two-cell embryonic electrofusion of mouse. The results showed that the difference of the rate of oocyte activation was obvious(P<0.01) as a result of different electric field strength,while using 30μs ,two pulses and 0.1 kV/cm pulse could get the best result(76.9%). The difference existed among different electric field strength,pulse number and pulse duration,for embryonic fusion too.The best fusion result(84.6%) could be obtained by using 0.1kV/cm, 30μs and two pulses.

  20. Influence of co-culture with denuded oocytes during in vitro maturation on fertilization and developmental competence of cumulus-enclosed porcine oocytes in a defined system. (United States)

    Appeltant, Ruth; Somfai, Tamás; Kikuchi, Kazuhiro; Maes, Dominiek; Van Soom, Ann


    Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system.

  1. 人卵丘细胞与卵子发育潜能关系的研究进展%Research Progress of the Relationship between Human Cumulus Cells and Oocyte Developmental Potential

    Institute of Scientific and Technical Information of China (English)



    人卵丘细胞与卵母细胞之间存在密切联系,前者可以直接影响后者的发育、成熟以及所形成胚胎的质量.在辅助生殖技术中,通过对卵丘细胞的研究,可以为胚胎选择提供更加客观、准确且无创的方法,提高妊娠率,推动选择性单胚胎移植的发展,减少高序多胎妊娠及其所带来的不良妊娠结局.目前,从基因及转录水平探讨卵丘细胞与卵子质量的关系已成为研究热点.研究表明,卵丘细胞中卵母细胞发育相关基因表达上调能够预测优质胚胎;细胞周期检测点及DNA修复相关基因与卵子质量有关;细胞凋亡、葡萄糖生成、抗氧化应激相关基因及核转录因子I/B是预测卵子发育潜能和妊娠结局的生物学指标.%There is a close relationship between human cumulus granulosa cells and oocytes,because the former could influence the development and maturation of oocytes and therefore the embryos quality.In assisted reproductive technology,study on cumulus granulosa cells may offer us more objective,accurate and noninvasive criteria for embryo selection so that the pregnancy rates can be increased and the elective single embryo transfer protocol can be promoted.On the other hand,the high order multiple pregnancy rates and the poor outcomes can be also decreased considerably.Nowadays,it is a hot area to explore the relationship between cumulus cells and oocyte developmental potential at the genetic and transcriptional levels.It was reported that the up-regulation of oogenesis-related genes in cumulus cells can predict good quality embryos.Checkpoints and DNA repair-related genes are associated with oocyte quality.Cell apoptosis,glucogenesis,antioxidative stressrelated genes and transcription factor NFIB are the biological parameters to predict the oocyte developmental potential and pregnancy outcome.

  2. In vitro maturation and artificial activation of donkey oocytes. (United States)

    Zhao, Gaoping; Wu, Kaifeng; Cui, Liang; Zhao, Lixia; Liu, Yiyi; Tan, Xiuwen; Zhou, Huanmin


    Three media were evaluated for their ability to support in vitro maturation of donkey (Equus asinus) oocytes and their development after parthenogenetic activation. The basal medium for Medium 1 (M1) and Medium 2 (M2) was M199 and DMEM/F12 respectively, whereas, Medium 3 (M3) consisted of equal parts (v/v) of M199 and DMEM/F12. All three media were supplemented with 10% (v/v) fetal calf serum, 0.01 units/mL porcine FSH, 0.01 units/mL equine LH, 200 ng/mL insulin-like growth factor 1(IGF-I), 10 μl/mL insulin-transferrin-selenium (ITS), 0.1 mg/mL taurine, 0.1 mg/mL L-cysteine, 0.05 mg/mL L-glutamine, 0.11 mg/mL sodium pyruvate, and 25 mg/mL gentamycin. There were no significant differences among the three maturation media for oocyte maturation. Maturation rate of donkey oocytes in M1 was 53% for compact (Cp) cumulus-oocyte complexes and 75% for expanded (Ex) cumulus-oocyte complexes; in M2 these were 55 and 77%, respectively; and in M3, 58 and 75%. The percentage of cleaved parthenotes and 4- or 8-cell embryos were not significantly different for oocytes matured in the various media (61 and 24% for M1; 66 and 32% for M2; and 67 and 33% for M3). Oocytes matured in M3 tended to yield a higher rate of advanced embryo development (morula) than oocytes matured in M1 (22 vs 9%; P = 0.07). In conclusion, donkey oocytes were matured and parthenogenetically activated in vitro, using methods similar to those used in the horse.

  3. Diploid oocyte formation and tetraploid embryo development induced by cytochalasin B in bovine. (United States)

    Bai, Chunling; Liu, Hui; Liu, Ying; Wu, Xia; Cheng, Lei; Bou, Shorgan; Li, Guang-Peng


    Tetraploid embryos are a useful model for postimplantation development of polyploidy cells, and tetraploid cells are an advantage in studies for chimeras yielding offspring completely derived from embryo stem cells or induced pluripotent cells. This study was designed to investigate the effects of cytochalasin B (CB) on bovine oocyte meiosis, and to induce the formation of diploid oocytes and tetraploid embryos. The results showed that: (1) incubation of oocytes in CB at ≥2.0 μg/mL concentrations for 24 h significantly decreased oocyte maturation and the matured oocytes' haploid composition. Over 50% of the CB-treated oocytes did not expel PB1 (non-PB1), and most of the non-PB1 oocytes contained 2n (60) chromosomes. (2) Pretreatment of oocytes with CB at concentrations of 7.5 and 15 μg/mL for 10 h significantly decreased oocyte maturation. Posttreatment of oocytes with CB resulted in most of the oocytes containing 2n chromosomes. (3) The parthenogenetic blastocysts (25-28%) derived from the non-PB1 oocytes of posttreatment group was significantly higher than that from pretreatment, whole period treatment, and the control oocytes (12-16%). (4) Cytogenetic analysis of the embryos derived from CB-treated non-PB1 oocytes resulted in 74% of the one-cell stage embryos being 4n = 120 chromosomes, 82% of two-cell stage embryos contained 4n chromosomes in each blastomere, and 75% of the blastocysts were tetraploidy (4n = 120). (6) The stopped uncleaved one-cell embryos showed an amazing phenomenon of over 15% of them containing extra chromosomes, which suggested multiple DNA duplication occurred within 40 h after activation. In conclusion, CB inhibits PB1 extrusion, disfigures spindle structure, decreases oocyte maturation, and results in formation of diploid (2n or 4c) oocytes. The diploid oocytes resulted in a higher development of tetraploid embryos, which would be a unique approach for the production of tetraploid embryos in bovine.

  4. Oocyte Maturation Process and Affecting Factors


    Yurdun Kuyucu; Ozgul Tap


    Normal female fertility depends on normally occuring oogenesis and maturation progress. Oogenesis and folliculogenesis are different progresses but occure in a harmony and at the same time. Oogenesis includes the events that take place matur ovum produced from primordial germ cells. Although folliculogenesis includes the stages primordial, primary, secondary, matur (Graaf) follicules in the influece of gonadotropines and local growth factors. During oocyte maturation meiosis is distrupted til...

  5. Survival of oocytes recovered from vitrified sheep ovarian tissues. (United States)

    Al-aghbari, A M; Menino, A R


    The objective of this work was to develop an effective vitrification technique for cryopreserving oocytes in sheep ovarian tissues. Ovaries were surgically recovered from 15 pubertal ewes and the ovarian cortex was cut into sections. Ovarian tissues were placed in equilibration medium consisting of 4% (v/v) ethylene glycol (EG) and 20% (v/v) FBS in TCM-199 on ice for 30 min and transferred to vitrification solution (35% EG, 5% polyvinylpyrrolidone, 0.4M trehalose and 20% FBS in TCM-199) for 5 min. Ovarian tissues were vitrified by dropping the tissue on the surface of a steel cube cooled by liquid nitrogen. Cumulus-enclosed oocyte complexes (COC) were also collected and vitrified following the procedure used for ovarian tissues. After 2-3 weeks of storage in liquid nitrogen, ovarian tissues and COC were thawed at 37 degrees C in 0.3M trehalose and COC in ovarian tissues were mechanically and enzymatically isolated. Vitrified COC and freshly collected COC were washed twice in maturation medium (TCM-199 supplemented with 0.255 mM pyruvate and 10% heat-treated estrus cow serum) and cultured in 50 microl drops of maturation medium under paraffin oil for 23-25h at 39 degrees C in a humidified atmosphere of 5% CO(2) in air. After culture, cumulus cells were removed by hyaluronidase treatment and vortexing and oocytes were fixed and stained. No significant differences were observed between vitrified oocytes, oocytes recovered from vitrified ovarian tissues and non-vitrified control oocytes in the percentage of oocytes with acceptable staining per total number of oocytes fixed or with visible chromatin per total number of oocytes with acceptable staining. However, fewer (P0.05) were observed due to treatment in the percentages of oocytes developing to metaphase II. These results demonstrate that sheep oocytes can be successfully cryopreserved by vitrification of ovarian tissues and exhibit in vitro maturation rates similar to that of vitrified and non-vitrified oocytes.

  6. Do Parabens Have The Ability To Interfere With Steroidogenesis?

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Hass, Ulla; Petersen, Marta Axelstad

    Parabens are used as preservatives in cosmetics, pharmaceuticals and in foods. They have been studied in a number of in vitro and in vivo systems. Many of the parabens have been shown to have weak estrogenic activity and some, including butylparaben, also caused reduction in testosterone levels...... and in sperm production in rats. However, more knowledge on the possible adverse effects of parabens on the endocrine system is needed. A combined in vitro/in vivo approach is a useful way to gain a complete understanding of the activities of the compound in question. In the current study the effects of ethyl......- and butylparaben on steroidogenesis were evaluated in rats exposed in utero. Additionally both parabens were tested in vitro in the H295R steroidogenesis assay and in the T-screen assay. In the in utero exposure toxicity study, butylparaben caused a significant decrease in the mRNA expression level of ER...

  7. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. (United States)

    Holubcová, Zuzana; Blayney, Martyn; Elder, Kay; Schuh, Melina


    Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.

  8. Involvement of PI3 kinase and MAP kinase in IGF-I and insulin-induced ovarian steroidogenesis in common carp Cyprinus carpio. (United States)

    Paul, Sudipta; Pramanick, Kousik; Kundu, Sourav; Roy Moulik, Sujata; Pal, Puja; Mukherjee, Dilip


    Previously, we observed that in vitro steroidogenesis in intact ovarian follicles of common carp Cyprinus carpio can alone be induced by recombinant human insulin-like growth factor (IGF-I) and bovine insulin (b-insulin) and this induction was gonadotropin-independent. To investigate early signal transduction components involved in this process, the possible role of phosphatidylinositol 3-kinase (PI3 kinase) during ovarian steroidogenesis was examined. IGF-I and b-insulin induced testosterone and 17β-estradiol production in carp ovarian theca and granulosa cells in short-term coincubation and this induction was significantly inhibited by Wortmannin and LY294002, two mechanistically different specific inhibitors of PI3 kinase. IGF-I and b-insulin were shown to activate PI3 kinase from 30 min onwards with a maximum at 90 min. In this study, we found the involvement of mitogen-activated protein kinase (MAP kinase) in the regulation of IGF-I- and b-insulin-induced steroidogenesis in carp ovary. An antagonist of mitogen-activated protein kinase kinase1/2 (MEK1/2) markedly attenuated IGF-I- and b-insulin-induced steroid production. Cells treated with IGF-I and b-insulin stimulated ERK1/2-dependent phosphorylation of extracellular signal regulated protein kinase1/2 (ERKs1/2) in a time-dependent manner, which was significantly attenuated in presence of MEK1/2 inhibitor. PI3 kinase inhibitors strongly attenuated phosphorylation and activation of MAP kinase, which was increased during IGF-I and b-insulin-induced steroidogenesis. Taken together, these results suggest that PI3 kinase is an initial component of the signal transduction pathway which precedes the MAP kinase during IGF-I- and b-insulin-induced steroidogenesis in C. carpio ovarian follicles.

  9. Cryopreservation of unfertilized human oocytes. (United States)

    Stachecki, James J; Cohen, Jacques; Garrisi, John; Munné, Santiago; Burgess, Colleen; Willadsen, Steen M


    Previous investigations revealed that choline-based freezing media developed in our laboratory were superior to conventional sodium-based media for storing mouse oocytes. This paper examines the ability of the choline-based medium CJ2 and a modified form of this medium, CJ3, to cryopreserve unfertilized human oocytes. Oocytes that were consented for research and matured overnight, as well as freshly collected, donor, mature metaphase II (MII) oocytes, were cryopreserved using choline-based media and an optimized slow-cooling protocol. The results showed higher survival and fertilization rates when CJ3 supplemented with 0.2 mmol/l sucrose was used as compared with CJ2 supplemented with either 0.1 mmol/l or 0.2 mmol/l sucrose. Freshly collected oocytes were more difficult to cryopreserve than those matured in vitro. Modification of the base medium proved to be one of the key factors in obtaining survival rates over 90%. Fertilization rates, embryo development, and genetic analysis of embryos resulting from control and frozen-thawed oocytes are provided. There appears to be a high correlation between chromosomal anomalies and abnormal morphology in embryos from thawed oocytes.

  10. Mago Nashi and Tsunagi/Y14, Respectively, Regulate Drosophila Germline Stem Cell Differentiation and Oocyte Specification


    Parma, David H.; Bennett, Paul E.; Boswell, Robert E


    A protein complex consisting of Mago Nashi and Tsunagi/Y14 is required to establish the major body axes and for the localization of primordial germ cell determinants during Drosophila melanogaster oogenesis. The Mago Nashi:Tsunagi/Y14 heterodimer also serves as the core of the exon junction complex (EJC), a multiprotein complex assembled on spliced mRNAs. In previous studies, reduced function alleles of mago nashi and tsunagi/Y14 were used to characterize the roles of the genes in oogenesis. ...

  11. Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice. (United States)

    Burkhardt, Sabrina; Borsos, Máté; Szydlowska, Anna; Godwin, Jonathan; Williams, Suzannah A; Cohen, Paula E; Hirota, Takayuki; Saitou, Mitinori; Tachibana-Konwalski, Kikuë


    Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1β, maintains bivalent cohesion in mammalian meiosis [2-6]. In females, meiotic DNA replication and recombination occur in fetal oocytes. After birth, oocytes arrest at the prolonged dictyate stage until recruited to grow into mature oocytes that divide at ovulation. How cohesion is maintained in arrested oocytes remains a pivotal question relevant to maternal age-related aneuploidy. Hypothetically, cohesin turnover regenerates cohesion in oocytes. Evidence for post-replicative cohesion establishment mechanism exists, in yeast and invertebrates [7, 8]. In mouse fetal oocytes, cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during recombination [9, 10]. Alternatively, cohesion is maintained without turnover. Consistent with this, cohesion maintenance does not require Smc1β transcription, but unlike Rec8, Smc1β is not required for establishing bivalent cohesion [11, 12]. Rec8 maintains cohesion without turnover during weeks of oocyte growth [3]. Whether the same applies to months or decades of arrest is unknown. Here, we test whether Rec8 activated in arrested mouse oocytes builds cohesion revealed by TEV cleavage and live-cell imaging. Rec8 establishes cohesion when activated during DNA replication in fetal oocytes using tamoxifen-inducible Cre. In contrast, no new cohesion is detected when Rec8 is activated in arrested oocytes by tamoxifen despite cohesin synthesis. We conclude that cohesion established in fetal oocytes is maintained for months without detectable turnover in dictyate-arrested oocytes. This implies that women's fertility depends on the longevity of cohesin proteins that established cohesion in utero.

  12. Use of Rat Estrus Serum for in Vitro Maturation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    AR Rafati


    Full Text Available Introduction: Superovulation produces complications in some patients, so invitro maturation of oocytes is used to decrease or eliminate these complications and improve IVF. Moreover, IVM is used for different aspects of reproductive researches. Slaughterhouse ovaries are the main source of oocytes for IVM and IVF studies. Different media has been introduced and experimented for in vitro maturation of oocytes. Animal's serum at estrus stage contains different hormones and proteins which are essential for oocyte maturation. The aim of this study was to compare three culture media for in vitro maturation (IVM of bovine oocytes; 1(controlTCM-199, 2HCG and follicular fluid (FF and 3 antibiotic. Methods: Rat estrus serum (RSS or fetal bovine serum (FBS was added to control medium. Total of 1789 compact cumulus oocyte complexes (COCs were aspirated from ovaries of slaughtered animals. Oocytes were randomly cultured in mentioned media and incubated in 38.5◦c, 5% CO2 and 95% humidity for 24 hours. The maturation of oocytes was judged according to cumulus cell expansion or randomly orcein stained oocytes and observation of polar bodies. Results: The results showed that maturation rate was significantly higher in second and third group (90.2%, 78.7% as compared to the control group (p<0.001. There was no significant difference between second and third groups (90.2 % vs. 86.6%. Conclusion: RSS is as effective as FBS for IVM of bovine oocytes and can be used as an alternative.

  13. Possible participation of mitochondria in lipid yolk formation in oocytes of paddlefish and sturgeon. (United States)

    Zelazowska, Monika; Kilarski, Wincenty


    The ovary of paddlefish and sturgeons (Acipenseriformes) is composed of discrete units: the ovarian nests and ovarian follicles. The ovarian nests comprise oogonia and numerous early dictyotene oocytes surrounded by somatic prefollicular cells. Each ovarian follicle consists of a spherical oocyte and a layer of follicular cells situated on a thick basal lamina, encompassed by thecal cells. The cytoplasm of previtellogenic oocytes is differentiated into two distinct zones: the homogeneous and granular zones. The homogeneous cytoplasm is organelle-free, whereas the granular cytoplasm contains numerous organelles, including mitochondria and lipid droplets. We have analyzed the cytoplasm of early dictyotene and previtellogenic oocytes ultrastructurally and histologically. In the cytoplasm of early dictyotene oocytes, two morphologically different types of mitochondria can be distinguished: (1) with well-developed cristae and (2) with distorted and fused cristae. In previtellogenic oocytes, the mitochondria of the second type show various stages of cristae distortion; they contain and release material morphologically similar to that of lipid droplets and eventually degenerate. This process of mitochondrial transformation is accompanied by an accumulation of lipid droplets that form a single large accumulation (lipid body) located in the vicinity of the oocyte nucleus (germinal vesicle). The lipid body eventually disperses in the oocyte center. The possible participation of these mitochondria in the formation of oocyte lipid droplets is discussed.

  14. Frequency of aneuploidy related to age in porcine oocytes. (United States)

    Hornak, Miroslav; Jeseta, Michal; Musilova, Petra; Pavlok, Antonin; Kubelka, Michal; Motlik, Jan; Rubes, Jiri; Anger, Martin


    It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH), combined with whole genome amplification (WGA), to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.

  15. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE Limin; ZHANG Lei; HE Yaping; ZHANG Jinhu; ZHENG Jie; HE Yanfang; ZHENG Yu; ZHANG Jie; ZHANG Li


    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  16. Frequency of aneuploidy related to age in porcine oocytes.

    Directory of Open Access Journals (Sweden)

    Miroslav Hornak

    Full Text Available It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH, combined with whole genome amplification (WGA, to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.

  17. Resveratrol-induced mitochondrial synthesis and autophagy in oocytes derived from early antral follicles of aged cows. (United States)

    Sugiyama, Miyako; Kawahara-Miki, Ryoka; Kawana, Hirosuke; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka


    Mitochondrial numbers increase during oocyte growth. In this study, we collected oocytes and granulosa cell complexes (OGCs) from early antral follicles (EAFs) of aged cows (> 120 months of age) and examined the effects of resveratrol on mitochondrial generation, degradation, and quality in oocytes grown in vitro. We also examined the effects of resveratrol on gene expression of the granulosa cells. Resveratrol (20 µM) enhanced the expression of SIRT1 and induced autophagy in both granulosa cells and oocytes derived from aged cows. Culturing the OGCs with resveratrol increased mitochondrial DNA copy numbers in oocytes grown in vitro. Furthermore, resveratrol increased the ATP content in oocytes and improved the developmental ability of the oocytes to the blastocyst stage. Gene expression profiles in granulosa cells, as evaluated by next-generation sequencing technology, revealed that resveratrol enhanced the expression of EIF2-related genes but downregulated the expression of mammalian target of rapamycin (mTOR)-, inflammation-, and cholesterol homeostasis-related genes in granulosa cells. In conclusion, resveratrol affected both oocytes and granulosa cells derived from aged cows and improved the quality of oocytes grown in vitro through upregulation of mitochondrial biogenesis and degradation in growing oocytes and conditioning of granulosa cells.

  18. Oocyte Maturation and Development [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Verlhac


    Full Text Available Sexual reproduction is essential for many organisms to propagate themselves. It requires the formation of haploid female and male gametes: oocytes and sperms. These specialized cells are generated through meiosis, a particular type of cell division that produces cells with recombined genomes that differ from their parental origin. In this review, we highlight the end process of female meiosis, the divisions per se, and how they can give rise to a functional female gamete preparing itself for the ensuing zygotic development. In particular, we discuss why such an essential process in the propagation of species is so poorly controlled, producing a strong percentage of abnormal female gametes in the end. Eventually, we examine aspects related to the lack of centrosomes in female oocytes, the asymmetry in size of the mammalian oocyte upon division, and in mammals the direct consequences of these long-lived cells in the ovary.

  19. Alterations in gene expression and steroidogenesis in the testes of transient cerebral ischemia in male rats

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hai; GUO Yan-qin; LI Hong-zhi; LIU Jie-ting; WU Dan; YUAN Xiao-huan; LI Rong-wen; GUAN Li-xin


    Background Serum testosterone levels have been found lower in acute ischemic stroke male patients.However,the exact mechanism remains unclear.In the present study,we measured serum testosterone levels,steroidogenesisrelated genes and Leydig cells number in experimental transient cerebral ischemia male rats to elucidate the mechanism.Methods The middle cerebral arteries of adult male Sprague-Dawley rats were sutured for 120 minutes and then sacrificed after 24 hours.Blood was collected for measurement of serum testosterone,follicular stimulating hormone and estradiol levels,and testes were collected for measurement of steroidogenesis-retated gene mRNA levels and number of Leydig cells.Results Serum testosterone levels in rats after cerebral ischemia were significantly lower (0.53±0.16) ng/ml,n=7,mean±SE) compared with control ((2.33±0.60) ng/ml,n=7),while serum estradiol and follicular stimulating hormone levels did not change.The mRNA levels for luteinizing hormone receptor (Lhcgr),scavenger receptor class B member 1 (Scarb1),steroidogenic acute regulatory protein (StAR),cholesterol side chain cleavage enzyme (Cyp11a1),3β-hydroxysteroid dehydrogenase 1 (HSD311),17α-hydroxylese/20-lyase (Cyp17a1) and membrane receptor c-kit (kit) were significantly downregulated by cerebral ischemia,while luteinizing hormone,Kit ligand (KitL),17β-hydrosteroid dehydrogenase 3 (HSD17β3) and 5α-reductase (Srd5a1) were not affected.We also observed that,relative to control,the Leydig cell number did not change.Conclusions These results indicate that transient cerebral ischemia in the brain results in lower expression levels of steroidogenesis-related genes and thus lower serum testosterone level.Transient cerebral ischemia did not lower the number of Leydig cells.

  20. In vitro and in vivo Development of Cloned Ovine Embryos using in vitro and in vivo Matured Oocytes

    DEFF Research Database (Denmark)

    Holm, P; Nagashima, H; Sun, F-J;


    , and those developed beyond the eight cell stage were transferred to recipient ewes. More in vitro than in vivo matured oocytes fused (66 vs. 43 p cell stages were similar for cloned embryos derived from in vitro and in vivo matured oocytes......Cloning of sheep embryos by nucleus transplantation can be achieved by using in vivo matured (oviductal) oocytes and in vivo culture. However, these steps involve cumbersome procedures. Therefore, the effects of in vivo vs. the equivalent in vitro procedures on the pre-implantation development...... of cloned embryos were compared using: l. In vivo oocytes and in vivo culture; 2. In vivo oocytes and in vitro culture; and 3. In vitro oocytes and in vitro culture. Selected embryos were transferred to recipients. Donor embryos and oviductal oocytes were collected from superovulated Merino ewes. In vivo...

  1. Observations Regardin Oocyte in Vitro Maturation after Recovery from Slaughter House Females

    Directory of Open Access Journals (Sweden)

    Valeriu Carabă


    Full Text Available The oocytes viability must be taken as an important selection parameter for successful in vitro cultivation. The ovaries were collected from the slaughterhouse and maintained at 4°C for 7 days. Fallowing cumulus -oocytes complexes recovery the viability was tested using two staining methods. For the first experiment we used 27 cumulus - oocytes complexes, stained with Neutral red and for the second experiment we used 11 cumulus - oocytes complexes stained with Trypan blue. Fallowing staining with Neutral red 23 cumulus - oocytes complexes were assessed as viable (were stained in red – enzymatic activity within the cells and for the Trypan blue staining 11 cumulus - oocytes complexes were assessed as viable (remained unstained – integers cellular membranes.

  2. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)


    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  3. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    Shen Xinghui; Zhou Dongjie; Gu Yanli; Zhang Na; Li Tong; Wu Xi; Lei Lei


    Objective: To observe the effect of DMSO on mouse oocyte meiotic maturation. Results: In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap forma-tion and spindle migration. These features are among the primary causes of abnormal symmetric division;however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blasto-mere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection ( ICSI ) . Further-more, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division fail-ure. Conclusions:Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric di-vision. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.

  4. Comparison of pre- and postimplantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation

    DEFF Research Database (Denmark)

    Vanden Meerschaut, Frauke; Nikiforaki, D.; De Roo, C.


    with fertile controls to assess their fertility. MAIN RESULTS AND THE ROLE OF CHANCE The percentage of oocytes showing calcium rises as well as the number of calcium rises per oscillating oocyte were significantly lower in the wobbler group when compared with the WT group (9.3 versus 96% and 2.1 calcium rises...... was significantly lower at weeks 2, 3 and 4 when compared with female pups originating from WT embryos. However, the latter difference was not observed at later time points, nor in the other artificial activating groups. All offspring mated successfully with fertile controls. LIMITATIONS, REASONS FOR CAUTION...... No gross differences were found between strontium chloride, electrical pulses or ionomycin with respect to the pre- and post-implantation development in the wobbler mouse. WHAT IS KNOWN ALREADY Fertilization failure following intra-cytoplasmic sperm injection (ICSI) occurs in 1–3% of the ICSI cycles...

  5. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  6. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. (United States)

    Wijgerde, Mark; Ooms, Marja; Hoogerbrugge, Jos W; Grootegoed, J Anton


    Follicle development in the mammalian ovary requires interactions among the oocyte, granulosa cells, and theca cells, coordinating gametogenesis and steroidogenesis. Here we show that granulosa cells of growing follicles in mouse ovary act as a source of hedgehog signaling. Expression of Indian hedgehog and desert hedgehog mRNAs initiates in granulosa cells at the primary follicle stage, and we find induced expression of the hedgehog target genes Ptch1 and Gli1, in the surrounding pre-theca cell compartment. Cyclopamine, a highly specific hedgehog signaling antagonist, inhibits this induced expression of target genes in cultured neonatal mouse ovaries. The theca cell compartment remains a target of hedgehog signaling throughout follicle development, showing induced expression of the hedgehog target genes Ptch1, Ptch2, Hip1, and Gli1. In periovulatory follicles, a dynamic synchrony between loss of hedgehog expression and loss of induced target gene expression is observed. Oocytes are unable to respond to hedgehog because they lack expression of the essential signal transducer Smo (smoothened). The present results point to a prominent role of hedgehog signaling in the communication between granulosa cells and developing theca cells.

  7. Influence of Insulin-like Growth Factor 1 on Nuclear Maturation of Germinal Vesicle Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    R mahmoudi


    Full Text Available Background & aim: In vitro maturation and fertilization of oocytes play an important role in reproductive biotechnology. The aim of this study is to define the IGF-1 effect on in vitro maturation, fertilization and development of mice immature oocytes to 2-cells in TCM199 medium cultures. Methods: In this study 4 week old NMRI mice were used. Ovaries stimulation carried out using PMSG. GV oocytes with or without cumulus cells were isolated from ovaries and cultured in TCM199 in presence of 100 ng IGF-1 for 24hr.The oocytes (MII were inseminated with sperm in T6 medium for fertilization and development of 2-cells stage and they were investigated under inverted microscope. Data analysis was performed by using Chi- 2 test. Results: In cumulus cell group and in the presence of insulin-like growth factor fertilization of oocytes, forming embryos and the formation of 2-cells compared to the group without cumulus cells significantly increased (p < 0.05. Conclusion: As the results showed oocytes with cumulus cells in the presence of insulin-like growth factor enhances maturation, fertilization and embryonic development in 2-cells oocytes compared to group without cumulus cells TCM199.

  8. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model

    Institute of Scientific and Technical Information of China (English)

    Yan-Guang Wu; Yong Liu; Ping Zhou; Guo-Cheng Lan; Dong Han; De-Qiang Miao; Jing-He Tan


    Selecting oocytes that are most likely to develop is crucial for in vitro fertilization and animal cloning. Brilliant cresyl blue (BCB) staining has been used for oocyte selection in large animals, but its wider utility needs further evaluation. Mouse oocytes were divided into those stained (BCB+) and those unstained (BCB-) according to their ooplasm BCB coloration. Chromatin configurations, cumulus cell apoptosis, cytoplasmic maturity and developmental competence were compared between the BCB+ and BCB- oocytes. The effects of oocyte diameter, sexual maturity and gonadotro-pin stimulation on the competence of BCB+ oocytes were also analyzed. In the large- and medium-size groups, BCB+ oocytes were larger and showed more surrounded nucleoli (SN) chromatin configurations and higher frequencies of early atresia, and they also gained better cytoplasmic maturity (determined as the intracellular GSH level and pattern of mitochondrial distribution) and higher developmental potential after in vitro maturation (IVM) than the BCB- oocytes. Adult mice produced more BCB+ oocytes with higher competence than the prepubertal mice when not primed with PMSG. PMSG priming increased both proportion and developmental potency of BCB+ oocytes. The BCB+ oocytes in the large-size group showed more SN chromatin configurations, better cytoplasmic maturity and higher developmental potential than their counterparts in the medium-size group. It is concluded that BCB staining can be used as an efficient method for oocyte selection, but that the competence of the BCB+ oocytes may vary with oocyte diameter, animal sexual maturity and gonadotropin stimulation. Taken together, the series of criteria described here would allow for better choices in selecting oocytes for better development.

  9. A new approach for the oocyte genotoxicity assay: adaptation of comet assay on mouse cumulus-oocyte complexes. (United States)

    Greco, F; Perrin, J; Auffan, M; Tassistro, V; Orsière, T; Courbiere, B


    Conventional genotoxicity tests are technically difficult to apply to oocytes, and results obtained on somatic cells cannot be extrapolated to gametes. We have previously described a comet assay (original-CA) on denuded mouse oocytes, but, in vivo, oocytes are not isolated from their surrounding follicular cells. Our objective was to develop a comet assay on cumulus-oocyte complexes (COC-CA) for a more physiological approach to study the genotoxicity of environmental factors on oocytes. For COC-CA, whole COC were exposed directly to exogenous agents after ovulation and removal from oviducts. Three conditions were studied: a negative control group, and two positive control groups, one of which was exposed to hydrogen peroxide (H2O2) and the other group was incubated with cerium dioxide nanoparticles (CeO2 NPs). With both tests, DNA damage was significant in the presence of both H2O2 and CeO2 NPs compared with the negative control. COC-CA offers an interesting tool for assaying the genotoxicity of environmental agents towards germinal cells. Furthermore, COC-CA is less time-consuming and simplifies the protocol of the original-CA, because COC-CA is easier to perform without the washing-out procedure.

  10. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. (United States)

    Sun, Xing-Shen; Liu, Yong; Yue, Kui-Zhong; Ma, Suo-Feng; Tan, Jing-He


    Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes were studied using a new method that allows a clearer visualization of both nucleolus and chromatin after Hoechst staining. The GV chromatin of porcine oocytes was classified into five configurations, based on the degree of chromatin condensation, and on nucleolus and nuclear membrane disappearance. While the GV1 to 4 configurations were similar to those reported by previous studies, the GV0 configuration was distinct by the diffuse, filamentous pattern of chromatin in the whole nuclear area. Most of the oocytes were at the GV0 stage in the layers of cumulus cells and those with less than one layer or no cumulus cells. Overall, our results suggested that (i) the GV0 configuration in porcine oocytes corresponded to the "nonsurrounded nucleolus" pattern in mice and other species; (ii) all the oocytes were synchronized at the GV1 stage before GVBD and this pattern might, therefore, represent a nonatretic state; (iii) the GV3 and GV4 configurations might represent stages toward atresia, or transient events prior to GVBD that could be switched toward either ovulation or atresia, depending upon circumstances; (iv) the in vitro systems currently used were not favorable for oocytes to switch toward ovulation (or final maturation); (v) the number of cumulus cells was not correlated with the chromatin configuration of oocytes, indicating that the beneficial effect of cumulus cells on oocyte maturation and development may simply be attributed to their presence during in vitro culture.


    DEFF Research Database (Denmark)

    Pedersen, H. S.; Løvendahl, P.; Nikolaisen, N. K.;


    Oocytes from prepubertal (PRE) or postpubertal (POST) pigs are used in, for example, somatic cell nuclear transfer and in vitro fertilization. Here we describe mitochondrial dynamics in pig oocytes of different sizes before and after in vitro maturation (IVM), isolated from PRE or POST animals...

  12. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. (United States)

    Dumont, Julien; Desai, Arshad


    The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte meiosis is error prone and underlies most birth aneuploidies. Here, we review recent work on acentrosomal spindle formation and chromosome alignment/separation during oocyte meiosis in different animal models.

  13. Identification of some unknown transcripts from SSH cDNA library of buffalo follicular oocytes. (United States)

    Rajput, S K; Kumar, P; Roy, B; Verma, A; Pandey, H P; Singh, D; De, S; Datta, T K


    A buffalo oocyte-specific subtracted cDNA library was constructed to identify exclusively or preferentially oocyte-expressed genes. The library represented an enriched population of transcripts obtained from oocytes of diverse ovarian follicular origin and at different stages of in vitro maturation. A total of 1173 high-quality sequences of oocyte-specific genes were clustered into 645 unique sequences, out of which 65.76% were represented as singlets and 34.26% as contig expressed sequence tags (ESTs; clusters). Analysis of sequences revealed that 498 of these sequences were identified as a known sequence in mammalian species including buffalo, 103 as uncharacterized ESTs and 44 unknown sequences including 1 novel EST, so far not reported in any species. Gene ontology annotation classified these sequences into functional categories of cellular events and biological processes associated with oocyte competence. Expression status of the isolated unknown ESTs confirmed that many of these are expressed in oocytes exclusively and in others preferentially, some in excess of 80-fold greater in comparison with a variety of somatic tissues. The isolated novel EST was detected to be expressed exclusively in oocytes and testicular cells only. To our knowledge, this is the first report giving a detailed transcriptome account of oocyte-expressed genes in buffalo. This study will provide important information on the physiological control of oocyte development, as well as many questions yet to be addressed on the reproductive process of buffalo.

  14. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes (United States)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia


    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl− channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to γ-aminobutyric acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders. PMID:12237406

  15. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes. (United States)

    Fukuda, Atsushi; Tanino, Motohiko; Matoba, Ryo; Umezawa, Akihiro; Akutsu, Hidenori


    Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X-linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation.

  16. The Effects of Progesterone on Oocyte Maturation and Embryo Development

    Directory of Open Access Journals (Sweden)

    Saeed Zavareh


    Full Text Available Oocyte maturation and embryo development are controlled by intra-ovarian factors suchas steroid hormones. Progesterone (P4 exists in the follicular fluid that contributes tonormal mammalian ovarian function and has several critical functions during embryodevelopment and implantation, including endometrial receptivity, embryonic survivalduring gestation and transformation of the endometrial stromal cells to decidual cells.It is well known that the physiological effects of P4 during the pre-implantation stages ofsome mammal’s embryos are mediated by P4 receptors and their gene expression is determined.The effects of P4 on oocytes and embryo development have been assessed bysome investigations, with contradictory results. P4, a dominant steroid in follicular fluidat approximately 18 hours after the luteinizing hormone (LH surge may have a criticalrole in maturation of oocytes at the germinal stage. However, it has been shown that differentconcentrations of P4 could not improve in vitro maturation rates of germinal vesicles(GV in cumulus oocyte complexes (COCs and cumulus denuded oocytes (CDOs.Culture media supplemented with P4 significantly improved mouse embryo development.In addition, an in vivo experimental design has shown high blastocyst survival andimplantation rates in P4-treated mice.In this review we explain some of the findings that pertain to the effects of P4 onoocyte maturation and embryo development both in vitro and in vivo.

  17. Factors influencing the biochemical markers for predicting mammalian oocyte quality. (United States)

    Ola, Safiriyu Idowu; Sun, Qing-Yuan


    The need for accurate selection of the best oocytes for in vitro fertilization protocols and thus, production of embryos has driven the search for oocyte quality markers from morphological criteria to biochemical parameters. Current studies are focused on the biochemical constituents of the follicular fluid and gene expression profiling of the cumulus cells. These parameters are, however, affected by factors that must be considered before making a judgment of the oocyte's quality. These includes factors such as the type of hormonal stimulation protocol, age of oocyte donor and heat stress on the donor, all of which have been reported to influence the concentrations of many hormones, apolipoproteins, metabolites, fatty acids and growth factors in the follicular fluid and the expression of several genes in the cumulus cells. Another important point to note is species variation in the response to these extraneous influences, which thus calls for species targeted investigations. As reports are still scanty and investigations assumed to be very keen, we employed this review paper to bring attention of researchers and clinicians to those factors that may come to bear on the outcome of their investigations on oocyte and embryo quality.

  18. Kif4 Is Essential for Mouse Oocyte Meiosis (United States)

    Camlin, Nicole J.; McLaughlin, Eileen A.; Holt, Janet E.


    Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age. PMID:28125646

  19. Live imaging of GFP-labeled proteins in Drosophila oocytes. (United States)

    Pokrywka, Nancy Jo


    The Drosophila oocyte has been established as a versatile system for investigating fundamental questions such as cytoskeletal function, cell organization, and organelle structure and function. The availability of various GFP-tagged proteins means that many cellular processes can be monitored in living cells over the course of minutes or hours, and using this technique, processes such as RNP transport, epithelial morphogenesis, and tissue remodeling have been described in great detail in Drosophila oocytes. The ability to perform video imaging combined with a rich repertoire of mutants allows an enormous variety of genes and processes to be examined in incredible detail. One such example is the process of ooplasmic streaming, which initiates at mid-oogenesis. This vigorous movement of cytoplasmic vesicles is microtubule and kinesin-dependent and provides a useful system for investigating cytoskeleton function at these stages. Here I present a protocol for time lapse imaging of living oocytes using virtually any confocal microscopy setup.

  20. Cryopreservation of Mammalian oocyte for conservation of animal genetics. (United States)

    Prentice, Jennifer R; Anzar, Muhammad


    The preservation of the female portion of livestock genetics has become an international priority; however, in situ conservation strategies are extremely expensive. Therefore, efforts are increasingly focusing on the development of a reliable cryopreservation method for oocytes, in order to establish ova banks. Slow freezing, a common method for cryopreservation of oocytes, causes osmotic shock (solution effect) and intracellular ice crystallization leading to cell damage. Vitrification is an alternative method for cryopreservation in which cells are exposed to a higher concentration of cryoprotectants and frozen with an ultra rapid freezing velocity, resulting in an ice crystal free, solid glass-like structure. Presently, vitrification is a popular method for cryopreservation of embryos. However, vitrification of oocytes is still challenging due to their complex structure and sensitivity to chilling.

  1. Cryopreservation of Mammalian Oocyte for Conservation of Animal Genetics

    Directory of Open Access Journals (Sweden)

    Jennifer R. Prentice


    Full Text Available The preservation of the female portion of livestock genetics has become an international priority; however, in situ conservation strategies are extremely expensive. Therefore, efforts are increasingly focusing on the development of a reliable cryopreservation method for oocytes, in order to establish ova banks. Slow freezing, a common method for cryopreservation of oocytes, causes osmotic shock (solution effect and intracellular ice crystallization leading to cell damage. Vitrification is an alternative method for cryopreservation in which cells are exposed to a higher concentration of cryoprotectants and frozen with an ultra rapid freezing velocity, resulting in an ice crystal free, solid glass-like structure. Presently, vitrification is a popular method for cryopreservation of embryos. However, vitrification of oocytes is still challenging due to their complex structure and sensitivity to chilling.

  2. Do parabens have the ability to interfere with steroidogenesis?

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Hass, Ulla; Petersen, Marta Axelstad


    receptor agonist. In the adrenal H295R steroidogenesis assay both ethyl- and butylparaben caused a significant increase in the progesterone formation. Overall, the results indicate that butylparaben might have the ability to act as an endocrine disruptor by interfering with the transport of cholesterol...... and in sperm production in rats. However, more knowledge on the possible adverse effects of parabens on the endocrine system is needed. A combined in vitro/in vivo approach is a useful way to gain a complete understanding of the activities of the compound in question. In the current study, the effects of ethyl...

  3. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro. (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A


    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.

  4. Participation of Mitogen-activated Protein Kinase in Luteinizing Hormone-induced Differential Regulation of Steroidogenesis and Steroidogenic Gene Expression in Mural and Cumulus Granulosa Cells of Mouse Preovulatory Follicles

    DEFF Research Database (Denmark)

    Su, You-Qiang; Nyegaard, Mette; Overgaard, Michael Toft;


    was to investigate whether these processes that commonly occur in mural granulosa cells (MGCs) also occur in cumulus cells, and whether they are mediated by the mitogen-activated protein kinase (MAPK), specifically MAPK3/1 (also commonly known as extracellular signal-regulated kinase 1&2, ERK1/2). The standard...

  5. Vascular endothelial growth factor A (VEGFA) modulates bovine placenta steroidogenesis in vitro. (United States)

    Sousa, L M M C; Campos, D B; Fonseca, V U; Viau, P; Kfoury, J R; Oliveira, C A; Binelli, M; Buratini, J; Papa, P C


    Our objectives were to investigate the possible role of VEGFA in bovine placenta steroid synthesis and to determine whether cloned derived placental cells present similar responses as non-cloned ones. Placental cells from cloned (term) and non-cloned (days 90, 150, 210 and term) pregnancies were isolated and treated with VEGFA (50 ng/ml) for 24, 48 or 96 h. Progesterone (P(4)) and estrone sulfate (E(1)S) were assessed by RIA, while aromatase P450-positive cells were quantified using the point counting test. The percentages of steroidogenic and non-steroidogenic populations were determined by flow cytometry. VEGFA augmented or decreased P(4) and E(1)S concentrations as well as aromatase P450-positive cell density, depending on gestational age and time in culture. The percentage of steroidogenic cells was lower than that of non-steroidogenic ones for each culture time (P 0.05). VEGFA treatment altered P(4) and E(1)S levels in placental cells depending on type of gestation. These results suggest that VEGFA acts locally in the bovine placenta to modulate steroidogenesis during gestation, but in a different pattern between cloned and non-cloned derived placental cells at term. Therefore, this factor can be considered an important regulator of placental development and function.

  6. Evolutionary conservation of the mature oocyte proteome

    Directory of Open Access Journals (Sweden)

    Tamar Lotan


    Significance: The current study provides the first proteomic profile of an oocyte of a cnidarian organism the starlet sea anemone N. vectensis and gives new insights on the ancient origin of an oocyte proteome template. The comparative analysis with a chordate oocyte suggests that the oocyte proteome predates the divergence of the cnidarian and bilaterian lineages. In addition, the data generated in the study will serve as a valuable resource for further developmental and evolutional studies.

  7. The dormant and the fully competent oocyte

    DEFF Research Database (Denmark)

    Grøndahl, Marie Louise; Borup, Rehannah; Vikeså, Jonas;


    Oocytes become enclosed in primordial follicles during fetal life and remain dormant there until activation followed by growth and meiotic resumption. Current knowledge about the molecular pathways involved in oogenesis is incomplete. This study identifies the specific transcriptome of the human...... identified as well as functional and pathway enrichments associated with the oocytes from the two developmental hallmarks. A total of 729 genes were highly enriched in oocytes from primodial follicles and 1456 genes were highly enriched in MII oocytes (>10-fold, P...

  8. Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. (United States)

    Jiang, Xiumei; Wang, Liming; Ji, Yinglu; Tang, Jinglong; Tian, Xin; Cao, Mingjing; Li, Jingxuan; Bi, Shuying; Wu, Xiaochun; Chen, Chunying; Yin, Jun-Jie


    As a widely used nanomaterial in daily life, silver nanomaterials may cause great concern to female reproductive system as they are found to penetrate the blood-placental barrier and gain access to the ovary. However, it is largely unknown about how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study performs in vitro toxicology study of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis and explores their underlying mechanisms. This study exposes primary rat granulosa cells to gold nanorod core/silver shell nanostructures (Au@Ag NRs), and compares outcomes with cells exposed to gold nanorods. The Au@Ag NRs generate more reactive oxygen species and reduce mitochondrial membrane potential and less production of adenosine triphosphate. Au@Ag NRs promote steroidogenesis, including progesterone and estradiol, in a time- and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs are then studied by electron spin resonance spectroscopy and X-ray absorption near edge structure, which analyze the generation of free radical and intracellular silver species. Results suggest that both particle-specific activity and intracellular silver ion release of Au@Ag NR contribute to the toxic response of granulosa cells.

  9. Ultrastructural Interactions and Genotoxicity Assay of Cerium Dioxide Nanoparticles on Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Blandine Courbiere


    Full Text Available Cerium dioxide nanoparticles (CeO2 ENPs are on the priority list of nanomaterials requiring evaluation. We performed in vitro assays on mature mouse oocytes incubated with CeO2 ENPs to study (1 physicochemical biotransformation of ENPs in culture medium; (2 ultrastructural interactions with follicular cells and oocytes using Transmission Electron Microscopy (TEM; (3 genotoxicity of CeO2 ENPs on follicular cells and oocytes using a comet assay. DNA damage was quantified as Olive Tail Moment. We show that ENPs aggregated, but their crystal structure remained stable in culture medium. TEM showed endocytosis of CeO2 ENP aggregates in follicular cells. In oocytes, CeO2 ENP aggregates were only observed around the zona pellucida (ZP. The comet assay revealed significant DNA damage in follicular cells. In oocytes, the comet assay showed a dose-related increase in DNA damage and a significant increase only at the highest concentrations. DNA damage decreased significantly both in follicular cells and in oocytes when an anti-oxidant agent was added in the culture medium. We hypothesise that at low concentrations of CeO2 ENPs oocytes could be protected against indirect oxidative stress due to a double defence system composed of follicular cells and ZP.

  10. Transcriptomic features of Pecten maximus oocyte quality and maturation (United States)

    Milan, Massimo; Huvet, Arnaud; Corporeau, Charlotte; Suquet, Marc; Planas, Josep V.; Moreira, Rebeca; Figueras, Antonio; Novoa, Beatriz; Patarnello, Tomaso; Bargelloni, Luca


    The king scallop Pecten maximus is a high valuable species of great interest in Europe for both fishery and aquaculture. Notably, there has been an increased investment to produce seed for enhancement programmes of wild scallop populations. However, hatchery production is a relatively new industry and it is still underdeveloped. Major hurdles are spawning control and gamete quality. In the present study, a total of 14 scallops were sampled in the bay of Brest (Brittany, France) to compare transcriptomic profiles of mature oocytes collected by spawning induction or by stripping. To reach such a goal, a microarray analysis was performed by using a custom 8x60K oligonucleotide microarray representing 45,488 unique scallop contigs. First we identified genes that were differentially expressed depending on oocyte quality, estimated as the potential to produce D-larvae. Secondly, we investigated the transcriptional features of both stripped and spawned oocytes. Genes coding for proteins involved in cytoskeletal dynamics, serine/threonine kinases signalling pathway, mRNA processing, response to DNA damage, apoptosis and cell-cycle appeared to be of crucial importance for both oocyte maturation and developmental competence. This study allowed us to dramatically increase the knowledge about transcriptional features of oocyte quality and maturation, as well as to propose for the first time putative molecular markers to solve a major bottleneck in scallop aquaculture. PMID:28253290

  11. Exposure to HT-2 toxin causes oxidative stress induced apoptosis/autophagy in porcine oocytes (United States)

    Zhang, Yue; Han, Jun; Zhu, Cheng-Cheng; Tang, Feng; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen


    T-2 toxin is a main type A trichothecene mycotoxin which is the most toxic trichothecence. T-2 toxin has posed various toxic effects on human and animals in vigorous cell proliferation tissues like lymphoid, hematopoietic and gastrointestinal tissues, while HT-2 toxin is the major metabolite which is deacetylated by T-2 toxin. In this study, we focused on the toxic effects of HT-2 on porcine oocyte maturation. We treated the porcine oocyte with HT-2 toxin in vitro, and we first found that HT-2 treatment inhibited porcine oocyte polar body extrusion and cumulus cell expansion. We observed the disrupted meiotic spindle morphology after treatment, which might be due to the reduced p-MAPK protein level. Actin distribution was also disturbed, indicating that HT-2 affects cytoskeleton of porcine oocytes. We next explored the causes for the failure of oocyte maturation after HT-2 treatment. We found that HT-2 treated oocytes showed the increased ROS level, which indicated that oxidative stress had occurred. We also detected autophagy as well as early apoptosis in the treatment oocytes. Due to the fact that oxidative stress could induced apoptosis, our results indicated that HT-2 toxin caused oxidative stress induced apoptosis and autophagy, which further affected porcine oocyte maturation. PMID:27658477

  12. Roles of MAP kinase signaling pathway in oocyte meiosis

    Institute of Scientific and Technical Information of China (English)


    Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases expressed widely in eukaryotic cells. MAPK is activated by a cascade of protein kinase phosphorylation and plays pivotal roles in regulating meiosis process in oocytes. As an important physical substrate of MAPK, p90rsk mediates numerous MAPK functions. MAPK was activated at G2/M transition during meiosis. Its activity reached the peak at MⅠ stage and maintained at this level until the time before the pronuclear formation after fertilization. There is complex interplay between MAPK and MPF in the meiosis regulation. Furthermore, other intracellular signal transducers, such as cAMP, protein kinase C and protein phosphotase, ect., also regulated the activity of MAPK at different stages during meiosis in oocytes. In the present article, the roles of MAPK signaling pathway in oocyte meiosis are reviewed and discussed.

  13. Influence of equine growth hormone, insulin-like growth factor-I and its interaction with gonadotropins on in vitro maturation and cytoskeleton morphology in equine oocytes. (United States)

    Pereira, G R; Lorenzo, P L; Carneiro, G F; Ball, B A; Pegoraro, L M C; Pimentel, C A; Liu, I K M


    In horses, successful in vitro fertilization procedures are limited by our inability to consistently mature equine oocytes by in vitro methods. Growth hormone (GH) is an important regulator of female reproduction in mammals, playing an important role in ovarian function, follicular growth and steroidogenesis. The objectives of this research were to investigate: the effects of equine growth hormone (eGH) and insulin-like growth factor-I (IGF-I) on the in vitro maturation (IVM) of equine oocytes, and the effects of eGH in addition to estradiol (E2), gonadotropins (FSH and LH) and fetal calf serum (FCS) on IVM. We also evaluated the cytoskeleton organization of equine oocytes after IVM with eGH. Equine oocytes were aspirated from follicles <30 mm in diameter and matured for 30 h at 38.5°C in air with 5% CO2. In experiment 1, selected cumulus-oocyte complexes (COCs) were randomly allocated as follows: (a) control (no additives); (b) 400 ng/ml eGH; (c) 200 ng/ml IGF-I; (d) eGH + IGF-I; and (e) eGH + IGF-I + 200 ng/ml anti-IGF-I. In addition to these treatment groups, we also added 1 μg/ml E2, 5 IU/ml FSH, 10 IU/ml LH and 10% FCS in vitro (experiment 2). Oocytes were stained with markers for microtubules (anti-α-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and chromatin (TO-PRO3-iodide) and assessed via confocal microscopy. No difference was observed when eGH and IGF-I was added into our IVM system. However, following incubation with eGH alone (40%) and eGH, E2, gonadotropins and FCS (36.6%) oocytes were classified as mature v. 17.6% of oocytes in the control group (P < 0.05). Matured equine oocytes showed that a thin network of filaments concentrated within the oocyte cortex and microtubules at the metaphase spindle showed a symmetrical barrel-shaped structure, with chromosomes aligned along its midline. We conclude that the use of E2, gonadotropins and FCS in the presence of eGH increases the number of oocytes reaching oocyte competence.

  14. Short-term preservation of porcine oocytes in ambient temperature: novel approaches.

    Directory of Open Access Journals (Sweden)

    Cai-Rong Yang

    Full Text Available The objective of this study was to evaluate the feasibility of preserving porcine oocytes without freezing. To optimize preservation conditions, porcine cumulus-oocyte complexes (COCs were preserved in TCM-199, porcine follicular fluid (pFF and FCS at different temperatures (4°C, 20°C, 25°C, 27.5°C, 30°C and 38.5°C for 1 day, 2 days or 3 days. After preservation, oocyte morphology, germinal vesicle (GV rate, actin cytoskeleton organization, cortical granule distribution, mitochondrial translocation and intracellular glutathione level were evaluated. Oocyte maturation was indicated by first polar body emission and spindle morphology after in vitro culture. Strikingly, when COCs were stored at 27.5°C for 3 days in pFF or FCS, more than 60% oocytes were still arrested at the GV stage and more than 50% oocytes matured into MII stages after culture. Almost 80% oocytes showed normal actin organization and cortical granule relocation to the cortex, and approximately 50% oocytes showed diffused mitochondria distribution patterns and normal spindle configurations. While stored in TCM-199, all these criteria decreased significantly. Glutathione (GSH level in the pFF or FCS group was higher than in the TCM-199 group, but lower than in the non-preserved control group. The preserved oocytes could be fertilized and developed to blastocysts (about 10% with normal cell number, which is clear evidence for their retaining the developmental potentiality after 3d preservation. Thus, we have developed a simple method for preserving immature pig oocytes at an ambient temperature for several days without evident damage of cytoplasm and keeping oocyte developmental competence.

  15. Testicular glucose and its transporter GLUT 8 as a marker of age-dependent variation and its role in steroidogenesis in mice. (United States)

    Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh


    The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging.

  16. Adiponectin Expression in the Porcine Ovary during the Oestrous Cycle and Its Effect on Ovarian Steroidogenesis

    Directory of Open Access Journals (Sweden)

    Anna Maleszka


    Full Text Available Adiponectin is an adipose-secreted hormone that regulates energy homeostasis and is also involved in the control of the reproductive system. The goal of the present study was to investigate changes in adiponectin gene and protein expression in porcine ovarian structures during the oestrous cycle and to examine the effects of in vitro administration of adiponectin on basal and gonadotrophin- and/or insulin-induced secretion of ovarian steroid hormones. Both gene and protein expression of adiponectin were enhanced during the luteal phase of the cycle. Adiponectin affected basal secretion of progesterone by luteal cells, oestradiol by granulosa cells, and testosterone by theca interna cells. The gonadotrophin/insulin-induced release of progesterone from granulosa and theca interna cells and the release of oestradiol and androstenedione from theca cells was also modified by adiponectin. In conclusion, the presence of adiponectin mRNA and protein in the porcine ovary coupled with our previous results indicating adiponectin receptors expression suggest that adiponectin may locally affect ovarian functions. The changes in adiponectin expression throughout the oestrous cycle seem to be dependent on the hormonal status of pigs related to the stage of the oestrous cycle. The effect of adiponectin on ovarian steroidogenesis suggests that this adipokine influences reproductive functions in pigs.

  17. Recent Progress in Cryopreservation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    In-Sul Hwang


    Full Text Available Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.

  18. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish



    Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontane...

  19. Cold-induced changes in amphibian oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angelier, N.; Moreau, N.A.; N' Da, E.A.; Lautredou, N.F. (Centre de Biologie Cellulaire, Ivry-sur-Seine (France))


    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  20. Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. (United States)

    Do, Lanh Thi Kim; Luu, Vien Viet; Morita, Yasuhiro; Taniguchi, Masayasu; Nii, Masahiro; Peter, Augustine T; Otoi, Takeshige


    Astaxanthin, one of the most common carotenoids, elicits antioxidant effects on cellular viability and embryonic development. This study was conducted to investigate the effects of astaxanthin on maturation, fertilization and development of porcine oocytes matured in vitro under heat stress conditions, and then fertilized and cultured under standard conditions. Porcine oocytes were cultured in maturation medium supplemented with different concentrations of astaxanthin (0, 0.25, 0.5 or 1 ppm) for 46 h at either 38.5 or 41 °C. In comparison to oocytes cultured at 38.5 °C, the exposure of porcine oocytes to 41.0 °C during in vitro maturation (IVM) significantly inhibited maturation and development of fertilized oocytes to the blastocyst stage. Supplementation of maturation medium with astaxanthin (0.5 ppm) significantly improved oocyte maturation, fertilization and development to the blastocysts stage in both oocyte groups. However, the total cell number and apoptosis index of blastocysts did not differ among groups. Moreover, astaxanthin (0.5 ppm) significantly increased the rate of oocytes that reached metaphase II and decreased proportion of apoptotic oocytes exposed to H2O2 (1.0mM) during IVM. In summary, we demonstrated that supplementation of maturation medium with astaxanthin (0.5 ppm) exerted antioxidative effects and improved the ability of maturation, fertilization, and development of porcine oocytes exposed to heat stress.

  1. Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas) (United States)

    This study assessed effects of the conazole-fungicide propiconazole on endocrine function and reproductive success of the fathead minnow, using an experimental approach based on previously defined adverse outcome pathways (AOPs) for chemicals that inhibit steroidogenesis in fish...

  2. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee


    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  3. Aflatoxin B1 is toxic to porcine oocyte maturation. (United States)

    Liu, Jun; Wang, Qiao-Chu; Han, Jun; Xiong, Bo; Sun, Shao-Chen


    As a toxic secondary metabolite of Aspergillus species, Aflatoxin B1 (AFB1) is a major food and feed contaminant in tropical and sub-tropical regions with high temperature and humidity. It has been reported to be toxic to the female reproductive system in laboratory and domestic animals. In the present study, the influence of acute exposure to AFB1 (10 and 50 μM, 44h) on porcine oocyte maturation and its possible mechanism were investigated. The maturation rates of oocytes decreased significantly in the presence of 50 μM of AFB1. Cell cycle analysis showed that most oocytes were arrested at germinal vesicle breakdown or meosis I stage. However, actin assembly, spindle structure and chromosome alignment were not disrupted after exposure to 50 μM AFB1. Further study showed that DNA methylation levels increased in treated oocytes (50 μM). Histone methylation levels were also analysed after treatment (50 μM): H3K27me3 and H3K4me2 levels decreased, whereas H3K9me3 level increased, indicating that epigenetic modification was affected. AFB1 treatment (50 μM) also induced oxidative stress and further led to autophagy, as shown by accumulation of reactive oxygen species, up-regulated LC3 protein expression and increased mRNA levels of ATG3, ATG5 and ATG7. Annexin V-FITC staining assay revealed that AFB1 treatment (50 μM) resulted in oocyte early apoptosis, which was confirmed by increased Bak, Bax, Bcl-xl mRNA levels. Collectively, our results suggest that AFB1 disrupts porcine oocyte maturation through changing epigenetic modifications as well as inducing oxidative stress, excessive autophagy and apoptosis.

  4. Organisation of Xenopus oocyte and egg cortices. (United States)

    Chang, P; Pérez-Mongiovi, D; Houliston, E


    The division of the Xenopus oocyte cortex into structurally and functionally distinct "animal" and "vegetal" regions during oogenesis provides the basis of the organisation of the early embryo. The vegetal region of the cortex accumulates specific maternal mRNAs that specify the development of the endoderm and mesoderm, as well as functionally-defined "determinants" of dorso-anterior development, and recognisable "germ plasm" determinants that segregate into primary germ cells. These localised elements on the vegetal cortex underlie both the primary animal-vegetal polarity of the egg and the organisation of the developing embryo. The animal cortex meanwhile becomes specialised for the events associated with fertilisation: sperm entry, calcium release into the cytoplasm, cortical granule exocytosis, and polarised cortical contraction. Cortical and subcortical reorganisations associated with meiotic maturation, fertilisation, cortical rotation, and the first mitotic cleavage divisions redistribute the vegetal cortical determinants, contributing to the specification of dorso-anterior axis and segregation of the germ line. In this article we consider what is known about the changing organisation of the oocyte and egg cortex in relation to the mechanisms of determinant localisation, anchorage, and redistribution, and show novel ultrastructural views of cortices isolated at different stages and processed by the rapid-freeze deep-etch method. Cortical organisation involves interactions between the different cytoskeletal filament systems and internal membranes. Associated proteins and cytoplasmic signals probably modulate these interactions in stage-specific ways, leaving much to be understood.

  5. Aurora kinase A controls meiosis I progression in mouse oocytes. (United States)

    Saskova, Adela; Solc, Petr; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan


    Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G(2) and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G(2) to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6-treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Overexpression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.

  6. Inhibition of calcineurin by FK506 stimulates germinal vesicle breakdown of mouse oocytes in hypoxanthine-supplemented medium (United States)

    Wang, Li; Zhen, Yan-Hong; Liu, Xiao-Ming; Cao, Jing; Wang, Yan-Ling


    Calcineurin (CN) is a serine/threonine phosphatase which plays important roles in meiosis maturation in invertebrate oocytes; however, the role of CN in mouse oocytes is relatively unexplored. In this study, we examined the expression, localization and functional roles of CN in mouse oocytes and granulosa cells. The RT-PCR results showed that the β isoform of calcineurin A subunit (Cn A) expressed significantly higher than α and γ isoforms, and the expression of Cn Aβ mRNA obviously decreased in oocytes in which germinal vesicle breakdown (GVBD) occurred, while only B1 of calcineurin B subunit (Cn B) was detected in oocytes and stably expressed during oocytes maturation. The following fluorescence experiment showed that Cn A was mainly located in the nucleus of germinal vesicle (GV) stage oocytes and gruanlosa cells, and subsequently dispersed into the entire cytoplasm after GVBD. The decline of Cn A in oocytes suggested that it may play an important role in GVBD. To further clarify the role of calcineurin during meiotic maturation, FK506 (a calcineurin inhibitor) was used in the culture medium contained hypoxanthine (HX) which could keep mouse oocytes staying at GV stage. As expected, FK506 could induce a significant elevation of GVBD rate and increase the MPF level of denuded oocytes (DOs). Furthermore, FK506 could also play an induction role of GVBD of oocytes in COCs and follicles, and the process could be counteracted by MAPK kinase inhibitor (U0126). Above all, the results implied that calcineurin might play a crucial role in development of mouse oocytes and MPF and MAPK pathways are involved in this process. PMID:28243539

  7. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. (United States)

    Sun, Qing-Yuan; Miao, Yi-Liang; Schatten, Heide


    Mammalian oocytes reach prophase of first meiosis around the time of birth, and remain at this stage for months or years, depending on the species. Only after puberty will the fully-grown oocytes begin to resume meiosis which is stimulated by gonadotropin surge. It has long been known that a high level of intra-oocyte cyclic adenosine 3',5'-monophosphate (cAMP) prevents oocyte meiosis resumption as indicated by germinal vesicle breakdown (GVBD). Recently, guanosine triphosphate-binding (G) protein-coupled receptors/G proteins/adenyl cyclase pathway endogenous to the oocyte as well as cAMP diffusion from the somatic compartment through gap junctions have been implicated in maintaining cAMP at levels that prevent oocytes from resuming meiosis. Another second messager molecule, guanosine 3',5'-cyclic monophosphate (cGMP), has also recently been found to play important roles in maintaining oocyte meiosis arrest. cGMP in the follicular somatic cells diffuses into the oocyte and causes an increase in oocyte cAMP, presumably by acting on phosphodiesterase 3 (PDE3). The cGMP level in the somatic compartment of the follicle decreases in response to luteinizing hormone (LH), and this change may be mediated through the epidermal growth factor (EGF)-like factors and specific cGMP-phosphodiesterase subtype activity. It is well known that gonadotropic stimulation of meiotic resumption depends on mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle; recent studies show that LH, through cAMP/protein kinase A (PKA) and protein kinase C (PKC) pathways, induces the synthesis of paracine factors such as EGF-like facors and meiosis activating sterol (MAS) to regulate oocyte GVBD via the MAPK pathway in follicle cells. A recent granulosa cell-specific knockout study has for the first time provided in vivo evidence for the important role of extracellular regulated kinase 1 and 2 (ERK1/2), two main forms of MAPK, and their downstream molecules in

  8. Effect of gonadotr opin-releasing hormone agonist on steroidogenesis of cultured human luteinized g ranulosa cells in vitro.%GnRH-a体外对人卵巢黄素化颗粒细胞雌二醇和孕酮分泌量的影响

    Institute of Scientific and Technical Information of China (English)

    陈丹青; 黄荷凤; 朱依敏


    目的:观察促性 腺素释放激素 激动剂(GnRH-a)在体外对人卵巢黄素化颗粒细胞雌二醇(E2)和孕酮(P)分泌量的影响。方法:培养人卵巢黄素化颗粒细胞,分别用终浓度为1.0、10.0、100.0ng/ml的G nRH -a刺激,同时设对照组,培养时间为2、4、6d。用放射免疫法检测黄素化颗粒细胞E2和P 的分 泌量。结果:培养2d,GnRH-a中、高浓度组E2和P分泌量分别为(122±3 7 )%、(128±24)%;(143±32)%、(137±29)%对照组为100%,均显著高于对照组(P<0.05);低浓度组E2和P分泌量与对照组差异无显著性。随着细胞培养天数的增加 , GnRH-a中、高浓度组E2分泌量明显低于对照组,高浓度组E2分泌量与培养天数呈负相关 (r=-0.75,P<0.05)。结论:GnRH-a对黄素化颗粒细胞分 泌甾体激素功能的影响随着作用时间和浓度的不同而变化。%Objective: To observe the effect of gonadotrop in-r eleasing hormone agonist(GnRH-a) on steroidogenesis of cultured human luteinize d granulosa cells in vitro.Methods: Human luteinized granulosa c ells were cultured in serum-free McCoy'5a medium.After stimulating with various concentrations of GnRH-a for 2, 4 and 6 days.Estradoil (E2) and progesterone ( P ) levels in the media were measured by radioimmunoassay.Results: When stimulated with different concentrations (10.0ng/ml and 100.0ng/ml)of GnRH -a for 2 days, E2 and P levels produced by luteinized granulosa cells increase d and were significantly higher than those of control (P<0.05).In lower concentration group there were no significantly difference of E2 a nd P le vels when compared with control group.After stimulated with different concentrat ion of GnRH-a for 4 and 6 days,the E2 levels in media significantly decreased e xcept for the low concentration group.There was a significant positive correlati o n between the E2 level and days under the stimulation of high concentration Gn R H-a(r=-0.75,P<0.05).Conclusion

  9. Acentrosomal Spindle Assembly & Chromosome Segregation During Oocyte Meiosis


    Dumont, Julien; Desai, Arshad


    The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte mei...

  10. [Controversy in ART: should we cryopreserve oocytes or embryos? Do prefer oocytes]. (United States)

    Boyer, P


    Since the beginning of IVF, cryopreservation concern spermatozoa or embryos due to the poor efficiency of oocyte freezing. To date, oocyte vitrification allows changing our practice privileging female gamete vitrification instead of human embryo freezing.

  11. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment. (United States)

    Lubik, Amy A; Nouri, Mannan; Truong, Sarah; Ghaffari, Mazyar; Adomat, Hans H; Corey, Eva; Cox, Michael E; Li, Na; Guns, Emma S; Yenki, Parvin; Pham, Steven; Buttyan, Ralph


    Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.

  12. Aurelia aurita (Cnidaria) oocytes' contact plate structure and development. (United States)

    Adonin, Leonid S; Shaposhnikova, Tatyana G; Podgornaya, Olga


    One of the A. aurita medusa main mesoglea polypeptides, mesoglein, has been described previously. Mesoglein belongs to ZP-domain protein family and therefore we focused on A.aurita oogenesis. Antibodies against mesoglein (AB RA47) stain the plate in the place where germinal epithelium contacts oocyte on the paraffin sections. According to its position, we named the structure found the "contact plate". Our main instrument was AB against mesoglein. ZP-domain occupies about half of the whole amino acid sequence of the mesoglein. Immunoblot after SDS-PAGE and AU-PAGE reveals two charged and high M(r) bands among the female gonad germinal epithelium polypeptides. One of the gonads' polypeptides M(r) corresponds to that of mesogleal cells, the other ones' M(r) is higher. The morphological description of contact plate formation is the subject of the current work. Two types of AB RA47 positive granules were observed during progressive oogenesis stages. Granules form the contact plate in mature oocyte. Contact plate of A.aurita oocyte marks its animal pole and resembles Zona Pellucida by the following features: (1) it attracts spermatozoids; (2) the material of the contact plate is synthesized by oocyte and stored in granules; (3) these granules and the contact plate itself contain ZP domain protein(s); (4) contact plate is an extracellular structure made up of fiber bundles similar to those of conventional Zona Pellucida.

  13. Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. (United States)

    Morgan, Clinton T; Noble, Daniel; Kimble, Judith


    Germ cell fate decisions are poorly understood, despite their central role in reproduction. One fundamental question has been whether germ cells are regulated to enter the meiotic cell cycle (i.e., mitosis-meiosis decision) and to be sperm or oocyte (i.e., sperm-oocyte decision) through one or two cell fate choices. If a single decision is used, a male-specific or female-specific meiotic entry would lead necessarily toward spermatogenesis or oogenesis, respectively. If two distinct decisions are used, meiotic entry should be separable from specification as sperm or oocyte. Here, we investigate the relationship of these two decisions with tools uniquely available in the nematode Caenorhabditis elegans. Specifically, we used a temperature-sensitive Notch allele to drive germ-line stem cells into the meiotic cell cycle, followed by chemical inhibition of the Ras/ERK pathway to reprogram the sperm-oocyte decision. We found that germ cells already in meiotic prophase can nonetheless be sexually transformed from a spermatogenic to an oogenic fate. This finding cleanly uncouples the mitosis-meiosis decision from the sperm-oocyte decision. In addition, we show that chemical reprogramming occurs in a germ-line region where germ cells normally transition from the mitotic to the meiotic cell cycle and that it dramatically changes the abundance of key sperm-oocyte fate regulators in meiotic germ cells. We conclude that the C. elegans mitosis-meiosis and sperm-oocyte decisions are separable regulatory events and suggest that this fundamental conclusion will hold true for germ cells throughout the animal kingdom.

  14. Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle.

    Directory of Open Access Journals (Sweden)

    Jianmin Su

    Full Text Available The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs were divided into control (not exposed to BCB, BCB+ (blue cytoplasm and BCB- (colorless cytoplasm groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18, and methylation levels of histone H3 at K4 (H3K4me2 than BCB- embryos (embryos developed from BCB- oocytes at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE cells, and inner cell mass (ICM cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.

  15. Phosphoproteins and regulation of steroidogenesis in rat tumour Leydig cells

    NARCIS (Netherlands)

    G.H. Bakker (Gerard)


    textabstractThe testis and in general in mammals has two very important functions, i.e. the production of spermatozoa, necessary for sexual reproduction, and the production of male steroid hormones, the androgens, necessary for the development and maintenance of spermatogenesis and primary

  16. Improvement on in vitro maturation, fertilization and development of minke whale (Balaenoptera acutorostrata) oocytes. (United States)

    Asada, M; Tetsuka, M; Ishikawa, H; Ohsumi, S; Fukui, Y


    The aims of the present study were to improve in vitro maturation, fertilization and subsequent development of minke whale oocytes. We investigated the effects of different concentrations (0, 10 and 20%) of fetal whale serum (FWS) in maturation medium on nuclear maturation, morphological grade (A or B) of cumulus-oocyte complexes (COC) obtained from prepubertal and adult minke whales. Grade A (> or = 5 layers of cumulus cells) COC collected from the adult whales and cultured in the medium with 20% FWS had a higher (P whales and COC grades were not significantly affected by M-II oocytes. When in vitro fertilization of matured oocytes was performed in the presence of 20% FWS or 0.6% BSA in the fertilization medium, the proportions of sperm penetration and two-pronuclei formation in matured oocytes were not significantly different. Grade A COC cultured in a culture medium supplemented with 10% FWS cleaved at a higher rate (15.4%, P develop to morula (4.2%) compared with that of the oocytes from Grade B COC (2.5% and 0%). Coculture with granulosa cells during in vitro culture did not significantly affect cleavage and development to the morula stage. These results indicate that FWS addition in the maturation medium improved the rate of in vitro maturation and cleavage after insemination of minke whale oocytes. The BSA supplementation in fertilization medium was as effective as FWS supplementation for in vitro fertilization of matured oocytes. In vitro embryo production beyond the morula stage of minke whale oocytes could be possible, if Grade A COC was selected and cultured in the maturation medium supplemented with 10% or 20% FWS.

  17. mtDNA copy number in oocytes of different sizes from individual pre- and post-pubertal pigs

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud Erik


    Reproduction 131, 233–245). However, the correlation between size and mtDNA copy number in single oocytes has not been determined. This study describes the relation between oocytes of defined diameters from individual pre- and postpubertal pigs and mtDNA copy number. Cumulus-oocyte complexes were aspirated......Oocyte competence has been related to mtDNA copy number, but a large variation in mtDNA copy number between oocytes has been observed, caused by, e.g. oocyte donor and oocyte size (Sato et al. 2014 PLOS ONE 9, e94488; Cotterill et al. 2013 Mol. Hum. Reprod. 19, 444–450; El Shourbagy et al. 2006...... from ovaries of 10 pre- and 10 post-pubertal pigs. Cumulus cells were removed and the oocytes were measured (inside-ZP-diameter). Oocytes were transferred to DNAase-free tubes, snap-frozen, and stored at –80°C. The genes ND1 and COX1 were used to determine the mtDNA copy number. Plasmid preparations...

  18. Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig.

    Directory of Open Access Journals (Sweden)

    Annie E Newell-Fugate

    Full Text Available The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10 or a control diet (n=9 for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be

  19. Roles of trifluoperazine and verapamil in the oocyte maturation and cumulus expansion of bovine cumulus—oocyte complexes

    Institute of Scientific and Technical Information of China (English)

    SunQingyuan; FengHuailiang; 等


    Bovine cumulus-oocyte complexes were cultured in the maturation medium containing 4 different concentrations of verapamil and trifluoperazine to testify the necessity of extracellular Ca2+ and Ca2+-calmodulin complex for the resumption and completion of meiosis as well as cumulus expansion.Ultrastructure of the treated oocytes was also observed to investigate the cytoplasm maturation.The results showed that verapamil didn't influence the cumulus expansion,meiosis resumption and completion and cytoplasm maturation significantly.TFP inhibited cumulus expansion in a dose-dependent manner.25um trifluoperazine significantly inhibited the GVBD and maturation (P<0.01),wherease 1um TFP had no effect,Both oocytes and cumulus cells treated with 25um TFP severely degenerated.Our observtions suggest that the resumption and completion of meiosis and cumulus expansion are Ca2+-CaM dependent and blocking membrane Ca2+ channel does not influence oocyte germinal vesicle breakdown,nuclear and cytoplasm maturation significantly in cattle.

  20. Effect of Hyaluronan on Developmental Competence and Quality of Oocytes and Obtained Blastocysts from In Vitro Maturation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    Jolanta Opiela


    Full Text Available The objective of the present study was to evaluate the effect of hyaluronan (HA during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC, and obtained blastocysts. COCs were matured in vitro in control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001 was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01. Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higher Bax mRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.

  1. Localization of interchromatin granule cluster and Cajal body components in oocyte nuclear bodies of the hemipterans. (United States)

    Bogolyubov, D S; Batalova, F M; Ogorzałek, A


    An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.

  2. The Effects of Polyadenylation Status on MPFs During In Vitro Porcine Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Huiyu Liu


    Full Text Available Aims: This study aims to clarify the effects of polyadenylation status on M-phase promoting factors (MPFs during in vitro porcine oocyte maturation. Methods: In this study, porcine follicular oocytes from large follicles (> 5 millimeter (mm and small follicles (Cyclin B1 and cell division cycle 2 (Cdc2 were determined by real-time quantitative PCR. Immunofluorescence was used to assess spindle formation and chromosome alignment in the examined oocytes. Results: In large-follicle oocytes, the effects of inhibiting polyadenylation caused the percentage of mature to be significantly lower for the treated group than for the untreated group (p in vitro and inhibits Cdc2 polyadenylation. Cyclin B1 plays a significant role in promoting the maturation of large-follicle oocytes. Polyadenylation contributes to the formation of dominant follicles and facilitates the selection of dominant follicles. However, the inhibition of adenylation affected spindle formation-related propulsion and chromosome alignment in both large- and small-follicle oocytes. The first polar body could not be extruded in certain large follicles. Conclusions: 3'-da can significantly improve the rate of small oocyte maturation in vitro, but it can also affect spindle formation-related propulsion and chromosome alignment.

  3. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. (United States)

    Udagawa, Osamu; Ishihara, Takaya; Maeda, Maki; Matsunaga, Yui; Tsukamoto, Satoshi; Kawano, Natsuko; Miyado, Kenji; Shitara, Hiroshi; Yokota, Sadaki; Nomura, Masatoshi; Mihara, Katsuyoshi; Mizushima, Noboru; Ishihara, Naotada


    Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation. However, the underlying molecular mechanisms of organelle dynamics during the development and aging of oocytes have not been well understood. Here, we analyzed oocyte-specific mitochondrial fission factor Drp1-deficient mice and found that mitochondrial fission is essential for follicular maturation and ovulation in an age-dependent manner. Mitochondria were highly aggregated with other organelles, such as the ER and secretory vesicles, in KO oocyte, which resulted in impaired Ca(2+) signaling, intercellular communication via secretion, and meiotic resumption. We further found that oocytes from aged mice displayed reduced Drp1-dependent mitochondrial fission and defective organelle morphogenesis, similar to Drp1 KO oocytes. On the basis of these findings, it appears that mitochondrial fission maintains the competency of oocytes via multiorganelle rearrangement.

  4. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish. (United States)

    Toraya, Tetsuo; Kida, Tetsuo; Kuyama, Atsushi; Matsuda, Shinjiro; Tanaka, Seiichi; Komatsu, Yo; Tsurukai, Taro


    Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N(6)-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised against a 1-MeAde hapten, a single band with Mr of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors.

  5. Effects of Aroclor 1254 on in vivo oocyte maturation in the mouse.

    Directory of Open Access Journals (Sweden)

    ShuZhen Liu

    Full Text Available Polychlorinated biphenyls (PCBs are stable, lipophilic compounds that accumulate in the environment and in the food chain. Though some studies provided evidence that PCBs had adverse effects on reproductive function, most of these results were from in vitro models. Therefore we investigated the effect of Aroclor 1254 (a commercial PCBs mixture treatments on in vivo maturation and developmental potential of mouse oocytes. In the present study, female ICR mice were treated with different doses (12.5, 25 and 50 mg/kg of Aroclor 1254 (a commercial PCB mixture once every 72 hours by intraperitoneal injection for 9 days. After three treatments of Aroclor 1254, the mice were superovulated to collect oocytes one day after the last exposure. The effects of Aroclor 1254 on oocyte maturation, fertilization, and preimplantation embryonic development were investigated. Immunofluorescence-stained oocytes were observed under a confocal microscope to assess the effects of Aroclor 1254 on spindle morphology. Parthenogenic activation and the incidence of cumulus apoptosis in cumulus-oocyte complexes were observed as well. Oocytes exposed to different doses of Aroclor 1254 in vivo were associated with a significant decrease in outgrowth potential, abnormal spindle configurations, and the inhibition of parthenogenetic activation of ovulated oocytes. Furthermore, the incidence of apoptosis in cumulus cells was increased after exposed to Aroclor 1254. These results may provide reference for the treatment of reproductive diseases such as infertility or miscarriage caused by environmental contaminants.

  6. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes (United States)

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo


    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  7. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, R A; Brandriff, B


    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos.

  8. 敲减自噬相关基因Beclin 1可降低TM3小鼠睾丸间质细胞的睾酮合成功能%Knockdown autophagy related gene Beclin 1 might lead to decline of steroidogenesis in TM 3 cells

    Institute of Scientific and Technical Information of China (English)

    李维仁; 侯垒; 崔功静; 常智杰; 贾金铭; 辛钟成


    目的:初步探讨自噬活性降低对TM3小鼠睾丸间质细胞系睾酮合成功能的影响。方法 TM3小鼠睾丸间质细胞系中,通过siRNA敲减TM3细胞的自噬相关基因Beclin1,一部分细胞转染GFP-LC3质粒48h后共聚焦显微镜观察GFP颗粒分布情况,一部分细胞用电镜观察其超微结构变化,观察自噬相关结构的变化,另一部分细胞用黄体生成素(LH)刺激后,提取细胞总蛋白,用Western blot比较青年组和老年组睾丸间质细胞中自噬相关蛋白LC3蛋白表达水平的差异,ELISA法检测细胞上清睾酮浓度,分光光度法检测活性氧物质(ROS)。结果利用siRNA敲减自噬相关基因Beclin 1后,TM3细胞中LC3-Ⅱ的蛋白表达降低(P <0.01)(图1A),电镜下观察并分析发现,TM3细胞中自噬小体所占面积比减少(P <0.01)(图1B),共聚焦显微镜下观察发现,GFP- LC3的点状荧光所占面积比显著减少(P<0.01)(图1C)。TM3细胞中敲减Beclin 1导致LH诱导的StAR蛋白表达降低(P<0.01)(图2A),睾酮合成水平下降(P<0.01)(图2B),ROS水平升高(P<0.01)(图3)。结论 TM3小鼠睾丸间质细胞系中,利用siRNA敲减自噬相关基因Beclin 1后,细胞自噬受到抑制,ROS水平显著升高,LH诱导的StAR蛋白表达及睾酮合成显著降低。%Objective To study the effects of autophagic change on steroidogenesis in TM3 Leydig cells. Methods Autophagy related gene Beclin 1 was knocked down in TM3 mouse Leydig cells using siRNA. Some cells were transfected with GFP-LC3 plasmid, and GFP particals were observed under confocal microscope; Cell ultrastructure was observed under electron microscopy(EM); and the other cells were collected for detection of protein expression by western blot, the concentration of testosterone in cell culture medium supernatant was detected by ELISA and reactive oxygen species (ROS) level was measured by

  9. The Role of Glucose Metabolism on Porcine Oocyte Cytoplasmic Maturation and Its Possible Mechanisms (United States)

    Kwon, Jeong-Woo; Jin, Yong-Xun; Park, Shun-Ha; Wang, Hai-Yang; Sun, Tian-Yi; Zhang, Jia-Bao; Kim, Nam-Hyung


    In the present study, we investigated the potential role of glucose and pyruvate in the cytoplasmic maturation of porcine oocytes by investigating the effect of glucose and/or pyruvate supplementation, in the presence or absence of 10% porcine follicular fluid (PFF), on meiotic maturation and subsequent embryo development. In the absence of 10% PFF, without exogenous addition of glucose and pyruvate, the medium seemed unable to support maturation. In the presence of 10% PFF, the addition of 5.6 mM glucose and/or 2 mM pyruvate during in vitro maturation of cumulus enclosed oocytes increased MII oocyte and blastocyst rates. In contrast, oocytes denuded of cumulus cells were not able to take full advantage of the glucose in the medium, as only pyruvate was able to increase the MII rate and the subsequent early embryo developmental ability. Treatment of cumulus enclosed oocytes undergoing maturation with 200 μM dehydroepiandrosterone (DHEA), a pentose phosphate pathway inhibitor, or 2 μM iodoacetate (IA), a glycolysis inhibitor, significantly reduced GHS, intra-oocyte ATP, maternal gene expression, and MPF activity levels. DHEA was also able to increase ROS and reduce the levels of NADPH. Moreover, blastocysts of the DHEA- or IA-treated groups presented higher apoptosis rates and markedly lower cell proliferation cell rates than those of the non-treated group. In conclusion, our results suggest that oocytes maturing in the presence of 10% PFF can make full use of energy sources through glucose metabolism only when they are accompanied by cumulus cells, and that pentose phosphate pathway (PPP) and glycolysis promote porcine oocyte cytoplasmic maturation by supplying energy, regulating maternal gene expression, and controlling MPF activity. PMID:27997591

  10. Detection of condensin I and II in maturing pig oocytes. (United States)

    Lisková, Lucie; Susor, Andrej; Pivonková, Katerina; Sasková, Adéla; Karabínová, Pavla; Kubelka, Michal


    The multiprotein complexes known as condensins (I and II) are major players in chromosome dynamics in mitotic and meiotic cells. Here, we report for the first time the detection of different condensin subunits from both complexes in mammalian oocytes. Using immunoblotting analysis we examined expression levels of condensin subunits during meiotic maturation of porcine oocytes. The expression of the core subunit structural maintenance of chromosomes 2 (SMC2), identical in both condensin complexes, did not change significantly during maturation. Similarly, there was no significant change in the expression of the chromosome associated protein (CAP)-H and CAP-H2 subunits, components of condensin I and II, respectively. Conversely, the expression profiles of CAP-G, CAP-D2 (condensin I) and CAP-D3 (condensin II) were more interesting. At least two isoforms of the CAP-D2 subunit were detected, along with three isoforms of the CAP-D3 and CAP-G subunits. We suggest that this diverse migration of subunit isoforms is due to post-translational modification. Earlier, it was reported that non-SMC proteins are phosphorylated by cyclin-dependent kinase 1. In the present study, we analysed the phosphorylation status of the three subunits in oocyte extracts using alkaline phosphatase treatment and we found that at least the fastest migrating form of CAP-D3 was likely to be phosphorylated in maturing porcine oocytes. In addition, the localisation of CAP-H and CAP-H2 subunits was examined using immunofluorescence staining with specific antibodies, as well as following microinjection of their enhanced green fluorescent protein-tagged mRNA into germinal vesicle-stage oocytes. CAP-H was found in the cytoplasm, whereas CAP-H2 was localised within the nucleus.

  11. Low temperature induces oocytes p34cdc2 synthesis and accumulation—the acquisition of competence to resume meiosis in toad oocytes

    Institute of Scientific and Technical Information of China (English)



    Full grown oocytes derived from Bufo Bufo gargarizans rearing at high temperature environment (24℃), never underwent GVBD after progesterone treatment.No p34cdc2 Hl kinase activity was detected in the oocytes after progesterone stimulation or OA microinjection;Western blotting analysis showed that the level of p34cdc2 and p33 in the oocytes are significantly lower than those in the oocytes derived from the hibernating toads (below 10℃).35S-Met incorporation analysis showed that when the oocytes were incubated at 6℃,synthesis of about thirty defferent polypeptides was promoted or induced,including p34cdc2 and some other p13suc1-binding proteins.All these results indicated that a low temperature environment is essential for the oocytes of Bufo Bufo gargarizans to express and stord some cell cycle drivers and its regulators,and to gain the maturation competence.These results will also provide a nwe clue for explaining the molecular mechanisms why gametogenesis of some organisms depends on a relative low temperature and how to maintain the geographical distribution of some animals.

  12. Membrane receptor cross talk in steroidogenesis: recent insights and clinical implications. (United States)

    Light, Allison; Hammes, Stephen R


    Steroid production by all three major steroidogenic tissues, the adrenals, testes, and ovaries, is critical for survival and reproduction of all animals. As such, the pathways that regulate steroidogenesis are conserved between these tissues, from the steroidogenic enzymes and cofactors that synthesize steroids, to the intracellular signaling molecules and Gαs-coupled receptors that mediate the activity of these enzymes. Recent work has revealed another important conserved pathway in steroidogenesis: crosstalk between membrane G protein-coupled receptors and membrane receptor tyrosine kinases. Luteinizing hormone (LH) or adrencorticotropic hormone (ACTH) binding to their cognate Gαs-coupled membrane receptors in the gonads and adrenals, respectively, leads to cAMP-induced trans-activation of the epidermal growth factor (EGF) receptor, followed by activation of Akt and Erk signaling. These kinase signals then activate Steroidogenic Acute Regulatory (StAR) protein, which promotes steroid production. Inhibition of this pathway abrogates both LH- and ACTH-induced steroidogenesis. Interestingly, LH-induced transactivation of the EGF receptor in the ovary uniquely requires matrix metalloproteinase-mediated release of EGF receptor ligands, and inhibition of these proteases blocks LH-induced steroidogenesis. Given this unique need for matrix metalloproteinases in ovarian steroidogenesis, MMP inhibition may prove to be useful when treating diseases of excess ovarian steroid production, such as polycystic ovary syndrome.

  13. Sequential Analysis of Global Gene Expression Profiles in Immature and In vitro Matured Bovine Oocytes: Potential Molecular Markers of Oocyte Maturation

    LENUS (Irish Health Repository)

    Mamo, Solomon


    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource

  14. In silico predicted structural and functional robustness of piscine steroidogenesis. (United States)

    Hala, D; Huggett, D B


    Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux.

  15. Human low density lipoprotein as a substrate for in vitro steroidogenesis assays with fathead minnow ovary explants (United States)

    Gonad explant in vitro steroidogenesis assays are used as part of a multifaceted strategy to detect endocrine active chemicals capable of altering steroid hormone synthesis. An in vitro steroidogenesis assay used in our laboratory involves exposing fathead minnow (FHM) gonad exp...

  16. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation. (United States)

    Lin, Zi-Li; Kim, Nam-Hyung


    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes.

  17. Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. (United States)

    Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Silveira, Tony; Barther, Nathaniele Nebel; Komninou, Eliza Rossi; Basso, Andrea Cristina; Jornada, Denise Soledade; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Junior, Antonio Sérgio Varela; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago


    In this work, a promising approach to increase the advantageous properties of melatonin through its encapsulation into lipid-core nanocapsules (LNC) was examined. Oocytes were treated during in vitro maturation with non-encapsulated melatonin (Mel), melatonin-loaded lipid-core nanocapsules (Mel-LNC), and unloaded LNC. Cytotoxicity, meiotic maturation rate, development to the blastocyst stage, reactive oxygen species (ROS) and glutathione levels, mean cell number and apoptotic cell/blastocyst, and mRNA quantification were evaluated. Both Mel and Mel-LNC enhanced in vitro embryo production, however, Mel-LNC proved to be more effective at decreasing ROS levels and the apoptotic cell number/blastocyst, increasing the cleavage and blastocyst rates, up-regulating the GPX1 and SOD2 genes, and down-regulating the CASP3 and BAX genes. Mel-LNC could penetrate into oocytes and remain inside the cells until they reach the blastocyst stage. In conclusion, when melatonin was encapsulated in LNC and applied during in vitro oocyte maturation, some quality aspects of the blastocysts were improved.

  18. Growth and development of rabbit oocytes in vitro: effect of fetal bovine serum concentration on culture medium. (United States)

    Sugimoto, H; Kida, Y; Miyamoto, Y; Kitada, K; Matsumoto, K; Saeki, K; Taniguchi, T; Hosoi, Y


    The objective was to develop a culture system that produced blastocyst stage embryos from rabbit oocytes grown in vitro. Two experiments were performed. First, various concentrations of fetal bovine serum (FBS, 0, 0.05, 0.5 and 5%) were used in the culture medium for in vitro growth (IVG) of oocytes recovered from follicles 200 to 299 μm in diameter. Intracytoplasmic sperm injection (ICSI) was performed on mature oocytes obtained after IVG for 8 days and in vitro maturation for 14 to 16 h. Rates of survival and pronuclear formation after ICSI were higher for oocytes grown in a medium with 0.05% FBS compared to oocytes grown in a medium lacking FBS (97.6 vs. 76.9%, 97.5 vs. 70%, P cultured in 0.05% FBS, oxygen consumption and the number of cells were analyzed. Blastocysts from oocytes grown in vitro with 0.05% FBS had reduced oxygen consumption and number of cells compared with those from ovulated oocytes (21.66 ± 4.54 × 10(14) vs. 50.19 ± 4.61 × 10(14) mol/sec, 244 ± 25 vs. 398 ± 24, P vitro with 0.05% FBS achieved pregnancy, but pregnancies were not maintained to term. In conclusion, the addition of 0.05% FBS to the culture medium for IVG improved developmental competence of rabbit oocytes grown in vitro.

  19. Meiosis I in Xenopus oocytes is not error-prone despite lacking spindle assembly checkpoint. (United States)

    Liu, Dandan; Shao, Hua; Wang, Hongmei; Liu, X Johné


    The spindle assembly checkpoint, SAC, is a surveillance mechanism to control the onset of anaphase during cell division. SAC prevents anaphase initiation until all chromosome pairs have achieved bipolar attachment and aligned at the metaphase plate of the spindle. In doing so, SAC is thought to be the key mechanism to prevent chromosome nondisjunction in mitosis and meiosis. We have recently demonstrated that Xenopus oocyte meiosis lacks SAC control. This prompted the question of whether Xenopus oocyte meiosis is particularly error-prone. In this study, we have karyotyped a total of 313 Xenopus eggs following in vitro oocyte maturation. We found no hyperploid egg, out of 204 metaphase II eggs with countable chromosome spreads. Therefore, chromosome nondisjunction is very rare during Xenopus oocyte meiosis I, despite the lack of SAC.

  20. Nucleolus precursor body (NPB): a distinct structure in mammalian oocytes and zygotes. (United States)

    Kyogoku, Hirohisa; Kitajima, Tomoya S; Miyano, Takashi


    Nucleoli in mammalian oocytes and zygotes, sometimes referred to as nucleolus precursor bodies (NPBs), are compact and morphologically different from nucleoli in somatic cells. We applied a unique NPB analyzing method "enucleolation" technique to zygotes to remove the NPBs. It has been reported that oocyte NPBs are essential for embryonic development; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygotes and embryos, leading to developmental failure. However, we found that when NPBs were removed from zygotes, the zygotes developed successfully to live-born pups. These results indicated that oocyte NPBs are essential for embryonic development, but zygote NPBs are not. In addition, the enucleolated zygotes formed somatic-type nucleoli during early embryonic development, demonstrating that somatic-type nucleoli do not originate from zygote NPBs. We summarize our recent investigation on NPBs, and provide additional comments and findings.

  1. Using oocyte nuclei for studies on chromatin structure and gene expression. (United States)

    Sommerville, John


    The giant nucleus of amphibian oocytes is generally referred to as the germinal vesicle (GV). Its size allows relatively easy manual isolation from the rest of the oocyte and also presents a large target in situ for microinjection of macromolecules including plasmid DNA, RNA species, antibodies and other proteins and even whole organelles, including somatic cell nuclei. Thus the use of GVs is excellent for two major types of study: the function of endogenous nuclear processes such as gene transcription, RNA processing and intra-nuclear dynamics; and the use of the nuclear components to effect processes such as chromatin assembly, expression of foreign genes and nucleocytoplasmic transport of injected biomolecules. This article outlines some basic techniques appropriate for GV studies, particularly the preparation of oocytes for microinjection and the isolation of germinal vesicles into an oil phase. As an aid to the targeting of the GV within the nucleus, descriptions are given of the use of oocytes from albino animals.

  2. Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes

    Directory of Open Access Journals (Sweden)

    Michelle M Denomme


    Full Text Available Growth and maturation of healthy oocytes within follicles requires bidirectional signaling and intercellular gap junctional communication. Aberrant endocrine signaling and loss of gap junctional communication between the oocyte and granulosa cells leads to compromised folliculogenesis, oocyte maturation and oocyte competency, consequently impairing fertility. Given that oocyte-specific DNA methylation establishment at imprinted genes occurs during this growth phase, we determined whether compromised endocrine signaling and gap junctional communication would disrupt de novo methylation acquisition using ERβ and connexin37 genetic models. To compare mutant oocytes to control oocytes, DNA methylation acquisition was first examined in individual, 20-80 μm control oocytes at three imprinted genes, Snrpn, Peg3 and Peg1. We observed that each gene has its own size-dependent acquisition kinetics, similar to previous studies. To determine whether compromised endocrine signaling and gap junctional communication disrupted de novo methylation acquisition, individual oocytes from Esr2- and Gja4-deficient mice were also assessed for DNA methylation establishment. We observed no aberrant or delayed acquisition of DNA methylation at Snrpn, Peg3 or Peg1 in oocytes from Ers2-deficient females, and no perturbation in Snrpn or Peg3 de novo methylation in oocytes from Gja4-null females. However, Gja4-deficiency resulted in a loss or delay in methylation acquisition at Peg1. One explanation for this difference between the three loci analyzed is the late establishment of DNA methylation at the Peg1 gene. These results indicate that compromised fertility though impaired intercellular communication can lead to imprinting acquisition errors. Further studies are required to determine the effects of subfertility/infertility originating from impaired signaling and intercellular communication during oogenesis on imprint maintenance during preimplantation development.

  3. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production.

    Directory of Open Access Journals (Sweden)

    Tamás Somfai

    Full Text Available We report the successful piglet production from cryopreserved oocytes for the first time by using a simple, high capacity vitrification protocol for preservation and a defined system for in vitro embryo production. Immature cumulus-oocyte complexes (COCs from prepubertal gilts were vitrified in microdrops and stored in liquid nitrogen. After warming, COCs were subjected to in vitro maturation (IVM, fertilization (IVF, and subsequent culture (IVC. Adjusting warmplate temperature to 42 °C during warming prevented temperature drops in a medium below 34.0 °C and significantly increased the percentage of oocyte survival and thus blastocyst yields obtained from total vitrified oocytes compared with that of warming at 38 °C (87.1% vs 66.9% and 4.4% vs 2.7%, respectively. Nuclear maturation and fertilization of oocytes were not affected by vitrification and warming temperature. Blastocyst development on day 7 (day 0 = IVF of the surviving oocytes after warming at 38 °C and 42 °C was not different but lower (P<0.05 than those of non-vitrified control oocytes (4.6%, 5.2% and 17.9%, respectively. However, blastocyst cell numbers in the control and vitrified groups were similar irrespective of warming temperature. Omitting porcine follicular fluid (pFF from IVM medium (POM did not affect maturation, fertilization and embryo development of vitrified-warmed oocytes. Transfer of blastocysts obtained on day 5 from vitrified oocytes matured either with or without pFF into 4 recipients (2 for each group resulted in 4 pregnancies and the delivery of a total of 18 piglets. In conclusion, optimization of warming temperature was a key factor for achieving high survival rates, and surviving oocytes could be utilized in vitro using defined media. Using these modifications, live piglets could be obtained from cryopreserved oocytes for the first time.

  4. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation (United States)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.


    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  5. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. (United States)

    Pirro, Valentina; Oliveri, Paolo; Ferreira, Christina Ramires; González-Serrano, Andrés Felipe; Machaty, Zoltan; Cooks, Robert Graham


    The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species.

  6. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. (United States)

    Morais-de-Sá, Eurico; Mukherjee, Avik; Lowe, Nick; St Johnston, Daniel


    The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.

  7. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality.

    Directory of Open Access Journals (Sweden)

    Sana N Khan

    Full Text Available Hydrogen peroxide (H2O2 is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO, and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions.

  8. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. (United States)

    Paynter, S J; Cooper, A; Gregory, L; Fuller, B J; Shaw, R W


    Equilibration of oocytes with cryoprotectants is a prerequisite of low temperature storage. However, cryoprotectant exposure may induce damage via osmotic stress. Knowledge of cell membrane permeability characteristics and their temperature dependence would facilitate the design of cryopreservation protocols in which osmotic stress is minimized and the incidence of intracellular freezing is reduced. To obtain such data, the volume change of donated human oocytes following exposure to cryoprotectant was measured at a variety of temperatures. After removal of cumulus cells, each oocyte was placed in a 5 microl droplet of phosphate-buffered medium. The oocyte was held in position by suction generated using a fine pipette and perfused with 1 ml 1.5 mol/l dimethylsulphoxide (DMSO) at 30, 24 or 10 degrees C. The volume of the oocyte before, during and after perfusion was recorded by videomicroscopy. Oocyte volume was calculated from radius measurements and the Kedem-Katchalsky (K-K) passive coupled transport coefficients, namely L(p) (hydraulic permeability), P(DMSO) (permeability to DMSO) and sigma (reflection coefficient) were derived. The resulting coefficients were L(p) = 1. 65 +/- 0.15, 0.70 +/- 0.06 and 0.28 +/- 0.04 microm/min.atm; P(DMSO) = 0.79 +/- 0.10, 0.25 +/- 0.04 and 0.06 +/- 0.01 microm/s and sigma = 0.97 +/- 0.01, 0.94 +/- 0.03 and 0.96 +/- 0.01 at 30, 24 and 10 degrees C respectively. The activation energy for L(p) was 14.70 and for P(DMSO) was 20.82 kcal/mol. The permeability parameters of human oocytes are higher than those of murine oocytes, suggesting that they require a shorter period of exposure to DMSO with concomitantly reduced toxic effects.

  9. Expression of the CTCF gene in bovine oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Álvaro F.L. Rios


    Full Text Available The CCCTC - binding factor (CTCF is a protein involved in repression, activation, hormone-inducible gene silencing, functional reading of imprinted genes and X-chromosome inactivation. We analyzed CTCF gene expression in bovine peripheral blood, oocytes and in different cellular stages (2-4 cells, 8-16 cells, 16-32 cells, morulae, and blastocysts of in vitro fertilized embryos. This is the first report of CTCF expression in oocytes and preimplantation bovine embryos and has implications for the production of embryonic stem cells and the development of novel medical technologies for humans.

  10. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51.

    Directory of Open Access Journals (Sweden)

    Loro L Kujjo

    Full Text Available BACKGROUND: Therapeutic approaches to preserve fertility in females undergoing cancer treatments are currently ineffective. This is partly due to limited knowledge of the molecular mechanisms that injured germ cells elicit to repair damage and survive or to abort repair and activate biochemical pathways leading to death. So far, we know that following spontaneously occurring or drug-induced DNA damage, the efficiency of DNA repair is a critical determinant of the cell's fate. The protein encoded by the Rad51 gene is one of several components recruited for homologous recombination-dependent DNA double-strand break repair in both somatic cells and germ cells. Recently, we showed that microinjection of recombinant Rad51 into AKR/J mouse oocytes decreased the extent of spontaneous DNA double-strand breaks, suppressed apoptosis, and restored the developmental competence in AKR/J embryos. Herein we characterized the nature of chemotherapy-induced lesions in oocytes, and the associated individual components of the DNA damage sensor and repair apparatus. For comparison, we also assessed parallel spontaneous changes in aging oocytes. METHODS: Data collected were derived from: analysis of apoptosis; immunodepletion; oocyte microinjections; immunocytochemistry; immunofluorescence; and CHIP-like assays. RESULTS: Our data show that: (i DNA damage in oocytes can be induced by both chemotherapy and spontaneously by the aging process; (ii oocytes possess the machinery and capability for repairing such DNA damage; (iii Rad51 is a critical player in the repair of both chemotherapy-induced and spontaneously-sustained DNA damage; and (iv in response to damage, oocytes exhibit an inverse functional relationship between presence of Bax and activity of Rad51. CONCLUSION/SIGNIFICANCE: Our results establish Rad51 and/or Bax as potential candidates that can be targeted for development of individualized chemotherapeutic interventions that are effective, but minimal in

  11. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals. (United States)

    Chaube, Shail K; Shrivastav, Tulsidas G; Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ajai K


    Neem (Azadirachta indica L.) leaf has been widely used in ayurvedic system of medicine for fertility regulation for a long time. The molecular mechanism by which neem leaf regulates female fertility remains poorly understood. Animal studies suggest that aqueous neem leaf extract (NLE) induces reactive oxygen species (ROS) - mediated granulosa cell apoptosis. Granulosa cell apoptosis deprives oocytes from nutrients, survival factors and cell cycle proteins required for the achievement of meiotic competency of follicular oocytes prior to ovulation. Under this situation, follicular oocyte becomes more susceptible towards apoptosis after ovulation. The increased level of hydrogen peroxide (H2O2) inside the follicular fluid results in the transfer of H2O2 from follicular fluid to the oocyte. The increased level of H2O2 induces p53 activation and over expression of Bax protein that modulates mitochondrial membrane potential and trigger cytochrome c release. The increased cytosolic cytochrome c level induces caspase-9 and caspase-3 activities that trigger destruction of structural and specific proteins leading to DNA fragmentation and thereby oocyte apoptosis. Based on these animal studies, we propose that NLE induces generation of ROS and mitochondria-mediated apoptosis both in granulosa cells as well as in follicular oocyte. The induction of apoptosis deteriorates oocyte quality and thereby limits reproductive outcome in mammals.

  12. Mono(2-ethylhexyl) phthalate accelerates early folliculogenesis and inhibits steroidogenesis in cultured mouse whole ovaries and antral follicles. (United States)

    Hannon, Patrick R; Brannick, Katherine E; Wang, Wei; Flaws, Jodi A


    Humans are ubiquitously exposed to di(2-ethylhexyl) phthalate (DEHP), which is an environmental toxicant present in common consumer products. DEHP potentially targets the ovary through its metabolite mono(2-ethylhexyl) phthalate (MEHP). However, the direct effects of MEHP on ovarian folliculogenesis and steroidogenesis, two processes essential for reproductive and nonreproductive health, are unknown. The present study tested the hypotheses that MEHP directly accelerates early folliculogenesis via overactivation of phosphatidylinositol 3-kinase (PI3K) signaling, a pathway that regulates primordial follicle quiescence and activation, and inhibits the synthesis of steroid hormones by decreasing steroidogenic enzyme levels. Neonatal ovaries from CD-1 mice were cultured for 6 days with vehicle control, DEHP, or MEHP (0.2-20 μg/ml) to assess the direct effects on folliculogenesis and PI3K signaling. Further, antral follicles from adult CD-1 mice were cultured with vehicle control or MEHP (0.1-10 μg/ml) for 24-96 h to establish the temporal effects of MEHP on steroid hormones and steroidogenic enzymes. In the neonatal ovaries, MEHP, but not DEHP, decreased phosphatase and tensin homolog levels and increased phosphorylated protein kinase B levels, leading to a decrease in the percentage of germ cells and an increase in the percentage of primary follicles. In the antral follicles, MEHP decreased the mRNA levels of 17alpha-hydroxylase-17,20-desmolase, 17beta-hydroxysteroid dehydrogenase, and aromatase leading to a decrease in testosterone, estrone, and estradiol levels. Collectively, MEHP mediates the effect of DEHP on accelerated folliculogenesis via overactivating PI3K signaling and inhibits steroidogenesis by decreasing steroidogenic enzyme levels.

  13. Effects of in vitro growth culture duration and prematuration culture on maturational and developmental competences of bovine oocytes derived from early antral follicles. (United States)

    Huang, Weiping; Nagano, Masashi; Kang, Sung-Sik; Yanagawa, Yojiro; Takahashi, Yoshiyuki


    Bovine ovaries offer a large pool of oocytes that could be used for in vitro production of embryos of genetically valuable animals. The effects of in vitro growth (IVG) culture duration (10, 12, and 14 days) on the viability and growth of bovine oocytes derived from early antral follicles (0.5-1 mm diameter) in this study. In addition, the effect of pre-IVM culture with phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) on nuclear maturation of IVG oocytes was also evaluated. In experiment 1, oocyte viability observed after 10 or 12 days of IVG culture was greater (P culture. Oocyte diameters and proportions of oocytes at metaphase II stage were greater (P culture where used when compared with 10 days culture. In addition, the proportion of oocytes at metaphase II stage was greater (P culture was performed for oocytes derived from 12 and 14 days of IVG culture. When 12 and 14 days of IVG culture followed by pre-IVM culture were compared in experiment 2, cumulus cell membrane integrity was greater (P culture (24.5%) was greater (P culture was considered the optimal processing system for bovine oocytes derived from early antral follicles when oocyte viability, diameter, maturation, and development competences were considered.

  14. Multiple requirements of PLK1 during mouse oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Petr Solc

    Full Text Available Polo-like kinase 1 (PLK1 orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC. Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.

  15. Maternal LPS exposure during pregnancy impairs testicular development, steroidogenesis and spermatogenesis in male offspring. (United States)

    Wang, Hua; Yang, Lu-Lu; Hu, Yong-Fang; Wang, Bi-Wei; Huang, Yin-Yin; Zhang, Cheng; Chen, Yuan-Hua; Xu, De-Xiang


    Lipopolysaccharide (LPS) is associated with adverse developmental outcomes including embryonic resorption, fetal death, congenital teratogenesis and fetal growth retardation. Here, we explored the effects of maternal LPS exposure during pregnancy on testicular development, steroidogenesis and spermatogenesis in male offspring. The pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD) 13 to GD 17. At fetal period, a significant decrease in body weight and abnormal Leydig cell aggregations were observed in males whose mothers were exposed to LPS during pregnancy. At postnatal day (PND) 26, anogenital distance (AGD), a sensitive index of altered androgen action, was markedly reduced in male pups whose mothers were exposed to LPS daily from GD13 to GD 17. At PND35, the weight of testes, prostates and seminal vesicles, and serum testosterone (T) level were significantly decreased in LPS-treated male pups. At adulthood, the number of sperm was significantly decreased in male offspring whose mothers were exposed to LPS on GD 13-17. Maternal LPS exposure during gestation obviously diminished the percent of seminiferous tubules in stages I-VI, increased the percent of seminiferous tubules in stages IX-XII, and caused massive sloughing of germ cells in seminiferous tubules in mouse testes. Moreover, maternal LPS exposure significantly reduced serum T level in male mice whose mothers were exposed to LPS challenge during pregnancy. Taken together, these results suggest that maternal LPS exposure during pregnancy disrupts T production. The decreased T synthesis might be associated with LPS-induced impairments for spermatogenesis in male offspring.

  16. Maternal LPS exposure during pregnancy impairs testicular development, steroidogenesis and spermatogenesis in male offspring.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Lipopolysaccharide (LPS is associated with adverse developmental outcomes including embryonic resorption, fetal death, congenital teratogenesis and fetal growth retardation. Here, we explored the effects of maternal LPS exposure during pregnancy on testicular development, steroidogenesis and spermatogenesis in male offspring. The pregnant mice were intraperitoneally injected with LPS (50 µg/kg daily from gestational day (GD 13 to GD 17. At fetal period, a significant decrease in body weight and abnormal Leydig cell aggregations were observed in males whose mothers were exposed to LPS during pregnancy. At postnatal day (PND 26, anogenital distance (AGD, a sensitive index of altered androgen action, was markedly reduced in male pups whose mothers were exposed to LPS daily from GD13 to GD 17. At PND35, the weight of testes, prostates and seminal vesicles, and serum testosterone (T level were significantly decreased in LPS-treated male pups. At adulthood, the number of sperm was significantly decreased in male offspring whose mothers were exposed to LPS on GD 13-17. Maternal LPS exposure during gestation obviously diminished the percent of seminiferous tubules in stages I-VI, increased the percent of seminiferous tubules in stages IX-XII, and caused massive sloughing of germ cells in seminiferous tubules in mouse testes. Moreover, maternal LPS exposure significantly reduced serum T level in male mice whose mothers were exposed to LPS challenge during pregnancy. Taken together, these results suggest that maternal LPS exposure during pregnancy disrupts T production. The decreased T synthesis might be associated with LPS-induced impairments for spermatogenesis in male offspring.

  17. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier


    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  18. Expression of orexins and their precursor in the porcine ovary and the influence of orexins on ovarian steroidogenesis in pigs. (United States)

    Nitkiewicz, Anna; Smolinska, Nina; Maleszka, Anna; Chojnowska, Katarzyna; Kaminski, Tadeusz


    Orexins A and B are hypothalamic neuropeptides associated with homeostasis and the reproductive system. The aim of the study was to compare the expression of the prepro-orexin gene and the intensity of orexins immunoreactivity in the porcine ovary (corpora lutea, granulosa and theca interna cells) during four different stages of the oestrous cycle (days: 2-3, 10-12, 14-16 and 17-19) and to examine the in vitro effect of orexins on the secretion of steroid hormones by porcine luteal, granulosa and theca interna cells. The highest expression of prepro-orexin mRNA was observed in theca interna cells on days 17-19 of the oestrous cycle. The highest content of immunoreactive orexin A was noted in corpora lutea on days 10-12 and the highest level of immunoreactive orexin B on days 14-16 of the cycle. Immunoreactive orexin A concentrations were higher in theca interna cells than in granulosa cells, whereas similar levels of immunoreactive orexin B were observed in both cell types. Under in vitro conditions, at the concentration of 10 nM, orexins A and B inhibited FSH-induced oestradiol secretion by granulosa cells. The obtained results suggest that the pattern of orexin peptide expression in the porcine ovary is related to the animals' hormonal status. Our findings imply that orexins can affect porcine reproductive functions through modulation of ovarian steroidogenesis.

  19. How oocytes try to get it right: spindle checkpoint control in meiosis. (United States)

    Touati, Sandra A; Wassmann, Katja


    The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily "meiotically challenged". Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012). A staggering 20-25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012; Schmidt et al. in Hum Reprod Update 18:29-43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions

  20. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. (United States)

    Perkins, Adrienne T; Das, Thomas M; Panzera, Lauren C; Bickel, Sharon E


    In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.

  1. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Cloutier


    Full Text Available Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX. We find that DNA double-strand break (DSB foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  2. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals. (United States)

    Cloutier, Jeffrey M; Mahadevaiah, Shantha K; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M A


    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  3. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation. (United States)

    Cheon, Yong-Pil


    Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..

  4. Roles of protein kinase C in oocyte meiotic maturation and fertilization

    Institute of Scientific and Technical Information of China (English)


    Protein kinase C (PKC) is a superfamily of Ser/Thr protein kinases that is distributed widely in eukaryotes. It plays key regulatory roles at multiple steps of oocyte meiotic maturation and fertilization. During the process of meiotic maturation, the activation of PKC in cumulus cells stimulates meiotic maturation, whereas the activation of PKC in oocytes results in the inhibition of germinal vesicle breakdown. PKC activity increases following the meiotic maturation, and decreases at the transition of metaphase/anaphase in meiosis I, so as to facilitate the release of the first polar body and the entry of meiosis II. In fertilization of mammalian oocytes, PKC may act as one of the downstream targets of Ca2+ to stimulate the cortical granule exocytosis, release the oocytes from MII arrest and to induce pronucleus formation. PKC is also involved in the regulation of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Several PKC isoforms have been identified in mammalian oocytes, and there is evidence showing that classical PKCs may be the principal mediator of oocyte cortical reaction.

  5. Attempt at intracytoplasmic sperm injection of in vitro matured oocytes in common minke whales (Balaenoptera acutorostrata) captured during the Kushiro Coast Survey. (United States)

    Fukui, Yutaka; Iwayama, Hiroshi; Matsuoka, Taiki; Nagai, Hiroki; Koma, Noriko; Mogoe, Toshihiro; Ishikawa, Hajime; Fujise, Yoshihiro; Hirabayashi, Masumi; Hochi, Shinichi; Kato, Hidehiro; Ohsumi, Seiji


    The present study was conducted during the Kushiro Coast Survey in an attempt to produce common minke whale embryos. In Experiment 1, we attempted to determine the appropriate culture duration (30 or 40 h) for in vitro maturation (IVM) of immature oocytes using the Well of the Well method. In Experiment 2, and intracytoplasmic sperm injection (ICSI) was applied to matured oocytes from prepubertal and adult common minke whales after IVM culture (40 or 48 h), and then their embryonic development was assessed. In Experiment 1, the maturation rate of oocytes cultured for 40 h (30.4%) was significantly higher than that of oocytes cultured for 30 h (6.8%; Pwhales, respectively, were cultured for 40 or 48 h. The maturation rate in the oocytes from the adult whales (34.2%) tended to be higher than that of the oocytes from the prepubertal whales (19.6%), but there was no significant difference. Following ICSI, 3 out of the 10 inseminated and cultured oocytes from the adult whales cleaved (2-, 8-, and 16-cell stages); all of these oocytes had been matured for 40 in culture. However, these oocytes did not develop to further stages. Only one of the 6 oocytes derived from the prepubertal whales, IVM cultured for 40 h and inseminated, developed to the 4-cell stage. The present results indicate that a 40 h IVM culture produces significantly higher rates of in vitro maturation than a 30 h IVM culture for common minke whale oocytes. Following ICSI, some oocytes cleaved to the 16-cell stage, but no further development was observed.

  6. Resveratrol attenuates inflammation and oxidative stress in epididymal white adipose tissue: implications for its involvement in improving steroidogenesis in diet-induced obese mice. (United States)

    Lv, Zheng-mei; Wang, Qi; Chen, Yuan-hua; Wang, Sheng-hua; Huang, Dao-qi


    Chronic, low-grade systemic inflammation has been shown to play an important role in the development of obesity-related complications. Epididymal white adipose tissue (WAT) can influence testicular function through its endocrine function. The purpose of this study was to assess the effects of resveratrol on the epididymal WAT inflammatory response and on testicular steroidogenesis in obese individuals. Seven-week-old male C57BL/6J mice were fed a high-calorie and high-cholesterol diet (HCD group) or HCD supplemented with resveratrol (HCD+Res group) for 18 weeks. As we previously showed that resveratrol protects against Leydig cell steroidogenesis in HCD-induced obese mice, this study assessed macrophage infiltration in fat depots by measuring crown-like structure (CLS) density. Histological analysis showed that adipocyte size was significantly smaller and CLSs were less numerous in the HCD+Res group than the HCD group (P < 0.01). Additionally, resveratrol supplementation decreased Nfkb1 expression (P < 0.01) and increased the IκB-α protein abundance (P < 0.01) in epididymal WAT. Consistent with this alteration in NF-κB signaling, the expression of two classic proinflammatory cytokines, TNF-α (Tnfa) and IL-1β (Il1b), were significantly decreased in the HCD+Res group compared with the HCD group (P < 0.01). Significant differences were also found in the expression of sirtuin1 (Sirt1) (P < 0.01) and manganese superoxide dismutase (Sod2) (P < 0.01) between the HCD and HCD+Res groups. Our data suggest that resveratrol can attenuate obesity-induced inflammation and oxidative stress in epididymal WAT, which partly accounts for its beneficial effects in testicular steroidogenesis.

  7. Analysis of cat oocyte activation methods for the generation of feline disease models by nuclear transfer

    Directory of Open Access Journals (Sweden)

    Herrick Jason R


    Full Text Available Abstract Background Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. However, low birth rates after nuclear transfer hamper exploitation of the full potential of the technology. Poor embryo development after activation of the reconstructed oocytes seems to be responsible, at least in part, for the low efficiency. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer. Methods First, changes in the intracellular free calcium concentration [Ca2+]i in the oocytes induced by a number of artificial stimuli were characterized. The stimuli included electroporation, ethanol, ionomycin, thimerosal, strontium-chloride and sodium (Na+-free medium. The potential of the most promising treatments (with or without subsequent incubation in the presence of cycloheximide and cytochalasin B to stimulate oocyte activation and support development of the resultant parthenogenetic embryos was then evaluated. Finally, the most effective methods were selected to activate oocytes reconstructed during nuclear transfer with fibroblasts from mucopolysaccharidosis I- and alpha-mannosidosis-affected cats. Results All treatments were able to elicit a [Ca2+]i elevation in the ooplasm with various characteristics. Pronuclear formation and development up to the blastocyst stage was most efficiently triggered by electroporation (60.5 +/- 2.9 and 11.5 +/- 1.7% and the combined thimerosal/DTT treatment (67.7 +/- 1.8 and 10.6 +/- 1.9%; incubation of the stimulated oocytes with cycloheximide and cytochalasin B had a positive effect on embryo development. When these two methods were used to activate oocytes reconstructed during nuclear transfer, up to 84.9% of the reconstructed oocytes cleaved. When the 2 to 4-cell embryos (a total of 220 were

  8. [Dynamics of lipid peroxidation and steroidogenesis in adrenal cortex during stress]. (United States)

    Doroshkevich, N A; Antsulevich, S N; Vinogradov, V V


    The phase character of lipid peroxidation has been found in the rabbit adrenal cortex in the process of adaptation to extreme loads. Under acute stress the activation of lipid peroxidation is directly dependent on the hormonal synthesis processes. Under conditions of the prolonged stress factor an enhancement of the lipid peroxidation intensity in the adrenal cortex coincides with a decrease in the steroidogenesis rate.

  9. Steroidogenesis in pre- and postspawned ovaries of feral African catfish, Clarias gariepinus

    NARCIS (Netherlands)

    Schoonen, W.G.E.J.; Bennekum, A.M.; Lambert, J.G.D.; Viveen, W.J.A.R.; Oordt, P.G.W.J. van


    Steroidogenesis in pre- and postspawned ovaries of Clarias gariepinus, collected in the Hula Nature Reserve in Israel, was studied following in vitro incubation with [3H] -pregnenolone or [3H] -androstenedione as precursors. In both experimental groups the ovaries synthesized progesterone, 17α-hydr

  10. Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat. (United States)

    Haeno, Satoko; Maeda, Naoyuki; Yamaguchi, Kousuke; Sato, Michiko; Uto, Aika; Yokota, Hiroshi


    The synthetic estrogen diethylstilbestrol is used to prevent miscarriages and as a therapeutic treatment for prostate cancer, but it has been reported to have adverse effects on endocrine homeostasis. However, the toxicity mechanism is poorly understood. Recently, we reported that diethylstilbestrol impairs adrenal steroidogenesis via cholesterol insufficiency in adult male rats. In the present study, we found that the adrenal cholesterol level was significantly reduced without of the decrease in other precursors in the adrenal steroidogenesis 24 h after a single dose of diethylstilbestrol (0.33 μg/g body mass). The serum HDL/cholesterol level was also reduced only 12 h after the diethylstilbestrol exposure. The level of Apo E, which is indispensable for HDL/cholesterol maturation, was decreased in both the HDL and VLDL/LDL fractions, whereas the level of Apo A1, which is an essential constituent of HDL, was not altered in the HDL fraction. Because the liver is a major source of Apo E and Apo A1, the secretion rates of these proteins were examined using a liver perfusion experiment. The secretion rate of Apo A1 from the liver was consistent between DES-treated and control rats, but that of Apo E was comparatively suppressed in the DES-treated rats. The disruption of adrenal steroidogenesis by diethylstilbestrol was caused by a decrease in serum HDL/cholesterol, which is the main source of adrenal steroidogenesis, due to the inhibition of Apo E secretion from the liver.

  11. RNAi Screen in Drosophila melanogastor Identifies Regulators of Steroidogenesis and Developmental Maturation

    DEFF Research Database (Denmark)

    Danielsen, Erik Thomas

    In contrast to humans, Drosophila melanogaster, commonly known as the fruit fly, only produces one major class of cholesterol-derived steroid hormones, the ecdysteroids. This makes Drosophila a simple but elegant model organism to study steroidogenesis. During development, pulses of ecdysone...

  12. Age-dependent radiosensitivity of mouse oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C.


    It has been shown that there are three distinct phases of radiosensitivity in oocytes of prepubertal mice: a period of rapidly increasing sensitivity between 0 and 4 days of age; a period of consistent, high sensitivity between 5 and 18 days of age; and a period of decreasing sensitivity from 19 to at least 21 days of age. Two distinct phases have been demonstrated for the rate of population decline of the oocytes of primary follicles: an initial period of rapid loss from 0 to 4 days of age; and a period of much slower loss from 5 through 23 days of age. Correlations have been drawn between the first two phases of radiosensitivity and morphological changes in the oocyte, and between the third phase of radiosensitivity and endocrinological changes in the maturing animal. The reaction of oocytes to radiation has been separated into two categories: immediate death (within 24 hours); and delayed death (over the entire lifespan of the animal). (auth)

  13. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis. (United States)

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen


    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  14. Bovine cumulus-oocyte disconnection in vitro

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul


    Cumulus-oocyte complexes were obtained from cows by aspiration of small (1-6 mm in diameter) antral follicles after slaughter. Complexes with a compact multilayered cumulus investment were cultured and processed for transmission electron microscopy after different periods of culture including a 0...... frequency of gap junctions was maintained until 12-18 h of culture where the junctional contact was completely disrupted. This decrease in intercellular communication was parallelled by resumption of oocyte meiosis....

  15. Oocyte Cryopreservation in Human Assited Reproduction

    Institute of Scientific and Technical Information of China (English)

    J Konc; S Cseh; E Varga; R Kriston; K Kanyó


    Embryo cryopreservation(CP) has became a very important part of the clinical use of in vitro fertilization. Oocyte CP offers more advantages compared with embryo freezing with regard to less ethical, legal and moral problems. However, the efficiency of this procedure is still low, which prevents its clinical application in wide range. The aim of our paper is to review the basic principles, technical and safety aspects and current status of oocyte cryopreservation in human assisted reproduction.

  16. Metabolic Determinants of Mitochondrial Function in Oocytes. (United States)

    Seidler, Emily A; Moley, Kelle H


    Mitochondrial production of cellular energy is essential to oocyte function, zygote development and successful continuation of pregnancy. This review focuses on several key functions of healthy oocyte mitochondria and the effect of pathologic states such as aging, oxidative stress and apoptosis on these functions. The effect of these abnormal conditions is presented in terms of clinical presentations, specifically maternal obesity, diminished ovarian reserve and assisted reproductive technologies.

  17. Specific deletion of AMP-activated protein kinase (α1AMPK in murine oocytes alters junctional protein expression and mitochondrial physiology.

    Directory of Open Access Journals (Sweden)

    Michael J Bertoldo

    Full Text Available Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK, an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues. Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.

  18. The generation of live offspring from vitrified oocytes.

    Directory of Open Access Journals (Sweden)

    L Gabriel Sanchez-Partida

    Full Text Available Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by somatic cell nuclear transfer and for the generation of embryonic stem cells to study development in these species. We vitrified mouse oocytes using a range of concentrations of trehalose (0 to 0.3 M and demonstrated that 0.1 and 0.3 M trehalose had similar developmental rates, which were significantly different to the 0.2 M cohort (P<0.05. As mitochondria are important for fertilisation outcome, we observed that the clustering and distribution of mitochondria of the 0.2 M cohort were more affected by vitifrication than the other groups. Nevertheless, all 3 cohorts were able to develop to blastocyst, following in vitro fertilisation, although developmental rates were better for the 0.1 and 0.3 M cohorts than the 0.2 M cohort (P<0.05. Whilst blastocysts gave rise to embryonic stem-like cells, it was apparent from immunocytochemistry and RT-PCR that these cells did not demonstrate true pluripotency and exhibited abnormal karyotypes. However, they gave rise to teratomas following injection into SCID mice and differentiated into cells of each of the germinal layers following in vitro differentiation. The transfer of 2-cell embryos from the 0.1 and 0.3 M cohorts resulted in the birth of live offspring that had normal karyotypes (9/10. When 2-cell embryos from vitrified oocytes underwent vitrification, and were thawed and transferred, live offspring were obtained that exhibited normal karyotypes, with the exception of one offspring who was larger and died at 7 months. We conclude that these studies highlight the importance of the endometrial environment for the maintenance of genetic stability and

  19. Refractory ceramic fibers (RCFs) induce germline aneuploidy in Drosophila oocytes. (United States)

    Osgood, C J


    Mineral fibers are ubiquitous in the natural environment and are widely used in industry in such applications as insulators. We have previously shown that asbestos fibers induce aneuploidy in oocytes of Drosophila melanogaster; here we extend those studies by testing refractory ceramic fibers (RCFs) for their mutagenicity to germ cells. The results establish that the tested RCFs are inducers of aneuploidy following feeding of adult females. A subset of the RCFs were also effective following larval feeding. Our results suggest that RCFs, like certain asbestos fibers, may pose a hazard to germ cells.

  20. Resveratrol appears to protect against oxidative stress and steroidogenesis collapse in mice fed high-calorie and high-cholesterol diet. (United States)

    Wang, H-J; Wang, Q; Lv, Z-M; Wang, C-L; Li, C-P; Rong, Y-L


    The detrimental effects on Leydig cells steroidogenesis in mice on high-calorie and high-cholesterol diet (HCD) were determined, and the possible protection conferred by resveratrol supplementation was investigated. Male C57BL/6J mice were fed high-calorie and alone (HCD group) or with resveratrol supplementation (HCD + Res group) for 18 weeks. Male C57BL/6J mice fed standard diet without or with the same dose of resveratrol served as controls. At the end of the experiment, there were significant declines of serum testosterone and luteinising hormone (LH) in HCD group as compared to controls. In line with the hormone alterations, the expressions of StAR and steroidogenic enzymes in testicular tissues were significantly down-regulated in HCD group. Resveratrol supplementation could significantly improve expressions of StAR and steroidogenic enzymes, and increase serum testosterone and LH concentrations in HCD + Res group. Mice in HCD group also showed a statistically significant down-regulation in the mRNA expressions of MnSOD and GPx4. Resveratrol supplementation improved testicular MnSOD and GPx4 expression in comparison with HCD group. We propose that resveratrol may attenuate detrimental effects on Leydig cells steroidogenesis in HCD-fed mice, and its upregulations of antioxidant defence mechanisms and LH level may play a role in its protection. Our data suggest resveratrol appears to have the potential for therapeutic approaches targeting male obesity-associated secondary hypogonadism.

  1. VHA-19 is essential in Caenorhabditis elegans oocytes for embryogenesis and is involved in trafficking in oocytes.

    Directory of Open Access Journals (Sweden)

    Alison J Knight

    Full Text Available There is an urgent need to develop new drugs against parasitic nematodes, which are a significant burden on human health and agriculture. Information about the function of essential nematode-specific genes provides insight to key nematode-specific processes that could be targeted with drugs. We have characterized the function of a novel, nematode-specific Caenorhabditis elegans protein, VHA-19, and show that VHA-19 is essential in the germline and, specifically, the oocytes, for the completion of embryogenesis. VHA-19 is also involved in trafficking the oocyte receptor RME-2 to the oocyte plasma membrane and is essential for osmoregulation in the embryo, probably because VHA-19 is required for proper eggshell formation via exocytosis of cortical granules or other essential components of the eggshell. VHA-19 may also have a role in cytokinesis, either directly or as an indirect effect of its role in osmoregulation. Critically, VHA-19 is expressed in the excretory cell in both larvae and adults, suggesting that it may have a role in osmoregulation in C. elegans more generally, probably in trafficking or secretion pathways. This is the first time a role for VHA-19 has been described.

  2. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, Valentina, E-mail: [Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin 10125 (Italy); Oliveri, Paolo [Department of Pharmacy, University of Genoa, Via Brigata Salerno 13, Genoa 16147 (Italy); Ferreira, Christina Ramires [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (United States); González-Serrano, Andrés Felipe [Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, 31535 Neustadt, Mariensee (Germany); Machaty, Zoltan [Department of Animal Sciences, Purdue University, 915 W. State St., West Lafayette, IN 47907 (United States); Cooks, Robert Graham [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 (United States)


    Highlights: • Repeated analysis by DESI(±)-MS of intact single oocytes for lipid characterization. • Deployment of a data fusion strategy to merge positive and negative ion mode data. • Enhanced interpretation of metabolic changes by more efficient analysis of spectral data. • Discovery of increased fatty acid metabolism and membrane complexity during maturation. • Assistance in the improvement of in vitro embryo production for porcine species. - Abstract: The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo

  3. Computer-assisted oocyte morphometry before ICSI: correlation of oocyte measurements with fertilization and embryo development. (United States)

    Camargos, Maria das Graças R S; Lobach, Veronica N M; Pereira, Francisco A N; Lemos, Cláudia N C D; Reis, Fernando M; Camargos, Aroldo F


    The present study aimed to correlate morphometric parameters of the oocytes with the occurrence of fertilization following intracytoplasmic sperm injection (ICSI). In a prospective, controlled cohort design, women (n = 32) who were candidates for ICSI had oocytes (n = 258) collected and submitted to morphometric evaluation using the Cronus3 software program. The morphometric parameters obtained were oocyte diameter, perivitelline space width, zona pellucida thickness, and first polar body diameter. The median oocyte diameter was similar in cases in which fertilization occurred compared with those in which fertilization failed (75.2 and 75.9 μm, respectively; P = .218). The 2 groups also had similar measurements of perivitelline space, zona pellucida, and first polar body. However, the best quality zygotes identified by a morphological score resulted from oocytes with larger diameter (75.6 vs 74.0 μm; P < .01) and narrow perivitelline space (5.3 vs 7.1 μm; P < .01). Embryo development, as assessed by cleavage at second day of culture, was not significantly associated with oocyte morphometric parameters. These findings suggest that morphometric parameters of the oocytes do not correlate with the occurrence of fertilization following ICSI but may assist in selecting oocytes more likely to originate high-quality zygotes.

  4. P-Body Loss Is Concomitant with Formation of a Messenger RNA Storage Domain in Mouse Oocytes1


    Flemr, Matyas; Ma, Jun; Schultz, Richard M.; Svoboda, Petr


    In mammalian somatic cells, several pathways that converge on deadenylation, decapping, and 5'-3' degradation are found in cytoplasmic foci known as P-bodies. Because controlled mRNA stability is essential for oocyte-to-zygote transition, we examined the dynamics of P-body components in mouse oocytes. We report that oocyte growth is accompanied by loss of P-bodies and a subcortical accumulation of several RNA-binding proteins, including DDX6, CPEB, YBX2 (MSY2), and the exon junction complex. ...

  5. Nuclear structures in Tribolium castaneum oocytes. (United States)

    Bogolyubov, Dmitry S; Batalova, Florina M; Kiselyov, Artyom M; Stepanova, Irina S


    The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.

  6. Co-culture of buffalo (Bubalus bubalis) preantral follicles with antral follicles: a comparative study of developmental competence of oocytes derived from in vivo developed and in vitro cultured antral follicles. (United States)

    Sharma, G Taru; Dubey, Pawan K; Nath, Amar; Saikumar, G


    The present study was undertaken to examine whether the presence of antral follicles (AFs) affects the survival, growth and steroidogenesis of preantral follicles (PFs) and compare the maturation and developmental competence of buffalo oocytes derived from in vivo developed and in vitro cultured AFs. Two experiments were carried out. In experiment I, PFs (200-250 μm) were isolated and cultured with or without AFs (3-5 mm) in TCM-199 medium that contained 10% fetal bovine serum (FBS), 1% insulin transferin selenium (ITS), 20 ng/ml epidermal growth factor (EGF), 0.5 μg/ml follicle-stimulating hormone (FSH) and 100 ng/ml insulin-like growth factor (IGF)-I. In experiment II, in vitro developmental competence was compared for the cumulus-oocyte complexes (COCs) recovered from in vivo developed and in vitro cultured AFs. Survival, growth, development of antrum, accumulation of estradiol and progesterone was (P cultured with AFs. Developmental competence of both types of follicular oocytes did not differ significantly in terms of maturation and cleavage rate, but morula and blastocyst production rate were (P vitro cultured antral follicular oocytes. In conclusion, co-culture of PFs with AFs supports long-term survival and growth of buffalo PFs and this co-culture system plays a dual role for in vitro production of embryos as well as understanding the relationship between developing PFs and AFs.

  7. Prooxidant Effects of Verbascoside, a Bioactive Compound from Olive Oil Mill Wastewater, on In Vitro Developmental Potential of Ovine Prepubertal Oocytes and Bioenergetic/Oxidative Stress Parameters of Fresh and Vitrified Oocytes

    Directory of Open Access Journals (Sweden)

    M. E. Dell'Aquila


    Full Text Available Verbascoside (VB is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART. Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs.

  8. The extracellular matrix of porcine mature oocytes: Origin, composition and presumptive roles

    Directory of Open Access Journals (Sweden)

    Pivko Juraj


    Full Text Available Abstract The extracellular matrix (ECM of porcine mature oocytes was revealed by transmission electron microscopy (TEM after treatment with tannic acid and ruthenium red. Present in the perivitelline space (PVS and on the surface of the zona pellucida (ZP, it appeared to be composed of thin filaments and granules at the interconnections of the filaments, which were interpreted respectively as hyaluronic acid chains and bound proteoglycans. In order to determine whether this material is produced by the corona cells (the same ECM was found also on the surface of the zona pellucida and between cumulus cells or by the oocyte itself, the synthesis of glycoproteins and glycosaminoglycans was checked by autoradiography on semi-thin and thin sections observed by light and electron microscopy. Immature oocytes within or without cumulus cells, were incubated with L [3H-] fucose or L [3H-] glucosamine – precursors respectively of glycoproteins and hyaluronic acid or hyaluronan (HA bound to proteoglycans – for various times (with or without chase and at different stages during in vitro maturation. In the first case, incorporation was found in both cumulus cells and ooplasm (notably in the Golgi area for 3H-fucose and labeled material accumulated in the ECM of the PVS and of the ZP surface. Labeling in the PVS with both precursors was maximum between metaphase I (MI and metaphase II (MII and was partially extracted by hyaluronidase but not by neuraminidase. Tunicamycin, an inhibitor of glycoprotein synthesis, significantly decreased the amount of 3H-fucose labeled molecules in the PVS and increased the incidence of polyspermic penetration during subsequent in vivo fertilization. Since cumulus-free oocytes also secreted 3H-glucosamine containing compounds, both oocyte and cumulus cells probably contribute to the production of the ECM found in the PVS of mature oocytes. ECM and particularly its HA moiety present on both sides of the ZP may constitute a

  9. Identification of PDE9 as a cGMP-specific phosphodiesterase in germinal vesicle oocytes: A proposed role in the resumption of meiosis (United States)

    Hanna, Carol B.; Yao, Shan; Wu, Xuemei; Jensen, Jeffrey T.


    Objective To identify a cGMP-specific phosphodiesterase (PDE) in non-human primate germinal vesicle (GV) oocytes and establish a proposed effect on oocyte maturation through preliminary experiments in mouse GV oocytes. Design Controlled non-human primate and rodent experiments. Setting Academic research institution. Animals Rhesus macaques and B6/129F1 mice. Interventions Rhesus macaques were stimulated with FSH to collect GV oocytes and cumulus for gene expression analysis. Female mice were stimulated with PMSG to collect GV oocytes. Main Outcome Measures PDE transcript expression in primate GV oocytes and cumulus cells. Fluorescence polarization (FP) measurements of PDE3A activity. Spontaneous resumption of meiosis in mouse GV oocytes. Results Five PDE transcripts were detected in Rhesus GV oocytes, only PDE9A was cGMP-specific. FP assays indicated cGMP has an inhibitory effect on PDE3A while the PDE9 inhibitor, BAY73-6691, did not. Similarly, BAY73-6691, had little effect on preventing spontaneous maturation in oocytes, but did augment the inhibitory effects of cGMP. Inclusion of 0µM (control), 10µM, 100µM, and 1 mM BAY73-6691 significantly increased the proportion of mouse oocytes maintaining GV arrest in the presence of the cGMP analog 8-Br-cGMP at: 100µM (8.8%, 11.4%, 18.8%, and 28%), 500µM (21.1%, 38.1%, 74.5%,and 66.5%), and 1 mM (57.8%, 74.5%, 93.9%, and 94.0%) respectively, when P<0.05. Conclusions PDE9 is a cGMP-specific hydrolyzing enzyme present in primate oocytes, and PDE9 antagonists augment the inhibitory effect of cGMP during spontaneous in vitro maturation of GV mouse oocytes. PMID:22704629

  10. Laser-assisted in vitro fertilization facilitates fertilization of vitrified-warmed C57BL/6 mouse oocytes with fresh and frozen-thawed spermatozoa, producing live pups. (United States)

    Woods, Stephanie E; Qi, Peimin; Rosalia, Elizabeth; Chavarria, Tony; Discua, Allan; Mkandawire, John; Fox, James G; García, Alexis


    The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W) oocytes. Laser-assisted in vitro fertilization (LAIVF) facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762) of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1) LAIVF using V-W oocytes, 2) LAIVF using fresh oocytes, 3) conventional IVF using V-W oocytes and 4) conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml). LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298) and fresh oocytes (69%, 135/197), compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively). Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml) were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343) using V-W oocytes (P<0.05, compared to fresh spermatozoa), and 73% (195/266) using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168) and fresh (5%, 15/323) oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784), advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908). Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen

  11. Laser-assisted in vitro fertilization facilitates fertilization of vitrified-warmed C57BL/6 mouse oocytes with fresh and frozen-thawed spermatozoa, producing live pups.

    Directory of Open Access Journals (Sweden)

    Stephanie E Woods

    Full Text Available The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W oocytes. Laser-assisted in vitro fertilization (LAIVF facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762 of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1 LAIVF using V-W oocytes, 2 LAIVF using fresh oocytes, 3 conventional IVF using V-W oocytes and 4 conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml. LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298 and fresh oocytes (69%, 135/197, compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively. Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343 using V-W oocytes (P<0.05, compared to fresh spermatozoa, and 73% (195/266 using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168 and fresh (5%, 15/323 oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784, advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908. Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen

  12. The effects of proteasome inhibitor lactacystin on mouse oocyte meiosis and first cleavage

    Institute of Scientific and Technical Information of China (English)

    TAN Xin; PENG An; WANG Yongchao; TANG Zuoqing


    In order to study the effects of ubiquitin-proteasome pathway (UPP) on mouse oocyte meiosis and cleavage, oocytes undergoing maturation and parthenogenetic activation and 1-cell embryos were treated with lactacystin, a specific inhibitor of proteasome. The results indicared that the rate of GVBD was not influenced by the treatment, but polar body extrusion, parthenogenesis and first cleavage were inhibited. Immunofluorescent staining using anti β-tubulin antibody indicated that the continuous treatment of lactacystin from GV stage disorganized microtubules and spindle assembly. When metaphase stage oocytes were treated with the drug,the already formed spindle structure was not affected, but the oocytes were arrested at metaphases. The 1-cell embryos were arrested at interphase or metaphase of first mitosis when they were incubated in the drug. Proteasome regulatory subunit PA700 was located in the spindle region, as indicated by immunofluorescence. These results suggest that UPP has effects on the process of oocyte meiosis and early cleavage in many aspects, including normal organization of spindle at prophase and segregation of chromosomes at anaphase for normal meiosis.

  13. Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill; Gelfand, Vladimir I


    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.

  14. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions. (United States)

    Straume, T; Dobson, R L; Kwan, T C


    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  15. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. (United States)

    Inoue, Naokazu; Hagihara, Yoshihisa; Wright, Danelle; Suzuki, Takahisa; Wada, Ikuo


    Sperm-egg fusion is indispensable for completing mammalian fertilization. Although the underlying molecular mechanisms are poorly understood, requirement of two spermatozoon factors, IZUMO1 and SPACA6, and two oocyte factors, CD9 and the IZUMO1 counter-receptor JUNO, has been proven by gene disruption, and the binding of cells to an oocyte can be reconstituted by ectopic expression of IZUMO1. Here we demonstrate that robust IZUMO1-dependent adhesion of sperm with an oocyte accompanies the dimerization of IZUMO1. Despite the intrinsic dimeric property of its N-terminal region, IZUMO1 is monomeric in spermatozoa. Interestingly, JUNO associates with monomeric IZUMO1, which is then quickly removed as tight adhesion of the two cells is subsequently established. We therefore propose that global structural rearrangement of IZUMO1 occurs on JUNO recognition and that this rearrangement may then initiate force generation to overcome repulsion between the juxtaposing membranes, through an unidentified receptor on the egg.

  16. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. (United States)

    Flemr, Matyas; Ma, Jun; Schultz, Richard M; Svoboda, Petr


    In mammalian somatic cells, several pathways that converge on deadenylation, decapping, and 5'-3' degradation are found in cytoplasmic foci known as P-bodies. Because controlled mRNA stability is essential for oocyte-to-zygote transition, we examined the dynamics of P-body components in mouse oocytes. We report that oocyte growth is accompanied by loss of P-bodies and a subcortical accumulation of several RNA-binding proteins, including DDX6, CPEB, YBX2 (MSY2), and the exon junction complex. These proteins form transient RNA-containing aggregates in fully grown oocytes with a surrounded nucleolus chromatin configuration. These aggregates disperse during oocyte maturation, consistent with recruitment of maternal mRNAs that occurs during this time. In contrast, levels of DCP1A are low during oocyte growth, and DCP1A does not colocalize with DDX6 in the subcortical aggregates. The amount of DCP1A markedly increases during meiosis, which correlates with the first wave of destabilization of maternal mRNAs. We propose that the cortex of growing oocytes serves as an mRNA storage compartment, which contains a novel type of RNA granule related to P-bodies.

  17. Oocyte cryopreservation for donor egg banking. (United States)

    Cobo, Ana; Remohí, José; Chang, Ching-Chien; Nagy, Zsolt Peter


    Oocyte donation is an efficient alternative to using own oocytes in IVF treatment for different indications. Unfortunately, 'traditional' (fresh) egg donations are challenged with inefficiency, difficulties of synchronization, very long waiting periods and lack of quarantine measures. Given the recent improvements in the efficiency of oocyte cryopreservation, it is reasonable to examine if egg donation through oocyte cryopreservation has merits. The objective of the current manuscript is to review existing literature on this topic and to report on the most recent outcomes from two established donor cryobank centres. Reports on egg donation using slow freezing are scarce and though results are encouraging, outcomes are not yet comparable to a fresh egg donation treatment. Vitrification on the other hand appears to provide high survival rates (90%) of donor oocytes and comparable fertilization, embryo development, implantation and pregnancy rates to traditional (fresh) egg donation. Besides the excellent outcomes, the ease of use for both donors and recipients, higher efficiency, lower cost and avoiding the problem of synchronization are all features associated with the benefit of a donor egg cryobank and makes it likely that this approach becomes the future standard of care. Oocyte donation is one of the last resorts in IVF treatment for couples challenged with infertility problems. However, traditional (fresh) egg donation, as it is performed today, is not very efficient, as typically all eggs from one donor are given to only one recipient, it is arduous as it requires an excellent synchronization between the donor and recipient and there are months or years of waiting time. Because of the development of an efficient oocyte cryopreservation technique, it is now possible to cryo-store donor (as well as non-donor) eggs, maintaining their viability and allowing their use whenever there is demand. Therefore, creating a donor oocyte cryobank would carry many advantages

  18. Efficacy of Simple Assessment System of Oocyte Maturity in IVF-ET Cycles

    Institute of Scientific and Technical Information of China (English)

    Kee Sang Park; Gun Ho Song; Hang Jin Kim; Hai Bum Song; Taek Hoo Lee; Sang Sik Chun


    Objective To establish and evaluate the efficacy of the simple assessment system of oocyte maturity.Methods A total of 251 couples were enrolled in this study and female patients were divided into two groups. In group Ⅰ, oocytes were inseminated at 6 h after ovum pickup. In group Ⅱ, oocyte maturity was rapidly categorized by simple assessment system.Mature oocytes were inseminated at 3-4 h after ovum pick-up when oocyte-corona complexes (OCC) exhibited clear thick ring-like halo (RLH) and expanded cumulus cells (CC) or 5-6 h when OCC exhibited RLH and a few clumped and/or dark CC,respectively. Intermediate oocytes were inseminated at 7-8 h when RLH was not found around the OCC and CC were compacted and clumped and/or dark.Results Normal fertilization rate was higher in group Ⅱ (76.5%) than that in group Ⅰ(58.0%) (P<0. 001). However, abnormal fertilization rate was higher in group Ⅰ(11.3%) than that in group Ⅱ (3.6%) (P<0. 001). The cleavage (82.6% vs 90.0%),chemical pregnancy (4. 8% vs 3.9%), twin pregnancy (6. 7% vs 3. 9%) and implantation rate (8.4% vs 10. 6%) had no statistically differences between group Ⅰ and Ⅱ. Rate of clinical and singleton pregnancy was higher in group Ⅱ (35.3% and 31.4%) than those in group Ⅰ (24.8% and 18.2%) (P<0. 05).Conclusion This simple assessment system is useful and effective for evaluation and categorization of the oocyte maturity with better reproductive outcomes.

  19. Recipient screening in IVF: First data from women undergoing anonymous oocyte donation in Dublin

    LENUS (Irish Health Repository)

    Walsh, Anthony PH


    Abstract Background Guidelines for safe gamete donation have emphasised donor screening, although none exist specifically for testing oocyte recipients. Pre-treatment assessment of anonymous donor oocyte IVF treatment in Ireland must comply with the European Union Tissues and Cells Directive (Directive 2004\\/23\\/EC). To determine the effectiveness of this Directive when applied to anonymous oocyte recipients in IVF, we reviewed data derived from selected screening tests performed in this clinical setting. Methods Data from tests conducted at baseline for all women enrolling as recipients (n = 225) in the anonymous oocyte donor IVF programme at an urban IVF referral centre during a 24-month period were analysed. Patient age at programme entry and clinical pregnancy rate were also tabulated. All recipients had at least one prior negative test for HIV, Hepatitis B\\/C, chlamydia, gonorrhoea and syphilis performed by her GP or other primary care provider before reproductive endocrinology consultation. Results Mean (±SD) age for donor egg IVF recipients was 40.7 ± 4.2 yrs. No baseline positive chlamydia, gonorrhoea or syphilis screening results were identified among recipients for anonymous oocyte donation IVF during the assessment interval. Mean pregnancy rate (per embryo transfer) in this group was 50.5%. Conclusion When tests for HIV, Hepatitis B\\/C, chlamydia, gonorrhoea and syphilis already have been confirmed to be negative before starting the anonymous donor oocyte IVF sequence, additional (repeat) testing on the recipient contributes no new clinical information that would influence treatment in this setting. Patient safety does not appear to be enhanced by application of Directive 2004\\/23\\/EC to recipients of anonymous donor oocyte IVF treatment. Given the absence of evidence to quantify risk, this practice is difficult to justify when applied to this low-risk population.

  20. Scrambled and fried: Cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sobinoff, A.P. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308 (Australia); Beckett, E.L.; Jarnicki, A.G. [Centre for Asthma and Respiratory Disease, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308 (Australia); Sutherland, J.M. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308 (Australia); McCluskey, A. [Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308 (Australia); Hansbro, P.M. [Centre for Asthma and Respiratory Disease, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308 (Australia); McLaughlin, E.A., E-mail: [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308 (Australia)


    Cigarette smoke is a reproductive hazard associated with pre-mature reproductive senescence and reduced clinical pregnancy rates in female smokers. Despite an increased awareness of the adverse effects of cigarette smoke exposure on systemic health, many women remain unaware of the adverse effects of cigarette smoke on female fertility. This issue is compounded by our limited understanding of the molecular mechanisms behind cigarette smoke induced infertility. In this study we used a direct nasal exposure mouse model of cigarette smoke-induced chronic obstructive pulmonary disease to characterise mechanisms of cigarette-smoke induced ovotoxicity. Cigarette smoke exposure caused increased levels of primordial follicle depletion, antral follicle oocyte apoptosis and oxidative stress in exposed ovaries, resulting in fewer follicles available for ovulation. Evidence of oxidative stress also persisted in ovulated oocytes which escaped destruction, with increased levels of mitochondrial ROS and lipid peroxidation resulting in reduced fertilisation potential. Microarray analysis of ovarian tissue correlated these insults with a complex mechanism of ovotoxicity involving genes associated with detoxification, inflammation, follicular activation, immune cell mediated apoptosis and membrane organisation. In particular, the phase I detoxifying enzyme cyp2e1 was found to be significantly up-regulated in developing oocytes; an enzyme known to cause molecular bioactivation resulting in oxidative stress. Our results provide a preliminary model of cigarette smoke induced sub-fertility through cyp2e1 bioactivation and oxidative stress, resulting in developing follicle depletion and oocyte dysfunction. - Highlights: • Cigarette smoke exposure targets developing follicle oocytes. • The antral follicle oocyte is a primary site of ovarian cigarette smoke metabolism. • Cyp2e1 is a major enzyme involved in ameliorating smoke-induced ovotoxicity. • Cigarette smoke causes oocyte

  1. Alterations in transcript abundance of bovine oocytes recovered at growth and dominance phases of the first follicular wave

    Directory of Open Access Journals (Sweden)

    Kanitz Wilhelm


    Full Text Available Abstract Background Oocyte developmental competence is highly affected by the phase of ovarian follicular wave. Previous studies have shown that oocytes from subordinate follicles recovered at growth phase (day 3 after estrus are developmentally more competent than those recovered at dominance phase (day 7 after estrus. However, the molecular mechanisms associated with these differences are not well elucidated. Therefore, the objective of this study was to investigate transcript abundance of bovine oocytes retrieved from small follicles at growth and dominance phases of the first follicular wave and to identify candidate genes related to oocyte developmental competence using cDNA microarray. Results Comparative gene expression analysis of oocytes from growth and dominance phases and subsequent data analysis using Significant Analysis of Microarray (SAM revealed a total of 51 differentially regulated genes, including 36 with known function, 6 with unknown function and 9 novel transcripts. Real-time PCR has validated 10 transcripts revealed by microarray analysis and quantified 5 genes in cumulus cells derived from oocytes of both phases. The expression profile of 8 (80% transcripts (ANAXA2, FL396, S100A10, RPL24, PP, PTTG1, MSX1 and BMP15 was in agreement with microarray data. Transcript abundance of five candidate genes in relation to oocyte developmental competence was validated using Brilliant Cresyl Blue (BCB staining as an independent model. Furthermore, localization of mRNA and protein product of the candidate gene MSX1 in sections of ovarian follicles at days 0, 1, 3 and 7 of estrous cycle showed a clear fluorescent signal in both oocytes and cumulus cells with higher intensity in the former. Moreover, the protein product was detected in bovine oocytes and early cleavage embryos after fertilization with higher intensity around the nucleus. Conclusion This study has identified distinct sets of differentially regulated transcripts between

  2. Ultrasonographic-guided retrieval of cumulus oocyte complexes after super-stimulation in dromedary camel (Camelus dromedarius). (United States)

    Wani, N A; Skidmore, J A


    In Experiment 1, studies were conducted to apply the transvaginal ultrasound guided ovum pick-up (OPU) technique in dromedary camels after their ovarian super-stimulation and in vivo oocyte maturation. In Experiment 2, the developmental potential of two commonly used oocyte types, i.e., in vivo matured oocytes collected by OPU and abattoir derived in vitro-matured oocytes was compared after their chemical activation. In Experiment 3, developmental competence of oocytes collected from super-stimulated camels by OPU, matured either in vivo or in vitro, was compared after their chemical activation. Mature female dromedary camels super-stimulated with a combination of eCG and pFSH were given an injection of 20 microg of the GnRH analogue, buserelin 24, 26, or 28 h before the scheduled OPU. For collection of cumulus oocyte complexes (COCs) the transducer was guided through the vulva into the cranial most portion of the vagina and 17-gauge, 55 cm single-lumen needle was placed in the needle guide of the ultrasound probe and advanced through the vaginal fornix and into the follicle. Follicular fluid was aspirated using a regulated vacuum pump into tubes containing embryo-flushing media. Aspirates were searched for COCs using a stereomicroscope, and they were then denuded of cumulus cells by hyaluronidase and repeated pipetting. The oocytes were classified as mature (with a visible polar body), immature (with no visible polar body), activated (with divided or fragmented ooplasm) and others (degenerated and abnormal). Overall an average of 12.12 +/- 7.9 COCs were aspirated per animal with an oocyte recovery rate from the aspirated follicles of about 77%. The majority (> 90%) of the collected COCs by OPU were with loose and expanded cumulus cells. The proportion of matured oocytes obtained at 28-29 h (91.2 +/- 4.1) and 26-27 h (82.1 +/- 3.4) were higher (P dromedary camels 26-28 h after GnRH administration. The developmental response, to chemical activation, of in vivo

  3. The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Christopher B Ball

    Full Text Available ZFP36L2 protein destabilizes AU-rich element-containing transcripts and has been implicated in female fertility. In the C57BL/6NTac mouse, a mutation in Zfp36l2 that results in the decreased expression of a form of ZFP36L2 in which the 29 N-terminal amino acid residues have been deleted, ΔN-ZFP36L2, leads to fertilized eggs that arrest at the two-cell stage. Interestingly, homozygous ΔN-Zfp36l2 females in the C57BL/6NTac strain release 40% fewer eggs than the WT littermates (Ramos et al., 2004, suggesting an additional defect in ovulation and/or oocyte maturation. Curiously, the same ΔN-Zfp36l2 mutation into the SV129 strain resulted in anovulation, prompting us to investigate a potential problem in ovulation and oocyte maturation. Remarkably, only 20% of ΔN-Zfp36l2 oocytes in the 129S6/SvEvTac strain matured ex vivo, suggesting a defect on the oocyte meiotic maturation process. Treatment of ΔN-Zfp36l2 oocytes with a PKA inhibitor partially rescued the meiotic arrested oocytes. Furthermore, cAMP levels were increased in ΔN-Zfp36l2 oocytes, linking the cAMP/PKA pathway and ΔN-Zfp36l2 with meiotic arrest. Since ovulation and oocyte maturation are both triggered by LHR signaling, the downstream pathway was investigated. Adenylyl cyclase activity was increased in ΔN-Zfp36l2 ovaries only upon LH stimulation. Moreover, we discovered that ZFP36L2 interacts with the 3'UTR of LHR mRNA and that decreased expression levels of Zfp36l2 correlates with higher levels of LHR mRNA in synchronized ovaries. Furthermore, overexpression of ZFP36L2 decreases the endogenous expression of LHR mRNA in a cell line. Therefore, we propose that lack of the physiological down regulation of LHR mRNA levels by ZFP36L2 in the ovaries is associated with anovulation and oocyte meiotic arrest.

  4. Effects of Vitrification on Outcomes of In VivoMature, In Vitro-Mature and Immature Human Oocytes

    Directory of Open Access Journals (Sweden)

    Wen-yan Song


    Full Text Available Background/Aims: To observe the effects of vitrification on spindle, zona pellucida, embryonic aneuploidy and DNA injury in in vivo-maruted, in vitro-mature and immature human oocytes. Methods: Between January 2009 and February 2015, 223 immature oocytes from 450 infertile patients, and 31 in vivo-mature oocytes from 3 infertile couples were collected. Of the 223 immature oocytes, 113 were used for in vitro culture before vitrification. Some oocytes were randomly divided into in vivo-mature group (group A, n = 15, in vitro-mature group (group B, n = 88 and immature group (group C, n = 85, and then the oocytes with spindle in these three groups after freezing-thawing were selected to use for Polscope imaging, embryonic aneuploidy screening and embryo development evaluation. Other oocytes were randomly divided into group A (n = 16, group B (n = 25 and group C (n = 25 for detecting DNA injury. Results: After thawing, spindle occurrence rate, spindle Retardance value, and cleavage rate were significantly higher in groups A and B than in group C (all P P > 0.05. Zona pellucida density (ZPD was significantly lower in group A than in groups B and C both before and after vitrification (all P P P > 0.05. Rate of comet cells was significantly lower in group A than in groups B and C (all P P Conclusion: In vivo- and in vitro-mature human oocytes are more suitable to vitrification than immature human oocytes. Spindle Retardance value has more predictive value for embryonic development potential than ZPD and ZPT.

  5. Diet-induced hypercholesterolemia impaired testicular steroidogenesis in mice through the renin-angiotensin system. (United States)

    Martínez-Martos, José M; Arrazola, Marce; Mayas, María D; Carrera-González, María P; García, María J; Ramírez-Expósito, María J


    Hypercholesterolemia and low testosterone concentrations in men are associated with a high risk factor for atherosclerosis. It is known that cholesterol serves as the major precursor for the synthesis of the sex hormones. The bioactive peptides of the renin-angiotensin-system localized in the gonads play a key role in the relation between cholesterol and testosterone by modulating steroidogenesis and inhibiting testosterone production. In the present work, we evaluated the effects of diet-induced hypercholesterolemia on circulating testosterone levels and its relationship with the testicular RAS-regulating specific aminopeptidase activities in male mouse. A significant decrease in serum circulating levels of testosterone was observed after induced hypercholesterolemia. The changes found in aminopeptidase activities suggest a role of Ang III and Ang IV in the regulation of steroidogenesis.

  6. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring. (United States)

    Medwid, Samantha; Guan, Haiyan; Yang, Kaiping


    The present study sought to determine if prenatal exposure to bisphenol A (BPA) alters adrenal steroidogenesis in adult offspring. Pregnant mice were exposed to BPA (25mg BPA/kg food pellet) via diet from day 7 to the end of pregnancy. At eight weeks of age, offsprings were sacrificed, blood samples and adrenal glands were collected for hormone assays and western blot analysis, respectively. We found that: (1) BPA increased adrenal gland weight in both males and females; (2) although BPA elevated plasma corticosterone levels in both sexes, it stimulated the expression of StAR and cyp11A1, the two rate-limiting factors in the steroidogenic pathway, only in female adrenal glands; and interestingly (3) BPA did not alter plasma ACTH levels or adrenal expression of the key steroidogenic transcription factor SF-1 in either sex. Taken together, the present study provides novel insights into the long-term consequences of developmental BPA exposure on adrenal steroidogenesis.

  7. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)


    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  8. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes. (United States)

    Bassez, T; Paris, J; Omilli, F; Dorel, C; Osborne, H B


    The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10(8) transcripts/cell) and this number does not significantly change during oogenesis. Polysome analysis showed that this mRNA is present in polysomes in stage I + II oocytes but has passed into puromycin-insensitive mRNP particles by stage IV of oogenesis. Therefore, during the growth phase of oogenesis, ornithine decarboxylase expression is regulated at a translational level. These results are discussed relative to the temporal expression of ornithine decarboxylase and of other proteins whose expression also decreases during oogenesis. In order to perform these experiments, the cDNA (XLODC1) corresponding to Xenopus laevis ornithine decarboxylase mRNA was cloned and sequenced.

  9. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. (United States)

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming


    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management.

  10. Degradation of mitochondrial DNA in cryoprotectant-treated hard coral (Echinopora spp.) oocytes. (United States)

    Tsai, Sujune; Chen, Jiann-Chu; Spikings, Emma; Li, Jan-Jung; Lin, Chiahsin


    A critical step for successful cryopreservation is to determine the optimal cryoprotectant treatment that can provide protective effects against cryoinjury during freezing and with minimal toxicity. Most cryoprotectants have chemical and osmotic effects when used at high concentrations. Cryoprotectants can damage coral mitochondrial distributions and membrane potentials, which results in reduced ATP production. As mitochondrial DNA (mtDNA) encodes for components of the electron transport chain (ETC) and plays a critical role in ATP synthesis capacity, we determined the effects of cryoprotectants on mtDNA in hard coral (Echinopora spp.) oocytes using quantitative real-time PCR. Our results showed that an insult from a cryoprotectant may be compensated for by the genetic defense mechanisms of these cells. Methanol was found to have the least effect on coral oocytes with regard to their energy status. A single oocyte without cryoprotectant treatment produced an average of 4,220,645 ± 169,990 mtDNA copies, which was greater than that in mammals. However, relatively lower mtDNA copy numbers (<2,000,000) were observed when oocytes were treated with dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), or glycerol at a concentration of 3 M for 20 min. These results provide direct evidence that hard coral (Echinopora spp.) oocytes are extremely susceptible to cryoprotectants and support the concerns with regard to the adverse effects of cryoprotectants.

  11. Are there optimal numbers of oocytes, spermatozoa and embryos in assisted reproduction? (United States)

    Milachich, Tanya; Shterev, Atanas


    The aim of this overview is to discuss the current information about the search for the optimum yield of gametes in assisted reproduction, as one of the major pillars of IVF success. The first topic is focused on the number of male gametes and the possible impact of some genetic traits on these parameters. The number of spermatozoa did not seem to be crucial when there is no severe male factor of infertility. Genetic testing prior to using those sperm cells is very important. Different methods were applied in order to elect the "best" spermatozoa according to specific indications. The next problem discussed is the importance of the number of oocytes collected. Several studies have agreed that "15 oocytes is the perfect number," as the number of mature oocytes is more important. However, if elective single embryo transfer is performed, the optimal number of oocytes will enable a proper embryo selection. The third problem discussed concerns fertility preservation. Many educational programs promote and encourage procreation at maternal ages between 20-35 years, since assisted reproduction is unable to fully overcome the effects of female aging and fertility loss after that age. It is also strongly recommended to ensure a reasonable number of cryopreserved mature oocytes, preferably in younger ages (<35), for which an average of two stimulation cycles are likely required. For embryo cryopreservation, the "freeze all" strategy suggests the vitrification of good embryos, therefore quality is prior to number and patient recruitment for this strategy should be performed cautiously.

  12. The Role of Estrogen-Related Receptor Alpha in Steroidogenesis in the Breast (United States)


    Page 1 anti-inflammatory actions without causing metabolic disturbances or osteoporosis ; (b) an estrogen capable of treating the climacteric symp- toms...AD_________________ Award Number: W81XWH-06-1-0444 TITLE: The Role of Estrogen -Related Receptor...CONTRACT NUMBER The Role of Estrogen -Related Receptor Alpha in Steroidogenesis in the Breast 5b. GRANT NUMBER W81XWH-06-1-0444 5c. PROGRAM ELEMENT

  13. Possibility of the use of herbal medicines in steroidogenesis in hypogonadal men

    Directory of Open Access Journals (Sweden)

    A. B. Bat’ko


    Full Text Available Multi-drug Testogenon® contains vitamins and biologically active substances, which are cofactor binding element in biochemical reactions steroidogenesis in males. Harmlessness and pharmacological effectiveness of the drug was confirmed in experimental studies. In the context of micronutrient vitamin deficiency use of the drug Testogenon® in the complex therapy pathogenetically substantiated and clinically justified.

  14. Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. (United States)

    Rodrigues-Cunha, Maria Carolina; Mesquita, Lígia G; Bressan, Fabiana; Collado, Maite Del; Balieiro, Júlio C C; Schwarz, Kátia R L; de Castro, Fernanda C; Watanabe, Osnir Y; Watanabe, Yeda F; de Alencar Coelho, Lia; Leal, Cláudia L V


    Melatonin may have beneficial effects when used in oocyte maturation and embryo development culture. The effect of melatonin during IVM on meiosis resumption and progression in bovine oocytes and on expression of antioxidant enzymes, nuclear fragmentation and free radicals, as well as on embryo development were assessed. Cumulus-oocyte complexes were matured in vitro with melatonin (10(-9) and 10(-6) M), FSH (positive control), or without hormones (negative control) in defined medium. Maturation rates were evaluated at 6, 12, 18, and 24 hours. Transcripts for antioxidant enzymes (CuZnSOD, MnSOD, and glutathione peroxidase 4 (GPX4)) in oocytes and cumulus cells, nuclear fragmentation in cumulus cells (TUNEL) and reactive oxygen species levels in oocytes (carboxy-H2 difluorofluorescein diacetate) were determined at 24 hours IVM. Effect of treatments on embryo development was determined after in vitro fertilization and culture. At 12 hours, meiosis resumption rates in FSH and melatonin-treated groups were similar (69.6%-81.8%, P > 0.05). At 24 hours, most oocytes were in metaphase II, with FSH showing highest rates (90.0%, P  0.05). In cumulus cells, MnSOD expression was higher in FSH group (P  0.05). In conclusion, although melatonin during IVM in a defined medium does not stimulate nuclear maturation progression it does stimulate meiosis resumption and such treated oocytes support subsequent embryo development. Melatonin also shows cytoprotective effects on cumulus-oocyte complexes.

  15. Gibberellic acid acts as an agonist of steroidogenesis in male rats. (United States)

    Premalatha, R; Jubendradass, R; Srikumar, K; Mathur, P P


    Testicular steroidogenesis has significant implication in male reproductive function. Although the effects of various signalling molecules on testicular functions have been studied earlier, the influence of the plant hormone gibberellic acid (GA3 ) on steroidogenesis has not been investigated. Acute (4 h) and subacute (15 days) studies using this compound through oral administration (150 μg day(-1) ) to groups of normal and diabetic Wistar male rats were therefore carried out. Results indicate that (i) enhanced activity of steroidogenic markers 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), elevated tissue testosterone (T) content, increased steroidogenic acute regulatory protein (StAR) and androgen binding protein (ABP) levels with reduced lipid peroxidation and improved antioxidant defence in this treatment group of normal and diabetic rat testis, and (ii) elevated lipid peroxidation and diminished antioxidant defence, with insignificant change in 3β-HSD and 17β-HSD activity and testosterone level in acute treatment group of normal and diabetic rats testis, were noted. The observed increase in the activity of testicular 3β-HSD and 17β-HSD along with elevated testosterone content established GA3 as an inducer of steroidogenesis in rat.

  16. Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides. (United States)

    Radziwill, G; Steinhusen, U; Aitken, A; Moelling, K


    Raf-1 is an upstream element of the mitogen-activated protein kinase (MAPK) pathway which leads to cell proliferation and differentiation. In this study Raf-1 derived peptides comprising the conserved amino acid residues Arg89 and Ser259, involved in binding of activated Ras and 14-3-3 proteins, respectively, were shown to interfere with MAPK activation in extracts from immature Xenopus oocytes. Lipids prepared from oocyte extracts can stimulate MAPK in a Ras- and protein kinase C-independent manner. This lipid-induced MAPK activation is blocked by a Raf-1 derived peptide comprising Ser259.

  17. Regulation of steroidogenesis in a primary pigmented nodular adrenocortical disease-associated adenoma leading to virilization and subclinical Cushing’s syndrome (United States)

    Hofland, Johannes; de Herder, Wouter W; Derks, Lieke; Hofland, Leo J; van Koetsveld, Peter M; de Krijger, Ronald R; van Nederveen, Francien H; Horvath, Anelia; Stratakis, Constantine A; de Jong, Frank H; Feelders, Richard A


    Context Primary pigmented nodular adrenocortical disease (PPNAD) can lead to steroid hormone overproduction. Mutations in the cAMP protein kinase A regulatory subunit type 1A (PRKAR1A) are causative of PPNAD. Steroidogenesis in PPNAD can be modified through a local glucocorticoid feed-forward loop. Objective Investigation of regulation of steroidogenesis in a case of PPNAD with virilization. Materials and methods A 33-year-old woman presented with primary infertility due to hyperandrogenism. Elevated levels of testosterone and subclinical ACTH-independent Cushing’s syndrome led to the discovery of an adrenal tumor, which was diagnosed as PPNAD. In vivo evaluation of aberrantly expressed hormone receptors showed no steroid response to known stimuli. Genetic analysis revealed a PRKAR1A protein-truncating Q28X mutation. After adrenalectomy, steroid levels normalized. Tumor cells were cultured and steroidogenic responses to ACTH and dexamethasone were measured and compared with those in normal adrenal and adrenocortical carcinoma cells. Expression levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) types 3 and 5 and steroid receptors were quantified in PPNAD, normal adrenal, and adrenal adenoma tissues. Results Isolated PPNAD cells, analogous to normal adrenal cells, showed both increased steroidogenic enzyme expression and steroid secretion in response to ACTH. Dexamethasone did not affect steroid production in the investigated types of adrenal cells. 17β-HSD type 5 was expressed at a higher level in the PPNAD-associated adenoma compared with control adrenal tissue. Conclusion PPNAD-associated adenomas can cause virilization and infertility by adrenal androgen overproduction. This may be due to steroidogenic control mechanisms that differ from those described for PPNAD without large adenomas. PMID:23065993

  18. Xenopus oocyte wound healing as a model system for analysis of microtubule-actin interactions. (United States)

    Zhang, Tong; Mandato, Craig A


    Microtubule-actin interactions are fundamental to many cellular processes such as cytokinesis and cellular locomotion. Investigating the mechanism of microtubule-actin interactions is the key to understand the cellular morphogenesis and related pathological processes. The abundance and highly dynamic nature of microtubules and F-actin raise a serious challenge when trying to distinguish between the real and fortuitous interactions within a cell. Xenopus oocyte wound model represents an ideal system to study microtubule-actin interactions as well as microtubule-dependent control of the actin polymerization. Here, we describe a series of cytoskeleton specific treatments in Xenopus oocyte wound healing experiments and use confocal fluorescence microscopy to analyze fixed oocytes to examine microtubule-actin interactions.

  19. Oocyte Pickup from Live Cows Through Laparoscopic Guided Aspiration

    Institute of Scientific and Technical Information of China (English)


    In this experiment, the bovine follicular oocytes were aspirated from the ovaries of Chinese Holsteins with laparoscope made in China. The results were as following: for identifying the suitable negative aspiration pressure, six different pressures (50, 100, 150, 200, 250 and 300mmHg)were tested. The aspiration pressure of 100mmHg was the best. Its oocyte recovery rate was 37. 2%, and G I , G Ⅱ oocyte rate was 89. 5%. The heifers were picked up by laparoscope once or twice a week. Each heifer was collected with 2. 4 oocytes once a week or 4. 4 oocytes twice a week.Its oocyte recovery rate was 48. 0% and the G Ⅰ ,G Ⅱ oocyte rate was 93. 5%. In addition, 1.9 oocytes were collected from each cow once a week or 5.4 oocytes from each cow twice a week. Its oocyte recovery rate was 51.7% and the G Ⅰ , G Ⅱ oocyte rate was 85. 1%. It showed that it was possible to pick up bovine oocyte twice a week. Two cows were picked up twice a week for several weeks(53 times). 268 follicles were aspirated(5.1 follicles per cow per time), and 141 oocytes were recovered(2.7 oocytes per cow per time). The oocyte recovery rate was 52.5%, and the G Ⅰ , G Ⅱ oocyte rate was 85. 1%. It was advisable to pick up oocytes twice a week continuously. Some cows in estrous cycles were superovulated with PMSG(500IU). Each of them could be recovered 2.3 follicles and 1.1 oocytes, the others were superovulated with FSH(0. 7mg) , each of them could be aspirated with 4.4 follicles and 2.3 oocytes. It was obvious that the effect of OPU(oocyte pick up) by superovulation with FSH was much better than that with PMSG. The best time for OPU with laparoscope was at the beginning of cow's estrous cycles. At the first day of their estrus, each of them could be averagely aspirated with 8 follicles and 5.7 oocytes.

  20. Cryopreservation of hamster oocytes: effects of vitrification or freezing on human sperm penetration of zona-free hamster oocytes. (United States)

    Critser, J K; Arneson, B W; Aaker, D V; Ball, G D


    Three experiments were conducted for evaluation of the efficacy of conventional freezing or vitrification of hamster oocytes for use in a human sperm penetration assay (hSPA). In experiment 1, oocytes were cryopreserved and evaluated for survival on the basis of morphologic criteria. Survival of vitrified oocytes and that of frozen oocytes were not different, whereas all cryopreserved groups had lower survival than noncryopreserved controls. In experiment 2, oocytes were conventionally frozen or vitrified and evaluated in an hSPA. Vitrified oocytes had a lower frequency of sperm penetration than frozen oocytes, and all cryopreserved groups had lower penetration rates than untreated controls. In experiment 3, oocytes were exposed to the cryoprotectant used to vitrify (VS1) or freeze (DMSO) but not cooled prior to evaluation in an hSPA. Exposure to DMSO but not VS1 reduced hSPA values. It is concluded from these experiments that while all cryopreserved oocytes do not survive, at current stages of development conventionally frozen oocytes perform better than vitrified oocytes in the hSPA and losses associated with conventional freezing procedures may be related to cryoprotectant exposure, whereas vitrification losses are more probably due to events associated with rapid cooling and/or warming of the oocytes.

  1. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. (United States)

    Jones, Keith T


    Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.

  2. Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, L; Du, Y; Liu, Y;


    and blastocyst rates increased after NaCl treatment compared with untreated controls. In Experiment 3, oocytes were treated with 593 mOsmol NaCl followed by 1 and 2 h recovery, respectively, then used as recipients for somatic cell nuclear transfer (SCNT). Cleavage rates were not different from those...

  3. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes.

    Directory of Open Access Journals (Sweden)

    Hyuck Jun Mok

    Full Text Available The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2, a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA, phosphatidylinositol (PI, phosphatidylserine (PS, and lysophosphatidylserine (LPS significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes.

  4. In Vivo acrylamide exposure may cause severe toxicity to mouse oocytes through its metabolite glycidamide (United States)

    Aras, Duru; Cakar, Zeynep; Ozkavukcu, Sinan; Can, Alp; Cinar, Ozgur


    High acrylamide (ACR) content in heat-processed carbohydrate-rich foods, as well as roasted products such as coffee, almonds etc., has been found to be as a risk factor for carcinogenicity and genotoxicity by The World Health Organization. Glycidamide (GLY), the epoxide metabolite of ACR, is processed by the cytochrome P-450 enzyme system and has also been found to be a genotoxic agent. The aim of this study was to determine whether ACR and/or GLY have any detrimental effect on the meiotic cell division of oocytes. For this purpose, germinal vesicle-stage mouse oocytes were treated with 0, 100, 500, or 1000 μM ACR or 0, 25, or 250 μM GLY in vitro. In vivo experiments were performed after an intraperitoneal injection of 25 mg/kg/day ACR of female BALB/c mice for 7 days. The majority of in vitro ACR-treated oocytes reached the metaphase-II stage following 18 hours of incubation, which was not significantly different from the control group. Maturation of the oocytes derived from in vivo ACR-treated mice was impaired significantly. Oocytes, reaching the M-II stage in the in vivo ACR-treated group, were characterized by a decrease in meiotic spindle mass and an increase in chromosomal disruption. In vitro GLY treatment resulted in the degeneration of all oocytes, indicating that ACR toxicity on female germ cells may occur through its metabolite, GLY. Thus, ACR exposure must be considered, together with its metabolite GLY, when female fertility is concerned. PMID:28182799

  5. Development of rat oocytes following intracytoplasmic injection of sperm heads isolated from testicular and epididymal spermatozoa. (United States)

    Said, S; Han, M-S; Niwa, K


    The possibility of obtaining normal development of rat oocytes following intracytoplasmic injection of rat sperm heads, obtained by sonicating spermatozoa from testes and epididymides, was evaluated. Irrespective of the source of spermatozoa, sperm heads were successfully injected into approximately 45% of oocytes used; after 9-12h of culture, approximately 55% of injected oocytes still had normal morphology. Of the oocytes injected with testicular sperm heads 45% were activated, with a female pronucleus and a second polar body, but significantly more oocytes (approximately 68%) injected with caput and cauda epididymal sperm heads were activated. Male pronuclear formation was observed in 67-84% of the activated oocytes, with no difference in the proportions among the different sources of sperm heads. When zygotes showing two pronuclei and a second polar body at 10h after injection were cultured in conditions that support development of 1-cell embryos produced in vivo, no embryos derived from testicular sperm heads developed to blastocysts after 120 h of culture. Development of embryos derived from cauda sperm heads was significantly higher at all points of assessment, while embryos from caput sperm showed an intermediate degree of development, compared with embryos from testicular spermatozoa. However, similar proportions (2-4%) of 1-cell embryos derived from all three groups of sperm heads developed into normal offspring after transfer to foster mothers; of the limited number of offspring tested, all were fertile. These results demonstrate that sperm heads from all sources tested are similar in their ability to contribute to full development of normal, fertile offspring.

  6. Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival (United States)

    Chang, Wei-Chun; Huang, Shang-Fen; Lee, Yang-Ming; Lai, Hsueh-Chou; Cheng, Bi-Hua; Cheng, Wei-Chung; Ho, Jason Yen-Ping; Jeng, Long-Bin; Ma, Wen-Lung


    Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested. PMID:27893427

  7. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. (United States)

    Pang, Yefei; Thomas, Peter


    Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17beta (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERalpha) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20beta-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRalpha), the intermediary in DHP induction of OM. Conversely DHP treatment caused a >50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRalpha, respectively, at different stages of oocyte development.

  8. Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human oocytes and allows subsequent embryonic development. (United States)

    Nogueira, D; Ron-El, R; Friedler, S; Schachter, M; Raziel, A; Cortvrindt, R; Smitz, J


    Controlling nuclear maturation during oocyte culture might improve nuclear-cytoplasmic maturation synchrony. We aimed to evaluate the quality of in vitro-matured, germinal vesicle (GV)-stage human oocytes following a prematuration culture (PMC) with a meiotic arrester, phosphodiesterase 3-inhibitor (PDE3-I). Follicles (diameter, 6-12 mm) were retrieved 34-36 h post-hCG administration from informed, consenting patients who had undergone controlled ovarian stimulation. Cumulus-enclosed oocytes (CEOs) presenting moderate expansion or full compaction were placed in PMC with the PDE3-I, Org9935, for 24 or 48 h. Subsequently, oocytes were removed from PMC, denuded of cumulus cells, matured in vitro, and fertilized, and the resulting embryos were cultured. In the presence of PDE3-I, approximately 98% of the oocytes were arrested at the GV stage. Following PDE3-I removal, oocytes acquired a higher maturation rate than oocytes that were immediately denuded of cumulus cells after retrieval and in vitro matured (67% vs. 46%, P = 0.01). In controls, immature CEOs retrieved with moderate expansion reached higher maturation rates compared to fully compacted CEOs, but in PMC groups, high values of maturation were achieved for both morphological classes of CEOs. No effect of PMC on fertilization was observed. A 24-h PMC period proved to be the most effective in preserving embryonic integrity. Similar proportions of nuclear abnormalities were observed in embryos of all in vitro groups. In summary, PMC with the specific PDE3-I had a beneficial effect on human CEOs by enhancing maturation, benefiting mainly the fully compacted CEOs. This resulted in an increased yield of mature oocytes available for insemination without compromising embryonic development. These results suggest that applying an inhibitor to control the rate of nuclear maturity by regulating intraoocyte PDE3 activity may allow the synchronization of nuclear and ooplasmic maturation.

  9. First Babies from Cryopreserved Oocytes in Hungary

    Institute of Scientific and Technical Information of China (English)

    Konc J; Kanyo K; Varga E; Kriston R; Cseh S


    Objective To evaluate the value of oocyte cryopreservation (CP) in our clinical ICSIprogram.Methods Freezing procedure with medium containing 1.5 mol/L propanediol (PrOH)+ 0.3 mol/L succrose and traditional slow-freezingprotocol were used. Thawed oocytes were fertilized with ICSI (4-6 h after thawing), and fertilization was assessed 12-16 h later. Laser assisted hatching was performed on all transferred embryos and embryo transfer was carried out 48-72 h after ICSI.Results Eighty-five eggs were thawed and survival rate of 75.3% (64/85) was obtained.Sixty-four oocytes were inseminated with ICSI, 47fertilized (47/64; 73.4%) and a cleavage rate of 85% (40/47) was obtained. Embryo transfers were performed in 18patients, and 4 (19%) resulted in clinical pregnancies. One of the pregnancies encountered first trimester abortion. Implantation rate were 17.2% (5/29) per embryo and 5. 8% (5/85) per egg thawed. In all cases, chorion biopsy was performed resulting46 XY kariotype.Conclusion Our results provide further evidence of that although egg freezing cannot currently claim to be a routine procedure in human IVF, there will certainly be a place for oocyte CP in reproductive medicine in the future.

  10. [Karyosphere capsule in Tribolium castaneum oocytes]. (United States)

    Batalova, F M; Bogoliubov, D S


    Structure and composition of the karyosphere (karyosome) capsule were studied in the oocytes of a laboratory insect, Tribolium castaneum, with the use of electron microscopy and immunoelectron cytochemistry. Basing on the study of nuclear structure dynamics, we distinguished 8 stages that characterize the period of oocyte growth. At the diplotene stage, T. castaneum oocyte chromosomes conjoin early into a compact karyosphere, but a significant chromatin condensation does not occur. The process of karyosphere formation is accompanied by the development of an extensive extrachromosome capsule surrounding chromatin. The capsule consists of a material of different morphological types. Significant molecular components of the T. castaneum karyosphere capsule are represented by the proteins of nuclear matrix including F-actin and lamin B. Besides the structural proteins, the Sm proteins of small nuclear (sn) RNPs and mature 2,2,7-trimethyl guanosine (TMG) 5'-capped snRNAs are revealed immunocytochemically in the karyosphere capsule. The obtained data can form a basis for further expansion of ideas on the functions of the karyosphere capsule as a specialized extrachromosomal nuclear domain of the oocytes. We believe that the T. castaneum karyosphere capsule plays not only a structural role, but may be involved directly in the processes related to gene expression.

  11. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu


    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  12. In vitro maturation alters gene expression in bovine oocytes. (United States)

    Adona, Paulo R; Leal, Cláudia L V; Biase, Fernando H; De Bem, Tiago H; Mesquita, Lígia G; Meirelles, Flávio V; Ferraz, André L; Furlan, Luiz R; Monzani, Paulo S; Guemra, Samuel


    Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.

  13. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Indian Academy of Sciences (India)

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann


    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  14. Deletion of the Novel Oocyte-Enriched Gene, Gpr149, Leads to Increased Fertility in Mice (United States)

    Edson, Mark A.; Lin, Yi-Nan; Matzuk, Martin M.


    Through in silico subtraction and microarray analysis, we identified mouse Gpr149, a novel, oocyte-enriched transcript that encodes a predicted orphan G-protein-coupled receptor (GPR). Phylogenetic analysis of GPR149 from fish to mammals suggests that it is widely conserved in vertebrates. By multitissue RT-PCR analysis, we found that Gpr149 is highly expressed in the ovary and also in the brain and the digestive tract at low levels. Gpr149 levels are low in newborn ovaries but increase throughout folliculogenesis. In the ovary, we found that granulosa cells did not express Gpr149, whereas germinal vesicle and meiosis II stage oocytes showed high levels of Gpr149 expression. After fertilization, Gpr149 expression declined, becoming undetectable by the two-cell stage. To study the function of GPR149 in oocyte growth and maturation, we generated Gpr149 null mice. Surprisingly, Gpr149 null mice are viable and have normal folliculogenesis, but demonstrate increased fertility, enhanced ovulation, increased oocyte Gdf9 mRNA levels, and increased levels of FSH receptor and cyclin D2 mRNA levels in granulosa cells. Thus, Gpr149 null mice are one of the few models with enhanced fertility, and GPR149 could be a target for small molecules to enhance fertility in the assisted reproductive technology clinic. PMID:19887567

  15. Effects of Mitochondrial Uncoupling Protein 2 Inhibition by Genipin in Human Cumulus Cells

    Directory of Open Access Journals (Sweden)

    Hongshan Ge


    Full Text Available UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.

  16. Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus. (United States)

    Mukherjee, Arun; Haldar, Chandana


    Photoperiodic modulation of melatonin membrane receptor (MT1R) expression in testis has never been reported for any seasonal breeder. Thus, the aim of the present study was to investigate the expression dynamics of MT1R in testis and its interaction with testicular steroidogenesis in a long-day breeder, Mesocricetus auratus. Hamsters were exposed to different photoperiodic conditions i.e. critical- (CP; 12.5L:11.5D); short-day- (SD; 8L:16D) and long-day- (LD; 16L:8D) for 10 weeks wherein testicular steroidogenesis, local melatonin synthesis and the expression of MT1R were analyzed. SD induced melatonin suppressed testicular steroidogenesis as evident from regressed testicular histoarchitecture, decreased expression of AR, StAR, LH-R, P₄₅₀SCC and enzyme activities of 3β- and 17β-HSD. Differential photoperiodic regulation of MT1R expression in testis suggests its involvement in photoperiodic signal transduction for seasonal adjustment of reproduction. Increased S-NAT (Serotonin N-acetyl transferase) activity and local testicular melatonin under SD condition suggest an inhibitory effect of the local melatonergic system on testicular steroidogenesis. Completely opposite responses were recorded for all the parameters analyzed when hamsters were exposed to CP or LD conditions. In conclusion, we may suggest that photoperiod via regulating circulatory and local melatonin level as well as MT1R expression in testes fine tunes the steroidogenesis and thereby, the reproductive status of male golden hamster.

  17. Relationship of telomere length in cumulus cells with oocytes maturation and outcome of IVF-ET in patients with different ages%不同年龄IVF-ET患者卵丘颗粒细胞端粒长度与卵母细胞成熟度及妊娠结局的关系

    Institute of Scientific and Technical Information of China (English)

    王兴玲; 蔡鹏飞; 张文娟; 肖雅琳


    目的:探讨体外受精-胚胎移植( IVF-ET)卵丘颗粒细胞的端粒长度与卵母细胞成熟度及妊娠结局的关系。方法:收集81例行体外受精-胚胎移植患者的卵丘颗粒细胞,根据患者的年龄,分为低龄(<35岁)组42例和高龄(≥35岁)组39例。应用qRT-PCR测量卵丘颗粒细胞端粒长度。结果:卵丘颗粒细胞端粒长度与年龄呈负相关(r=-0.267,P=0.021),低、高龄组内成熟卵母细胞的卵丘颗粒细胞端粒长度明显比未成熟卵母细胞的长(P<0.05)。高龄组妊娠者端粒长度较未妊娠者长(P<0.05)。结论:在IVF-ET中,卵丘颗粒细胞的相对端粒长度随年龄增长逐渐缩短,可反映卵母细胞的成熟度;端粒长度缩短可能会影响妊娠结局。%Aim:To investigate the relationship of the relative telomere length in cumulus cells (CCs) with oocytes at different mature stages and the outcome of in vitro fertilization and embryo transfer (IVF-ET).Methods:Oocyte-cumulus complex samples were collected from 81 patients undergoing IVF-ET and CCs were manually separated .A total of 42 women (<35 years,the younger group) and 39 women(≥35 years, the older group) were collected.The oocyte maturation and the result of clinical pregnancy were recorded in different groups .DNA was extracted from CCs and assessed for telomere length by real-time quantitative PCR .Results: There were negative correlation between relative telomere length of CCs with the patients′age (r=-0.267, P=0.021).The relative telomere length of CCs was higher in mature oocytes than immature oocytes in both groups (P<0.05).There was a significantly higher telomere length of CCs in the pregnant sub-group than in the non-pregnant subgroup among the older group (P<0.05).Conclusion:In IVF-ET, the relative telomere length of CCs gradually shortened with age .The telomere length of CCs could reflect the degree of oocyte maturation and may be

  18. Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes:microtuble organization, asymmetric division and metaphase Ⅱ arrest

    Institute of Scientific and Technical Information of China (English)



    In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 μMU0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 μM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure.Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 μm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns,MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 μM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 μM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization;2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase/p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.

  19. NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary. (United States)

    Kiyosu, Chiyo; Tsuji, Takehito; Yamada, Kaoru; Kajita, Shimpei; Kunieda, Tetsuo


    Natriuretic peptide type C (NPPC) and its high affinity receptor, natriuretic peptide receptor 2 (NPR2), have been assumed to be involved in female reproduction and have recently been shown to play an essential role in maintaining meiotic arrest of oocytes. However, the overall role of NPPC/NPR2 signaling in female reproduction and ovarian function is still less clear. Here we report the defects observed in oocytes and follicles of mice homozygous for Nppc(lbab) or Npr2(cn), mutant alleles of Nppc or Npr2 respectively to clarify the exact consequences of lack of NPPC/NPR2 signaling in female reproductive systems. We found that: i) Npr2(cn)/Npr2(cn) female mice ovulated a comparable number of oocytes as normal mice but never produced a litter; ii) all ovulated oocytes of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice exhibited abnormalities, such as fragmented or degenerated ooplasm and never developed to the two-cell stage after fertilization; iii) histological examination of the ovaries of Npr2(cn)/Npr2(cn) and Nppc(lbab)/Nppc(lbab) mice showed that oocytes in antral follicles prematurely resumed meiosis and that immediately before ovulation, oocytes showed disorganized chromosomes or fragmented ooplasm; and iv) ovulated oocytes and oocytes in the periovulatory follicles of the mutant mice were devoid of cumulus cells. These findings demonstrate that NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation, which affects female fertility through the production of oocytes with developmental capacity.

  20. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. (United States)

    Weng, Katherine A; Jeffreys, Charlotte A; Bickel, Sharon E


    Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during p