WorldWideScience

Sample records for cell stack test

  1. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...

  2. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.; Ravn Nielsen, Eva; J. McPhail, S.; Tsotridis, G.; Fu, Q.; H. Chan, S.

    2015-01-01

    In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell/stack as...

  3. Design, fabrication and performance test of a planar array module-type micro fuel cell stack

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A new and novel planar array module. • Easy handling/assembling as well as fast fabrication upon its commercialization. • Compact configuration design and geometry could be secured. - Abstract: We proposed and tested a new and novel planar array module (4 N style; N is an integer) consisting of 4, 8, 12 and 16 single polymer electrotype membrane (PEM) fuel cells connected in series on a plane with two different pin electrode flowfield configurations. This module has the potential to be not only easily handled and assembled but also to be fabricated quickly upon its commercialization. Using a Lithography Galvanic Abformung (LIGA)-like microfabrication technique, copper metal sheets were used to make two different flowfield plates with serpentine flow channels. A 4-cell (short stack), 8-cell, 12-cell and 16-cell (long stack) stack were developed and tested for performance study under different operating conditions. These were connected in a series of micro fuel cells consisting of an anode/cathode and Membrane Electrode Assembly (MEA). Performance results for a short stack/unit module (4 cells), 8 cells, 12 cells and a long stack/four modules (16 cells) were presented; it was found that significant improvements in VI/PI characteristics could be attained due to uniform and compact configuration design and geometry

  4. Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...

  5. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of...

  6. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; X. Zhang; G. K. Housley; K. DeWall; L. Moore-McAteer; G. Tao

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.

  7. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    -1000 series MEAs by Pemeas, with an active area of 45cm2. The low pressure gas channels enable the use of low power blowers instead of a compressor which increases the overall system efficiency. This initial system was made to test the bipolar plate design, and there is no need for humidification of...

  8. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    Science.gov (United States)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  9. Experiences from design and testing of a small PEM fuel cell stack

    International Nuclear Information System (INIS)

    'Full text:' Introduction The Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered the most promising candidate for mobile applications, due to its high power density, short start-up times and immediate response to changes in power demand. PEMFC systems tend, however, to become rather complex in order to provide for optimum water and thermal management, and facilitate stable operation. Auxiliary components add to cost and volume, and may reduce reliability. Pressurized operation may increase system power density, but to the sacrifice of efficiency. The atmospheric systems are inferior to pressurized systems with respect to water self-sufficiency and usually demand voluminous water condenser systems. At high power densities the amount of waste heat becomes considerable, and for larger systems liquid cooling is usually inevitable. But even for smaller, air-cooled systems, thermal management is challenging because of the relatively small temperature difference between the fuel cell and the surroundings. Over more than a decade there has been a trend towards simpler PEMFC systems holding a minimum number of auxiliary components, operating at atmospheric pressure and utilizing various self-humidifying techniques. However, due to the complexity of PEMFC operation, the degree of simplification becomes a trade-off between system cost and volume, and controllability. Experimental In the present work a small 10 cell PEMFC stack for demonstrational purposes was designed, assembled and tested. Commercial MEAs (Gore) and GDLs (E-TEK) were used. Thermocouples were inserted into the cathode air channels. Based on a total of 300 temperature measurements a semi-3-dimensional temperature distribution in the stack was obtained. Cell performance was characterized by obtaining polarization curves for each cell and measuring the steady state temperature distribution at a current density of 0.10 A/cm2. Results and Discussion Stable performance was obtained at 0.10 A/cm2

  10. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.;

    2015-01-01

    /stack assembly in the fuel cell (SOFC), in the electrolysis (SOEC) and in the combined SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. This paper presents the results which have been achieved so...

  11. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  12. 49 CFR 178.606 - Stacking test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stacking test. 178.606 Section 178.606... Testing of Non-bulk Packagings and Packages § 178.606 Stacking test. (a) General. All packaging design types other than bags must be subjected to a stacking test. (b) Number of test samples. Three...

  13. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    Science.gov (United States)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  14. Testing of a De Nora polymer electrolyte fuel cell stack of 1 kW for naval applications

    Science.gov (United States)

    Schmal, D.; Kluiters, C. E.; Barendregt, I. P.

    In a previous study calculations were carried out for a navy frigate with respect to the energy consumption of a propulsion/electricity generation system based on fuel cells. The fuel consumption for the 'all-fuel cell' ship was compared with the consumption of the current propulsion/electricity generation system based on gas turbines and diesel engines; it showed potential energy savings of a fuel cell based system amounting from 25 to 30%. On the basis of these results and taking into account various military aspects it was decided to start tests with a polymer electrolyte fuel cell (PEFC) stack. For this purpose a De Nora 1 kW PEFC was chosen. Results of the first tests after installation are satisfying.

  15. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    time was cut down significantly and it was demonstrated parallel acquisition of 16 repeating units (cells) and the total stack impedance could be made fully automated. The performance and degradation of a 13-cell cross-flow stack was monitored for more than 2500 hours at steady operating conditions...... using the sequential impedance measurement setup. Impedance measurements was used to examine the long-term behavior and monitor the evolution of the series and polarization resistances for four out of the 13 repeating units during the first 1400 hours of operation. The losses for the four selected...... repeating units are reported and discussed. The performance and degradation of a 14-cell co-flow stack was monitored for more than 667 hours at steady operating conditions using the sequential impedance measurement setup. The stack was tested galvanostatically (at constant current) with 50% steam in the...

  16. TEST RESULTS OF HIGH TEMPERATURE STEAM/CO2 CO-ELECTROLYSIS IN A 10-CELL STACK

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Joseph J. Hartvigsen

    2007-06-01

    High temperature coelectrolysis experiments with CO2 / H2O mixtures were performed in a 10-cell planar solid oxide stack. Results indicated that stack apparent ASR values were shown not to vary significantly between pure steam electrolysis and steam / CO2 coelectrolysis values. Product gas compositions measured via an online micro gas chromatograph (GC) showed excellent agreement to predictions obtained from a chemical equilibrium coelectrolysis model developed for this study. Experimentally determined open cell potentials and thermal neutral voltages for coelectrolysis compared favorably to predictions obtained from a chemical equilibrium coelectrolysis and energy balance model, also developed for this study.

  17. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin; Urko, Willam

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  18. 49 CFR 178.815 - Stacking test.

    Science.gov (United States)

    2010-10-01

    ... qualification of all IBC design types intended to be stacked. (b) Special preparation for the stacking test. (1) All IBCs except flexible IBC design types must be loaded to their maximum permissible gross mass. (2) The flexible IBC must be filled to not less than 95 percent of its capacity and to its maximum...

  19. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.;

    2015-01-01

    in the fuel cell (SOFC), in the electrolysis (SOEC) and in the reversible SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. The paper presents the results which have been achieved so far...

  20. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.;

    2015-01-01

    the fuel cell (SOFC), in the electrolysis (SOEC) and in the reversible SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. The paper presents the results which have been achieved so far in...

  1. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...

  2. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    Science.gov (United States)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  3. Stack Characterization System Development and Testing

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory, as well as the rest of the U.S. Department of Energy community, has numerous off-gas stacks that need to be decommissioned, demolished, and packaged for disposal. Disposal requires a waste disposition determination phase. Process knowledge typically makes a worst-case scenario decision that may place lower-level waste into a more expensive higher-level waste disposal category. Truly useful radiological and chemical sampling can be problematic on old stacks due to their inherent height and access hazards, and many of these stacks have begun to deteriorate structurally. A remote stack characterization system (SCS) that can manage sample and data collection removes people from the hazards and provides an opportunity for access to difficult to reach internal stack areas. The SCS is a remotely operated articulated radiological data recovery system designed to deploy down into off-gas stacks from the top via crane. The battery-powered SCS is designed to stabilize itself against the stack walls and move various data recovery systems into areas of interest on the inner stack walls. Stabilization is provided by a tripod structure; sensors are mounted in a rotatable bipod underneath the tripod. Sensors include a beta/gamma/alpha detector, a removable contaminant multi-sample automated sampler, and a multi-core remote core drill. Multiple cameras provide remote task viewing, support for sampling, and video documentation of the process. A delay in funding has delayed project delivery somewhat. Therefore, this paper describes the technology and shows fabrication and testing progress to the extent that data is available.

  4. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  5. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  6. Development of a 400 W High Temperature PEM Fuel Cell Power Pack:Fuel Cell Stack Test

    OpenAIRE

    Andreasen, Søren Juhl; Bang, Mads; Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO...

  7. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  8. Cosmic ray test of INO RPC stack

    International Nuclear Information System (INIS)

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  9. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  10. Development of Bipolar Plate Stack Type Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb

  11. Solid oxide cell stack and method for preparing same

    DEFF Research Database (Denmark)

    2012-01-01

    A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpecte...... voltage improvement this solid oxide cell stack structure is particularly suitable for use in solid oxide fuel cell (SOFC) and solid oxide electrolysing cell (SOEC) applications....

  12. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  13. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  14. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  15. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  16. Compact bipolar plate-free direct methanol fuel cell stacks.

    Science.gov (United States)

    Dong, Xue; Takahashi, Motohiro; Nagao, Masahiro; Hibino, Takashi

    2011-05-14

    Fuel cells with a PtAu/C anode and a Pr-doped Mn(2)O(3)/C cathode were stacked without using a bipolar plate, and their discharge properties were investigated in a methanol aqueous solution bubbled with air. A three-cell stack exhibited a stack voltage of 2330 mV and a power output of 21 mW. PMID:21451850

  17. Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle

    Science.gov (United States)

    Han, In-Su; Kho, Back-Kyun; Cho, Sungbaek

    2016-02-01

    This paper presents a polymer electrolyte membrane (PEM) fuel cell stack that is specifically designed for the propulsion of an underwater vehicle (UV). The stack for a UV must be continuously operated in a closed space using hydrogen and pure oxygen; it should meet various performance requirements such as high hydrogen and oxygen utilizations, low hydrogen and oxygen consumptions, a high ramp-up rate, and a long lifetime. To this end, a cascade-type stack design is employed and the cell components, including the membrane electrode assembly and bipolar plate, are evaluated using long-term performance tests. The feasibility of a fabricated 4-kW-class stack was confirmed through various performance evaluations. The proposed cascade-type stack exhibited a high efficiency of 65% and high hydrogen and oxygen utilizations of 99.89% and 99.68%, respectively, resulting in significantly lesser purge-gas emissions to the outside of the stack. The load-following test was successfully performed at a high ramp-up rate. The lifetime of the stack was confirmed by a 3500-h performance test, from which the degradation rate of the cell voltage was obtained. The advantages of the cascade-type stack were also confirmed by comparing its performance with that of a single-stage stack operating in dead-end mode.

  18. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft2) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft2) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  19. Development of a 100 W PEM fuel cell stack for portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci; Erkan, Serdar [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering

    2010-07-01

    In this work, an air cooled 100 W stack was designed, manufactured and tested. The bipolar plates were manufactured by CNC machining of graphite. Membrane electrode assemblies (MEAs) were produced by spraying catalyst ink onto the gas diffusion layer (GDL). A fuel cell stack was assembled with 20 cells each having 12.25 cm{sup 2} active area. The test was carried out with H{sub 2} at anode and air at cathode side both at 100% relative humidity having 1.2 and 2 stoichiometric ratios, respectively. The operating temperature of the stack was kept at 60 C during the test. The results indicated that the stack has a maximum power of 60 W at 12 V operation. Cell numbers 1, 2, 3 and 20 always had less potential than the 0.6 V average cell voltage. Uniform cell voltage distribution has been achieved by improving thermal management and reactant distribution. (orig.)

  20. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  1. Optimization Algorithms Testing and Convergence by Using a Stacked Histogram

    Directory of Open Access Journals (Sweden)

    ZAPLATILEK, K.

    2011-02-01

    Full Text Available The article describes an original method of optimization algorithms testing and convergence. The method is based on so-called stacked histogram. Stacked histogram is a histogram with its features marked by a chosen colour scheme. Thus, the histogram maintains the information on the input digital sequence. This approach enables an easy identification of the hidden defects in the random process statistical distribution. The stacked histogram is used for the testing of the convergent quality of various optimization techniques. Its width, position and colour scheme provides enough information on the chosen algorithm optimization trajectory. Both the classic iteration techniques and the stochastic optimization algorithm with the adaptation were used as examples.

  2. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    , is limited to small values of strain. As a result of this, there is a generalized practice, and important source of modelling errors, of extrapolating the remaining part of the flow curves that are usually determined by means of tensile and bulge tests. The aim of this paper is to provide a new level......Knowledge of the flow curve in metal forming is crucial to analyse formability, to describe strain-hardening and to set-up the non-linear constitutive equations of metal plasticity. Commonly available mechanical testing of materials supplied in the form of sheets and plates, under low loading rates...... of understanding for the stack compression test and to evaluate its capability for constructing the flow curves of metal sheets under high strains across the useful range of material testing conditions. The presentation draws from the fundamentals of the stack compression test to the assessment of...

  3. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  4. Real-time Monitoring of Internal Temperature and Voltage of High-temperature Fuel Cell Stack

    International Nuclear Information System (INIS)

    The nonuniform local temperature and voltage in the chemical reaction process of high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack can affect the reaction of membrane electrode assembly (MEA) and the performance and life of fuel cell stack. The effectiveness and internal information of fuel cell stack can be discussed by using external measurement, invasive, theoretical modeling, and single temperature, or voltage measurement. But there are some problems, such as mm scale sensor, inaccurate measurement, influencing the fuel cell stack performance, and failing to know internal actual reactive state instantly. This study uses micro-electro-mechanical systems (MEMS) technology to develop a new generation flexible micro temperature and voltage sensors applicable to high-temperature electrochemical environment. Micro sensors have embedded in the cathode channel plate of HT-PEMFC stack. At the operating temperature of 170 °C and constant current (2, 10, 20 A), the curvilinear trends of local temperature and voltage inside the fuel cell stack measured by flexible micro sensors are consistent, proving the reliability of micro sensors. The test result also shows that the heat distribution in the fuel cell stack is nonuniform

  5. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  6. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  7. A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications

    International Nuclear Information System (INIS)

    A “4-cell” modular passive DMFC (direct methanol fuel cell) stack, which can be freely combined and applied to various electronic devices, is designed, fabricated and tested. Two PCB (printed circuit board) based accessories are designed and fabricated for electrically connecting and mechanically assembling the “4-cell” modules. The maximum power density of the “4-cell” module is 27 mW cm−2 at 5 M methanol concentration. The steady-state performances of the modular stacks with different numbers of modules are tested. The extra power loss of the multiple module stacks due to inter-module electrical connections is predicted by mathematical fitting method. The fitting results indicate that the efficiencies of the multiple module stacks are all above 90% up to 10 modules. The dynamic performances of the modular stacks are also investigated for portable applications. The results show that the modular stacks exhibit good responsiveness and reproducibility at high loading current (>100 mA). Finally, the modular stacks are successfully applied to drive the experimental fan and charge the mobile phone. - Highlights: • A “4-cell” modular passive DMFC (direct methanol fuel cell) stack is designed, fabricated and tested. • This modular DMFC stack can assemble more single cells with high efficiency. • The modular stack exhibit good responsiveness and reproducibility for portable application

  8. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  9. Test Planning and Test Access Mechanism Design for Stacked Chips using ILP

    OpenAIRE

    Sengupta, Breeta; Larsson, Erik

    2014-01-01

    In this paper we propose a scheme for test planning and test access mechanism (TAM) design for stacked integrated circuits (SICs) that are designed in a core-based manner. Our scheme minimizes the test cost, which is given as the weighted sum of the test time and the TAM width. The test cost is evaluated for a test flow that consists of a wafer sort test of each individual chip and a package test of the complete stack of chips. We use an Integer Linear Programming (ILP) model to find the opti...

  10. Micro PEM Fuel Cells and Stacks

    Institute of Scientific and Technical Information of China (English)

    Shou-shing; Hsieh

    2007-01-01

    1 Results The effects of different operating parameters on micro proton exchange membrane (PEM) fuel cell performance were experimentally studied for three different flow field configurations (interdigitated,mesh,and serpentine).Experiments with different cell operating temperatures and different backpressures on the H2 flow channels,as well as various combinations of these parameters,have been conducted for three different flow geometries.The micro PEM fuel cells were designed and fabricated in-house t...

  11. Testing Gravity with the Stacked Phase Space around Galaxy Clusters

    CERN Document Server

    Lam, Tsz Yan; Schmidt, Fabian; Takada, Masahiro

    2012-01-01

    In General Relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints by several orders of magnitude when applied to upcoming imaging and redshift surveys.

  12. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  13. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...

  14. SOFC - Manufacture of stacks for test and demonstration related activities, stack and system tests and identification of end user requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Joachim; Primdahl, S.; Boegh Elmose, H.; Weineisen, H.; Richter, A.

    2008-11-15

    The aim of the project was to solve the technical challenges in relation to stack functionality in connection with operation of multi stack assemblies under realistic operating conditions. It was the intention to make a targeted effort with the aim of developing a high performance stack technology suitable for both small and large units. An important part of the project was the testing of stack assemblies up to 10 kW power range with relevant fuel and realistic operation condition in the test facility at HC OErstedvaerket. The manufacturing of stacks in the project was as planned a number of stacks (70 kW) for use in demonstration projects both for single stacks and for multi stack assemblies. The start up of the work on the SOFC test facility at HC OErstedsvaerket (HCV) was delayed due to a late delivery of the unit from the PSO 6385 project. A number of unforeseen events during the project have meant that the SOFC test facility at HCV has not until now been ready for performing tests. The experience gained from the operation of a 20 kW Alpha unit in a co-operation between TOFC and Waertsilae now provides an important contribution to the future multi stack assemblies. The work on identification of end user requirements has resulted in a number of different development priorities for the m-CHP and the Distributed Generation market segments. (au)

  15. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  16. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  17. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    consists of a prototype cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes and runs on pure hydrogen in a dead-end anode configuration with a purge valve. The cooling of the stack...

  18. Development and characterization of a novel air-breathing micro direct methanol fuel cell stack for portable applications

    International Nuclear Information System (INIS)

    An air-breathing 10-cell micro direct methanol fuel cell (µDMFC) stack with four anode feeding patterns is designed, fabricated and tested. For a better understanding of the operational characteristics of both the single cell and the stack, a two-dimensional numerical model is established and calculated. Employing micro-stamping technology, the current collectors of each single cell are microfabricated on the stainless steel plate with a thickness of 300 µm. The single µDMFC is first tested under various operating parameters. On the basis of the simulation and experimental observation of the single cell performance, the µDMFC stack performance is thoroughly analyzed with different anode feeding patterns. The results indicate that the µDMFC stack with pattern B can ensure the uniform performance of each single cell and generate the highest power output. With pattern B, further experiments are carried out to investigate the influence of the anode flow rate on the stack performance. As a result, the µDMFC stack achieves the best performance with the maximum power density of about 24.75 mW cm−2 at 5.0 ml min−1. Finally, the stack is successfully applied to two electronic devices of different rated power

  19. Test impact on the overall die-to-wafer 3D stacked IC cost

    NARCIS (Netherlands)

    Taouil, M.; Hamdioui, S.; Beenakker, K.; Marinissen, E.J.

    2011-01-01

    One of the key challenges in 3D Stacked-ICs (3D-SIC) is to guarantee high product quality at minimal cost. Quality is mostly determined by the applied tests and cost trade-offs. Testing 3D-SICs is very challenging due to several additional test moments for the mid-bond stacks, i.e., partially create

  20. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  1. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  2. Design-for-test and test optimization techniques for TSV-based 3D stacked ICs

    CERN Document Server

    Noia, Brandon

    2014-01-01

    This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects.  The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain.  Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization.  Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.   • Provides a comprehensive guide to the challenges and solutions for the testing of TSV-based 3D stacked ICs; • Includes in-depth explanation of key test and design-for-test technologies, emerging standards, and test- architecture and test-schedule optimizations; • Encompasses all aspects of test as related to 3D ICs, including pre-bond and post-bond test as well as the test optimizatio...

  3. Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, In-Su; Shin, Hyun Khil [GS Caltex Corp, Daejeon (Korea, Republic of)

    2015-04-15

    We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

  4. Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks

    International Nuclear Information System (INIS)

    We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations

  5. PEM Fuel Cells from Single Cell to Stack - Fundamental, Modeling, Analysis, and Applications

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics (CFD). Part III: Analysis Chapter 7: PEM fuel cell analysis. Chapter 8: PEM fuel cell stack desig...

  6. Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection

    OpenAIRE

    Najafi, Masoud; Dipenta, Damiano; Bencherif, Karim; Sorine, Michel

    2007-01-01

    A method to reduce the model of a nonlinear dynamic fuel cell stack, which is suitable for control and fault detection studies, is presented. In order to model the fuel cell stack, we have assumed that the fuel cells are arranged in a stack, electrically in series, with thermal and electrical contacts. Since in practical applications a stack may be composed of several (at least fifty) fuel cells, such model will be a large set of differential equations which may be difficult to simulate espec...

  7. Mechanically Stacked Four-Junction Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-06-14

    Multijunction solar cells can be fabricated by bonding together component cells that are grown separately. Because the component cells are each grown lattice-matched to suitable substrates, this technique allows alloys of different lattice constants to be combined without the structural defects introduced when using metamorphic buffers. Here we present results on the fabrication and performance of four-junction mechanical stacks composed of GaInP/GaAs and GaInAsP/GaInAs tandems, grown on GaAs and InP substrates, respectively. The two tandems were bonded together with a low-index, transparent epoxy that acts as an omni-directional reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the sub-bandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and thus higher subcell voltage, compared with GaAs subcells without enhanced internal optics; all four subcells exhibit excellent material quality. The device was fabricated with four contact terminals so that each tandem can be operated at its maximum power point, which raises the cumulative efficiency and decreases spectral sensitivity. Efficiencies exceeding 38% at one-sun have been demonstrated. Eliminating the series resistance is the key challenge for the concentrator cells. We will discuss the performance of one-sun and concentrator versions of the device, and compare the results to recently fabricated monolithic four-junction cells.

  8. Occurrence and implications of voltage reversal in stacked microbial fuel cells.

    Science.gov (United States)

    An, Junyeong; Lee, Hyung-Sool

    2014-06-01

    Voltage reversal in stacked microbial fuel cells (MFCs) is a significant challenge that must be addressed, and the information on its definite cause and occurrence process is still obscure. In this work, we first demonstrated that different anodic reaction rates caused voltage reversal in a stacked MFC. Sluggish reaction rates on the anode in unit 1 of the stacked MFC resulted in a significantly increased anode overpotential of up to 0.132 V, as compared to negligible anode overpotential (0.0247 V) in unit 2. This work clearly verified the process of voltage reversal in the stacked MFC. As the current was gradually increased in the stacked MFC, the voltage in the stacked unit 1 decreased to 0 V prior to that of the stacked unit 2. Then, when the voltage in unit 1 became 0 V, it was converted from a galvanic cell to an electrochemical cell powered by unit 2. We found that the stacked unit 2 provided electrical energy for the stacked unit 1 as a power supply. Finally, the anode potential of the stacked unit 1 significantly increased over cathode potential as current increased further, which caused voltage reversal in unit 1. Voltage reversal occurs in stacked MFCs as a result of non-spontaneous anode overpotential in a unit MFC that has sluggish anode kinetics compared to the other unit MFCs. PMID:24771553

  9. Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Stinchcombe, Andrew; Walter, X Alexis; Greenman, John; Ieropoulos, Ioannis

    2015-08-24

    The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8 mL chamber volume were designed using all biodegradable products: polylactic acid for the frames, natural rubber as the cation-exchange membrane and egg-based, open-to-air cathodes coated with a lanolin gas diffusion layer. Forty MFCs were operated in various configurations. When fed with urine, the biodegradable stack was able to power appliances and was still operational after six months. One useful application for this truly sustainable MFC technology includes onboard power supplies for biodegradable robotic systems. After operation in remote ecological locations, these could degrade harmlessly into the surroundings to leave no trace when the mission is complete. PMID:26212495

  10. Recent Progress and Spectral Robustness Study for Mechanically Stacked Multi-junction Solar Cells

    Science.gov (United States)

    Zhao, Lu; Flamand, Giovanni; Poortmans, Jef

    2010-10-01

    Multi-terminal mechanically stacked multi-junction solar cells are an attractive candidate for terrestrial concentrator photovoltaics applications. Unlike monolithically integrated multi-junction solar cells which require current matching, all the available photon currents can be fully extracted from each junction of a mechanically stacked solar cell. Therefore, it has a high performance potential, and more importantly is less sensitive to spectrum variations. Lower losses due to current mismatch translate into a higher annual energy output for the mechanical stack. This paper presents the baseline processing developed at imec for the mechanical stacking process, and the most recent cell results by means of this technology. A GaAs-Ge dual-junction mechanically stacked multi-junction solar cell is demonstrated, with 24.7% plus 2.52% under AM1.5g, and 27.7% plus 4.42% under 30Suns concentration. In addition, spectral sensitivity is studied for both monolithically stacked and mechanically stacked solar cells, to learn the influence of spectrum variations on multi-junction solar cell performance. SMARTS model is used to predict the spectral irradiances, with solar radiation and meteorological elements from typical meteorological year 3 (TMY3) data set. The generated spectra are then fed into TCAD numerical simulation tool, to simulate the device performance. The simulation results show a reduced spectral sensitivity for mechanically stacked cell, and there is a 6% relative gain in annual energy production for the site studied (Las Vegas), compared with the monolithic stack.

  11. Safety Evaluation of Radioactive Material Transport Package under Stacking Test Condition

    International Nuclear Information System (INIS)

    Radioactive waste transport package was developed to transport eight drums of low and intermediate level waste(LILW) in accordance with the IAEA and domestic related regulations. The package is classified with industrial package IP-2. IP-2 package is required to undergo a free drop test and a stacking test. After free drop and stacking tests, it should prevent the loss or dispersal of radioactive contents, and loss of shielding integrity which would result in more than 20 % increase in the radiation level at any external surface of the package. The objective of this study is to establish the safety test method and procedure for stacking test and to prove the structural integrities of the IP-2 package. Stacking test and analysis were performed with a compressive load equal to five times the weight of the package for a period of 24 hours using a full scale model. Strains and displacements were measured at the corner fitting of the package during the stacking test. The measured strains and displacements were compared with the analysis results, and there were good agreements. It is very difficult to measure the deflection at the container base, so the maximum deflection of the container base was calculated by the analysis method. The maximum displacement at the corner fitting and deflection at the container base were less than their allowable values. Dimensions of the test model, thickness of shielding material and bolt torque were measured before and after the stacking test. Throughout the stacking test, it was found that there were no loss or dispersal of radioactive contents and no loss of shielding integrity. Thus, the package was shown to comply with the requirements to maintain structural integrity under the stacking condition.

  12. Cell and stack design alternatives. Second quarterly report, November 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-14

    Progress on a program to develop commercially viable phosphoric acid fuel cell driven on-site integration energy systems is presented. A mass and energy balance was completed for one operating point of a selected power generation sub-system with a power output of 119 kW. Potentially, 87% of the LHV of the input fuel is available as bus bar electricity or useful heat. A 2 kW stack of conventional design and a 0.5 kW DIGAS cooled stack have been constructed and are on test at ERC. Renovation of a space for the Westinghouse stack test facility is underway and procurement of equipment has been initiated. The coupled cell temperature - current density analysis has been modified to include the effects of turbulent coolant flow and extended to permit analysis of up to 10 process plates between cooling plates. The REFORM computer program was verified by comparison with data received from the government project manager. A method for predicting carbon deposition was developed and compared with data from the literature.

  13. Cell and stack design alternatives. Second quarterly report, November 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, D.Q.

    1979-02-14

    Work on the design of an on-site fuel cell total energy system for an apartment building is described. A mass and energy balance was completed for one operating point of a selected power generation sub-system with a power output of 119 kW. Potentially, 87 percent of the LHV of the input fuel is available as bus bar electricity or useful heat. A 2 kW stack of conventional design and a 0.5 kW DIGAS cooled stack have been constructed and are on test at ERC. Renovation of a space for the Westinghouse stack test facility is underway and procurement of equipment has been initiated. The coupled cell temperature - current density analysis has been modified to include the effects of turbulent coolant flow and extended to permit analysis of up to 10 process plates between cooling plates. The REFORM computer program was verified by comparison with data received from the government project manager. A method for predicting carbon deposition was developed and compared with data from the literature.

  14. Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY07

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. J. Hartvigsen; J. S. Herring

    2007-09-01

    This report provides documentation of experimental research activities performed at the Idaho National Laboratory and at Ceramatec, Inc. during FY07 under the DOE Nuclear Hydrogen Initiative, High Temperature Electrolysis Program. The activities discussed in this report include tests on single (button) cells, short planar stacks and tubular cells. The objectives of these small-scale tests are to evaluate advanced electrode, electrolyte, and interconnect materials, alternate modes of operation (e.g., coelectrolysis), and alternate cell geometries over a broad range of operating conditions, with the aim of identifying the most promising material et, cell and stack geometry, and operating conditions for the high-temperature electrolysis application. Cell performance is characterized in erms of initial area-specific resistance and long-term stability in the electrolysis mode. Some of the tests were run in the coelectrolysis mode. Research into coelectrolysis was funded by Laboratory Directed Research and Development (LDRD). Coelectrolysis simultaneously converts steam to hydrogen and carbon dioxide to carbon monoxide. This process is complicated by the reverse shift reaction. An equilibrium model was developed to predict outlet compositions of steam, hydrogen, carbon dioxide, and carbon monoxide resulting from coelectrolysis. Predicted ompositions were compared to measurements obtained with a precision micro-channel gas chromatograph.

  15. Fuel cells multi-stack power architectures and experimental validation of 1 kW parallel twin stack PEFC generator based on high frequency magnetic coupling dedicated to on board power unit

    International Nuclear Information System (INIS)

    This paper presents a study of a polymer electrolyte fuel cell (PEFC) multi-stack generator and its power electronic interface dedicated to an on board vehicle power unit. A parallel electric architecture has been designed and tested. First, a dynamic model of the PEFC stack, valid for high frequencies and compatible with power converter interactions, has been developed. This model is used for simulations of the global fuel cell and power converter behaviors. Second, an inventory of generic multi-stack fuel cells architectures is presented in order to couple electrically the fuel cell stacks to an on board DC bus (in series, parallel, through magnetic coupling..). This state of the art is completed by an overview of several candidate power converter topologies for fuel cells. Then, among all the possible technical solutions, an original power converter architecture using a high frequency planar transformer is proposed, which allows parallel and series magnetic couplings of two fuel cell stacks. Then, the study focuses on a first step, which is the association of two PEFC stacks. Such a structure, having good efficiency, is well adapted for testing and operation of fuel cells in normal and degraded working modes, which correspond to real constraints on board a vehicle. Finally, experimental validations on a 2 x 500 W twin stack PEFC with power converter interface demonstrate the technological feasibility for the embarked multi-stack fuel cells generator. The 1 kW power level chosen for the experimentation is close to that of a small on board PEFC auxiliary power unit (APU)

  16. Design and development of a 7kW polymer electrolyte membrane fuel cell stack for UPS application

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Giacoppo, G.; Barbera, O.; Urbani, F.; Passalacqua, E. [CNR - Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' (CNR-ITAE), Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Borello, L.; Musso, A.; Rosso, I. [Electro Power Systems spa (EPS), Via Grange Palmero 104, 10091 Alpignano (Italy)

    2010-09-15

    This work presents the PEMFC stack design methodology developed at CNR-ITAE, in the frame of a collaboration with an industrial partner, Electro Power Systems (EPS), operating in the Uninterruptable Power Supply (UPS) market. A detailed description of the design procedure of a 7 kW PEMFC stack is reported, starting from technical requirements of the UPS system to experimental tests. Bipolar plate layout, active area surface and shape, maximum (OCV) and minimum voltage, maximum cooling circuit pressure drop, maximum cathodic flow-field pressure drop, were the main constraint that influenced the constructive solutions. The electrochemical performances of Gore Primea 5621 MEA with SGL Sigracet GDL were chosen as reference to select the appropriate operating point in terms of current density and single cell voltage. A current density of 800 mA/cm{sup 2} was imposed as operating point of the stack, subsequently main stack parameters were calculated. Three different cathodic flow fields, that were designed to fulfill UPS system requirements, were tested in a single cell arrangement, to find the best gas flow path in terms of compromise between cell performance and pressure drop. Also a specific study was dedicated to the selection of gasket material to find the best compromise between cell performance and limited mechanical stress. The assembled 70 cells unit was tested in a test bench simulating the power system. Preliminary tests of the full unit yielded to a power of 6.2kW at 36 V. (author)

  17. Electrochemical removal of NOx with porous cell stacks

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent; Mogensen, Mogens Bjerg

    2010-01-01

    In this study porous cell stacks were investigated for their ability to remove NOx electrochemically. The cell stacks were made from laminated tapes of porous electrolyte Ce0.9Gd0.1O1.95 and composite electrodes of La1−xSrxMnO3 (x = 0.15, and 0.5) and ceria doped with Gd or Pr. The cell stacks were...... infiltrated with nano-particles of pure ceria, Ce0.9Gd0.1O1.95 and Ce0.8Pr0.2O2−δ after sintering. A gas stream containing NO were sent through the cell stack. When the cell stacks were polarised with 0.75 V per cell then it was possible to remove some of the NOx in the temperature interval of 250–400 °C. The...

  18. Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2013-01-01

    In this study porous cell stacks for electrochemical flue gas purification were fabricated using tape casting and lamination followed by sintering. Two different mixtures of pore formers were used; either a mixture of two types of graphite or a mixture of graphite with polymethyl methacrylate micro......-particles. It was shown that the porous cell stacks fabricated with polymethyl methacrylate had a higher porosity but a similar back pressure compared to the porous cell stacks fabricated with only graphite as a pore former. This was due to a high back pressure of the electrolyte layer. The porous cell stacks...... polymethyl methacrylate pore former, especially in the electrolyte layer, is needed, in order to lower the back pressure of the porous cell stack....

  19. Experimental Dynamic Performance of a 30kW 90Cell PEFC Stack under Transportation Load Cycle Constraints

    OpenAIRE

    DE-BERNARDINIS, A; Harel, F.; Candusso, D.; Coquery, G.; GIRARDOT,L; Hissel, D.; Francois, X.; BESSE, S

    2009-01-01

    The paper presents a synthesis with analysis of different experiments performed on a 30kW PEFC (Polymer Electrolyte Fuel Cell) stack in order to evaluate its dynamic performance. The PEFC stack is a pilot prototype manufactured by the French company HELION and is composed of 90 cells, 800cm2 MEA area (Membrane Electrode Assembly) fed by dry hydrogen and compressed air. The tests were performed in the framework of the French SPACT-80 research project which concerns the study, the realization a...

  20. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Nam, Joo-Youn; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5 mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. PMID:23711946

  1. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  2. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  3. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  4. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    Science.gov (United States)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as <0.5 mm. The optimal configuration with 10 desalination cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  5. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    Science.gov (United States)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  6. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  7. Cell separator for use in bipolar-stack energy storage devices

    Science.gov (United States)

    Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.

    1995-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  8. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)

    1997-08-01

    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  9. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

    Science.gov (United States)

    Kim, Younggy; Logan, Bruce E

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. PMID:21671676

  10. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  11. Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack

    International Nuclear Information System (INIS)

    Highlights: • A Monte Carlo simulation of a SOFC stack model is conducted for sensitivity analysis. • The non-isothermal stack model allows fast computation for statistical modeling. • Modeling parameters are ranked in view of their correlations with stack performance. • Rankings are different when varying the parameters simultaneously and individually. • Rankings change with the variability of the parameters and positions in the stack. - Abstract: The development of fuel cells has progressed to portable applications recently. This paper conducts a Monte Carlo simulation (MCS) of a spatially-smoothed non-isothermal model to correlate the performance of a 3D 5-cell planar solid oxide fuel cell (P-SOFC) stack with the variability of modeling parameters regarding material and geometrical properties and operating conditions. The computationally cost-efficient P-SOFC model for the MCS captures the leading-order transport phenomena and electrochemical mechanics of the 3D stack. Sensitivity analysis is carried out in two scenarios: first, by varying modeling parameters individually, and second by varying them simultaneously. The stochastic parameters are ranked according to the strength of their correlations with global and local stack performances. As a result, different rankings are obtained for the two scenarios. Moreover, in the second scenario, the rankings change with the nominal values and variability of the stochastic parameters as well as local positions within the stack, because of compensating or reinforcing effects between the varying parameters. Apart from the P-SOFCs, the present MCS can be extended to other types of fuel cells equipped with parallel flow channels. The fast stack model allows statistical modeling of a large stack of hundreds of cells for high-power applications without a prohibitive computational cost

  12. Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jespersen, J.L. [Danish Technological Institute, Kongsvang Alle 29, DK-8000 Arhus C (Denmark); Schaltz, E.; Kaer, S.K. [Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark); Andreasen, S.J.

    2009-08-15

    In designing and controlling fuel cell systems, it is advantageous to have models which predict fuel cell behaviour in steady-state as well as in dynamic operation. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterising and developing an impedance model for a high temperature PEM (HT-PEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell is a Nyquist plot, which shows the imaginary and real parts of the impedance of the measured system. The full stack impedance depends on the impedance of each of the single cells of the stack. Equivalent circuit models for each single cell can be used to predict the stack impedance at different temperature profiles of the stack. The information available in such models can be used to predict the fuel cell stack performance, e.g. in systems where different electronic components introduce current harmonics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Progress in the study of PCHE performance with various stacking methods; PCHEs and test facility

    International Nuclear Information System (INIS)

    Printed Circuit Heat Exchanger (PCHE) is famous with its superior compactness and relatively higher resistance to pressure which came from its manufacturing process. PCHE is made by diffusion bonding of thin metal plates having various flow channel shapes on them. Diffusion bonding makes stack of plates become a monolithic block by grain growth between the surfaces of each plates near the melting temperature of material. With these characteristics, it has become a promising heat exchanger type in oil and gas industry, power plant and chemical reactors fields, despite of its relatively short history than others. From many researches, it is known that the flow channel and the stacking method of plates are the major design factors of PCHE. Flow channels have been studied by relatively many researchers, and there are several well known channel types like zigzag channel, S shape fin, and airfoil fin shape. On the other hands, there is little research about stacking method so called 'bank type'. By Kim et al., it was showed that stacking method of PCHE influences the heat transfer rate and pressure drop, but the comparison of the different stacking method was not conducted. In this research, heat transfer and pressure drop characteristics of PCHEs with various bank types will be studied. And this article will introduce three kinds of PCHEs fabricated by different bank types, and the test facility for performance test of these heat exchangers

  14. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  15. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  16. Improved electrochemical in-situ characterization of polymer electrolyte membrane fuel cell stacks

    Science.gov (United States)

    Hartung, I.; Kirsch, S.; Zihrul, P.; Müller, O.; von Unwerth, T.

    2016-03-01

    In-situ diagnostics for single polymer electrolyte membrane fuel cells are well known and established. Comparable stack level techniques are urgently needed to enhance the understanding of degradation during real system operation, but have not yet reached a similar level of sophistication. We have therefore developed a new method for the quantification of the hydrogen crossover current in stacks, which in combination with a previously published technique now allows a clear quantitative characterization of the individual cells' membranes and electrodes. The limits of the reported methods are theoretically assessed and application is then demonstrated on automotive short stacks. The results prove to be highly reproducible and are validated for individual cells of the respective stacks by direct comparison with cyclic voltammetry results, showing good quantitative agreement for the hydrogen crossover current, the double layer capacitance and the electrochemically active surface area.

  17. Solid oxide fuel cells SOFCRoll single cell and stack design and development

    OpenAIRE

    Tesfai, Alem T.

    2013-01-01

    This study has focused on the implementation of a stack system for a novel design of solid oxide fuel cell (SOFCRoll). The issues affecting the commercialization of SOFCs are mainly based on durability and cost. The new design offers a number of advantages over the existing designs; it seeks to retain the specific advantages of both the tubular (high unit strength, no sealing problems) and planar arrangements (high power density). This design also aims to achieve low manufac...

  18. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  19. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature of...

  20. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  1. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  2. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  3. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion in a...

  4. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    OpenAIRE

    Mogensen, D.; J.-D. Grunwaldt; Hendriksen, P. V.; J. U. Nielsen; K. Dam-Johansen

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional ...

  5. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  6. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.K. [Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content ({lambda}, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical {lambda} ({lambda}{sub h}), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of {lambda} ({lambda}{sub l}), below which the stack can be self-started without forming ice. Between {lambda}{sub l} and {lambda}{sub h}, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both {lambda}{sub l} and {lambda}{sub h} are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical {lambda} for a subsequent successful startup. There is an optimum {lambda} for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the {lambda} is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the {lambda} is much higher than this optimum. (author)

  7. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.; Nuclear Engineering Division

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (?, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical ? (?h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of ? (?l), below which the stack can be self-started without forming ice. Between ?l and ?h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both ?l and ?h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical ? for a subsequent successful startup. There is an optimum ? for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the ? is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the ? is much higher than this optimum.

  8. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  9. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  10. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Science.gov (United States)

    Martínez Díez, Ana Luisa; Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Plaza, David Gómez; Goldschmidt, Jan Christoph

    2014-10-01

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm × 20 mm × 2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  11. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    International Nuclear Information System (INIS)

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm × 20 mm × 2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  12. Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell

    NARCIS (Netherlands)

    Dekker, A.J.G.; Heijne, ter A.; Saakes, M.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m2. The ca

  13. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    Science.gov (United States)

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  14. Using qualimetric engineering and extremal analysis to optimize a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Highlights: • We consider the optimal configuration of a PEMFC stack. • We utilize qualimetric engineering tools (Taguchi screening, regression analysis). • We achieve analytical solution on a restructured power-law fitting. • We discuss the Pt-cost involvement in the unit and area minimization scope. - Abstract: The optimal configuration of the proton exchange membrane fuel-cell (PEMFC) stack has received attention recently because of its potential use as an isolated energy distributor for household needs. In this work, the original complex problem for generating an optimal PEMFC stack based on the number of cell units connected in series and parallel arrangements as well as on the cell area is revisited. A qualimetric engineering strategy is formulated which is based on quick profiling the PEMFC stack voltage response. Stochastic screening is initiated by employing an L9(33) Taguchi-type OA for partitioning numerically the deterministic expression of the output PEMFC stack voltage such that to facilitate the sizing of the magnitude of the individual effects. The power and current household specifications for the stack system are maintained at the typical settings of 200 W at 12 V, respectively. The minimization of the stack total-area requirement becomes explicit in this work. The relationship of cell voltage against cell area is cast into a power-law model by regression fitting that achieves a coefficient of determination value of 99.99%. Thus, the theoretical formulation simplifies into a non-linear extremal problem with a constrained solution due to a singularity which is solved analytically. The optimal solution requires 22 cell units connected in series where each unit is designed with an area value of 151.4 cm2. It is also demonstrated how to visualize the optimal solution using the graphical method of operating lines. The total area of 3270.24 cm2 becomes a new benchmark for the optimal design of the studied PEMFC stack configuration. It is

  15. Evaluation of in-plane local stress distribution in stacked IC chip using dynamic random access memory cell array for highly reliable three-dimensional IC

    Science.gov (United States)

    Tanikawa, Seiya; Kino, Hisashi; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    As three-dimensional (3D) ICs have many advantages, IC performances can be enhanced without scaling down of transistor size. However, 3D IC has mechanical stresses inside Si substrates owing to its 3D stacking structure, which induces negative effects on transistor performances such as carrier mobility changes. One of the mechanical stresses is local bending stress due to organic adhesive shrinkage among stacked IC chips. In this paper, we have proposed an evaluation method for in-plane local stress distribution in the stacked IC chips using retention time modulation of a dynamic random access memory (DRAM) cell array. We fabricated a test structure composed of a DRAM chip bonded on a Si interposer with dummy Cu/Sn microbumps. As a result, we clarified that the DRAM cell array can precisely evaluate the in-plane local stress distribution in the stacked IC chips.

  16. A parametric study of the natural vibration and mode shapes of PEM fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Full Text Available A PEM fuel cell stack is laminated with a number of plate-type cells, and the latest model is assembled by compression from both ends of plates.PEM fuel cells are exposed to high magnitude vibrations, shocks, and cyclic loads in many applications. Vibrations during operation show significant impact in the longer run of the fuel cells. Frequencies which are not close to the resonant frequencies or natural frequencies show very little effect on the overall performance. However, if the frequency ranges of operation approaches the resonant frequency range, the probability of component failure increases. It is possible that there will be lateral transition of cells or leakage of fuel gas and coolant water. Therefore, it is necessary to evaluate the effects vibration has on the fuel cell. This work aims to understand the vibration characteristics of a PEM fuel cell stack and to evaluate their seismic resistance under a vibration environment. Natural frequencies and mode shapes of the PEM fuel cell stack are modelling using finite element methods (FEM.A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young’s modulus, and density for each component layer. In addition, this work provides insight into how the natural frequencies of the PEM fuel cell stack should be tuned to avoid high amplitude vibrations by modifying the material and geometric properties of individual components. The mode shapes of the PEM fuel cell stack provide insight into the maximum displacement exhibited under vibration conditions that should be considered for transportation and stationary applications.

  17. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard;

    2016-01-01

    Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured...

  18. Modelling the impact of creep on the probability of failure of a solid oxidefuel cell stack

    DEFF Research Database (Denmark)

    Greco, Fabio; Frandsen, Henrik Lund; Nakajo, Arata; Madsen, Mads Find; Van herle, Jan

    2014-01-01

    In solid oxide fuel cell (SOFC) technology a major challenge lies in balancing thermal stresses from an inevitable thermal field. The cells are known to creep, changing over time the stress field. The main objective of this study was to assess the influence of creep on the failure probability of an...... SOFC stack. A finite element analysis on a single repeating unit of the stack was performed, in which the influence of the mechanical interactions,the temperature-dependent mechanical properties and creep of the SOFC materials are considered. Moreover, stresses from the thermo-mechanical simulation of...... sintering of the cells have been obtained and were implemented into the model of the single repeating unit. The significance of the relaxation of the stresses by creep in the cell components and its influence on the probability of cell survival was investigated. Finally, the influence of cell size on the...

  19. Stack configurations for tubular solid oxide fuel cells

    Science.gov (United States)

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  20. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    Science.gov (United States)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  1. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  2. Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Yuyao; Choe, Song-Yul [Department of Mechanical Engineering, Auburn University, Auburn (United States); Choi, Seo-Ho [Fuel Cell Vehicle Team, Hyundai Motor Company and Kia Motors Corporation (United States)

    2007-02-25

    Models currently used for analyses of thermal and water behavior of a PEM fuel cell are based 3D computational fluid dynamics (CFD). However, the analyses are limited to a single cell with static behavior. Thus, these models cannot be used for analyses of dynamic behavior of a stack that continuously varies according to operating conditions. The model proposed describes dynamic behavior of a stack with two adjoining cells and endplate assembly, and work as a current controlled voltage source that can be used for optimization of BOPs and the associated controls. Simulations have been conducted to analyze start-up behaviors and the performance of the stack. Our analyses deliver following results: (1) dynamic temperature distribution in both the through-plane direction and the along channel direction of the fuel cell stack, (2) effects influencing the source terms of current density, and (3) dynamic oxygen concentration distribution. The temperature profile and its variation propensity are comparable to the previous results [Y. Shan, S.Y. Choe, J. Power Sources, 145 (1) (2005) 30-39; Y. Shan, S.Y. Choe, J. Power Sources, in press]. (author)

  3. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik;

    2009-01-01

    In designing and controlling fuel cell systems it is advantageous having models predicting fuel cell behavior in steady-state as well as in dynamic operation. This work examines the use of Electro-chemical Impedance Spectroscopy (EIS) for characterizing and developing an impedance model for a high...... used to predict the fuel cell stack performance, e.g. in systems where different electronic components introduce current harmonics....... temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance of...

  4. Carrier recombination effects in strain compensated quantum dot stacks embedded in solar cells

    OpenAIRE

    Alonso Alvarez, Diego; González Taboada, Alfonso; Ripalda Cobián, Jose María; Alén Millán, Benito; González Diez, M. Yolanda; González Soto, Luisa; García Martín, Jorge Miguel; Martí Vega, Antonio; Luque López, Antonio; Briones Fernández-Pola, Fernando; Sanchez, A. M.; Molina Rubio, Sergio Ignacio

    2008-01-01

    In this work we report the stacking of 50 InAs/GaAs quantum dot layers with a GaAs spacer thickness of 18 nm using GaP monolayers for strain compensation. We find a good structural and optical quality of the fabricated samples including a planar growth front across the whole structure, a reduction in the quantum dot size inhomogeneity, and an enhanced thermal stability of the emission. The optimized quantum dot stack has been embedded in a solar cell structure and we discuss the benefits and ...

  5. Experimental results of single-channel in the fuel stack test section (T1), 1

    International Nuclear Information System (INIS)

    Experimental studies on heat transfer and flow characteristics of a simulated fuel rod for the VHTR (Very High-temperature Gas-cooled Reactor) has been performed with the fuel stack test section (T1) of the Helium Engineering Demonstration Loop (HENDEL), using a helium gas of almost same conditions of the VHTR operation. This report describes test result obtained by single-channel test rig of T1. Test conditions are as follows; Inlet temperature : 290 -- 620 K, Inlet pressure : 0.4 -- 4.0 MPa, Inlet Reynolds number : 1,600 -- 21,000, A simulated fuel rod, Electrical input : Maximum 90 kW, Heat flux distribution : Uniform. The conclusions derived from the tests are that friction factors and heat transfer coefficients are about 20 %, 15 -- 60 % higher than those for concentric smooth annuli, respectively. The reason may be due to the effect of spacerribs. (author)

  6. Identification of critical stacking faults in thin-film CdTe solar cells

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl2 is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies

  7. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    Science.gov (United States)

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. PMID:26888335

  8. Hybrid Dynamic Modeling and Control of Molten Carbonate Fuel Cell Stack Shutdown

    Institute of Scientific and Technical Information of China (English)

    LI Yong; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.

  9. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment.

    Science.gov (United States)

    Wu, Shijia; Li, Hui; Zhou, Xuechen; Liang, Peng; Zhang, Xiaoyuan; Jiang, Yong; Huang, Xia

    2016-07-01

    A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems. PMID:27131320

  10. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site. This...... article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell is...... investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  11. Analysis of Entropy Generation for the Performance Improvement of a Tubular Solid Oxide Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Vittorio Verda

    2009-03-01

    Full Text Available The aim of the paper is to investigate possible improvements in the design and operation of a tubular solid oxide fuel cell. To achieve this purpose, a CFD model of the cell is introduced. The model includes thermo-fluid dynamics, chemical reactions and electrochemistry. The fluid composition and mass flow rates at the inlet sections are obtained through a finite difference model of the whole stack. This model also provides boundary conditions for the radiation heat transfer. All of these conditions account for the position of each cell within the stack. The analysis of the cell performances is conducted on the basis of the entropy generation. The use of this technique makes it possible to identify the phenomena provoking the main irreversibilities, understand their causes and propose changes in the system design and operation.

  12. Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode

    International Nuclear Information System (INIS)

    Highlights: • A kW-grade fuel cell stack with anode dead-ended mode was examined. • The dead-ended anode is achieved by controlling the anode outlet solenoid valve. • Results indicated an optimal purge interval and duration for cell performance. - Abstract: This paper examines the dynamic cell performance of a kW-grade proton exchange membrane fuel cell stack with anode dead-ended mode fuel supply. A self-made kW-grade 40 cells stack with reaction area of 112.85 cm2 has been used in the experiment. A single-chip (DSPIC30F4011) is utilized for establishing a control circuit to monitor the voltage and current with constant-current loading. The stack temperature is controlled at a low-level temperature rise. To enhance the hydrogen utilization and reduce the water flooding in the fuel cell stack, the dead-ended anode operation is accomplished by controlling the open or close of the anode outlet solenoid valve. As the loading is heavy, the anode outlet solenoid valve is purged frequently to force the water to flow out. While a light load, the anode outlet solenoid valve is shut down for a period time for hydrogen saving. The solenoid valve is controlled to be opened, referred as purge interval, reaching the discharge amount for 1000 C, 1500 C, and 2000 C as parameter, respectively. The open period of solenoid valve, referred as purge duration, is set as 1 s, 3 s, and 5 s for this study. Experimental results indicate an optimal purge interval and duration for water management and cell performance of the fuel cell stack

  13. Particles for testing the stack particle monitor of nuclear power plants

    International Nuclear Information System (INIS)

    The manufacture of particles for a simplified test procedure for the stack particle monitor of nuclear power plants has been studied. It was found that a kind of monodisperse polymer particles could be tagged with dysprosium. The particles can then be traced by means of activation analysis. The lower limit of detection appeared to be inconveniently high. The detection limit can probably be reduced, but airborne matter in the plants ventilation air might interfere. Porous particles were used in the experiments, to obtain a high dimensional stability. Stable solid particles are preferred

  14. Flow distribution measurements at the exit of bipolar plates in a PEM fuel cell stack; Messung der Stroemungsverteilung am Austritt der Bipolarplatten eines Brennstoffzellen-Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Klinner, Joachim; Willert, Christian [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Abt. Triebwerksmesstechnik; Schneider, Armin; Mack-Gardner, Andre [Adam Opel GmbH, Ruesselsheim (Germany). Alternative Propulsion Center Europe

    2011-07-01

    This paper presents two different experimental approaches which concentrate on capturing the flow distribution close to the anode exit header of a prototype 8-12 KW fuel cell stack operated with air at realistic flow rates. The first approach intends to visualize the penetration depth of millimeter-sized jets towards the exit manifold. The second one is focused on obtaining the exit jet velocity field downstream of the bipolar plate exit header across the entire stack height by repeated 2C-PIV measurements on densely spaced adjacent light sheet planes. An overview of the experimental setup and the data evaluation is given. (orig.)

  15. The use of additive manufacture for metallic bipolar plates in polymer electrolyte fuel cell stacks

    OpenAIRE

    Dawson, Richard; Patel, Anant; Rennie, Allan; White, Simon

    2014-01-01

    The bipolar plate is of critical importance to the efficient and long lasting operation of a polymer electrolyte fuel cell (PEMFC) stack. With advances in membrane electrode assembly (MEA) design greater attention has been focused on the bipolar plate and the important role it plays in performance and durability. Although carbon composite plates are a likely candidate for the mass introduction of fuel cells, it is metallic plates made from thin strip materials (typically 0.2 mm thick stainles...

  16. Sickle cell test

    Science.gov (United States)

    The sickle cell test looks for the abnormal hemoglobin in the blood that causes the disease sickle cell anemia . ... if a person has abnormal hemoglobin that causes sickle cell disease and sickle cell trait. Hemoglobin is a ...

  17. Flow network analysis in PEM fuel cell stacks incorporating minor losses. Paper no. IGEC-1-062

    International Nuclear Information System (INIS)

    The performance of a polymer electrolyte membrane (PEM) fuel cell stack consisting 51 cells has been analyzed using a flow network model incorporating the minor losses. The distributions of pressure, molar flow rate and concentration for the fuel and oxidant streams in the stack are determined. The distributions are used in the single cell model developed previously to evaluate the stack voltage and the cell-to-cell voltage distributions. Analysis has been carried out for a variety of flow configurations and bipolar plate designs. It was found that the minor losses increase the stack operating pressure and the power requirement for oxidant supply and change the cell-to-cell voltage variations in the stack. A symmetric double inlet-single outlet topology provides optimal stack performance with reasonably low compressor power requirement for the reactant flow and minimum cell-to-cell voltage variations. The stack performance is considerably affected by the size and the number of flow channels on bipolar plate. (author)

  18. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  19. Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks

    Science.gov (United States)

    Müller, Martin; Hirschfeld, Julian; Lambertz, Rita; Schulze Lohoff, Andreas; Lustfeld, Hans; Pfeifer, Heinz; Reißel, Martin

    2014-12-01

    In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents.

  20. Seismic test and analysis of HTGR core using one-stacked block column

    International Nuclear Information System (INIS)

    The results of a seismic test and analysis on a 1/2 scale model of the typical stacked column, an element structure for the seismic study of the block-type fuel core of a high temperature gas cooled reactor, are described. (1) The column has the soft spring characteristics based on the block rocking. The hard spring characteristic is observed based on the gaps between column and boundary. The column has a non-linear resonance and exhibits a hysterisis response with jump points. (2) The column resonance frequency decreases with increasing excitation amplitude. (3) The impact force increases with increasing input acceleration. (4) The impact force increases with increasing boundary gap width. (5) The maximum response of the column for seismic waves are about 40 to 75% of that for the sinusoidal input. (6) The column damping factor is about 30% of critical. It increases with increasing in the column deflection amplitude. (7) Good correlation in vibration behavior of the stacked column and impact force between test and analysis was obtained. (author)

  1. One stacked-column vibration test and analysis for VHTR core

    International Nuclear Information System (INIS)

    The paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, a beat wave and a step wave of input acceleration 100 to 900 gal in the frequency of 0.5 to 15 Hertz were used to vibrate the table horizontally. Results are as follows: (1) the column has a nonlinear resonance and exhibits a hysteresis response with jump points; (2) the column vibration characteristics is similar to that of the finite beams connected with nonlinear soft spring; (3) the column resonance frequency decreases with increasing input acceleration; (4) the impact force increases with increasing input acceleration and boundary gap width; (5) good correlation in vibration behavior of the stacked column and impact force on the boundary between test and analysis was obtained

  2. Sickle Cell Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Sickle Cell Tests Share this page: Was this page helpful? ... else I should know? How is it used? Sickle cell tests are used to identify the presence of ...

  3. Study of the distribution of air flow in a proton exchange membrane fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Mustata, Radu; Valino, Luis; Barreras, Felix; Gil, Maria Isabel; Lozano, Antonio [LITEC, CSIC - Univ. Zaragoza - DGA Maria de Luna 10, 50018, Zaragoza (Spain)

    2009-07-01

    The flow of air to feed oxygen to the cathode of each plate in a proton exchange membrane fuel cell (PEMFC) is studied for a 300 W stack in a realistic 3D configuration. Two configurations for gas income are solved, a ''U'' shape, where both the inlet and outlet of the air collectors are at the same end plate, and a ''Z'' shape, where inlet and outlet are at opposite sides of the stack. Under a simplified assumption for the flow of oxygen entering the gas diffusion layer of each cell, detailed mass flow and pressure distributions are shown, including the possibility of a turbulent flow inside the main collectors. (author)

  4. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  5. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    OpenAIRE

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    In designing and controlling fuel cell sys-tems it is advantageous having models predicting the behavior of the fuel cells in steady-state as well as in dynamic ope-ration. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterizing and developing a model for a high temperature PEM (HTPEM) fuel cell stack. A Labview virtual interface has been developed to perform the signal generation and acquisition which is needed to perform EIS. In designing and contro...

  6. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres.

    Science.gov (United States)

    Al-Amri, Amal M; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  7. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    Science.gov (United States)

    Al-Amri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  8. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Al-Amri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  9. Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units

    Science.gov (United States)

    Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail

    A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.

  10. Sickle cell test

    Science.gov (United States)

    Sickledex; Hgb S test ... This test is done to tell if a person has abnormal hemoglobin that causes sickle cell disease and sickle ... and no symptoms, or only mild ones. This test does not tell the difference between these two ...

  11. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: sealing glass stability, microstructure and interfacial reactions.

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-15

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part I of the work addressed the stack fixture, seal system and cell performance of a 3-cell short stack tested at 800oC for 6000h. Commercial NiO-YSZ anode-supported thin YSZ electrolyte cells with LSM cathodes were used for assessment and were tested in constant current mode with dilute (~50% H2) fuel versus air. Part II of the work examined the sealing glass stability, microstructure development, interfacial reactions, and volatility issues. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell degradation. After 6000h of testing, the refractory sealing glass YSO77 (Ba-Sr-Y-B-Si) showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified, consistent with thermodynamic calculations. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time (40,000h) weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  12. High performance PEM fuel cells - from electrochemistry and material science to engineering development of a multicell stack. Monthly report No. 19

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A.J.; Inivasan, S.

    1996-07-01

    Several 50 sq cm MEAs were prepared to test the reproducibility of the authors techniques for electrodes and MEAs manufacture. At low current densities the performance of the cells is identical in the range of current densities of practical interest differences of up to 40 mV can be observed. During this month a four cell stack with MEAs provided by BCS Technology was assembled and tested. The MEAs were with electrodes with catalyst loading of 4.5 mg Pt/sq cm, area 50 sq cm, and Nafion(R) 112 membrane. The uncatalyzed gas diffusion substrate for these MEAs was provided by CESHR. The cell stack was operated with dry reactant gases at atmospheric pressure and at 50 deg C continuously for 600 hours at different power levels. The average cell voltage at a current density of 300 mA/sq cm was 0.61 V.

  13. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

    KAUST Repository

    Chehab, Noura A.

    2014-11-01

    A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations. © 2014 Elsevier B.V.

  14. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack

    Energy Technology Data Exchange (ETDEWEB)

    Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Arico, A.S.; Antonucci, V. [CNR - ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia sopra Contesse n. 5 - 98126 S. Lucia - Messina (Italy)

    2010-12-01

    This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm{sup -2}), obtained with a thin SPSf membrane (70 {mu}m) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm{sup -2}. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g{sup -1}) was 2.8 x 10{sup -2} S cm{sup -1}. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements. (author)

  15. Anatomy of an in-flight anomaly: Investigation of proton-induced SEE test results for stacked IBM DRAMs

    International Nuclear Information System (INIS)

    The authors present ground test and space flight data describing a single event anomaly that affects multiple bytes in a stacked DRAM module. A 12 Gbit solid state recorder containing 1,440 DRAM die experiences the anomalous events at a rate requiring testing of a large sample set of these modules

  16. Influence of Ring Oxidation-Induced Stack Faults on Efficiency in Silicon Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chun-Lan; WANG Wen-Jing; LI Hai-Ling; ZHAO Lei; DIAO Hong-Wei; LI Xu-Dong

    2008-01-01

    @@ We observe a strong correlation between the ring oxidation-induced stack faults (OISF) formed in the course of phosphor diffusion and the efficiency of Czochralski-grown silicon solar cells. The main reason for ring-OISF formation and growth in substrate is the silicon oxidation and phosphorus diffusion process induced silicon self-interstitial point defect during POCl3 diffusion. The decreasing of minority carrier diffusion length in crystal silicon solar cell induced by ring-OISF defects is identified to be one of the major causes of efficiency loss.

  17. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    In designing and controlling fuel cell sys-tems it is advantageous having models predicting the behavior of the fuel cells in steady-state as well as in dynamic ope-ration. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterizing and developing a model for a ...... high temperature PEM (HTPEM) fuel cell stack. A Labview virtual interface has been developed to perform the signal generation and acquisition which is needed to perform EIS.......In designing and controlling fuel cell sys-tems it is advantageous having models predicting the behavior of the fuel cells in steady-state as well as in dynamic ope-ration. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterizing and developing a model for a...

  18. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  19. A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control

    Science.gov (United States)

    Yang, Wei; Li, Jun; Ye, Dingding; Zhang, Liang; Zhu, Xun; Liao, Qiang

    2016-02-01

    Proton accumulation in the anode chamber is the major problem that affects the operational stability and electricity generation performance of double chamber microbial fuel cells (MFCs). In this study, a hybrid microbial fuel cell stack (DS-DS stack) based on single (SCMFCs) and double chamber MFCs (DCMFCs) is proposed for self-sustaining pH control in the MFC stack. It is found that the aerobic microbial oxidation of acetate by the biofilm that is attached to the air cathode of SCMFCs is responsible for the self-sustaining removal of accumulated H+ in the effluent of DCMFCs. Compared with the stack that solely consists of SCMFCs (SS-SS stack) or DCMFCs (DD-DD stack), the hybrid stack exhibits the highest electricity output performance and the most effective conversion of acetate into electricity at high power levels. Furthermore, the hybrid stack demonstrates the operation time of 15.7 ± 1.1 h when the operating voltage is above 0.8 V. This value is much higher than that of the DD-DD (8.5 ± 2.4 h) and SS-SS (8.1 ± 1.4 h) stacks, which suggests that the hybrid stack had a good operational stability.

  20. Cell and stack design alternatives. First quarterly report, August 1, 1978-October 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, D.Q.

    1979-01-01

    An apartment house in Albany, New York with HUD minimum insulation was selected as the application to be used in evaluating various system configurations of on-site fuel cell total energy systems. Methods for calculating the static and dynamic thermal loads for a simulated season were developed. Computer models of some major subsystems are now being developed. Finite element models of the electrochemistry, thermodynamics and heat transfer relationships for fuel cells were developed and have been used to calculate current density and temperature distributions for sets of large cells and cooling plates. The results obtained led to several innovative ideas for advanced stack designs. A single lump model of a fuel cell stack was developed for use in the systems study. The available information on methane conditioning was collected and reviewed and a plan for attaining the missing design data has been developed. Simple models of reformer and water-gas shift reactors were developed for use in the systems study. The lines of communication among technical tasks were established, required documentation of plans and progress was prepared and delivered and the monthly review meetings were held as planned.

  1. On modifying the condition for the local current density decoupling in fuel cell stacks for moderate perturbations

    International Nuclear Information System (INIS)

    Two adjacent cells in a fuel cell stack are said to be decoupled when they do not affect each other's local current density distribution. This paper proposes a condition for local current density decoupling between two adjacent cells with arbitrary degree of perturbations. The proposed condition in the form of a bound comprising some measure of the perturbation on a dimensionless number comprising the design, operating conditions, and material properties of the bipolar plate is correlated with the current redistribution between cells and verified with a non-isothermal proton exchange membrane fuel cell stack model

  2. Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2009-01-01

    A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.

  3. Simulation and Test of a Fuel Cell Hybrid Golf Cart

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2014-01-01

    Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.

  4. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  5. Reactor Room Experimental SF6 Tests to Determine Probable Stack Activity Response to Radioactive Releases

    International Nuclear Information System (INIS)

    This study was performed to obtain information that could be useful for obtaining an early estimate of the probable total stack activity monitor response in the event of an accidental release of radioactive activity in the process room

  6. Stack emissions tests in a brick manufacturing Hoffmann kiln: firing of municipal solid waste.

    Science.gov (United States)

    Ubaque, C A García; Hässig, A Gonzales; Mendoza, C Acosta

    2010-07-01

    This article reviews the results obtained from stack emissions analysis during the co-firing process of municipal solid waste (MSW) from the municipality of Tabio, Colombia, in a Hoffmann-type brick kiln. MSW (2 tonne) was incinerated and about 18.5 tonnes of clay were processed into brick using one and four kiln chambers, respectively. During the process, the following emissions were investigated: particulate emissions, emissions of SO(2), SO(3), NO( X), metals (Sb, As, Cd, Co, Sn, Cr, Cu, Mn, Ni, Hg), hydrofluoric and hydrochloric acid, hydrocarbons (such as methane) and emission of polychlorinated dioxins and furans. Also, CO emissions were monitored during each test to evaluate the influence of MSW co-firing on that parameter. The observed emissions concentrations proved to be below the threshold values issued by MAVDT, the environmental authority in Colombia, indicating that the emissions were under control during the proposed process. In addition, statistical analysis showed that the emissions were 10-40% below the regulation limit with a confidence of 95%. PMID:20124317

  7. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    Science.gov (United States)

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. PMID:22728187

  8. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131I. The collection efficiency for iodine in form of elementary iodine (I2) and methyliodide (CH3I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  9. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, Part II: Sealing glass stability, microstructure and interfacial reactions

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-03-01

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part II of the work examined the sealing glass stability, microstructure development, interfacial reaction, and volatility issues of a 3-cell stack with LSM-based cells. After 6000 h of testing, the refractory sealing glass YSO7 showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.

  10. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    Science.gov (United States)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  11. Mechanically Stacked Triple-junction GaInP / GaAs / Si Solar Cell Simulation

    Directory of Open Access Journals (Sweden)

    A.B. Gnilenko

    2014-01-01

    Full Text Available Mechanically stacked triple-junction GaInP / GaAs / Si solar cell is simulated by Silvaco TCAD computer software and compared to more conventional GaInP / GaAs / Ge mechanically stacked configuration. External quantum efficiency, I-V characteristics and basic I-V parameters are obtained to demonstrate the advantages of using the silicon active substrate as the bottom sub-cell instead of the germanium substrate based bottom sub-cell.

  12. Design of low power SRAM Cell with combined effect of sleep stack and variable body bias technique

    Directory of Open Access Journals (Sweden)

    Anjana R1 , Dr. Ajay kumar somkuwar

    2013-06-01

    Full Text Available Power consumption has become major concern in Very Large Scale Integration circuit and according to International technology roadmap of semiconductors (ITRS leakage power dissipation may dominate more of total power dissipation [1]. Sub threshold leakage power tends to increase as the leakage power increases. Variable sleepy biased keeper is compared with previously available technique like Sleep, Stack, Sleepy Stack, Sleepy Keeper, and Zigzag. In this paper, we design SRAM cell by combining two techniques, namely sleep stack and body biasing technique. The sleepy stack reduces leakage power, but loses its logic state during sleep mode. And body biasing technique reduces the static power consumption and maintains the logic state of the circuit. One main advantage of using variable sleepy biased keeper is, it can also use high Vth transistors

  13. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  14. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  15. Post-experimental analysis of a solid oxide fuel cell stack using hybrid seals

    Science.gov (United States)

    Thomann, O.; Rautanen, M.; Himanen, O.; Tallgren, J.; Kiviaho, J.

    2015-01-01

    A post-experimental analysis of a SOFC stack is presented. The stack was operated for 1800 h at 700 °C with air and hydrogen and contained hybrid glass-Thermiculite 866 seals. The goal of this work was to investigate the sealing microstructure and possible corrosion during mid-term operation. It was found that hybrid seals could effectively compensate for manufacturing tolerances of cells and other components due to the compliance of the glass layer. Additionally, different interfaces were investigated for corrosion. Corrosion was not observed at two-phase interfaces such as Crofer 22 APU/glass, glass/electrolyte and glass/Thermiculite 866. The three-phase interface between Crofer 22 APU/glass/hydrogen exhibited no corrosion. Some evidence of non-systematic corrosion was found at the Crofer 22 APU/glass/air interface. The possible reasons for the corrosion are discussed. Lastly, dual exposure to humid hydrogen and air of the 0.2 mm Crofer 22 APU interconnect had no detrimental effect on the corrosion compared to air exposure. Overall the hybrid seals used in combination with the thin interconnects were found to be a promising solution due to the low leak rate and limited material interactions.

  16. Small stack performance of intermediate temperature-operating solid oxide fuel cells using stainless steel interconnects and anode-supported single cell

    Science.gov (United States)

    Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee

    We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.

  17. Small stack performance of intermediate temperature-operating solid oxide fuel cells using stainless steel interconnects and anode-supported single cell

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joongmyeon; Lim, Sungkwang; Kim, Jung Hyun [Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea); Jee, Hyunjin [Agency for Defense Development (ADD), Jochiwongil 462, Yuseong, Daejeon (Korea); Yoo, Young-Sung; Lee, Taehee [Korea Electric Power Research Institute (KEPRI), Daejeon 305-380 (Korea)

    2007-10-11

    We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm{sup -2} at 650 C and 1680 mW cm{sup -2} at 750 C. The voltage of 15-cell stack based on 5 cm x 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 C, 700 C and 650 C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I-V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack. (author)

  18. A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks

    Science.gov (United States)

    Zheng, Zhixue; Péra, Marie-Cécile; Hissel, Daniel; Becherif, Mohamed; Agbli, Kréhi-Serge; Li, Yongdong

    2014-12-01

    To improve the performance and lifetime of the low temperature polymer electrolyte membrane fuel cell (PEMFC) stack, water management is an important issue. This paper aims at developing an online diagnostic methodology with the capability of discriminating different degrees of flooding/drying inside the fuel cell stack. Electrochemical impedance spectroscopy (EIS) is utilized as a basis tool and a double-fuzzy method consisting of fuzzy clustering and fuzzy logic is developed to mine diagnostic rules from the experimental data automatically. Through online experimental verification, a high interpretability and computational efficiency of the proposed methodology can be achieved.

  19. High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Arico, A.S.; Di Blasi, A.; Brunaccini, G.; Sergi, F.; Dispenza, G.; Andaloro, L.; Ferraro, M.; Antonucci, V. [CNR-ITAE, Messina (Italy); Asher, P.; Buche, S.; Fongalland, D.; Hards, G.A.; Sharman, J.D.B. [Johnson Matthey Fuel Cells Ltd, Blounts Court, Sonning Common, Reading, Berks (United Kingdom); Bayer, A.; Heinz, G.; Zandona, N. [SolviCore GmbH and Co KG, Hanau (Germany); Zuber, R. [Umicore AG and Co KG, Dept. RD-EP, Hanau (Germany); Gebert, M.; Corasaniti, M.; Ghielmi, A. [Solvay Solexis, Bollate (Italy)

    2010-12-15

    Polymer electrolyte fuel cell stacks assembled with Johnson Matthey Fuel Cells and SolviCore MEAs based on the Aquivion trademark E79-03S short-side chain (SSC), chemically stabilised perfluorosulphonic acid membrane developed by Solvay Solexis were investigated at CNR-ITAE in the EU Sixth Framework 'Autobrane' project. Electrochemical experiments in fuel cell short stacks were performed under practical automotive operating conditions at pressures of 1-1.5 bar abs. over a wide temperature range, up to 130 C, with varying levels of humidity (down to 18% R. H.). The stacks using large area (360 cm{sup 2}) MEAs showed elevated performance in the temperature range from ambient to 100 C (cell power density in the range of 600-700 mWcm{sup -2}) with a moderate decrease above 100 C. The performances and electrical efficiencies achieved at 110 C (cell power density of about 400 mWcm{sup -2} at an average cell voltage of about 0.5-0.6 V) are promising for automotive applications. Duty-cycle and steady-state galvanostatic experiments showed excellent stack stability for operation at high temperature. A performance comparison of Aquivion trademark and Nafion trademark -based MEAs under practical operating conditions showed a significantly better capability for the Solvay Solexis membrane to sustain high temperature operation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Analysis and improvement of a scaled-up and stacked microbial fuel cell.

    Science.gov (United States)

    Dekker, Arjan; Ter Heijne, Annemiek; Saakes, Michel; Hamelers, Hubertus V M; Buisman, Cees J N

    2009-12-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m(2). The cathode limited MFC performance due to oxygen reduction rate and cell reversal. Furthermore, residence time distribution curves showed that bending membranes resulted in flow paths through which the catholyte could flow from inlet to outlet, while leaving the reactants unconverted. The cathode was improved by decreasing the pH, purging pure oxygen, and increasing the flow rate, which resulted in a 13-fold power density increase to 144 W m(-3) and a volumetric resistivity of only 1.2 mOmega m(3) per cell. Both results are major achievements compared to results currently published for laboratory and scaled-up MFCs. When designing a scaled-up MFC, it is important to ensure optimal contact between electrodes and substrate and to minimize the distances between electrodes. PMID:19943685

  1. Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J.H.; Seo, H.K.; Lim, H.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    A fuel cell stack model based on differential heat balance equations was solved numerically with a computational fluid dynamics code. Theoretical aspects in the simulation of a molten carbonate fuel cell (MCFC) performance model were discussed with regard to numerical accuracy of temperature prediction. The effect of grid setting for gas channel depth was studied to ensure how coarse it can be. A single computational element was sufficient for temperature prediction, while more grid elements are required for calculation of flow field and pressure distribution. The use of constant velocities is not recommended because it cannot account for the change of linear velocity within fuel cells, indicating the momentum equations have to be solved together with the heat balance equations. Thermal radiation has little effect on calculation of temperature field from the model. Gas properties vary within fuel cells, but most of them can be treated constant except for specific heat capacity of anode gas. Convection heat transfer by anode gas can be overestimated when a constant specific heat capacity is used, resulting in prediction of lower temperature curves. (author). 18 refs., 12 figs., 4 tabs.

  2. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    Science.gov (United States)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  3. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial...

  4. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    , the measurement of the complex impedance of a fuel cell stack during standby is used as an index of its membrane hydration status. In this article, the complex impedance of a fuel cell stack has been measured and characterized as a function of relative humidity and temperature. A non-conventional electrochemical...

  5. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2016-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization...

  6. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  7. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the Large Hadron Collider at CERN

    CERN Document Server

    Della Corte, A; Hagedorn, Dietrich; Turtu, S; Basile, G L; Catitti, A; Chiarelli, S; Di Ferdinando, E; Taddia, G; Talli, M; Verdini, L; Viola, R

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported. (3 refs).

  8. Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells.

    Science.gov (United States)

    Jenatsch, Sandra; Wang, Lei; Bulloni, Matia; Véron, Anna C; Ruhstaller, Beat; Altazin, Stéphane; Nüesch, Frank; Hany, Roland

    2016-03-16

    Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am. Chem. Soc. 2013 , 135 , 18008 - 18011 ), these features have been exploited in cyanine light-emitting electrochemical cells (LECs). Here, we demonstrate that stacked, constant-voltage driven trimethine cyanine LECs with various counteranions develop a p-i-n junction that is composed of p- and n-doped zones and an intrinsic region where light-emission occurs. We introduce a method that combines spectral photocurrent response measurements with optical modeling and find that at maximum current the intrinsic region is centered at ∼37% away from the anode. Transient capacitance, photoluminescence and attenuance experiments indicate a device situation with a narrow p-doped region, an undoped region that occupies ∼72% of the dye layer thickness and an n-doped region with a maximum doping concentration of 0.08 dopant/cyanine molecule. Finally, we observe that during device relaxation the parent cyanines are not reformed. We ascribe this to irreversible reactions between doped cyanine radicals. For sterically conservative cyanine dyes, this suggests that undesired radical decomposition pathways limit the LEC long-term stability in general. PMID:26914281

  9. NOx conversion on LSM15-CGO10 cell stacks with BaO impregnation

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    The electrochemical conversion of NOx on non-impregnated and BaO-impregnated LSM15-CGO10 (La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95) porous cell stacks has been investigated, and extensive impedance analysis have been performed to identify the effect of the BaO on the electrode processes. The investigation......O impregnation greatly enhanced the NOx conversion and at 400 degrees C and 9 V polarisation a BaO-impregnated cell stack showed 60% NOx conversion into N-2 with 8% current efficiency in 1000 ppm NO + 10% O-2. This demonstrates high NOx conversion can be achieved on an entirely ceramic cell without expensive...

  10. High performance PEM fuel cells - from electrochemistry and material science to engineering development of a multicell stack. Quarterly report No. 6, April-June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Appleyby, A.J.; Inivasan, S.

    1996-08-16

    To increase the electrocatalytic activity of the air electrode and simultaneously minimize the transport limitations, mixture of a 10 wt.% alloy supported on carbon and a high platinum loading (40 wt.%) on carbon was used as the electrocatalyst. The presence of the alloy electrocatalyst enhances the electrocatalytic activity at low current densities and the presence of the Pt electrocatalyst preserves the open structure of the electrode in this way the performance enhancement is evident over the entire range of current densities. This experiment was repeated with 20 micrometers thick GORE-SELECT (TM) membrane and a similar effect was observed. One 3-cell stack of area 50 sq cm was assembled at BCS Technology, Inc. with MEAs prepared using a Nafion 112 membrane and electrodes containing a Pt loading of 4.5 mg/sq cm. At 2.1 V (0.7 V per cell), the current density was about 0.48 A/sq cm with air and about 0.65 A/sq cm with oxygen. The cells required slight pressurization on the air side of the cell. The performance of the third cell was found to be slightly lower, and required a rapid flow (flushing) of hydrogen periodically. This problem did not result from the quality of the MEAs used, but was probably due to a design problem associated with stacking or the internal manifolding. The stack was tested at CESHR for performance verification and approximately the same performance was observed as that at BCS. However, problems similar to those noted at BCS were also seen at CESHR.

  11. Stack and area tritium monitoring systems for the tokamak fusion test reactor (TFTR)

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, G.G.; Meixler, L.D.; Sissingh, R.A.P.

    1991-01-01

    TFTR Tritium Stack and Area Monitoring Systems have been developed to provide the required level of reliability in a cost effective manner consistent with the mission of the Tritium Handling System on TFTR. Personnel protection, environmental responsibility, and tritium containing system integrity have been the considerations in system design. During the Deuterium-Tritium (D-T) experiments on TFTR, tritium will be used for the first time as one of the fuels. All of the tritium bearing systems will have potentially releasable inventories. Although the tritium inventories (total on-site inventory is limited to 50,000 Ci) are low, the consequences of a release may still be significant. For that reason, a thorough TFTR tritium monitoring program has been initiated. 4 refs., 2 figs.

  12. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  13. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  14. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlusTM, can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlusTM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlusTM functions and existing unit operation modules. The developed ''AspenPlusTM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (Uf), current density (Ic) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  15. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  16. Stress compensation by gap monolayers for stacked InAs/GaAs quantum dots solar cells

    OpenAIRE

    Alonso Alvarez, Diego; González Taboada, Alfonso; González Diez, M. Yolanda; Ripalda Cobián, Jose María; Alén Millán, Benito; González Soto, Luisa; García Martín, Jorge Miguel; Luque López, Antonio; Martí Vega, Antonio; Briones Fernández-Pola, Fernando; Sánchez, Almudena M.; Molina Rubio, Sergio Ignacio

    2008-01-01

    In this work we report the stacking of 10 and 50 InAs quantum dots layers using 2 monolayers of GaP for stress compensation and a stack period of 18 nm on GaAs (001) substrates. Very good structural and optical quality is found in both samples. Vertical alignment of the dots is observed by transmission electron microscopy suggesting the existence of residual stress around them. Photocurrent measurements show light absorption up to 1.2 μm in the nanostructures together with a reduction in the ...

  17. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  18. Live-Cell Imaging of Dual-Labeled Golgi Stacks in Tobacco BY-2 Cells Reveals Similar Behaviors for Different Cisternae during Movement and Brefeldin A Treatment

    Institute of Scientific and Technical Information of China (English)

    Stephanie L. Madison; Andreas Nebenführ

    2011-01-01

    In plant cells,the Golgi apparatus consists of numerous stacks that,in turn,are composed of several flattened cisternae with a clear cis-to-trans polarity.During normal functioning within living cells,this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility,constant membrane flux through the cisternae,and Golgi enzyme recycling through the ER.In order to further investigate various aspects of Golgi stack dynamics and integrity,we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments,movement,and brefeldin A (BFA)-induced disassembly.A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm.The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead,but trans cisternae were also found at the leading edge.During BFA treatments,the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however,no consistent order could be detected.In contrast,the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected.Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER.In addition,we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.

  19. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael;

    2008-01-01

    connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...

  20. Project W420 Air Sampler Probe Placement Qualification Tests for Four 6-Inch Diameter Stacks: 296-A-25, 296-B-28, 296-S-22, and 296-T-18

    International Nuclear Information System (INIS)

    The W420 project covers the upgrading of effluent monitoring systems at six ventilation exhaust stacks in tank-farm facilities at the U.S. Department of Energy's Hanford Site. The discharge stacks of five of the six systems will be completely replaced. Four of these (296-A-25, 296-B-28, 296-S-22, and 296-T-18) will be of the same size, 6-inches in diameter and about 12-ft high. This report documents tests that were conducted to verify that these four stacks meet the applicable regulatory criteria regarding the placement of the air sampling probe. These criteria ensure that the contaminants in the stack are well mixed with the airflow at the location of the probe such that the extracted sample represents the whole. There are also criteria addressing the transport of the sample to the collection device. These are not covered in this report, but will need to be addressed later. These tests were conducted by Pacific Northwest National Laboratory on a full-scale model of the 6-inch stick. The sequence of tests addresses the acceptability of the flow angle relative to the probe and the uniformity of air velocity and gaseous and particle tracers in the cross section of the stack. All tests were successful, and all acceptance criteria were met

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group is...... currently developing a novel technique to obtain an ad-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. In this work, the hot wire sensor is placed in the anode outlet of a commercial air-cooled fuel cell stack by Ballard Power Systems, and the voltage......Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...

  2. Optimal design and operational tests of a high-temperature PEM fuel cell for a combined heat and power unit

    OpenAIRE

    Barreras Toledo, Felix Manuel; Lozano Fantoba, Antonio; Roda Serrat, Vicente; Barroso Estébanez, Jorge Angel; Martin Yagüe, Jesus Joaquín

    2014-01-01

    Development of new materials for polymer electrolyte membranes has allowed increasing the operational temperature of PEM fuel cell stacks above 120 degrees C. The present paper summarizes the main results obtained in a research devoted to the design, fabrication and operational tests performed on a high-temperature PEMFC prototype. A 5-cell stack has been assembled with commercial Celtec P-1000 high-temperature MEAs from BASF Fuel Cells, but the rest of elements and processes have been develo...

  3. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    PeiwenLi

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  4. Investigation of the flow field inside the manifold of a real operated fuel cell stack using optical measurements and Computational Fluid Mechanics

    Science.gov (United States)

    Schmieder, Felix; Kinaci, Mustafa E.; Wartmann, Jens; König, Jörg; Büttner, Lars; Czarske, Jürgen; Burgmann, Sebastian; Heinzel, Angelika

    2016-02-01

    The versatility of fuel cells enables a wide range of applications. Usually fuel cells are combined to stacks such that the reactant supply of the single cells is achieved via a pipe branching system, the manifold. The overall performance significantly depends on cell flow rates which are related to the fluidic interaction of the manifold and the cells. Computational Fluid Dynamics (CFD) simulations, which are often used to find a suitable design, lack experimental flow data for validation of the numerical results. To enable flow measurements within the small geometries of the manifold and to provide reliable velocity information inside a real fuel cell stack, a low-coherence Laser Doppler Anemometer (LDA) is applied, which uses multi-mode laser light to achieve a spatial resolution of <100 μm. The use of fluorescent particles and backward scatter mode make the sensor highly suitable for the application in small manifold geometries like in fuel cell stacks. Sensor and measurement technique are validated in simplified stack models and the applicability to air flows is demonstrated. Finally, for the first time, velocity profiles with high spatial resolution inside an operated fuel cell stack are presented, which serve as benchmark for CFD to find an optimal geometry.

  5. Effect of test structure on electromigration characteristics in three-dimensional through silicon via stacked devices

    Science.gov (United States)

    Oba, Yoshiyuki; De Messemaeker, Joke; Tyrovouzi, Anna Maria; Miyamori, Yuichi; De Vos, Joeri; Wang, Teng; Beyer, Gerald; Beyne, Eric; De Wolf, Ingrid; Croes, Kristof

    2015-05-01

    Electromigration failure locations in three-dimensional (3D) interconnect structures with high-aspect-ratio through silicon vias, (TSVs, Φ5 × 50 µm2) connected to 40-µm-pitch CuSn solder joints have been identified using test structures which were designed to avoid failures in the back-end-of-line (BEOL). The resistance of the structures with the TSV and bump connections showed a continuous increase until failure. For the structures without a bump connection, where only TSV and re-distributed line (RDL) were the electrically connected, the resistance remained constant prior to the final failure. From cross-sectional analyses after the test, the failure locations were identified at the TSV bottom or at the bump bottom. The location of void formation was changed by applied current direction. The flux divergence generated by the barrier metal and the reservoir effect plays a crucial role in the void formation, and each failure mode is considered to have a different impact on the reliability performance.

  6. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-15

    We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  7. Testing of Ni-plated ferritic steel interconnect in SOFC stacks

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dinesen, A.R.; Korcakova, L.;

    2006-01-01

    heating to 1,030 °C. During this time, 20–70 μm thick surface layers of austenitic steel were formed, which were covered by a 1–4 μm chromia layer on the anode side and by a layer of mixed Cr-Fe-Ni-spinels over a 1–4 μm chromia layer on the cathode side. The microstructure and composition of the...... protective scale on the cathode side was susceptible to pitting-type corrosion patterns, which may limit the life expectancy to less than 2,000 hours for the 200 μm thick interconnect tested. The initial area-specific resistances (ASR) at the interconnect/cathode current collector interface and the...

  8. An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions

    International Nuclear Information System (INIS)

    The dynamic behavior of the PEM (proton exchange membrane) fuel cell stack has great effect on the safety and effective operation of its applications. In this paper, a self-designed bulb-array is used to simulate the various loading conditions and study the dynamic behavior of a 2 kW PEM fuel cell stack. An evaluation index, including oscillation rate, pressure variation and dynamic resistance factor, is used to analyze the transient response of the PEM fuel cell stack. It is observed that the stack current increases about 8.6%, and the Oscillation rate decreases more rapidly after activation. In the step-up load stage, the oscillation rate and the dynamic resistance decrease more rapidly as the external load increases. Due to the periodic anodic purge process, a periodic voltage fluctuation can be seen. In addition, when the stack works in the open-loop state (working without the external load), the transient response of the stack current is significantly affected by the hydrogen humidity and the charge double-layer. - Highlights: • The working time of open-loop state significantly affects the transient response. • Oscillation rate decreases faster as the external load increases. • Dynamic resistance factor decreases as the external load increases. • The periodic anodic purge process leads to a slight periodic oscillation of voltage

  9. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan, E-mail: rjose@ump.edu.my, E-mail: joserajan@gmail.com [Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Pahang (Malaysia); Khalidin, Zulkeflee [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26300 Pahang (Malaysia)

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic grid or a special interconnections.

  10. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    International Nuclear Information System (INIS)

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (JSC) compared with their single cells. We found out that the key to achieving higher JSC in large area devices is optimized photoelectrode volume (VD), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased JSC and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar VD (∼3.36 × 10−4 cm3) without using any metallic grid or a special interconnections

  11. Analysis and modeling of PEM fuel cell stack performance: Effect of in situ reverse water gas shift reaction and oxygen bleeding

    Science.gov (United States)

    Karimi, G.; Li, Xianguo

    In this study the performance of a polymer electrolyte membrane (PEM) fuel cell stack is analyzed with a mathematical model when the stack operates on hydrocarbon reformate gas as the anode feed stream. It is shown that the effect of carbon dioxide dilution of the hydrogen dominated reformate gas has a minimal impact on the stack performance. However, the CO-poisoning effect due to the in situ reverse water gas shift reaction in the anode feed stream could have a very serious adverse impact on the stack performance, especially at high current densities. Thermodynamic calculations indicate that the equilibrium concentrations of CO could be as high as 100 ppm, generated by the in situ reverse water gas shift reaction, under the typical conditions of PEM fuel cell operation; and are influenced by the stack operating temperature and water content of the reformate anode feed. This CO-poisoning of the stack performance is shown mitigated effectively by introducing about 0.5-1% oxygen to the anode feed.

  12. Research on high-power metal bipolar plate PEM fuel cell stack%高功率薄型金属双极板PEM燃料电池堆研究

    Institute of Scientific and Technical Information of China (English)

    王东; 王涛; 张伟; 刘向; 张新荣

    2009-01-01

    对高功率车用薄型金属双极板PEM燃料电池堆模块进行测试研究.电池堆模块可在空气压力110~300 kPa条件下工作,表现出良好的高、低压兼容特性.当空气压力300 kPa,电池堆温度70℃,工作电流350 A时,电池堆输出功率可达27.2 kW,其质量和体积比功率分别为777 W/kg和1 015 W/L.单电池电压方差求和计算结果显示,在工作电流50~120A的窗口区间内,单池电压具有相对最好的均匀一致性.在320A(约为1 A/cm~2)放电电流下,使用纯氢/氧气的电池堆输出功率比使用氢/空气高出约10%.空气相对湿度影响测试结果,电池堆较低功率下,空气的相对湿度80%~100%为佳;而当高功率下,空气相对湿度80%为佳.另外,对4单体薄型金属双极板燃料电池短堆进行耐久性测试,累计超过2 900 h,平均单池电压衰减率约为10 mV/1000 h.%In this paper, a thin metal bipolar-plate PEM fuel cell stack module for transportation was developed and validated. It was verified that the stack could be operated in a wide air pressure range from 110-300 kPa by air pressure compatibility test. The stack electrical power reached 27.2 kW operated at 350 A and 70 ℃ with 300 kPa pressurized air. So the mass specific power and volume specific power of the stack approached 777 W/kg and 1 015 W/L respectively. Variance analysis was adopted to evaluate the uniformity of individual cell voltages in the stack. The calculated results showed the stack had a lower cell to cell voltage variation at load current range from 50 A to 120 A. The stack electrical power operated using pure H_2 and O_2 was about 10% higher than using H_2 and air at a current of 320 A, which corresponds to the current density of 1 A/cm~2. In addition, durability test on the stack was performed for more than 2 900 h with a 4-cell short stack at a given test condition of temperature, pressure and stoichiometry by starting at 100 A. The durability test results indicated that the

  13. Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Highlights: • Carbon-fiber based electrodes are investigated in a zero-gap flow field cell configuration. • Charge–discharge curves are carried out in single cell and short stack for VRB application. • Three electrode half-cell data are corroborated both in single cell and short stack for VRB. - Abstract: Electrode materials, having a different graphitic character, are investigated by using a zero-gap flow field cell configuration for vanadium redox flow battery applications (VRFBs). Carbon felt (CF) and carbon paper (CP) are used as electrodes for the membrane–electrode assemblies (MEAs) realization. The samples are electrochemically characterized both as-received and after chemical treatment by using a 5 cm2 single cell. A Nafion 117 membrane is used as polymer electrolyte separators. A MEAs scale-up from 5 to 25 cm2 is carried out in order to assembly a 3-cells short stack in series connected. Charge–discharge cycles are carried out both in a small area single cell and in a 3-cells short stack for all samples. CF treated and untreated samples show SOC values of 45% vs. 22% at 60 mA cm−2, respectively. After the chemical treatment, the worst performance of the CF sample is attributed to the mass transport issues due to the beginning of corrosion phenomena. On the contrary, CP treated electrode shows a better energy efficiency values than raw sample (72% vs. 67% at 60 mA cm−2) without any morphology change on the electrode surface. A proper stack assembly and flow field scale-up record similar performance to the small single cell configuration

  14. Optimization of Al2O3/SiNx stacked antireflection structures for N-type surface-passivated crystalline silicon solar cells

    International Nuclear Information System (INIS)

    In the case of N-type solar cells, the anti-reflection property, as one of the important factors to further improve the energy-conversion efficiency, has been optimized using a stacked Al2O3/SiNx layer. The effect of SiNx layer thickness on the surface reflection property was systematically studied in terms of both experimental and theoretical measurement. In the stacked Al2O3/SiNx layers, results demonstrated that the surface reflection property can be effectively optimized by adding a SiNx layer, leading to the improvement in the final photovoltaic characteristic of the N-type solar cells. (semiconductor devices)

  15. Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.

    Science.gov (United States)

    Hendriksma, Harmen P; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2011-01-01

    The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops. PMID:22194811

  16. Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available The ecologically and economic important honey bee (Apis mellifera is a key non-target arthropod species in environmental risk assessment (ERA of genetically modified (GM crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.

  17. Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors

    International Nuclear Information System (INIS)

    In this contribution we report on the development of a two-step process for the formation of Cu2ZnSn(S,Se)4 thin films for solar cells. The two-step formation process of the pentanary kesterite consists of (i) sputter deposition of the metals Cu, Zn and Sn followed by thermal evaporation of chalcogen and (ii) rapid thermal processing of the metal/chalcogen precursors in chalcogen containing ambient. After the absorber formation process, solar cells were processed by deposition of CdS buffer, window layer and metal grid. We evaluated different metal precursor compositions in the ternary Cu–Zn–Sn metal systems regarding their behavior as appropriate precursors for the crystallization of Cu2ZnSn(S,Se)4 absorbers. X-ray diffraction analyses show the presence of secondary chalcogenide phases in absorbers with Cu-poor composition. In combination with Raman spectroscopy, the efficient sulfoselenization could be demonstrated. A broad compositional region is found giving cell efficiencies above 6% via this process route and the potentials for further improvements are discussed. The best solar cell measured so far reached 6.6% efficiency on 1.34 cm2 cell size. - Highlights: ► Kesterite absorber layers via rapid thermal process from stacked elemental layers ► Relative sulfur content of 7–28% was deduced from Raman measurements. ► Identification of secondary phases via X-ray diffraction ► Best cell with 6.6% efficiency on a cell size of 1.34 cm2 ► Best cell performance was found for either low Cu-content or high Zn-content

  18. Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaO

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Bentzen, Janet Jonna; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2014-01-01

    Porous cell stacks with composite electrodes of La0.85Sr0.15CoxMn1-xO3-Ce0.9Gd0.1O1.95 were tested for activity toward selective electrochemical reduction of NOx to N2 in the presence of 10% O2. The cell stacks were produced by tape casting, laminating and sintering the backbone structure followed...

  19. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    Science.gov (United States)

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs. PMID:27451677

  20. Impact of power converter current ripple on the durability of a fuel cell stack

    OpenAIRE

    WAHDAME, B; GIRARDOT, L; Hissel, D.; Harel, F.; Francois, X.; Candusso, D.; PERA, MC; DUMERCY, L

    2008-01-01

    The durability and performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) have a major impact on the most important challenges facing fuel cell commercialization including final cost, mass production, system integration, functionality and reliability. This work is supported by French Government via an ANR' project (PAN'H) named SPACT80. The global objective is to develop and validate the use of a fuel cell based power system for heavy-duty vehicles (dedicated to railway applications or...

  1. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bosch, P.P.J. van den; Hofman, T.; Veenhuizen, Bram; Shen, Y.; Tazelaar, Edwin

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  2. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems, a...... precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...

  3. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    International Nuclear Information System (INIS)

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  4. Investigation of InGaP/(In)AlGaAs/GaAs triple-junction top cells for smart stacked multijunction solar cells grown using molecular beam epitaxy

    Science.gov (United States)

    Sugaya, Takeyoshi; Mochizuki, Toru; Makita, Kikuo; Oshima, Ryuji; Matsubara, Koji; Okano, Yoshinobu; Niki, Shigeru

    2015-08-01

    We report high-quality InGaP/(In)AlGaAs/GaAs triple-junction solar cells fabricated using solid-source molecular beam epitaxy (MBE) for the first time. The triple-junction cells can be used as top cells for smart stacked multijunction solar cells. A growth temperature of 480 °C was found to be suitable for an (In)AlGaAs second cell to obtain high-quality tunnel junctions. The properties of AlGaAs solar cells were better than those of InAlGaAs solar cells when a second cell was grown at 480 °C. The high-quality InGaP/AlGaAs/GaAs solar cell had an impressive open-circuit voltage of 3.1 V. This result indicates that high-performance InGaP/AlGaAs/GaAs triple-junction solar cells can be fabricated using solid-source MBE.

  5. A model-based approach for current voltage analyses to quantify degradation and fuel distribution in solid oxide fuel cell stacks

    Science.gov (United States)

    Linder, Markus; Hocker, Thomas; Meier, Christoph; Holzer, Lorenz; Friedrich, K. Andreas; Iwanschitz, Boris; Mai, Andreas; Schuler, J. Andreas

    2015-08-01

    Reliable quantification and thorough interpretation of the degradation of solid oxide fuel cell (SOFC) stacks under real conditions is critical for the improvement of its long-term stability. The degradation behavior is often analyzed based on the evolution of current-voltage (V,I) curves. However, these overall resistances often contain unavoidable fluctuations in the fuel gas amount and composition and hence are difficult to interpret. Studying the evolution of internal repeat unit (RU) resistances is a more appropriate measure to assess stack degradation. RU-resistances follow from EIS-data through subtraction of the gas concentration impedance from the overall steady-state resistance. In this work a model-based approach where a local equilibrium model is used for spatial discretization of a SOFC stack RU running on hydrocarbon mixtures such as natural gas. Since under stack operation, fuel leakages, uneven fuel distribution and varying natural gas composition can influence the performance, they are taken into account by the model. The model extracts the time-dependent internal resistance from (V,I)-data and local species concentration without any fitting parameters. RU resistances can be compared with the sum of the resistances of different components that allows one to make links between laboratory degradation experiments and the behavior of SOFC stacks during operation.

  6. Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells

    International Nuclear Information System (INIS)

    We have studied the material properties and device performance of InAs/GaAs quantum dot solar cells (QDSCs) made using three different QD growth modes: Stranski-Krastanov (S-K), quasi-monolayer (QML), and sub-monolayer (SML) growth modes. All QDSCs show an extended external quantum efficiency (EQE) at near infrared wavelengths of 950–1070 nm from the QD absorption. Compared to the S-K and SML QDSCs, the QML QDSC with a higher strain exhibits a poor EQE response in the wavelength region of 300–880 nm due to increased non-radiative recombination. The conversion efficiency of the S-K and SML QDSCs exceeds that of the reference cell (13.4%) without QDs due to an enhanced photocurrent (>16% increase) produced by the silicon doped QD stacks. However, as expected from the EQE of the QML QDSC, the increase of strain-induced crystalline defects greatly degrades the photocurrent and open-circuit voltage, leading to the lowest conversion efficiency (8.9%)

  7. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    external resistance (≤400 Ω in this study) was applied. In addition, the internal resistance and OCV were the most important parameters for predicting which cell unit had the highest probability to undergo voltage reversal. Use of a capacitor was found to be an effective way to prevent voltage reversal and...

  8. An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks

    OpenAIRE

    Dawson, Richard; Patel, Anant; Rennie, Allan; White, Simon

    2015-01-01

    The bipolar plate is of critical importance to the efficient and long lasting operation of a polymer electrolyte fuel cell (PEMFC) stack. With advances in membrane electrode assembly design, greater attention has been focused on the bipolar plate and the important role it plays. Although carbon composite plates are a likely candidate for the mass introduction of fuel cells, it is metallic plates made from thin strip materials which could deliver significant advantages in terms of part cost, e...

  9. Federation of OpenStack clouds

    OpenAIRE

    Tartarini, Luca; Denis, Marek

    2014-01-01

    Project Specification Rackspace and CERN are implementing federated identity of OpenStack clouds within the OpenStack cloud project. The project is to enhance the client tools in OpenStack to support Thefederated identity functionalities, work with the open source community to incorporate these changes into the product and adapt the documentation and testing. The student will learn about the internals of OpenStack, federated identity techniques such as SAML and working with open sour...

  10. Sustainable test cell : performance evaluation

    OpenAIRE

    Silva, Pedro Correia Pereira da; Bragança, L.; Mendonça, Paulo; Almeida, Manuela Guedes de

    2006-01-01

    Energy is one of the main causes of the environmental pollution. In the European Union, buildings are responsible for 40% of the final energy demand and 1/3 of the emissions of greenhouse gases. Therefore, in order to promote the energy consumption reduction, it is fundamental to employ sustainable development principles in the construction sector. In order to demonstrate and show the potentialities of Sustainable building technologies two Test Cells were built. Comparing the solutions obtain...

  11. Sobol's sensitivity analysis for a fuel cell stack assembly model with the aid of structure-selection techniques

    Science.gov (United States)

    Zhang, Wei; Cho, Chongdu; Piao, Changhao; Choi, Hojoon

    2016-01-01

    This paper presents a novel method for identifying the main parameters affecting the stress distribution of the components used in assembly modeling of proton exchange membrane fuel cell (PEMFC) stack. This method is a combination of an approximation model and Sobol's method, which allows a fast global sensitivity analysis for a set of uncertain parameters using only a limited number of calculations. Seven major parameters, i.e., Young's modulus of the end plate and the membrane electrode assembly (MEA), the contact stiffness between the MEA and bipolar plate (BPP), the X and Y positions of the bolts, the pressure of each bolt, and the thickness of the end plate, are investigated regarding their effect on four metrics, i.e., the maximum stresses of the MEA, BPP, and end plate, and the stress distribution percentage of the MEA. The analysis reveals the individual effects of each parameter and its interactions with the other parameters. The results show that the X position of a bolt has a major influence on the maximum stresses of the BPP and end plate, whereas the thickness of the end plate has the strongest effect on both the maximum stress and the stress distribution percentage of the MEA.

  12. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    Science.gov (United States)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  13. Electroplating of Protective Coatings on Interconnects Used for Solid Oxide Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Harthøj, Anders

    of cobalt. The purpose of the cobalt was to act as a dense diffusion barrier for chromium in order to prevent chromium evaporation.  The coatings were deposited on the steels Crofer 22 APU and Crofer 22 H. The coatings were tested in a simulated cathode environment (air at 800, 820 or 850 °C). Coatings....... The area specific resistance (ASR) of a Ni/YSZ anode in contact and a preoxidized sample of Crofer 22 APU was measured in a simulated anode atmosphere. The ASR was very low (0.2 mΩcm2). It exhibited a temperature dependence typical for a metal. The microstructure of the Crofer 22 APU in the region affected...... by nickel diffusion was characterized with electron backscatter diffraction and other electron microscopy techniques.  The ASR of a Ni/YSZ anode with a CeO2 nickel diffusion barrier layer in contact with Crofer 22 APU was also measured and it was two orders of magnitude higher than without a CeO2 barrier...

  14. Evaluation and application of PEMFC fuel cell's technologies developed at IPEN applied to a 500 W{sub e} fuel cell stack; Avaliacao e aplicacao de tecnologias de celulas a combustivel tipo PEMFC desenvolvida no IPEN em um modulo de 500 W{sub e} de potencia nominal

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar Ferrari da

    2009-07-01

    This work is part of a research project on PEMFC technologies carried out in IPEN to develop and optimize a 500 W{sub e} fuel cell stack. The MEAs scaling up from 25 cm{sup 2} to 144 cm{sup 2} produced by the method of sieve printing; computational fluid dynamics by computer simulation of gas flow channels in bipolar plates using COMSOL{sup R} program and the use of Pt/C electrodes developed by alcohol reduction method in single cells were used to build a stack of 500 W{sub e} nominal power for possible commercial applications, produced with national technology and industrial support. A 100 hours fuel cell's test was carried out in a 144 cm{sup 2} single cell to study the stability of the MEA fabricated by sieve printing method. This single cell showed good stability within this period of time. The developed stack has reached the maximum power of 574 W{sub e} at 100 A (694.4 mA cm{sup -2}). The operating power of 500 W{sub e} was obtained at 77.7 A (540.1 mA cm{sup -2}) and potential of 6.43 V, with efficiency of 43.3%. In terms of cogeneration, the thermal power or generated heat by the stack was 652 W{sub t}. The initial estimated cost for the 500 W{sub e} stack was about R$ 4,500.00, considering only the used materials for its construction. (author)

  15. 质子交换膜燃料电池电堆的动态热模型及其温度控制%Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  16. First cell magnet system tests

    International Nuclear Information System (INIS)

    The ISABELLE refrigeration system utilizes compressed liquid helium to supply refrigeration to nearly 1100 superconducting bending and focusing magnets. These magnets steer the proton orbits of the accelerator and are arranged into two interlocking rings. The total heat load that the refrigerator must provide is made up of the heat load of the magnets, magnet leads and vessels and the interconnecting piping to the refrigerator. The design and test results of the magnet system during various operating conditions in use on the ISABELLE prototype, the First Cell, are described

  17. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Wan W

    2015-02-01

    Full Text Available Wenbing Wan,1–3,* Shiwen Zhang,2–4,* Liangpeng Ge,2,3,5 Qingtao Li,1 Xingxing Fang,1 Quan Yuan,4 Wen Zhong,6 Jun Ouyang,1 Malcolm Xing1,2,7 1Department of Anatomy, Guangdong Provincial Medical Biomechanical Key Laboratory, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada; 3Manitoba Institute of Child Health, Winnipeg, MB, Canada; 4Sichuan University, Chengdu, People’s Republic of China; 5Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China; 6Department of Textile Sciences, University of Manitoba, Winnipeg, MB, Canada; 7Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada *These authors contributed equally to this work Abstract: Bone tissue engineering through seeding of stem cells in three-dimensional scaffolds has greatly improved bone regeneration technology, which historically has been a constant challenge. In this study, we researched the use of adipose-derived stem cell (ADSC-laden layer-by-layer paper-stacking polycaprolactone/gelatin electrospinning nanofibrous membranes for bone regeneration. Using this novel paper-stacking method makes oxygen distribution, nutrition, and waste transportation work more efficiently. ADSCs can also secrete multiple growth factors required for osteogenesis. After the characterization of ADSC surface markers CD29, CD90, and CD49d using flow cytometry, we seeded ADSCs on the membranes and found cells differentiated, with significant expression of the osteogenic-related proteins osteopontin, osteocalcin, and osteoprotegerin. During 4 weeks in vitro, the ADSCs cultured on the paper-stacking membranes in the osteogenic medium exhibited the highest osteogenic-related gene expressions. In vivo, the paper-stacking scaffolds were implanted into the rat calvarial defects (5 mm diameter, one defect per parietal bone for 12 weeks. Investigating

  18. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.

    Science.gov (United States)

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; He, Qing; Zhou, Zhiqiang; Sun, Guozhong; Sun, Yun; Chang, Liann-Be; Chen, Jian-Wun

    2014-01-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein. PMID:25593559

  19. Low cost CuInSe2 thin films production by stacked elemental layers process for large area fabrication of solar cell application

    International Nuclear Information System (INIS)

    Highlights: ► CuInSe2 (CIS) thin film has deposited by stacked elemental layer technique (SEL). ► CuInSe2 phase have been obtained after annealing at temperature 350 °C. ► The structural, morphology and electrical properties have been obtained. ► The red shift in energy band gap of CIS thin films are found due to annealing. - Abstract: Low cost deposition of large area CuInSe2 (CIS) thin films have been grown on Mo-coated glass substrate by simple and economic stacked elemental layer deposition technique in vacuum. The grown parameters such as concentration of Cu, In and Se elements have been optimized to achieve uniform thin film in vacuum chamber. The as-grown Cu/In/Se stacked layers have been annealed at 200 °C and 350 °C for 1 h in air ambient. The as-grown and annealed films have been further subjected to characterization by X-ray diffraction (XRD), optical absorption, atomic force microscopy (AFM) and I–V measurement techniques. XRD patterns revealed that as-grown Cu/In/Se stacked layers represent amorphous nature while annealed CIS film reproduces nano-polycrystalline nature with chalcopyrite structure. The optical band gap of annealed films increases with respect to air annealing which confirms the reduction of crystallite size. Surface morphology of as-grown Cu/In/Se stacked layers and annealed CIS thin films have been confirmed by AFM images. The electrical measurements show enhancement of conductivity which is useful for solar cell application.

  20. Numerical and experimental studies of stack shunt current for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Highlights: • A coupled three-dimensional model of VRB cell stack is developed. • Shunt current of the stack is studied with the model and experiment. • Increased electrolyte resistance in channel and manifold lowers the shunt current. • Shunt current loss increases with stack cell number nonlinearly. - Abstract: The stack shunt current of VRB (vanadium redox flow battery) was investigated with experiments and 3D (three-dimensional) simulations. In the proposed model, cell voltages and electrolyte conductivities were calculated based on electrochemical reaction distributions and SOC (state of charge) values, respectively, while coulombic loss was estimated according to shunt current and vanadium ionic crossover through membrane. Shunt current distributions and coulombic efficiency are analyzed in terms of electrolyte conductivities and stack cell numbers. The distributions of cell voltages and shunt currents calculated with proposed model are validated with single cell and short stack tests. The model can be used to optimize VRB stack manifold and channel designs to improve VRB system efficiency

  1. Amorphous-silicon cell reliability testing

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  2. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  3. Study on stacking sequence on the flexural properties of basalt/carbon/epoxy hybrid composites using test and finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Lee, J. I.; Rhee, K. Y. [Kyung Hee University, Yongin (Korea, Republic of); Choi, C. R. [ELSOLTEC Inc., Yongin (Korea, Republic of)

    2015-05-15

    Basalt fiber is widely used in various industries and several studies have been carried out to understand the mechanical behavior of basalt fiber reinforced composites. However, few studies have been made to specifically investigate the mechanical properties of basalt/carbon hybrid composites. In this study, the effect of stacking sequence on the flexural properties of carbon/basalt/epoxy hybrid composites was investigated in order to verify the reliability of this composite model. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. After fabrication flexural tests and finite element method (FEM) were conducted. FEM results of flexural analysis are compared with experimental results. A FEA analysis model has been successfully developed in order to predict flexural behavior of basalt/carbon/epoxy hybrid composites. The simulation using the FEA model produces a similar flexural strength to that obtained from the experiment. Therefore, the developed FEA model in general will be highly useful for the prediction of stacking sequence of basalt/carbon/ epoxy hybrid composites for several industrial applications.

  4. Study on stacking sequence on the flexural properties of basalt/carbon/epoxy hybrid composites using test and finite element analysis

    International Nuclear Information System (INIS)

    Basalt fiber is widely used in various industries and several studies have been carried out to understand the mechanical behavior of basalt fiber reinforced composites. However, few studies have been made to specifically investigate the mechanical properties of basalt/carbon hybrid composites. In this study, the effect of stacking sequence on the flexural properties of carbon/basalt/epoxy hybrid composites was investigated in order to verify the reliability of this composite model. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. After fabrication flexural tests and finite element method (FEM) were conducted. FEM results of flexural analysis are compared with experimental results. A FEA analysis model has been successfully developed in order to predict flexural behavior of basalt/carbon/epoxy hybrid composites. The simulation using the FEA model produces a similar flexural strength to that obtained from the experiment. Therefore, the developed FEA model in general will be highly useful for the prediction of stacking sequence of basalt/carbon/ epoxy hybrid composites for several industrial applications

  5. Study on Testing of TCG Software Stack%可信计算软件构架的检测研究

    Institute of Scientific and Technical Information of China (English)

    闫建红; 彭新光

    2011-01-01

    介绍了TSS体系结构和TSP对象及其对象之间的关系,通过一个基于可信计算的数据密封程序,分析如何调用TPM驱动程序,如何使用驱动程序中各个对象,纵向说明了可信计算软件运行架构和过程;实验以tpm _emulator0.7.1模拟TPM芯片,验证了文件密封的过程和TSS的工作原理,展示了TPM芯片模拟、核心驱动程序、应用程序的三者之间的相互调用关系;对基于可信计算的软件编程起到很好的指导作用.%TSS (TCG Software Stack) architecture and relationship among class of TSS Service Providers (TSP) was introduced. Through one application program based on Trusted Computing , how to employ TCG Software Stack and the class of TSP was vertically analyzed. Tpm_ emulatorO. 7. 1 simulated TPM chip in experiment, the test verified the process of sealing file and working principle of TSS and showed the mutual relationship among application program teiminal, TCS terminal and TPM terminal. The research has a great value in guiding the designing of trusted platform software application.

  6. Thermal and Electrochemical Performance of a High-Temperature Steam Electrolysis Stack

    Energy Technology Data Exchange (ETDEWEB)

    J. O' Brien; C. Stoots; G. Hawkes; J. Hartvigsen

    2006-11-01

    A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. We are conducting a progression of electrolysis stack testing activities, at increasing scales, along with a continuation of supporting research activities in the areas of materials development, single-cell testing, detailed computational fluid dynamics (CFD) and systems modeling. This paper will present recent experimental results obtained from testing of planar solid-oxide stacks operating in the electrolysis mode. The hydrogen-production and electrochemical performance of these stacks will be presented, over a range of operating conditions. In addition, internal stack temperature measurements will be presented, with comparisons to computational fluid dynamic predictions.

  7. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  8. Test and approval center for fuel cell and hydrogen technologies: Phase I. Initiation. Final report; Test- og godkendelsescenter for braendselscelle- og brintteknologier. Fase 1. Opstart. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, A. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2012-09-15

    The aim of the present project was to initialize a Test and Approval Center for Fuel Cell and Hydrogen Technologies at the sites of the project partners Risoe DTU (Fuel Cells and Solid State Chemistry Division), and DGC (work package 1). The project furthermore included start-up of first activities with focus on the development of accelerated life-time tests of fuel cell systems, preparations for standardization of these methods, and advising in relation to certification and approval of fuel cell systems (work package 2). The main achievements of the project were: Work package 1: 1) A large national and international network was established comprising of important commercial players, research institutions, and other test centers; 2) The test center is known in large part of the international Fuel Cell and Hydrogen community due to substantial efforts in 'marketing'; 3) New national and international projects have been successfully applied for, with significant roles of the test center, which secure the further establishment and development of the center. Work package 2: 1) Testing equipment was installed and commissioned at DTU (Risoe Campus); 2) A comprehensive survey among international players regarding activities on accelerated SOFC testing was carried out; 3) A test procedure for 'compressed' testing of SOFC in relation to {mu} CHP application was developed and used for one-cell stack and 50-cell-stack testing; 4) Guidelines for Danish authority handling were formulated. (Author)

  9. Understanding the effect of reformate gas components and stack component impurities on the performance of PEM fuel cells

    Science.gov (United States)

    Gu, Tao

    The performance can be lost depending on the concentration and type of reformate components. Gas crossover in PEMFCs can also cause performance loss and these effects are also presented. Impurities such as acetone coming from composite stack components and sealants can also deteriorate the performance severely. Electrochemical impedance spectroscopy (EIS) is used as a diagnostic tool to study the impurity poisoning. Reformate contains N2 and CO2 and these components affect performance differently. These effects were quantified using anode overvoltage. Data for anode overvoltage shows that CO2 yields a significant poisoning effect (about 30 mV) on a Pt electrode. Cyclic voltammetry (CV) data showed that CO was produced in-situ from CO2 and H 2 (reverse water gas shift (RWGS) reaction) on both Pt and Pt/Ru electrodes. The coverage of CO achieved by RWGS can reach 5 x 10-7 mol/cm2 on an electrode with 0.4 mg/cm2 Pt under open circuit with normal operating conditions. This work also investigated how pressure, gas composition, and temperature affect the RWGS reaction in a PEMFC for both Pt and Pt/Ru alloy catalysts. The data are shown to be consistent with a kinetic catalytic model and not with an equilibrium model. Data was presented on H2 and O2 crossover in PEMFCs. Electrochemical techniques and mass balance measurements were used to quantify the crossover under typical working conditions. Mixed potential theory was applied to analyze the effect of gas crossover on open circuit voltage (OCV) of PEMFCs. Off-gassing from bipolar plates previously identified styrene, acetone, t-butyl alcohol, and dimethyl succinate as impurities. The effects of those impurities were quantified with both poisoning-recovery transient curves and steady state VI curves before, during, and after poisoning on anode and cathode side respectively. The poisoning effects of them to the anode side are smaller than to the cathode side. Cyclic voltammetry and electrochemical impedance spectroscopy

  10. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed. PMID:25361517

  11. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  12. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    International Nuclear Information System (INIS)

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (VTH) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N2O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as VTH, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (TH, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial ΔVTH over a period of 105 P/E operations. (fast track communication)

  13. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sungwook; Kim, Jaehong; Son, Hyukjoo; Jang, Kyungsoo; Cho, Jaehyun; Kim, Kyunghae; Choi, Byoungdeog; Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.skku.ac.kr

    2008-09-07

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (V{sub TH}) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N{sub 2}O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as V{sub TH}, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (<{+-}10 V) suitable for mobile FPDs, a threshold voltage window, {delta}V{sub TH}, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial {delta}V{sub TH} over a period of 10{sup 5} P/E operations. (fast track communication)

  14. Influences of Stacking Architectures of TiO2 Nanoparticle Layers on Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chih-Hung Tsai

    2013-01-01

    Full Text Available We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation of the stacking architectures of TiO2 nanoparticle layers with characteristics of DSSCs. The results suggest that the three-layer DSSC architecture, with sandwiching a 20 nm TiO2 nanoparticle layer between a 37 nm TiO2 nanoparticle layer and a hundred nm sized TiO2 back scattering/reflection layer, is effective in enhancing DSSC efficiencies. The high-total-transmittance 37 nm TiO2 nanoparticle layer with a larger haze can serve as an effective front scattering layer to scatter a portion of the incident light into larger oblique angles and therefore increase optical paths and absorption.

  15. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    Science.gov (United States)

    Khalil, M. I.; Atici, O.; Lucotti, A.; Binetti, S.; Le Donne, A.; Magagnin, L.

    2016-08-01

    In the present work, Kesterite-Cu2ZnSnS4 (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose results matched up with the literatures.

  16. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  17. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    OpenAIRE

    Ching-Ming Lai; Ming-Ji Yang

    2016-01-01

    This paper proposes a novel high-gain three-port power converter with fuel cell (FC), battery sources and stacked output for a hybrid electric vehicle (HEV) connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, wh...

  18. MCFC燃料电池的非线性建模及基于FGA的模糊控制%Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control

    Institute of Scientific and Technical Information of China (English)

    戚志东; 朱新坚; 曹广益

    2006-01-01

    To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network's ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.

  19. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  20. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  1. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  2. Progress in SLIP stacking and barrier bucket

    International Nuclear Information System (INIS)

    The slip stacking for pbar production has been operational in the Main Injector(MI) since December 2004 and has increased the beam intensity on the pbar target by more than 60%. We plan to use slip stacking for the NuMI neutrino experiment to effectively increasing the beam intensity to NuMI target by about a factor two in a MI cycle. In parallel with slip stacking, we plan to study fast momentum stacking using barrier buckets. One barrier rf system has been installed and tested, and a second system is being installed during the current shutdown. (author)

  3. Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil-yong; Jung, Min-kyung; Ryoo, Sung-nam; Ha, Sam-chul [Digital Appliance R and D, LG Electronics, Seoul 153-801 (Korea, Republic of); Park, Myung-seok [LG Solar Energy, Seoul 150-721 (Korea, Republic of); Kim, Sunhoe [Department of New Energy and Resource Engineering, Sangji University, Wonju, Gangwon 220-702 (Korea, Republic of)

    2010-12-15

    In order to satisfy the demands of customers, cost innovation of fuel cell systems is required for the commercialization of the fuel cell. Since the stack is one of the most expensive parts in a fuel cell system, cost reduction of stack is required for fuel cell commercialization. For this effort stainless steel 304 sheets were etched for the flow field and then coated for corrosion resistance. This enables the development of highly cost-effective bipolar plates (BPs) for a Proton Exchange Membrane Fuel Cell (PEMFC) stack of a 1 kW-class for Residential Power Generator (RPG). LG Electronics (LGE) developed a metal stack of 64 cells with the developed BPs and achieved a performance rating of 0.75 V/cell at 200 mA/cm{sup 2}. LGE also achieved a stack volume reduction of 20% compared to a stack of the same specifications consisting of graphite material BPs. The volume decrease can be represented as a cost reduction. LGE achieved the very low cost innovation to 1 USD per cell with cells developed from etched metal BPs. LGE also achieved 500 h of operation with LGE's RPG system; this test is still ongoing. The degradation rate of the stack was 27 {mu}V/hr. The end of life of the stack was estimated at approximately 17,000 h. (author)

  4. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  5. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  6. Stacking with stochastic cooling

    International Nuclear Information System (INIS)

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes

  7. Horizontal high speed stacking for batteries with prismatic cans

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  8. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate

    International Nuclear Information System (INIS)

    Quantum dot solar cells (QDSCs) comprised of 10 stacked pairs of strain-compensated InGaAs/GaNAs QD structure have been fabricated by atomic hydrogen-assisted molecular beam epitaxy. A homogeneous and high-density QD array structure with improved in-plane ordering and total density of ∼1012 cm−2 has been achieved on GaAs (311)B grown at 460 °C after stacking. The external quantum efficiency (EQE) of InGaAs/GaNAs QDSC increases in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. The short-circuit current density measured for QDSC is 17.2 mA/cm2 compared to 14.8 mA/cm2 of GaAs reference cell. Further, an increase in EQE due to photocurrent production by 2-step photon absorption has been observed at room temperature though it is still small at around 0.1%.

  9. The nature of excited states in dipolar donor/fullerene complexes for organic solar cells: evolution with the donor stack size.

    Science.gov (United States)

    Shen, Xingxing; Han, Guangchao; Yi, Yuanping

    2016-06-21

    Electronic delocalization at donor/acceptor (D/A) interfaces can play an important role in photocurrent generation for organic solar cells. Here, we have investigated the nature of local excited and interfacial charge transfer (CT) states in model complexes including one to four anti-parallel stacking dipolar donor (DTDCTB) molecules and one fullerene (C60) molecule by means of density functional theory (DFT) and time-dependent DFT (TDDFT). For all the donor-to-acceptor CT states, despite the number of DTDCTB molecules in the complexes, the hole is mainly localized on a single DTDCTB, and moves farther away from C60 for the energy higher level. However, the highest occupied molecular orbitals (HOMOs) and the excitonic states (EX) including the bright and dark EX are delocalized over the whole donor stacks in the complexes. This implies that the formation of ordered DTDCTB arrangements can substantially shorten the exciton diffusion process and facilitate ultrafast charge generation. Interestingly, owing to strong intermolecular Coulomb attraction, the donor-to-donor CT states are situated below the local excited states, but can approach the donor-to-acceptor CT states, indicating a weak role as charge traps. Our work would be helpful for understanding the electronic delocalization effects in organic solar cells. PMID:27241621

  10. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  11. High temperature steam electrolysis stack with enhanced performance and durability

    International Nuclear Information System (INIS)

    High Temperature Steam Electrolysis (HTSE) is one of the most promising ways for hydrogen production. If coupled to a CO2-free electricity and low cost heat sources, this process is liable to a high efficiency. The present study describes recent promising results obtained in terms of performance and durability in stack environment, thanks to the use of protective coatings on one hand, and of advanced cells on the other hand. As for Solid Oxide Fuel Cells, it has been demonstrated that the integration of protective coatings was mandatory to decrease the degradation rate in HTSE stacks, and that with optimized coatings, (CoMn)3O4 in the present case, the same durability as the one of the single cell tested in a ceramic housing could be reached. The type of cell was also shown to play a major role on the degradation rate. With advanced cells, degradations below 2%/kh could be reached. The higher is the current density, the higher is the degradation rate, with a mostly reversible effect. These degradation rates are close to the objectives, even if a bit higher than in SOFC mode. Finally a low-weight stack has been designed, targeting high performance and durability while reducing the cost by the use of thin interconnects. An electrochemical performance similar to the previous stack design has been obtained for a 3-cell stack (-1 A/cm2) at 1.3 V at 800 degrees C), with degradation rates below 3%/1000 h in the testing conditions. The thermal cyclability of stacks has been demonstrated, from 800 degrees C to 20 degrees C, as well as electrical load cycling. The results showed that the HTSE stacks considered in the present study can cycle very rapidly, and that the cycles considered do not induce any degradation. Therefore it can be concluded that these results makes HTSE technology getting closer to the objectives of performance, durability, thermal and electrical cyclability and cost, and that HTSE is a candidate to produce hydrogen as a mean to store renewable

  12. PEM fuel cell testing and diagnosis

    CERN Document Server

    Wu, Jifeng; Zhang, Jiujun

    2013-01-01

    PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their

  13. Nuclearite Search with the TL Stack Detector at Ground Level

    Science.gov (United States)

    Akitsu, Y.; Iwata, K.; Kirihara, Y.; Kuga, K.; Lan, S.; Nakagawa, M.; Okei, K.; Saavedra, O.; Tada, J.; Takahashi, N.; Tsuji, S.; Yamashita, Y.; Yamamoto, I.; Wada, T.

    2003-07-01

    The TL stack has been develoved as a nuclearite detector. We are planning a nuclearite search experiment at ground level with the TL stacks. Results from a test experiment at Okayama University is reported.

  14. Testing And Performance Analysis Of NASA 5 CM BY 5 CM Bi-Supported Solid Oxide Electrolysis Cells Operated In Both Fuel Cell And Steam Electrolysis Modes

    International Nuclear Information System (INIS)

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  15. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    Energy Technology Data Exchange (ETDEWEB)

    R. C. O' Brien; J. E. O' Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  16. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; R.C. O' Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  17. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  18. SP-100 thermoelectric cell testing at JPL

    International Nuclear Information System (INIS)

    Three prototypic SP-100 thermoelectric cells, fabricated by Martin Marietta Astro Space in Valley Forge, Pennsylvania, were tested in vacuum at prototypic temperatures at JPL. Their thermal and electrical performance were characterized with 200 C, 300 C, 400 C, and 500 C temperature gradients across the cell. The latter was representative of prototypic operating conditions with a 1,050 C hot side temperature and a 550 C cold side temperature. The initial thermal and electrical performance of all three cells closely matched predictions. Following the characterization testing, the cells were put on an extended life test at the prototypic temperatures, in order to determine any significant degradation modes of the cell. Throughout this test, the thermal performance of the cells were nearly identical to predictions. This test, also, confirmed earlier suspicions that the hot side silicon-germanium to electrode interface would degrade without some significant protective coating at the bond line. Because of resource limitations and early development problems with this coating, the necessary protective layers had not yet been fully developed at the time this generation of cells was manufactured. Subsequent to these tests, accelerated experiments with coupons, having a protective coating applied, have demonstrated the equivalent of 11 to 13 years of operation without any apparent degradation. Four new cells are being fabricated with this technology, two of which will be tested at JPL

  19. 大跨叠箱渡槽施工期温度场测试及数值模拟研究%Temperature Field Test and Numerical Simulation of Large Span Stacked Box Aqueduct During Construction Period

    Institute of Scientific and Technical Information of China (English)

    董国桢

    2015-01-01

    以黔中水利焦家大跨叠式箱形渡槽为例,进行了温度场分布连续测试及相应的有限元数值模拟,系统研究了叠箱渡槽的温度分布特点,为大跨度叠箱渡槽的设计与施工提供技术支持。%Taking Jiaojia large span stacked box aqueduct of Qianzhong water conservancy project in Guizhou as an exam-ple,this paper made a continuous test on temperature field distribution and corresponding finite element numerical simula-tion,and then a systematic study on the temperature distribution characteristics of the stacked box aqueduct was made, which could provide a technical support for the design and construction of large span stacked box aqueduct.

  20. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  1. High-temperature steam electrolysis for hydrogen production: From material development to stack operation

    International Nuclear Information System (INIS)

    High-temperature steam electrolysis (HTSE) coupled with nuclear energy is one of the most promising options for hydrogen mass production. CEA (the French Atomic Energy Commission) is carrying out research in this field, from materials, cells and components developments to stack design including components and stack testing. One stack design among those developed at CEA will be addressed in this paper. This stack design is targeting high compactness, easy assembling and simple operation. The reliability of this design has been demonstrated through two tests of three cells short stacks, cells being commercial 225 cm2 electrolyte supported cells. Stacks have been operated in pure water vapour (no hydrogen introduced on the cathode side) at 820 deg. C. Hydrogen was produced at a flow rate of 7 mg/h/cm2 for the two stacks. The first stack was operated successfully for 170 hours. The test of the second one was extended up to 650 hours. Details about performance and durability of this second stack will be presented. Besides these activities on stack design, CEA is carrying out researches on new materials and cells in order to increase the cell and stack performances. For that purpose, alternative materials are studied, and among them layered perovskites used as oxygen electrode. This research, carried out jointly by ICMCB-CNRS and CEA highlighted the great potential of nickelates. It has been shown, on button cells at this stage, that the nickelate formulated Nd2NiO4+δ, represents a promising alternative to regular LSM anode (Patent CNRS-EDF (F) 'Procede et dispositif d'electrolyse de l'eau comprenant un materiau oxyde d'electrode particulier', P. Stevens, C. Lalanne, J.M. Bassat, F. Mauvy, J.C. Grenier. French patent: FR 2872174 2005-12-30). This material has been deposited on commercial half electrolyte supported cells, and three times higher performance has been obtained when operated in HTSE mode at 800 deg. C compared to an identical commercial cell containing the

  2. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    performance and process input variations need to be carefully accounted for. Such data will additionally provide valuable input for system modeling and optimization. The paper presents an advanced experimental test facility capable of performing static as well as dynamic tests on fuel cell stacks with...... electric power output from 1-3-kW. All process inputs for the stack can be altered to provide realistic performance analyses, corresponding to those encountered in field applications. These include cathode/anode dew point control, cathode flow rate, cooling water temperature control as well as synthesis...... gas mixing (CO, CO2, N2, Air and H2). The control system includes 12 thermocouple inputs, up to 60 cell voltages, more than 10 flow measurements and 10 pressure measurements, all at sample rates up to 1 kHz. The system design is thoroughly explained to provide valuable information for system...

  3. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  4. Design and Fabrication of Stack Micro-Direct Methanol Fuel Cell Using Silicon and PDMS%采用硅和PDMS的堆栈式微型直接甲醇燃料电池的设计和制作

    Institute of Scientific and Technical Information of China (English)

    曾毅波; 陈观生; 赵祖光; 刘畅; 刘俊; 王婷婷; 郭航

    2013-01-01

    In order to avoid cracks of the silicon flow field plate caused by high package pressure, silicon and PDMS (Polydimethylsiloxane) are used as anodic and cathode flow field plate respectively in the stack μ-DMFC ( Micro-direct methanol fuel cell). The anodic flow field plate based on silicon is fabricated with MEMS( Micro-Electro-Mechanical Systems)technology,and cathode flow field plate is fabricated using PDMS and its metallic performance is evidently improved by means of integral shaping of copper foil and cathode flow field plate, organic cleaning and activation on PDMS surface. The output of stack μ-DMFC is tested and analyzed, in which 3 different flow channel structures on the anodic plate are introduced. Tested results verify that adhesive capability and strengthen between post-activated PDMS and Cr/Au are greatly improved, and when micro blocks and through holes are introduced alternately in the flow channel of anodic flow field plate the stack μ-DMFC can obtain the maximum output, with voltage of 0. 5 V,current density of 81. 25 mA/cm2 and output power density of 7. 73 mW/cm2. This study shows that using silicon and PDMS as flow field plate respectively not only simplifies the structure of stack μ-DMFC but also cushions clamping force and effectively protects anodic flow field plate,and furthermore to increase the output of stack μ-DMFC by optimizing structure of flow channels on the anodic flow field plate.%在堆栈式微型直接甲醇燃料电池μ-DMFC(Micro-Direct Methanol Fuel Cell)中,为了避免硅基流场板因为封装压力过大而破裂,采用了硅和PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)材料分别制作阳极和阴极流场板.首先,采用微机电系统MEMS(Micro-Electro-Mechanical Systems)技术制作硅基阳极流场板.其次,通过铜箔与阴极流场板一体成型、有机清洗和PDMS表面活化等改进措施显著提升了PDMS阴极流场板金属化的能力.最后,比较和分析阳极流场板上3

  5. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  6. Cell-Based Genotoxicity Testing

    Science.gov (United States)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective

  7. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    Science.gov (United States)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  8. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  9. Insights Gained from Testing Alternate Cell Designs

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  10. Study of a PEM fuel cell functioning performances using a test station

    International Nuclear Information System (INIS)

    The performances of PEM fuel cells (output power and reliability) are strongly influenced by a series of working parameters, such as cell temperature, input fuel and oxidant gases pressure and humidity. In order to enhance the fuel cell performances, the effects of all those parameters on the cell functioning must be assessed. A test stand for PEM fuel cells stacks of max. output power of 1.5 kW have been designed and built in ICIT. It allows data acquisition as well as controlling the cell temperatures, fluids pressure, flow and humidity parameters by means of adequate transducers and a computer, based on LabviewTM software. The obtained experimental results were in good agreement with the model. (authors)

  11. Study of PEM fuel cell functioning performance using a test station

    International Nuclear Information System (INIS)

    Full text: The PEM fuel cell performances (output power and reliability) are strongly influenced by a series of working parameters, as cell temperature, input fuel and pressure and humidity of oxidant gases. In order to enhance the fuel cell performances, the effects of all those parameters on the cell functioning must be assessed. A test stand for PEM fuel cells stacks of 1.5 kW maximum output power has been designed and built in our institute. It allows data acquisition and control of cells temperatures, fluids pressure, flow and humidity using adequate transducers, by means of a computer, based on LabVIEWTM software. The obtained experimental results were in good agreement with the model. (authors)

  12. Non-radiative carrier recombination mechanism in the InGaAs/GaAsP strain-balanced quantum well solar cells with different number of stacks by using a piezoelectric photothermal method

    Science.gov (United States)

    Fukuyama, Atsuhiko; Nakano, Yosuke; Aihara, Taketo; Fujii, Hiroaki; Sugiyama, Masakazu; Nakano, Yoshiaki; Ikari, Tetsuo

    2012-10-01

    To optimize the multiple quantum well (QW) structure of the strain-balanced InGaAs/GaAsP inserted into GaAs p-i-n solar cell, carrier escaping process from QW, carrier radiative and non-radiative recombination processes in QW were investigated by using surface photovoltage (SPV), photoluminescence (PL) and piezoelectric photothermal (PPT) spectroscopies, respectively. Distinctive peaks at 1.19 eV were observed for all spectra below the bandgap of GaAs substrate (1.42 eV) and concluded that the peak was arisen from the excitonic transitions associated between the 1st order subbband in QWs. Although the optical absorption intensity of this transition was proportional to the number of QW stacks, SPV and PPT signals showed saturation above the QW stacks of 20. Band diagram calculation showed that an entire region of 10-stacked QWs was located in the flat band potential area, whereas a part of 20-stacked QWs was placed in an internal electric field. It was then suggested that the potential barrier height of 20-stacked QWs is small than that of 10-stacked QW.

  13. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  14. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  15. Pressurized solid oxide fuel cell testing

    Energy Technology Data Exchange (ETDEWEB)

    Basel, R.A.; Pierre, J.F.

    1995-08-01

    The goals of the SOFC pressurized test program are to obtain cell voltage versus current (VI) performance data as a function of pressure; to evaluate the effects of operating parameters such as temperature, air stoichiometry, and fuel utilization on cell performance, and to demonstrate long term stability of the SOFC materials at elevated pressures.

  16. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  17. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  18. Solid Oxide Fuel Cell (SOFC) Development in Denmark

    DEFF Research Database (Denmark)

    Linderoth, Søren; Larsen, Peter Halvor; Mogensen, Mogens Bjerg; Hendriksen, Peter Vang; Christiansen, N.; Holm-Larsen, H.

    The SOFC technology under development at Risø National Laboratory (RISØ) and Topsoe Fuel Cell A/S (TOFC) is based on an integrated approach ranging from basic materials research on single component level over development of cell and stack manufacturing technology to system studies and modelling....... The effort also comprises an extensive cell and stack testing program. Systems design, development and test is pursued by TOFC in collaboration with various partners. The standard cells are thin and robust with dimensions of 12 x 12 cm2 and cell stacks are based on internal manifolding. Production of...... reduced by introduction of improved stack component materials. 75-cell stacks in the 1+ kW power range have been tested successfully. Stacks have been delivered in a pre-reduced state to partners and tested successfully in test systems with natural gas as fuel. The consortium of TOFC and RISØ has an...

  19. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    Science.gov (United States)

    Aihara, Taketo; Fukuyama, Atsuhiko; Suzuki, Hidetoshi; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki; Ikari, Tetsuo

    2015-02-01

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔEb a r r and non-radiative recombination ΔEN R were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔEb a r r value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔEb a r r remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔENR value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.

  20. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    International Nuclear Information System (INIS)

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔEbarr and non-radiative recombination ΔENR were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔEbarr value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔEbarr remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔENR value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance

  1. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Suzuki, Hidetoshi [Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Fujii, Hiromasa; Nakano, Yoshiaki [Research Center for Advanced Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Sugiyama, Masakazu [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2015-02-28

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.

  2. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes

    Science.gov (United States)

    Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.

    2016-03-01

    Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.

  3. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  4. Diagnosis of PEMFC stack failures via electrochemical impedance spectroscopy

    Science.gov (United States)

    Merida-Donis, Walter Roberto

    Two failure modes related to water management in Proton Exchange Membrane fuel cells (dehydration and flooding) were investigated using electrochemical impedance spectroscopy as a diagnosis tool. It was hypothesised that each failure mode corresponds to changes in the overall stack impedance that are observable in different frequency ranges. This hypothesis was corroborated experimentally. The experimental implementation required new testing hardware and techniques. A four-cell stack capable of delivering individually conditioned reactants to each cell was designed, built, tested, and characterised under a variety of operating conditions. This stack is the first reported prototype of its type. The stack was used to perform galvanostatic, impedance measurements in situ. The measurements were made at three different temperatures (62, 70 and 80°C), covering the current density range 0.1 to 1.0 A cm-2 , and the frequency range 0.1 to 4 x 105 Hz. The recorded data represent the first reported set of measurements covering these ranges. The failure modes were simulated on individual cells within the stack. The effects on individual cell and stack impedance were studied by measuring the changes in stack and cell impedances under flooding or dehydration conditions. Dehydration effects were measurable over a wide frequency range (0.5 to 105 Hz). In contrast, flooding effects were measurable in a narrower frequency range (0.5 to 102 Hz). Using these results, separate or concurrent impedance measurements in these frequency ranges (or narrow bands thereof) can be used to discern and identify the two failure modes quasi-instantaneously. Such detection was not possible with pre-existing, do techniques. The measured spectra were modelled by a simple equivalent circuit whose time constants corresponded to ideal (RC) and distributed (Warburg) components. The model was robust enough to fit all the measured spectra (for single cells and the stack), under normal and simulated

  5. Shielding analyses of the IFMIF test cell

    International Nuclear Information System (INIS)

    Full 3-D shielding calculations of the IFMIF test cell were performed using a computational scheme for coupled Monte Carlo/deterministic transport calculations that enables the use of a detailed geometry model of the test cell in the Monte Carlo calculation and is suitable, at the same time, to handle the deep penetration transport through the thick surrounding concrete walls. Calculations for the test cell cover, which includes numerous penetrations through which neutrons stream, were performed by the Monte Carlo method. The results demonstrate that the dose rate limit for work personnel access to the access/maintenance room can be safely met during IFMIF operation assuming the test modules are surrounded by a horseshoe shield and the back heavy concrete wall is no less than 250 cm thick. No work personnel access to the room above the cover will be permitted during IFMIF operation due to the strong neutron streaming through the cover penetrations

  6. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  7. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  8. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  9. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund;

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the...

  10. Laser processing of Al2O3/a-SiCx:H stacks: a feasible solution for the rear surface of high-efficiency p-type c-Si solar cells

    OpenAIRE

    Martín García, Isidro; Ortega Villasclaras, Pablo Rafael; Colina, Monica; Orpella García, Alberto; López, Gema; Alcubilla González, Ramón

    2012-01-01

    We explore the potential of laser processing aluminium oxide (Al2O3)/amorphous silicon carbide (a-SiCx:H) stacks to be used at the rear surface of p-type crystalline silicon (c-Si) solar cells. For this stack, excellent quality surface passivation is measured with effective surface recombination velocities as low as 2 cm/s. By means of an infrared laser, the dielectric film is locally opened. Simultaneously, part of the aluminium in the Al2O3 film is introduced into the c-Si, creating p+ regi...

  11. Annotated Stack Trees

    OpenAIRE

    Hague, Matthew; Penelle, Vincent

    2015-01-01

    Annotated pushdown automata provide an automaton model of higher-order recursion schemes, which may in turn be used to model higher-order programs for the purposes of verification. We study Ground Annotated Stack Tree Rewrite Systems -- a tree rewrite system where each node is labelled by the configuration of an annotated pushdown automaton. This allows the modelling of fork and join constructs in higher-order programs and is a generalisation of higher-order stack trees recently introduced by...

  12. Decoding Stacked Denoising Autoencoders

    OpenAIRE

    Sonoda, Sho; Murata, Noboru

    2016-01-01

    Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretation. For example, the continuous denoising autoencoder solves the backward heat equation and transpo...

  13. Modeling of PEM Fuel Cell Stack System using Feed-forward and Recurrent Neural Networks for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Mr. M. Karthik

    2014-05-01

    Full Text Available Artificial Neural Network (ANN has become a significant modeling tool for predicting the performance of complex systems that provide appropriate mapping between input-output variables without acquiring any empirical relationship due to the intrinsic properties. This paper is focussed towards the modeling of Proton Exchange Membrane (PEM Fuel Cell system using Artificial Neural Networks especially for automotive applications. Three different neural networks such as Static Feed Forward Network (SFFN, Cascaded Feed Forward Network (CFFN & Fully Connected Dynamic Recurrent Network (FCRN are discussed in this paper for modeling the PEM Fuel Cell System. The numerical analysis is carried out between the three Neural Network architectures for predicting the output performance of the PEM Fuel Cell. The performance of the proposed Networks is evaluated using various error criteria such as Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Error, Coefficient of correlation and Iteration Values. The optimum network with high performance indices (low prediction error values and iteration values can be used as an ancillary model in developing the PEM Fuel Cell powered vehicle system. The development of the fuel cell driven vehicle model also incorporates the modeling of DC-DC Power Converter and Vehicle Dynamics. Finally the Performance of the Electric vehicle model is analyzed for two different drive cycle such as M-NEDC & M-UDDS.

  14. Interface engineering of layer-by-Layer stacked graphene anodes for high-performance organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Tong, Shi Wun; Loh, Kian Ping [Department of Chemistry, National University of Singapore (Singapore); Xu, Xiang Fan; Oezyilmaz, Barbaros [Department of Physics, National University of Singapore (Singapore)

    2011-04-05

    An interface engineering process to deploy graphene film as the anode in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM)-based polymer solar cells is demonstrated. By modifying the interface between the graphene anode and the photoactive layer with MoO{sub 3} and poly(3,4-ethylenedioythiophene):poly(styrenesulfonate) (PEDOT:PSS), the power conversion efficiency of the solar cells reaches {approx}83.3% of control devices that use an indium tin oxide (ITO) anode. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    Science.gov (United States)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of

  16. Reconstitution of vesiculated Golgi membranes into stacks of cisternae: requirement of NSF in stack formation

    OpenAIRE

    1995-01-01

    We have developed an in vitro system to study the biochemical events in the fusion of ilimaquinone (IQ) induced vesiculated Golgi membranes (VGMs) into stacks of cisternae. The Golgi complex in intact normal rat kidney cells (NRK) is vesiculated by treatment with IQ. The cells are washed to remove the drug and then permeabilized by a rapid freeze-thaw procedure. VGMs of 60 nm average diameter assemble into stacks of Golgi cisternae by a process that is temperature dependent, requires ATP and ...

  17. Key Materials and Micro-Stack Systems of Single Chamber Solid Oxide Fuel Cells%单气室固体氧化物燃料电池关键材料与微堆系统

    Institute of Scientific and Technical Information of China (English)

    吕喆; 魏波; 田彦婷; 王志红; 苏文辉

    2011-01-01

    单气室固体氧化物燃料电池(SC-SOFC)是一种与传统的双气室结构燃料电池不同的新型燃料电池.SC-SOFC的阴极和阳极都暴露在单一气室中,在工作时通入含有燃料和氧化剂的混合气体,利用阳极和阴极的选择催化作用实现发电.SC-SOFC具有结构简单、无需密封、易于进行堆叠等很多独特的优点.本文介绍了SC-SOFC近期的研究进展,内容包括工作原理的介绍、SC-SOFC的关键材料选择与研究现状、影响SC-SOFC运行的主要因素的讨论,以及微堆(电池组)系统结构设计和试验等.着重介绍了本课题组在SC-SOFC的研究工作,包括对复合阴极材料、Ni修饰氧化物阳极的研究,以及星型和阵列式等多种新型SC-SOFC微堆结构设计与实验等.最后,基于对其优缺点的分析,展望了SC-SOFC各种潜在的应用.%Single chamber solid oxide fuel cell (SC-SOFC) is different from the conventional solid oxide fuel cell with dual gas chamber structure.Both cathode and anode of SC-SOFC are exposed to the only one gas chamber.Mixed gas containing fuel and oxidant is fed during operation and it can generate electric energy by the selectively catalytic activities of cathode and anode.SC-SOFC has many particular advatages, such as more simple structure, eliminating the need for sealing and easy stacking etc.In this paper, the recent research advances of SC-SOFC are reviewed, including brief introduction of operational principle of SC-SOFC, the selection of key materials for SC-SOFC, the discussion of main influencing factors on SC-SOFC, as well as the design and test of micro-stack (battery) system.The investigation results on SC-SOFC of our research group are highlighted, including composite cathode, oxide anode with Ni modification, and some novel designs for SC-SOFC micro stacks, such as star-type and array-type stacks, and so on.Finally, an outlook about the potential applications of SC-SOFC is given according to the analysis of

  18. High performance PEM fuel cells - from electrochemistry and material science to engineering development of a multicell stack. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, A.J.

    1997-03-04

    Under Task 1, it was shown that apparently identical MEAs of 50 Cm2 active area with 1.4 mg/cm2 Pt./C cathodes (20 wt % Pt on C) and 0.3 mg/cm2 Pt/C anodes with 40 microns thickness Gore-Select(TM) PEM material did not give identical performance, except in the Tafel region. This indicates that their overall active surface areas at low current density were identical, and that performance suffered at high current density in the range of interest. In all cases, this is shown as a change in polarization slope in the linear region. The slope of the best of these cells was 0.25 ohms cm2, and that of the worst was ca. 0.36 ohms cm2. In consequence, the performance of the best cell at 0.7 V with humidified gases was 0.44 A/cm2, and that of the worst was 0.3 A/cm2. These are substantially less than 0.7 A/cm2 at 0.7 V, which has been achieved in 5 cm2 cells. This is the fuel cell performance level required to achieve the overall system` performance goals (i.e., 0.7 A/cm2 and 0.7 V on hydrogen and air at atmospheric pressure). The variable polarization slope gives the impression of an internal resistance component, but the internal resistance measured at high frequency is rather low, about 0.12 ohms cm2. Thus, the differences in performance observed are either due to problems with the flow-field, or to dispersion in performance between individual MEAs, which otherwise contain identical components made by identical methods.

  19. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads

    Science.gov (United States)

    Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun

    2016-05-01

    In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.

  20. Opacity of nitrogen dioxide stack plumes

    International Nuclear Information System (INIS)

    Removal of the NO2 from process off-gases would enable the Purex Plant to comply with the opacity standards for air pollution control. However, a relationship between stack opacity and NO2 content of the stack gases is needed in order to implement a cost effective NO2 control method. A test was conducted in which nitrogen dioxide (NO2) was injected into a 1.3 meter diameter, 150 foot tall stack. Certified visual opacity measurements over a range of 0 to 50 percent were recorded along with the corresponding concentrations of NO2 in the stack effluent. The visual opacity readings were found to be highly imprecise and from 2 to 3 times higher than opacities calculated on the basis of the light absorption parameters used for smoke opacity meters. Agreement was found between the test readings and visual opacity readings reported on 2.13 and 3.28 meter diameter stack when visual opacity was plotted as a function of NO2 concentration and effective stack diameter. The difference between calculated and visual opacity is attributed to a color contrast effect which increases the visual noticeability of the NO2 plume. Calculations based on color contrast show that visual opacity measurements are affected by sunlight conditions and the response of the human eye to color changes. This indicates that a variability in the NO2 emission limit will exist as long as visual opacity measurements are used as the basis for controlling stack discharges. Based on the analysis of the test data it is recommended that concentration limits rather than visual opacity measurements be used as a criteria for setting stack emissons. Concentration limits corresponding to a visual opacity limit can be determined by the appropriate opacity/ppM meter relationship and a formula which is given

  1. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    At the conclusion of the SSC half cell magnet string testing program. In February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and (3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing question a prototypical full cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  2. The SSC full cell prototype string test

    International Nuclear Information System (INIS)

    At the conclusion of the SSC half cell magnet string testing program in February, 1993, the preliminary data analysis revealed that several substantive technical questions remained unresolved. These questions were: (1) could the high voltages to ground (>2 kV) measured during fault (quench) conditions be substantially reduced, (2) could the number of magnetic elements that became resistive (quenched) be controlled and 3) did the cryostats of the magnetic elements provide adequate insulation and isolation to meet designed refrigeration loads. To address these and other existing questions, a prototypical fall cell of collider magnets (ten dipoles and two quadrupoles) was assembled and tested. At the conclusion of this testing there were definitive answers to most of the questions with numerical substantiation, the notable exception being the beat leak question. These answers and other results and issues are presented in this paper

  3. Time-resolved photoluminescence for evaluating laser-induced damage during dielectric stack ablation in silicon solar cells

    Science.gov (United States)

    Parola, Stéphanie; Blanc-Pélissier, Danièle; Barbos, Corina; Le Coz, Marine; Poulain, Gilles; Lemiti, Mustapha

    2016-06-01

    Selective laser ablation of dielectric layers on crystalline silicon wafers was investigated for solar cell fabrication. Laser processing was performed on Al2O3, and bi-layers Al2O3/SiNX:H with a nanosecond UV laser at various energy densities ranging from 0.4 to 2 J cm-2. Ablation threshold was correlated to the simulated temperature at the interface between the dielectric coatings and the silicon substrate. Laser-induced damage to the silicon substrate was evaluated by time-resolved photoluminescence. The minority carrier lifetime deduced from time-resolved photoluminescence was related to the depth of the heat affected zone in the substrate.

  4. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.;

    2012-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires...

  5. Hot cells preparation of testing materials

    International Nuclear Information System (INIS)

    It is important in nuclear waste repository development that testing be done with materials containing a radionuclide spectrum representative of actual wastes. To meet the need for such materials, the Materials Characterization Center (MCC) has prepared simulated high-level waste (HLW) glasses with radionuclides representative of about 10-, 300- and 100-year-old waste. A quantity of well characterized spent fuel also has been acquired for the same purpose. Glasses containing 10- and 300-year-old wastes, and the spent fuel specimens, must be fabricated in a hot cell. Hot cell conditions (high radiation field, remote operation, and difficulty of repairs) require that procedures and equipment normally used in materials preparation out-of-cell be modified for hot cell applications. This paper discusses the fabrication of two glasses, and the preparation of test specimens of these glasses and spent fuel. One of the glasses is a 76-68 composition, which is fully loaded with actual commercial reactor fission product waste. The other glass contains simulated Barnwell Nuclear Fuel Plant waste, doped with different combinations of fission products and actinides. The spent fuel is a 10-year-old PWR material. Special techniques have been used to achieve high quality, well characterized testing materials, including specimens in the form of segments, wafers, cylinders, and powders of these materials

  6. Stacked Cu1.8S nanoplatelets as Counter Electrode for Quantum Dot-Sensitized Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Savariraj, Dennyson A.; Rajendrakumar, G.; Selvam, Samayanan; Karthick, S. N.; Balamuralitharan, B.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2015-11-09

    It is found that electrocatalytic activity of Cu2-xS thin films used in quantum dots sensitized solar cells (QDSSC) as countner electrode (CE) for the reduction of polysulfide electrolyte depends on the the surface active sulfur species and defficiency of Cu. The preferential bonding between Cu2+ and S2- leading to the selective formation of Cu1.8S stacked platelets like morphology is determined by Cetyl Trimethyl Ammonium Bromide surfactant with temperature and crab like Cu-S coordination bond formed dictates the surface area to volume ratio of the Cu1.8S thin films and the electrocatalytic activity. The Cu deficiency enhances the conductivity of the Cu1.8S thin films and exhibits near- infrared localized surface plasmon resonanc due to free carrier intraband absorption and UV-VIS absorption spectra shows excitonic effect due to quantum size effect. When these Cu1.8S thin films were employed as CE in QDSSC, robust photoconversion efficiency of 5.2 % is yielded by the film deposited at 60°C by a sinlge step chemical bath deposition method.

  7. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    Science.gov (United States)

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation. PMID:26212183

  8. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev

    2014-06-01

    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  9. TARN rf stacking system

    International Nuclear Information System (INIS)

    Repetitive rf stacking system for the TARN was developed. The developed system consists of ferrite loaded rf cavity, rf power amplifier, ferrite bias power supply and low level rf electronics. Ferrite material and rf signal source were studied to obtain a high-duty and precise moving rf bucket. Phase lock technic worked at a low intensity beam was also studied. Repetition rate of 50 Hz and final stacking number of 50 were attained at the injection beam energy of 7 MeV/u. (author)

  10. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  11. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  12. Deformations of algebroid stacks

    DEFF Research Database (Denmark)

    Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard; Tsygan, Boris

    2011-01-01

    In this paper we consider deformations of an algebroid stack on an étale groupoid. We construct a differential graded Lie algebra (DGLA) which controls this deformation theory. In the case when the algebroid is a twisted form of functions we show that this DGLA is quasiisomorphic to the twist of ...

  13. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  14. Wolfram technology stack

    CERN Multimedia

    2013-01-01

    Stephen Wolfram gives a personal account of his vision for the "Wolfram technology stack" and how it developed, starting with his work in particle physics. The talk was presented at the 2013 ROOT Users' Meeting and followed a talk, earlier in the day, on "Mathematica with ROOT".

  15. Stacking with No Planarity?

    Science.gov (United States)

    Gunaydin, Hakan; Bartberger, Michael D

    2016-04-14

    This viewpoint describes the results obtained from matched molecular pair analyses and quantum mechanics calculations that show unsaturated rings found in drug-like molecules may be replaced with their saturated counterparts without losing potency even if they are engaged in stacking interactions with the side chains of aromatic residues. PMID:27096037

  16. Isolation of Sertoli Cells and Peritubular Cells from Rat Testes.

    Science.gov (United States)

    Bhushan, Sudhanshu; Aslani, Ferial; Zhang, Zhengguo; Sebastian, Tim; Elsässer, Hans-Peter; Klug, Jörg

    2016-01-01

    The testis, and in particular the male gamete, challenges the immune system in a unique way because differentiated sperm first appear at the time of puberty - more than ten years after the establishment of systemic immune tolerance. Spermatogenic cells express a number of proteins that may be seen as non-self by the immune system. The testis must then be able to establish tolerance to these neo-antigens on the one hand but still be able to protect itself from infections and tumor development on the other hand. Therefore the testis is one of a few immune privileged sites in the body that tolerate foreign antigens without evoking a detrimental inflammatory immune response. Sertoli cells play a key role for the maintenance of this immune privileged environment of the testis and also prolong survival of cotransplanted cells in a foreign environment. Therefore primary Sertoli cells are an important tool for studying the immune privilege of the testis that cannot be easily replaced by established cell lines or other cellular models. Here we present a detailed and comprehensive protocol for the isolation of Sertoli cells - and peritubular cells if desired - from rat testes within a single day. PMID:26890157

  17. NOx-conversion on Porous LSF15-CGO10 Cell Stacks with KNO3 or K2O Impregnation

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2012-01-01

    In the present work, it was investigated how addition of KNO3 or K2O affected the NOx conversion on LSF15–CGO10 (La0.85Sr15FeO3–Ce0.9Gd0.1O1.95) composite electrodes during polarization. The LSF15–CGO10 electrodes were part of a porous 11-layer cell stack with alternating layers of LSF15–CGO10...... observed during polarization, but the impregnations altered the conversion between NO and NO2 on the electrodes. Both impregnations caused increased degradation of the cell stack, but the exact cause of the degradation has not been identified yet....

  18. 21 CFR 864.7825 - Sickle cell test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of...

  19. Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    CERN Document Server

    Shyu, R F; Lee, J -H

    2008-01-01

    This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 micrometers thick and 500 micrometers wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 micrometers thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 2x2 cm2 fuel cell stack including a 1.5x1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3mW/cm2 and curren...

  20. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack

    International Nuclear Information System (INIS)

    Organic waste collection from local municipal areas with subsequent energy valorization through CHP systems allows for a reduction of waste disposal in landfill. Pollutant emissions released into the atmosphere are also reduced in this way. Solid oxide fuel cell (SOFC) systems are among the most promising energy generators, due to their high electrical efficiency (>50%), even at part loads. In this work, the local organic fraction of municipal solid waste has been digested in a dry anaerobic digester pilot plant and a biogas stream with methane and carbon dioxide concentrations ranging from 60–70 and 30–40% vol., respectively, has been obtained. Trace compounds from the digester and after the gas clean-up section have been detected by means of a new technique that exploits the protonation reactions between the volatile compounds of interest and the ion source. Sulfur, chlorine and siloxane compounds have been removed from as-produced biogas through the use of commercial sorbent materials, such as activated carbons impregnated with metals. A buffer gas cylinder tank has been inserted downstream from the filtering section to compensate for the biogas fluctuations from the digester. The technical feasibility of the dry anaerobic process of the organic fraction of municipal solid waste, coupled with a gas cleaning section and an SOFC system, has been proved experimentally with an electrical efficiency ranging from 32 to 36% for 400 h under POx conditions. - Highlights: • Biogas trace compounds were monitored with the innovative PTR-MS technique. • VOCs removal of a filter section was investigated with PTR-MS. • The treated biogas fed a SOFC stack with stable performance for more than 400 h

  1. Correcting For Capacitance In Tests Of Solar Cells

    Science.gov (United States)

    Mueller, Robert L.

    1995-01-01

    Modified procedure for testing solar photovoltaic cells and modified software for processing test data provide corrections for effects of cell capacitance. Procedure and software needed because (a) some photovoltaic devices (for example, silicon solar cells with back-surface field region) store minority charge carriers in cell junction and thus exhibit significant capacitance, (b) capacitance affects current-vs.-voltage (I-V) measurements made when transient load connected to cell, and (c) transient load used in unmodified version of test procedure. Corrected I-V curve obtained in test of solar cell according to modified procedure approximates true cell voltage vs. cell current more closely.

  2. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 198: Test Cell C Filter Tank Closure Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    This closure report (CR) provides documentation for the closure of Corrective Action Unit (CAU) 198 identified in the Federal Facility Agreement and Consent Order (FFACO). The site is located at the Nevada Test Site (NTS) Area 25 Test Cell C Complex (Figure 1). The CAU consists of one Corrective Action Site (CAS) 25-23-12 which includes two aboveground radioactive wastewater filter tanks used during the Nuclear Furnace Testing at Test Cell C. The Test Cell C complex was one of several facilities dedicated to the development of nuclear rocket technology. Test Cell C was designed to test nuclear rocket reactors. Part of the testing program included Nuclear Furnace Tests. The Nuclear Furnace was a water-moderated, hydrogen-cooled, 44-megawatt reactor used to test fuel elements for the nuclear rocket engine. The Nuclear Furnace in itself was not a nuclear rocket engine. During testing, hydrogen exited the reactor at a temperature of 2,440 degrees Kelvin. Water was injected into the gas stream to cool the hydrogen and capture the various radiological isotopes. Hydrogen gas effluent was decontaminated through a multistage process before being burned at the Test Cell C flare stack. A by-product of the decontamination process produced water contaminated with mixed fission products. Prior to discharge to a tile drain system (CAU 267) the water was filtered through the two 2271-liters (600-gallon) filter tanks (Department of Energy [DOE], 1998). Reactor development, engine testing, and rocket development activities were ended in the early 1970s. The filter tanks have remained inactive since that time. The site is currently roped off and posted with ''Caution Radiation Area'' signs. The filter tanks were located on the east side of Test Cell C, approximately 15.2 meters (50 feet) from the facility fence line (Figure 2)

  3. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  4. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  5. Analytic stacks and hyperbolicity

    OpenAIRE

    Borghesi, Simone; Tomassini, Giuseppe

    2012-01-01

    The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts ...

  6. Down-scaled tests in transparent cells

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The performance of KBS-3 type spent nuclear fuel repository is based on multi-barrier system a key part of which is Engineered Barrier System (EBS). One of the barriers is bentonite buffer which will be emplaced during repository operation in unsaturated conditions. The bentonite buffer will evolve from emplacement state to saturated state by absorbing groundwater from the host rock and swelling into all adjacent open space. During hydration, the buffer evolution is affected by temperature increase caused by the heat flow from the spent fuel. The buffer is made mainly with compacted blocks and has an empty gap of 10 mm between the canister and the blocks and a second gap of 50 mm between the blocks and the host rock filled with pellets. The buffer behaviour from emplacement to saturated state is simulated with CODE-BRIGHT using relevant constitutive models for buffer and rock. These models need parameters and they are calculated with laboratory tests in small scale (samples with 38-100 mm diameter and 20-150 mm height). In order to reproduce the conditions of the repository better, down-scaled tests have been carried out. The samples have 270-350 mm diameter and 800 mm height. The integration of the experimental work and modelling is described in Pintado et al. 2010. A transparent cell test set-up has been developed in B+Tech. It has a plastic cylinder made in PVC between two plastic pistons for testing samples with at least 269 mm diameter and 800 mm height. This cell allows studying the buffer evolution under more realistic conditions. The main purpose of the test is to check the evolution of the erosion and piping directly because it is impossible to see anything across a conventional steel cell but the test set-up is also fully instrumented for measuring different variables like axial swelling pressure, radial swelling pressure and changes of weigh because of the loss of material and the saturation process. The

  7. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  8. Toric Stacks II: Intrinsic Characterization of Toric Stacks

    CERN Document Server

    Geraschenko, Anton

    2011-01-01

    The purpose of this paper and its prequel (Toric Stacks I) is to introduce and develop a theory of toric stacks which encompasses and extends the notions of toric stacks defined in [Laf02, BCS05, FMN09, Iwa09, Sat09, Tyo10], as well as classical toric varieties. While the focus of the prequel is on how to work with toric stacks, the focus of this paper is how to show a stack is toric. For toric varieties, a classical result says that any normal variety with an action of a dense open torus arises from a fan. In [FMN09, Theorem 7.24], it is shown that a smooth separated DM stack with an action of a dense open stacky torus arises from a stacky fan. In the same spirit, the main result of this paper is that any Artin stack with an action of a dense open torus arises from a stacky fan under reasonable hypotheses.

  9. Stacked subwavelength gratings for imaging polarimetry

    Science.gov (United States)

    Deguzman, Panfilo Castro

    without AR-coating for the large area filters. The fabrication and optical testing of the small aperture SWG stacks which implement the circular polarization filters of the imaging polarimeter are presented.

  10. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    Passage of cell cultures may adversely influence cell susceptibility to virus infection through selection of cell clones that thrive in vitro but may not necessarily display high sensitivity to virus infection. Susceptibility to a given virus can therefore vary not only between cell lines and......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  11. Policies for dynamic stack composition

    OpenAIRE

    Sora, Ioana; Michiels, Sam; Matthijs, Frank

    2001-01-01

    Currently, protocol stacks operate in various contexts and it is therefore not possible to know the required properties of a stack (both functional and non-functional) in advance. The stack has to be dynamically built up from components, based on the requirements and the momentary situation. The first step in building the stack is to determine the component types to be used and the stack architecture that has to define the way building blocks are connected. In this document we report on how t...

  12. 全钒液流电池10kW单元电堆性能研究%Performance of 10kW cell stack of vanadium redox flow battery

    Institute of Scientific and Technical Information of China (English)

    陈伟; 孟凡明; 李晓兵; 刘效疆; 马海波

    2013-01-01

    详细研究了全钒液流电池10kW单元电堆的功率输出特性和单体电压一致性及不同充放电电流密度与库仑效率和能量效率的关系.研究了电堆长期运行时,库仑效率、能量效率及电压平台的变化.%The power output characteristics and single voltage consistency of 10 kW cell stack of vanadium redox flow battery,as well as the coulombic efficiency and energy efficiency for different charge and discharge current density were studied.The variety of coulombic and energy efficiency and voltage platform of the stack was researched in a long-term operation.

  13. Fungal melanins differ in planar stacking distances.

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    Full Text Available Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  14. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  15. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  16. Technology stacks and frameworks for full-stack application development

    OpenAIRE

    Ušaj, Erik

    2016-01-01

    This work aims providing a comprehensive overview and analysis of current JavaScript (JS) technology stacks and frameworks for full-stack application development: from web clients, mobile and desktop applications to server applications and cloud-connected services. Analysis shall focus on MEAN technology stack and frameworks such as Meteor which also tries to leverage mobile app development using Apache Cordova framework. We will include an overview of available JS build tools for desktop app...

  17. Electrochemical characterization and modeling of fuel cells via AC impedance and residence time distribution

    Science.gov (United States)

    Payne, Robert R. U.

    The performance of commercially available fuel cells was tested under a variety of test conditions and models were formulated to explain the experimental results. Several techniques were applied to single cells and groups of cells, each probing a different phenomenon responsible for limiting the power output of the cells. Nonuiformity of fuel cells in a stack can drastically affect the total power output, because a stack of cells in series can only provide as much electrical current as the weakest cell. Uniformity of polymer electrolyte membrane (PEM) fuel cell voltage was measured for each cell of the 47 cells in a Nexa(TM) stack operating with 0 W and 800W supplied to an external load. Manufacturing consistency was assessed by comparing the mean cell potential of 10 different stacks. To minimize the cost of operating a stack, PEM fuel cells must be capable of withstanding higher impurity concentrations, which was accomplished by adding a manual purge line into the fuel exhaust line of a Nexa(TM) stack. The critical flow rate of the anode exhaust was determined by feeding gas diluted with up to 7% N2 to a stack supplying up to 200 W to an external load. The residence time distribution (RTD) of impurities in the stack was evaluated by injecting a pulse of inert gas and simultaneously measuring the time dependent voltage of each cell in the stack. A number of different compartmental flow models were developed to replicate the experimental data, but with minimal success; however, the added exhaust line successfully improved the impurity tolerance of the stack. Determining which and to what extent physical processes limit the electrical output of fuel cells is critical for evaluating system designs and performing diagnostics. Impedance spectroscopy was applied to cells to test the dynamic response of fuel cells and stacks thereof. Equivalent circuit models were fitted to the data, with each circuit element representing a different physical phenomenon. Data were

  18. Space Station Freedom NiH2 cell testing program

    Science.gov (United States)

    Moore, Bruce; Frate, Dave

    1994-02-01

    Testing for the Space Station Freedom Nickel Hydrogen Cell Test Program began in 1990 at Crave Division, Naval Surface Warfare Center. The program has included receipt inspection, random vibration, acceptance, characterization, and life cycle testing of Ni-H2 cells in accordance with the NASA LeRC Interagency Order C-31001-J. A total of 400 Ni-H2 cells have been received at NAVSURFWARCENDIV Crane from three separate manufacturers; Yardney Technical Products (Yardney), Eagle Picher Industries (Eagle Picher), and Gates Energy Products (Gates). Of those, 308 cells distributed among 39 packs have undergone life cycle testing under a test regime simulating low earth orbit conditions. As of 30 September 1993, there are 252 cells assembled into 32 packs still on life cycle test. Since the beginning of the program, failed cells have been detected in all phases of testing. The failures include the following; seven 65 AmpHr and 81 AmpHr Yardney cells were found to be leaking KOH on receipt, one 65 AmpHr Eagle Picher cell failed the acceptance test, one 65 AmpHr Gates cell failed during the characterization test, and six 65 AmpHr Gates cells failed the random vibration test. Of the 39 life cycle packs, testing on seven packs, 56 cells, has been suspended because of low end of discharge voltages. All of the failed life cycle packs were cycled at 60% depth of discharge.

  19. Optimization of a fuel cell system based on empirical data of a PEM fuel cell stack and the generalized electrochemical model. Paper no. IGEC-1-126

    International Nuclear Information System (INIS)

    A fuel cell system model is implemented in MATLAB in order to optimize the system operating conditions. The implemented fuel cell model is a modified version of the semi-empirical model introduced by researchers at the Royal Military College of Canada. In addition, in order to model the whole fuel cell system, heat transfer and gas flow considerations and the associated Balance of Plant (BOP) components are incorporated into the model. System design optimizations are carried out using three different methods, including the sequential quadratic programming (SQP) local optimization algorithm and simulated annealing (SA) and genetic algorithm (GA) global optimization algorithms. Using the operating conditions of the fuel cell system as the design variables, the net output power of the system is optimized. The three methods are used in order to gain some insight into the nature of the objective function and the performance of the different algorithms. The optimization results show a good agreement and provide useful information on the design optimization problem. This study prepares us for more complex modeling and system optimization research. (author)

  20. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  1. Stacking in the Fermilab doubler

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1976-07-14

    The feasibility of stacking beam in a storage ring by the phase displacement technique, i.e. by the accumulation of momentum strips, is determined by a complicated interplay of many factors. Some of these factors are discussed, especially as they relate to stacking beam in the Fermilab doubler ring, but no attempt is made to present a consistent solution. An arbitrary division is made into five subject categories connected with the stacking process: (1) momentum dilution, that is, the dilution of the longitudinal phase space area; (2) rebunching the stack for acceleration; (3) the physical aperture used to create a stack of given current; (4) beam loss during stacking in a superconducting environment; and (5) field errors due to random errors in the placement and support of the superconducting coils, including the amplification of the field errors for orbits displaced from the magnet center. The basic theory is given and applied using doubler parameters.

  2. A reliable Cu–Sn stack bonding technology for 3D-TSV packaging

    International Nuclear Information System (INIS)

    In this paper, Cu–Sn stack bonding technology for 3D-TSV packaging was described; some key technologies such as TSV (through silicon via) formation, silicon wafer thinning, TSV electroplating and Cu–Sn multilayer stack bonding were introduced. First of all, some sample chips with TSV and Cu–Sn bonding pads were fabricated for stacking. Then, two kinds of stack bonding experiments with or without TSV were carried out, respectively. 3-die, 7-die, and 10-die stacks were bonded and assembled. Finally, the bonding strengths of 3D-TSV stacking were characterized by shear test and tensile test, and also the electrical properties, thermal properties and corrosion resistance of stacked module. All the test results suggested that the reliable stack bonding technology can be used for 3D integration applications. (paper)

  3. Beam stacking experiments at TARN

    International Nuclear Information System (INIS)

    After the first success of beam injection in TARN, August of 1979, beam experiments have been performed in succession to show the overall stacking number of around -- 300 turns, 15 RF stackings and 20 multi-turns. These results are in the close agreements with the theoretical calculations and we are now convinced that the stacking method used at TARN is quite useful for the accelerators of protons and heavy ions. (author)

  4. Duality for commutative group stacks

    OpenAIRE

    Brochard, Sylvain

    2014-01-01

    We study in this article the dual of a (strictly) commutative group stack $G$ and give some applications. Using the Picard functor and the Picard stack of $G$, we first give some sufficient conditions for $G$ to be dualizable. Then, for an algebraic stack $X$ with suitable assumptions, we define an Albanese morphism $a_X : X\\to A^1(X)$ where $A^1(X)$ is a torsor under the dual commutative group stack $A^0(X)$ of $Pic_{X/S}$. We prove that $a_X$ satisfies a natural universal property. We give ...

  5. Test Series 4: seismic-fragility tests of naturally-aged Exide EMP-13 battery cells

    International Nuclear Information System (INIS)

    This report, the fourth in a test series of an extensive seismic research program, covers the testing of a 27-year old lead-antimony Exide EMP-13 cells from the recently decommissioned Shippingport Atomic Power Station. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, rigidly mounted; and multicell (five-cell) tests, mounted in a typical battery rack. A total of nine electrically active cells was used in the two different cell configurations. None of the nine cells failed during the actual seismic tests when a range of ZPAs up to 1.5 g was imposed. Subsequent discharge capacity tests of five of the cells showed, however, that none of the cells could deliver the accepted standard of 80% of their rated electrical capacity for 3 hours. In fact, none of the 5 cells could deliver more than a 33% capacity. Two of the seismically tested cells and one untested, low capacity cell were disassembled for examination and metallurgical analyses. The inspection showed the cells to be in poor condition. The negative plates in the vicinity of the bus connections were extremely weak, the positive buses were corroded and brittle, negative and positive active material utilization was extremely uneven, and corrosion products littered the cells

  6. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  7. The LSST Software Stack

    Science.gov (United States)

    Jenness, Timothy; LSST Data Management Team

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is an 8-m optical ground-based telescope being constructed on Cerro Pachon in Chile. LSST will survey half the sky every few nights in six optical bands. The data will be transferred to the data center in North America and within 60 seconds it will be reduced using difference imaging and an alert list be generated for the community. Additionally, annual data releases will be constructed from all the data during the 10-year mission, producing catalogs and deep co-added images with unprecedented time resolution for such a large region of sky. In the paper we present the current status of the LSST stack including the data processing components, Qserv database and data visualization software, describe how to obtain it, and provide a summary of the development road map.

  8. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  9. planSOEC. R and D and commercialization roadmap for SOEC electrolysis. R and D of SOEC stacks with improved durability. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.; Friis Pedersen, C.; Nielsen, Jens Ulrik [Topsoe Fuel Cells A/S, Kgs. Lyngby (Denmark); Mogensen, M.; Hoejgaard Jensen, S.; Ming Chen [Technical Univ. of Denmark. Fuel Cells and Solid State Chemistry Div., DTU Risoe Campus, Roskilde (Denmark); Sloth, M. [H2 Logic A/S, Herning (Denmark)

    2011-05-15

    The project has been divided into two parts: PART 1: Formulation of a R and D and commercialization roadmap for SOEC electrolysis. PART 2: Conducting R and D of SOEC stacks with improved durability. The purpose of Part 1 has been to develop a R and D and commercialisation roadmap for hydrogen and CO production plants based on the solid oxide electrolysis cell (SOEC) technology. SOEC technology is still on an early R and D stage but years of extensive R and D within SOFC technology provides a strong platform for an accelerated commercialisation. However, in order to guide the future SOEC R and D activities towards reaching commercial market requirements a detailed roadmap is necessary. An overall strategy for R and D of various electrolysis technologies in Denmark already exists{sup 2}, formulated in the Hydrogen Production working group in the Danish Hydrogen and Fuel Cell Partnership. The SOEC roadmap developed as part of the planSOEC project supplements the overall strategy, by conducting an updated analysis of state-of-the-art. Also planSOEC provides a detailed analysis of requirements for different market applications for SOEC, which enables formulation of precise and detailed R and D targets. The objectives of Part 2 in this project were multiple: 1) To investigate durability of solid oxide cells (SOCs) and stack components under industrially relevant (''harsh'') electrolysis operating conditions; 2) to investigate performance of standard TOFC (Topsoe Fuel Cell A/S) SOC stacks (based on state-of-the-art solid oxide cells) under mild electrolysis operating conditions ({<=}0.75 A/cm{sup 2}); 3) to further develop SOEC stack computer models available at Riso DTU and TOFC. Accordingly four lines of work were carried out in the here reported project: 1) Investigation of corrosion resistance of interconnect alloys. 2) Cell and stack element testing. 3) SOEC stack testing. 4) SOEC stack modeling. (LN)

  10. Effects of cooling system parameters on heat transfer in PAFC stack

    Science.gov (United States)

    Abdul-Aziz, Ali A.

    1985-08-01

    Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.

  11. A long-term stable power supply µDMFC stack for wireless sensor node applications

    International Nuclear Information System (INIS)

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm−2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc–dc convertor, the stack can realize a stable and optional constant voltage output from 1 V–6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes. (paper)

  12. Effects of cooling system parameters on heat transfer in PAFC stack. Ph.D. Thesis

    Science.gov (United States)

    Abdul-Aziz, Ali A.

    1985-01-01

    Analytical and experimental study for the effects of cooling system parameters on the heat transfer and temperature distribution in the electrode plates of a phosphoric acid fuel-cell has been conducted. An experimental set-up that simulates the operating conditions prevailing in a phosphoric-acid fuel-cell stack was designed and constructed. The set-up was then used to measure the overall heat transfer coefficient, the thermal contact resistance, and the electrode temperature distribution for two different cooling plate configurations. Two types of cooling plate configurations, serpentine and straight, were tested. Air, water, and oil were used as coolants. Measurements for the heat transfer coefficient and the thermal contact resistance were made for various flow rates ranging from 16 to 88 Kg/hr, and stack clamping pressure ranging from O to 3448 Kpa. The experimental results for the overall heat transfer coefficient were utilized to derive mathematical relations for the overall heat transfer coefficient as a function of stack clamping pressure and Reynolds number for the three coolants. The empirically derived formulas were incorporated in a previously developed computer program to predict electrodes temperature distribution and the performance of the stack cooling system. The results obtained were then compared with those available in the literature. The comparison showed maximum deviation of +/- 11%.

  13. A long-term stable power supply µDMFC stack for wireless sensor node applications

    Science.gov (United States)

    Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian

    2014-10-01

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm-2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc-dc convertor, the stack can realize a stable and optional constant voltage output from 1 V-6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes.

  14. Spherical Torus Center Stack Design

    Energy Technology Data Exchange (ETDEWEB)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-18

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device.

  15. IFMIF test cell design: Current status and key components

    International Nuclear Information System (INIS)

    The IFMIF (International Fusion Material Irradiation Facility) test cell design has been further developed and optimized based on the existing modular test cell concept. Key features of the current test cell include actively cooled surrounding shielding walls with coverage of internal surfaces with stainless steel liner, independent two layer top shielding plugs for protecting the access cell from neutron and gamma radiation from the test cell, optimized piping and cabling plugs for accommodating pipe and cable penetrations and for minimizing neutron streaming, rearranged lithium quench tank to outside of the test cell, etc. According to preliminary neutronic calculation results, limited access to the quench tank area for maintenance after beam shut-off can be expected with the current arrangement. Maintenance of the lithium inlet and outlet pipes as well as the two beam ducts are also possible by introducing removable shielding plugs which can be removed and replaced in case of failure

  16. Cell overcharge testing inside sodium metal halide battery

    Science.gov (United States)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  17. 基于 Fuzzi ng 技术的可信软件栈穿透性测试磁%Penetration Testing for TCG Software Stack Based on Fuzzing Technology

    Institute of Scientific and Technical Information of China (English)

    李金亮; 高文静

    2016-01-01

    利用Fuzzing技术对可信软件栈(TSS)进行软件代码脆弱性以及安全漏洞测试,通过故障注入、畸形数据构造以及异常行为捕获,发现了T SS软件代码中的安全缺陷,根据T SS的系统结构与具体机制,设计并实现了相关测试原型系统,对TSS软件产品进行了测试,实验结果表明:TSS软件产品并不完全符合可信规范的要求,TSS中的若干API功能函数中存在可被利用的安全漏洞。%Fuzzing testing technology is utilized to find security faults and codes vulnerability for TCG software stack (TSS) .By using fault injection ,abnormal data structure and capture abnormal behavior ,security flaws in TSS are found in this paper .According to TSS'structure and specification ,the relevant test prototype system is designed and implemented to test some kinds of TSS products .Experiment results show that TSS products do not fully comply with the requirements of specification ,there are some vulnerability in API functions of TSS .

  18. Gas and water management system in a 5 kW PEM fuel cell stack%5 kW质子交换膜燃料电池堆之气体与水管理系统

    Institute of Scientific and Technical Information of China (English)

    马小康; 郑为阳; 方富民

    2012-01-01

    A gas and water management system has been developed to increase the performance of the 5 kW proton exchange membrane fuel cell stack used for a small on board PEMFC auxiliary power unit(APU).The gas and water management system included four subsystems: oxidant supply subsystem,hydrogen supply subsystem,water cooling subsystem and control subsystem.The original design combined with excessive sensors and over-length pipes would cause the higher heat dissipation and decrease the inlet air temperature.The new compact design with less sensors and shorter pipe length could keep the higher inlet gas flow temperature and better performance of the fuel cell stack.In addition,stack performance could be influenced by the gas relative humidity and the hydrogen consumption under different loads.Hydrogen consumption under high load of 100 A might have 1.44 times more than that under low load of 10 A.Thus,the analysis of the hydrogen consumption under different loads and the gas relative humidity could help us to have an optimal design of the hydrogen recycling and increase the stack efficiency.Another 5 kW PEM fuel cell stack system is fabricated to couple with the original fuel cell stack system to have a 10 kW power output.The two stacks are electrically parallel or cascade;and the diodes are adopted in the circuit to avoid reverse current.The whole system should deliver a high power output stably in a long time because the performances of the two stacks are controlled to be almost identical to one another.The experimental results show that the stack ideal efficiency could reach 65.5% under the input air temperature of 51℃ and relative humidity of 54%.%开发了一个气体与水管理系统,藉以配合5kW质子交换膜燃料电池堆(Ballard 1310),使燃料电池的发电效率提升,并应用在小型运输工具之辅助动力装置(APU).气体与水管理系统包含4个子系统:氧化物供应系统、氢气供应系统、冷却系统与控制系统.

  19. SEE on Different Layers of Stacked-SRAMs

    CERN Document Server

    Gupta, V; Tsiligiannis, G; Rousselet, M; Mohammadzadeh, A; Javanainen, A; Virtanen, A; Puchner, H; Saigné, F; Wrobel, F; Dilillo, L

    2015-01-01

    This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The impact of the stacked structure on the proton SEE rate is investigated.

  20. Biocomputers: from test tubes to live cells.

    Science.gov (United States)

    Benenson, Yaakov

    2009-07-01

    Biocomputers are man-made biological networks whose goal is to probe and control biological hosts--cells and organisms--in which they operate. Their key design features, informed by computer science and engineering, are programmability, modularity and versatility. While still a work in progress, biocomputers will eventually enable disease diagnosis and treatment with single-cell precision, lead to "designer" cell functions for biotechnology, and bring about a new generation of biological measurement tools. This review describes the intellectual foundation of the "biocomputer" concept as well as surveys the state of the art in the field. PMID:19562106

  1. Seismic qualification of ventilation stack

    International Nuclear Information System (INIS)

    This paper describes the method to be used to qualify the 105 K ventilation stack at the U.S. Department of Energy's Hanford Site, near Richland, Washington, under seismic and wind loadings. The stack stands at 175 ft (53.34 m), with a diameter tapering from 22 ft (6.71 m) at the foundation to 12.83 ft (3.91 m) at the top. Although the stack is classified as Safety Class 3 (low hazard), it is treated as a Safety Class 1 (high hazard) component, as failure could damage a Safety Class 1 facility (the irradiated fuel storage basin). The evaluation used U.S. Department of Energy criteria specified in UCRL 15910 (1990). The seismic responses of the stack under earthquake loading were obtained from modal analyses with response spectrum input that used the ANSYS (1989) finite-element computer code. The moments and shear forces from the results of seismic analysis were used to qualify the reinforcement capacity of the stack structure by the ultimate-strength method. The wind forces acting on the stack in both along-wind and crosswind directions were also calculated. Presented are evaluations of the soil bearing pressure, the moment, and the shear capacity of the stack foundation

  2. Seismic qualification of ventilation stack

    International Nuclear Information System (INIS)

    This paper describes the method to be used to qualify the 105 K ventilation stack at the US Department of Energy's Hanford Site, near Richland, Washington, under seismic and wind loadings. The stack stands at 175 ft (53.34 m), with a diameter tapering from 22 ft (6.71 m) at the foundation to 12.83 ft (3.91 m) at the top. Although the stack is classified as Safety Class 3 (low hazard), it is treated as a Safety Class 1 (high hazard) component, as failure could damage a Safety Class 1 facility (the irradiated fuel storage basin). The evaluation used US Department of Energy criteria specified in UCRL 15910 (1990). The seismic responses of the stack under earthquake loading were obtained from modal analyses with response spectrum input that used the ANSYS (1989) finite-element computer code. The moments and shear forces from the results of seismic analysis were used to qualify the reinforcement capacity of the stack structure by the ultimate-strength method. The wind forces acting on the stack in both along-wind and are evaluations of the soil bearing pressure, the moment, and the shear capacity of the stack foundation

  3. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  4. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  5. Montagem e caracterização elétrica de pilhas a combustível de óxido sólido (PaCOS Assembly and electrical characterization of solid oxide fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Hosane Aparecida Tarôco

    2009-01-01

    Full Text Available This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper. For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.

  6. Accelerated stress testing of amorphous silicon solar cells

    Science.gov (United States)

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  7. Solid oxide fuel cell development at Topsoe Fuel Cell A/S and Risø National Laboratory

    OpenAIRE

    Christiansen, N.; Hansen, J. B.; Holm-Larsen, H.; Linderoth, Søren; Larsen, Peter Halvor; Hendriksen, Peter Vang; Hagen, Anke

    2007-01-01

    The consortium of Topsoe Fuel Cell A/S and Riso National Laboratory has up-scaled its production capacity of anode-supported cells to about 1100 per week. Stacks are based on a compact thin plate multilayer design with metallic interconnects and 12x12 cm(2) or 18x18 cm(2) foot print. Larger (500 cm(2)) cells are currently under evaluation. Stacks have been tested successfully for more than 13000 h. Several 50 or 75 cell stacks in the 1+ kW power range have been tested successfully at a fuel u...

  8. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    complicated and less imprecise. Time-predictable computer architectures provide solutions to this problem. As accesses to the data in caches are one source of timing unpredictability, devising methods for improving the timepredictability of caches are important. Stack data, with statically analyzable...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore, for...

  9. Barrier RF stacking at Fermilab

    International Nuclear Information System (INIS)

    A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons FR-om the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers--one fixed, another moving--are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned

  10. Load cell for thermionic converter tests

    Science.gov (United States)

    Breitwieser, R.; Manista, E. J.

    1970-01-01

    Stable, low duty cycle transistorized emitter follower load cell controls and absorbs large currents at low voltages. The use of energy storage in capacitors reduces auxiliary power source requirements. Low duty cycle pulse mode of operation reduces the average power handling requirement of all components.

  11. HTS twisted stacked-tape cable conductor

    International Nuclear Information System (INIS)

    The feasibility of high field magnet applications of the twisted stacked-tape cabling method with 2G YBCO tapes has been investigated. An analysis of torsional twist strains of a thin HTS tape has been carried out taking into account the internal shortening compressive strains accompanied with the lengthening tensile strains due to the torsional twist. The model is benchmarked against experimental tests using YBCO tapes. The critical current degradation and current distribution of a four-tape conductor was evaluated by taking account of the twist strain, the self-field and the termination resistances. The critical current degradation for the tested YBCO cables can be explained by the perpendicular self-field effect. It is shown that the critical current of a twisted stacked-tape conductor with a four-tape cable does not degrade with a twist pitch length as short as 120 mm. Current distribution among tapes and hysteresis losses are also investigated. A compact joint termination method for a 2G YBCO tape cable has been developed. The twisted stacked-tape conductor method may be an attractive means for the fabrication of highly compact, high current cables from multiple flat HTS tapes.

  12. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  13. Solid oxide fuel cell development at Topsoe Fuel Cell A/S and Risoe National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Niels Christiansen; J.B. Hansen; H.H. Larsen (and others) [Topsoe Fuel Cell A/S, Lyngby (Denmark)

    2007-07-01

    The consortium of Topsoe Fuel Cell A/S and Risoe National Laboratory has up-scaled its production capacity. Stacks are based on a compact thin plate multilayer design with metallic interconnects and 12x12 cm{sup 2} or 18x18 cm{sup 2} foot print. Larger (500 cm{sup 2}) cells are currently under evaluation. Stacks have been tested successfully for more than 13000 hours. Several 50 or 75 cell stacks in the 1+ kW power range have been tested successfully at a fuel utilisation of up to 92%. Multi stack modules consisting of four 75 cell stacks have been tested for more than 4000 hours with pre-reformed natural gas and modules consisting of twelve stacks are under development. Our SOFC program comprises development of next generation cells with porous ferritic steel is used as a cheap, ductile, robust cell support and the electrolyte is based on scandia-doped zirconia with improved durability. In collaboration with Waertsilae, a 24-stack prototype based on natural gas is being tested. The range of fuels have further been extended to include ethanol and coal syn-gas by development of a new coke resistant catalyst suitable for future SOFC technology.

  14. The landfill gas timeline: the Brogborough test cells

    Energy Technology Data Exchange (ETDEWEB)

    Caine, M.; Campell, D.; Santen, A. van [AEA Technology Environment, National Environmental Centre, Culham Science and Engineering Centre, Abingdon (United Kingdom)

    1999-07-01

    The Brogborough test cells were initiated in 1986 to demonstrate several robust and easily applied techniques for accelerating waste degradation in landfill, principally as a means of enhancing energy recovery from landfill gas. This paper maps the project up to July 1998. The main conclusions are listed below. The Brogborough test cells data set includes over 9-years continuous flow data - longer than any other large scale landfill test programme. Specific yield data are 2 to 3 times higher than published data from commercial landfills - even from the control cells - indicating increased recovery as a result of the idealized landfill engineering and gas abstraction systems in place. Cells 5 and 6 (in situ treatments) produced more rapid methanogenesis, as designed. Cells 3 and 4 (applied treatments) have shown statistically significant enhancement in landfill gas production rates relative to the control cell of 20 to 30% in specific yield. Total yields have exceeded 113 m{sup 3} t{sup -1}. (au)

  15. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  16. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  17. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4% and 2.5% for the explored metrics and comes at almost no additional computational cost.

  18. Safety testing of 18650-style Li-Ion cells

    Energy Technology Data Exchange (ETDEWEB)

    CRAFTS,CHRIS C.; BOREK III,THEODORE T.; MOWRY,CURTIS DALE

    2000-06-08

    To address lithium-ion cell safety issues in demanding power applications, electrical and thermal abuse tests were performed on 18650 sized cells. Video and electrically monitored abuse tests in air included short circuit, forced overcharge, forced reversal, and controlled overheating (thermal) modes. Controlled overheating tests to 200 C were performed in a sealed chamber under a helium atmosphere and the gases released from the cell during thermal runaway were analyzed at regular intervals using gas chromatography and mass spectrometry. In addition to alkane and alkene solvent breakdown fragments, significant H{sub 2} was detected and evidence that HF was evolved was also found.

  19. Selectable-Tip Corrosion-Testing Electrochemical Cell

    Science.gov (United States)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  20. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    Energy Technology Data Exchange (ETDEWEB)

    Brodzik, P.

    2009-04-15

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  1. NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications

    Science.gov (United States)

    Araghi, Koorosh R.

    2011-01-01

    NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.

  2. Stem cell test: A practical tool in toxicogenomics

    International Nuclear Information System (INIS)

    During early embryonic development, at blastocyst stage, the embryo has an outer coat of cells and an inner cell mass (ICM). ICM is the reservoir of embryonic stem (ES) cells, which are pluripotent, i.e., have the potential to differentiate into all cell types of the body. Cell lines have been developed from ES cells. In addition, there are embryonic germ (EG) cell lines developed from progenitor germ cells, and embryonic carcinoma (EC) cell lines developed from teratomas. These cell lines are being used for the study of basic and applied aspects in medical therapeutics, and disease management. Another potential of these cell lines is in the field of environmental mutagenesis. In addition to ES cells, there are adult stem cells in and around different organs and tissues of the body. It is now possible to grow pure populations of specific cell types from these adult stem cells. Treating specific cell types with chemical or physical agents and measuring their response offers a shortcut to test the toxicity in various organ systems in the adult organism. For example, to evaluate the genotoxicity of a chemical (e.g., drug or pesticide) or a physical agent (e.g., ionizing radiation or non-ionizing electromagnetic radiation) during embryonic development, a large number of animals are being used. As an alternative, use of stem cell lines would be a feasible proposition. Using stem cell lines, efforts are being made to standardize the protocols, which will not only be useful in testing the toxicity of a chemical or a physical agent, but also in the field of drug development, environmental mutagenesis, biomonitoring and other studies

  3. Testing for the maximum cell probabilities in multinomial distributions

    Institute of Scientific and Technical Information of China (English)

    XIONG; Shifeng

    2005-01-01

    This paper investigates one-sided hypotheses testing for p[1], the largest cell probability of multinomial distribution. A small sample test of Ethier (1982) is extended to the general cases. Based on an estimator of p[1], a kind of large sample tests is proposed. The asymptotic power of the above tests under local alternatives is derived. An example is presented at the end of this paper.

  4. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack

    Science.gov (United States)

    Sun, Shucheng; Shao, Zhigang; Yu, Hongmei; Li, Guangfu; Yi, Baolian

    2014-12-01

    A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800 h. The average degradation rate of 35.5 μV h-1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5 M H2SO4. This indicates the performance degradation of the stack running 7800 h is mainly caused by a recoverable contamination.

  5. A metallic seal for high-temperature electrolysis stacks

    International Nuclear Information System (INIS)

    Gas tightness over a long period of time is a real challenge in high-temperature electrolysis. The seals must indeed be able to run at high temperature between metals and brittle ceramic materials, which is a major issue to be solved. The common sealing solution relies on glass-made seals, despite their low mechanical strength at high temperature. Metallic seals have seldom been used in this field, because their stiffness and their hardness require a much higher load to achieve the appropriate tightness. In the French project ANR Pan-H/SEMIEHT, two different sealing solutions were investigated in two different locations of the GENHEPIS-G1 stack. Experiments were carried out with a glass-made seal between the cell and its ceramic support, and with metallic seals between the interconnect and the cell support, in order to seal the gas input and output as well as the cathodic chamber. An initial Garlock seal design has been optimised in order to decrease the seating load. Seals were also manufactured by Garlock. The C-shaped seals are made of two components: an Inconel-X750-made elastic inner part, and a specially profiled Fecralloy-made 'soft' outer lining. The use of Fecralloy enables the generation of an alumina thin layer, which both protects the seal and eases disassembly. In this study, these seals were tested on specific equipments and on actual stacks. It is shown that they are tight enough to achieve the electrolysis tests at 800 deg. C. Therefore a significant breakthrough in high-temperature electrolysis sealing has been achieved. It sheds new light on the actual potential of metallic seals and constitutes a basis for ongoing studies, such as another French project, namely ANR/Pan-H/EMAIL. (authors)

  6. TRAVELLING WAVE AND STANDING WAVE SINGLE CELL HIGH GRADIENT TESTS

    International Nuclear Information System (INIS)

    Accelerating gradient is one of the crucial parameters affecting design, construction and cost of next-generation linear accelerators. Operating accelerating gradient in normal conducting accelerating structures is limited by rf breakdown. In this paper we describe an experimental setup for study of these limits for 11.4 GHz travelingwave and standing-wave accelerating structures. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype structures for the Next Linear Collider. Fields elsewhere in the test structures and in the mode converters are significantly lower than in this single cell. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn around time. Here we present design considerations and describe planned experiments

  7. Traveling Wave and Standing Wave Single Cell High Gradient Tests

    CERN Document Server

    Dolgashev, V A

    2004-01-01

    Accelerating gradient is one of the crucial parameters affecting design, construction and cost of next-generation linear accelerators. Operating accelerating gradient in normal conducting accelerating structures is limited by rf breakdown. In this paper we describe an experimental setup for study of these limits for 11.4 GHz traveling-wave and standing-wave accelerating structures. The setup uses matched mode converters that launch the circular TM01 mode and short test structures. The test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype structures for the Next Linear Collider. Fields elsewhere in the test structures and in the mode converters are significantly lower then in this single cell. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn around time. In this paper we present design considerations and initial experimental data.

  8. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  9. The Golgi apparatus in the endomembrane-rich gastric parietal cells exist as functional stable mini-stacks dispersed throughout the cytoplasm

    OpenAIRE

    Gunn, Priscilla A.; Gliddon, Briony L.; Londrigan, Sarah L.; Lew, Andrew M.; van Driel, Ian R.; Gleeson, Paul A.

    2011-01-01

    Background information. Acid-secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+,K+ ATPase-containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane-dense cytoplasm of parietal cells. Results. Here, we demonstr...

  10. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  11. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  12. Embryonic stem cells: An alternative approach to developmental toxicity testing

    Directory of Open Access Journals (Sweden)

    S Tandon

    2012-01-01

    Full Text Available Stem cells in the body have a unique ability to renew themselves and give rise to more specialized cell types having functional commitments. Under specified growth conditions, these cell types remain unspecialized but can be triggered to become specific cell type of the body such as heart, nerve, or skin cells. This ability of embryonic stem cells for directed differentiation makes it a prominent candidate as a screening tool in revealing safer and better drugs. In addition, genetic variations and birth defects caused by mutations and teratogens affecting early human development could also be studied on this basis. Moreover, replacement of animal testing is needed because it involves ethical, legal, and cost issues. Thus, there is a strong requirement for validated and reliable, if achievable, human stem cell-based developmental assays for pharmacological and toxicological screening.

  13. Tensegrity finite element models of mechanical tests of individual cells.

    Science.gov (United States)

    Bursa, Jiri; Lebis, Radek; Holata, Jakub

    2012-01-01

    A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests. PMID:22508025

  14. Specifications and schedule of a fuel cell test railway vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, T.; Ogawa, K.; Furuya, T.; Kondo, K.; Yamamoto, T. [Railway Technical Research Inst., Tokyo (Japan)

    2006-07-01

    This paper described a fuel cell test railway vehicle designed at a research institute in Japan. A proton exchange membrane fuel cell (PEMFC) was used as the on-board power source of the railway vehicle traction system. Use of the fuel cell was expected to reduce carbon dioxide (CO{sub 2}) emissions as well as overall energy consumption when combined with the use of a regenerative brake. During the experiment, 100 kW class fuel cells were constructed, and pure hydrogen was supplied from a hydrogen cylinder. A composite cylinder made from an aluminum liner wrapped in carbon fiber was selected as a hydrogen storage tank. An existing rapid service train body was modified to test the new system. The train was comprised of a motive bogie with 2 motors, and a trailing bogie without motors. The fuel cells and the traction inverter were installed inside the car, while hydrogen cylinders were installed under the floor to avoid leaks. The motor was operated at the limit of the fuel cell's power of 120 kW. Train performance curves of the test track were measured. A high-speed test drive of the system will be conducted in the near future. Details of the test schedule were provided. 1 ref., 4 tabs., 10 figs.

  15. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    Science.gov (United States)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  16. Reliability Testing the Die-Attach of CPV Cell Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, N.; Sweet, C.; Kurtz, S.

    2011-02-01

    Results and progress are reported for a course of work to establish an efficient reliability test for the die-attach of CPV cell assemblies. Test vehicle design consists of a ~1 cm2 multijunction cell attached to a substrate via several processes. A thermal cycling sequence is developed in a test-to-failure protocol. Methods of detecting a failed or failing joint are prerequisite for this work; therefore both in-situ and non-destructive methods, including infrared imaging techniques, are being explored as a method to quickly detect non-ideal or failing bonds.

  17. Separator development and testing of nickel-hydrogen cells

    Science.gov (United States)

    Gonzalez-Sanabria, O. D.; Manzo, M. A.

    1984-01-01

    The components, design, and operating characteristics of Ni-H2 cells and batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from the nickel electrode, while retaining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life.

  18. Pressurized electrolysis stack with thermal expansion capability

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  19. [Gas cooled fuel cell systems technology development program

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

  20. 3D Segmentations of Neuronal Nuclei from Confocal Microscope Image Stacks

    Directory of Open Access Journals (Sweden)

    Antonio eLaTorre

    2013-12-01

    Full Text Available In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells. We have tested our algorithm in a real scenario --- the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  1. Assessment of the 296-S-21 Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2006-09-08

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the

  2. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion

    DEFF Research Database (Denmark)

    Christiansen, N.; Primdahl, S.; Wandel, Marie; Ramousse, Severine; Hagen, Anke

    2013-01-01

    manufacturing of materials, cells and stacks based on state of the art as well as innovative strategies. Today TOFC provides the SOFC technology platform: Cells, stacks, integrated multi stack module and PowerCore units that integrate stack modules with hot fuel processing units for high electrical efficiency....... TOFC collaborates with integrator partners to develop, test and demonstrate possibilities and challenges in case of CHP, distributed generation, transportation application and electrolysis. Aiming at improved reliability, robustness and low material cost, TOFC has in the collaboration with DTU...... increased the efforts on development of next generation cells with metallic support including novel infiltrated nano-structured electrodes for operation in the temperature range 600-700 oC. Recently, record-breaking results have been obtained on cell level as well as on stack level....

  3. Multibeam collimator uses prism stack

    Science.gov (United States)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  4. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  5. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  6. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  7. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  8. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  9. Preliminary testing of an electrolysis cell for highly tritiated water

    International Nuclear Information System (INIS)

    In the framework of the European fusion technology programme, SCK/CEN (Mol, Belgium) has continued the development of an electrolysis cell for highly tritiated water. In the resulting original concept, the liquid inventory is limited to the vertical porous gas separator which is wetted by capillarity. Use is made of thermoelectric heat pumps to cool the cell down to about 80C. Intensive testing with light water has been performed successfully during more than 10,000 cumulated hours with mock-up cells, and during more than 6,000 cumulated hours with a prototype cell. These tests have demonstrated the robustness and the long-term reliability of the proposed system. Further experiments are going on with the aim to characterize the working of the capillary cell. In the same time, peripheral equipment such as demisters and cold traps are being tested. These devices are to be incorporated in a dedicated loop for testing with tritiated water at the nominal specific activity (-- 4.1019 Bq/m3)

  10. IFMIF target and test cell - Towards design integration

    International Nuclear Information System (INIS)

    The International-Fusion-Material-Irradiation-Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Two 40 MeV deuterium beams of 125 mA each will hit a flowing liquid lithium jet target, producing high energy neutrons up to 55 MeV at a rate of about 1x1017s-1. Those neutrons will penetrate the target back wall made of a thin Eurofer plate. In the attached High Flux Test Module (HFTM), a testing volume of 0.5 litres filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The HFTM will also provide helium and hydrogen production to dpa ratios that reflect within the uncertainties the values expected in a DEMO fusion reactor. The Medium Flux Test Module (MFTM) comprises devices for in situ creep-fatigue and tritium release experiments, as well as tungsten spectral shifter or reflector plates. Farther down-stream the low flux region will provide irradiation tubes for additional material irradiation at lower fluence levels. The objective of the present paper is to present the progress achieved in the design integration of the Target and Test Cell of IFMIF. First, work is reported on collecting and harmonizing the CAD designs provided by various international groups involved in the IFMIF Target and Test Cell development. Second, further efforts devoted to the general nuclear layout of the Target and Test Cell are described, taking into account nuclear calculations of responses such as the nuclear heating, the activation inventories, and dose rates based on most advanced nuclear data and calculational procedures. Finally, results of an extensive study are presented on the cooling capabilities of the Target and Test Cell by natural convection. (author)

  11. The US Army Foreign Comparative Test fuel cell program

    Science.gov (United States)

    Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry

    The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.

  12. Multi-functional stacked light-trapping structure for stabilizing and boosting solar-electricity efficiency of hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Huang, Wen-Hsien; Shieh, Jia-Min; Pan, Fu-Ming; Shen, Chang-Hong; Huang, Jung Y.; Wu, Tsung-Ta; Kao, Ming-Hsuan; Hsiao, Tzu-Hsuan; Yu, Peichen; Kuo, Hao-Chung; Lee, Ching-Ting

    2013-08-01

    A sandwiched light-trapping electrode structure, which consists of a capping aluminum-doped ZnO (AZO) layer, dispersed plasmonic Au-nanoparticles (Au-NPs), and a micro-structured transparent conductive substrate, is employed to stabilize and boost the conversion-efficiency of hydrogenated amorphous silicon (a-Si:H) solar cells. The conformal AZO ultrathin layer (5 nm) smoothened the Au-NP-dispersed electrode surface, thereby reducing defects across the AZO/a-Si:H interface and resulting in a high resistance to photo-degradation in the ultraviolet-blue photoresponse band. With the plasmonic light-trapping structure, the cell has a high conversion-efficiency of 10.1% and the photo-degradation is as small as 7%.

  13. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    OpenAIRE

    Jingming Liang; Zefeng Wu

    2015-01-01

    A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC) stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT) model has been figured out by applying the computational fluid dynamics (CFD) software, based on which, the...

  14. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  15. TEST RESULTS FOR FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS

    Science.gov (United States)

    EPA, in conjunction with ONSI Corp., embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the proce...

  16. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  17. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.; Lopacinska, Joanna M.; Skolimowski, Maciej; Chudy, M.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  18. Fifty micron thin solar cell assembly and environmental tests

    Science.gov (United States)

    Hashimoto, H.; Aoki, Y.; Iwakami, M.; Nishiyama, H.

    1986-11-01

    A solar panel assembly study was conducted to establish a way to incorporate ultrathin silicon cells (BSFR) into solar arrays. Parallel gap welding (PGW) and improved solder welding (ISW) were introduced to interconnect the cells, and quality controls through the manufacturing process were implemented. Both methods were evaluated by comparing the results from thermal cycle, thermal vacuum, vibration, shock, and acoustic tests on lightweight lattice panels and semirigid panels. No weld joint failures or electrical degradation are observed. Results indicate the suitability of PGW and ISW for ultrathin solar cells. The validity of assembly and accommodation techniques to the substrate is also confirmed. The assembly technology will be applied to the Japanese Earth Resources Satellite and Engineering Test Satellite.

  19. Fiscal 1997 report on the results of the international standardization R and D. R and D of the standardization of a method to test acceleration life of phosphorous acid fuel cells; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Rinsangata nenryo denchi no kasoku jumyo shiken hoho no hyojunka ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As for fuel cells, which are expected as a new clean energy, the R and D are being proceeded with in various fields of the world, but the standardization has not been made both in Japan and abroad. In Japan, the situation is that the information on technical terms, indication method, performance test method, and environment/safety test methods of the phosphorous acid fuel cell power generation is publicly spread. In relation to the international promotion of fuel cells to be predicted, it is necessary to internationally standardize cells themselves which are a key component of fuel cell power generation facilities. Phosphorous acid fuel cells are expected of the earliest commercialization of all, but the common test method to evaluate life characteristics of the cell stack has not been established yet. In the R and D, for the purpose of internationally standardizing test methods to evaluate life characteristics of the cell stack, a study on the acceleration life test method of phosphoric acid fuel cells was conducted in terms of the technical trend, data, standard, etc. A plan was prepared on general rules of the method to test acceleration life at the cell reaction part of the small cell, and activities also were started for setting up a technical committee for the fuel cell power system in President`s Advisory Committee on Future Technology. 29 figs., 20 tabs.

  20. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  1. Viability Tests for Fresh and Stored Haemopoietic Cells

    International Nuclear Information System (INIS)

    This paper reviews current methods of measurement of the viability of fresh and stored haemopoietic cells. The life expectancy of granulocytes and monocytes after transfusion can be studied by in-vitro labelling with 3H-DFP and subsequent autoradiography. The evaluation of data in about 30 patients with various haemopoietic conditions indicates a wide variation of the disappearance half-time of granulocytes. 3H-cytidine labels essentially all lymphocytes in vitro, predominantly in their RNA. Transfusion of 3H-cytidine-labelled lymphocytes enables one to measure the lower limit of their life-expectancy as well as their rate of RNA metabolism. If bone-marrow cells are labelled in vitro with 3H-thymidine and subsequently transfused, their capability to circulate, to reach the haemopoietic tissue of the host, to proliferate and to mature can be demonstrated. However, the repopulating capacity of frozen and thawed marrow is independent of the ability of 3H-TDR-labelled marrow cells to circulate, proliferate and mature. It is assumed that bone-marrow cells capable of repopulating depleted haemopoietic tissue are resting under steady-state conditions and can be labelled by means of 3H-TDR only using special conditions. Thus the only viability tests for fresh and stored bone-marrow cells at present appear to be bioassay methods at the animal experimental level. The results indicate the need for the development of reliable viability tests for stem cells applicable in both experimental and clinical conditions. (author)

  2. Strategies for Implementing Cell-Free DNA Testing.

    Science.gov (United States)

    Cuckle, Howard

    2016-06-01

    Maternal plasma cell-free (cf) DNA testing has higher discriminatory power for aneuploidy than any conventional multi-marker screening test. Several strategies have been suggested for introducing it into clinical practice. Secondary cfDNA, restricted only to women with positive conventional screening test, is generally cost saving and minimizes the need for invasive prenatal diagnosis but leads to a small loss in detection. Primary cfDNA, replacing conventional screening or retaining the nuchal translucency scan, is not currently cost-effective for third-party payers. Contingent cfDNA, testing about 20% of women with the highest risks based on a conventional test, is the preferred approach. PMID:27235907

  3. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted;

    2011-01-01

    Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks. T...

  4. High Temperature Co‐Electrolysis of Steam and CO2 in an SOC Stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, J. U.;

    2013-01-01

    In this work, co‐electrolysis of steam and carbon dioxide was studied in a Topsoe Fuel Cell (TOFC®) 10‐cell stack, containing three different types of Ni/yttria stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells with a footprint of 12 × 12 cm. The stack was operated at 8...

  5. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andreasen, Birgitta; Andersen, Thomas Rieks; Böttiger, Arvid P.L.; Bundgaard, Eva; Norrman, Kion; Andreasen, Jens Wenzel; Jørgensen, Mikkel; Krebs, Frederik C

    2012-01-01

    Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped...... zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission...... electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry as...

  6. Testing of serum atherogenicity in cell cultures: questionable data published

    Directory of Open Access Journals (Sweden)

    Sergei V. Jargin

    2012-01-01

    Full Text Available In a large series of studies was reported that culturing of smooth muscle cells with serum from atherosclerosis patients caused intracellular lipid accumulation, while serum from healthy controls had no such effect. Cultures were used for evaluation of antiatherogenic drugs. Numerous substances were reported to lower serum atherogenicity: statins, trapidil, calcium antagonists, garlic derivatives etc. On the contrary, beta-blockers, phenothiazines and oral hypoglycemics were reported to be pro-atherogenic. Known antiatherogenic agents can influence lipid metabolism and cholesterol synthesis, intestinal absorption or endothelium-related mechanisms. All these targets are absent in cell monocultures. Inflammatory factors, addressed by some antiatherogenic drugs, are also not reproduced. In vivo, relationship between cholesterol uptake by cells and atherogenesis must be inverse rather than direct: in familial hypercholesterolemia, inefficient clearance of LDL-cholesterol by cells predisposes to atherosclerosis. Accordingly, if a pharmacological agent reduces cholesterol uptake by cells in vitro, it should be expected to elevate cholesterol in vivo. Validity of clinical recommendations, based on serum atherogenicity testing in cell monocultures, is therefore questionable. These considerations pertain also to the drugs developed on the basis of the cell culture experiments.

  7. Test chambers for cell culture in static magnetic field

    International Nuclear Information System (INIS)

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D

  8. Indium-gallium-zinc-oxide layer used to increase light transmittance efficiency of adhesive layer for stacked-type multijunction solar cells

    Science.gov (United States)

    Yoshidomi, Shinya; Kimura, Shunsuke; Hasumi, Masahiko; Sameshima, Toshiyuki

    2015-11-01

    We report the increase in transmittance efficiency of the intermediate layer for multijunction solar cells caused by the indium-gallium-zinc-oxide (IGZO) layer used as the antireflection layer. Si substrates coated with a 200-nm-thick IGZO layer with a refractive index of 1.85 were prepared. The resistivity of the IGZO layer was increased from 0.0069 (as-deposited) to 0.032 Ω cm by heat treatment at 350 °C for 1 h to prevent free-carrier optical absorption. Samples with the Si/IGZO/adhesive/IGZO/Si structure were fabricated. The average transmissivity for wavelengths between 1200 and 1600 nm was 49%, which was close to 55% of single-crystal silicon substrates. A high effective transmittance efficiency of 89% was experimentally achieved. The numerical calculation showed in an effective transmittance efficiency of 99% for 170-nm-thick antireflection layers with a resistivity of 0.6 Ω cm and a refractive index of 2.1.

  9. Thermal failure model and reliability tests of solar cells

    Science.gov (United States)

    Xin, Xiankun; Cao, Guang C.

    2001-05-01

    Within silicon silver is an impurity with fast diffusivity and deep levels. It forms effective recombination centers in silicon acting as either acceptor or donor levels. That has been confirmed by a depth profile analysis with the SIMS. The silver atoms do exist near the barrier region of a solar cell with Ti/Pd/Ag electrodes heated at 245 degrees Celsius for 308 hours. The open circuit voltage at low injection decreases as recombination actions increase in the barrier region. According to these phenomena, an estimation for the lifetime of solar cells is given by using acceleration tress tests based on Arrhenius equation.

  10. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se)2 thin films and solar cells formed by the stacked elemental layer process

    International Nuclear Information System (INIS)

    In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se)2 thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

  11. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se){sub 2} thin films and solar cells formed by the stacked elemental layer process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. J., E-mail: bjm.mueller@web.de [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany); Zimmermann, C.; Haug, V., E-mail: veronika.haug@de.bosch.com; Koehler, T.; Zweigart, S. [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Hergert, F. [Bosch Solar CISTech GmbH, D-14772 Brandenburg (Germany); Herr, U., E-mail: ulrich.herr@uni-ulm.de [Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany)

    2014-11-07

    In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se){sub 2} thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

  12. Natural convection cooling of the IFMIF target and test cell

    International Nuclear Information System (INIS)

    The present work summarizes efforts on the simulation of natural convection cooling within the IFMIF target and test cell. The simulations have been performed with the STAR-CD code using the k-ω high-Reynolds number turbulence model. A dedicated thermohydraulic model has been devised including Lithium loop components. Nuclear heat production has been calculated by the Monte-Carlo code McDeLicious for different parts of the target and test cell walls and was used as input for the STAR-CD simulations. Helium atmospheres at several pressures from 0.1 to 10-5 MPa have been investigated. In order to limit the maximum temperature of the concrete walls to 80 deg. C it was necessary to add thermal insulation layers to the hot Lithium loop surfaces and a conceptual system of two cooling layers in different depths of the concrete walls

  13. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  14. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    OpenAIRE

    Paola Sansoni; Daniela Fontani; Franco Francini; David Jafrancesco; Giacomo Pierucci; Maurizio De Lucia

    2015-01-01

    Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can...

  15. Infiltration of SOFC Stacks: Evaluation of the Electrochemical Performance Enhancement and the Underlying Changes in the Microstructure

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Høgh, Jens Valdemar Thorvald;

    2016-01-01

    Experimental SOFC stacks with 10 SOFCs (LSM-YSZ/YSZ/Ni-YSZ) were infiltrated with CGO and Ni-CGO on the air and fuel side, respectively in an attempt to counter degradation and improve the output. The electrochemical performance of each cell was characterized (i) before infiltration, (ii) after...... testing the cells were characterized by SEM and TEM/EELS. A thin layer of CGO nanoparticles around the LSM-YSZ back bone structure was found after infiltration. On the anode side nano sized Ni particles were found embedded in a CGO layer formed around the Ni-YSZ structure. EELS analysis showed that the...

  16. DNA nanotechnology from the test tube to the cell

    Science.gov (United States)

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A.; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology -- applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems -- lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  17. Design and Installation of a Disposal Cell Cover Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  18. Performance and Safety Tests on Samsung 18650 Li-ion Cells: Two Cell Designs

    Science.gov (United States)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin

    2002-01-01

    In order to meet the applications for space shuttle in future, two types of Samsung cells, with capacity 1800 mAh and 2000 mAh, have been investigated. The studies focused on: (1) Performance tests: completed 250 cycles at various combinations of charge/discharge C rates and discharge capacity measurements at various temperatures; and (2) Safety tests: overcharge and overdischarge, heat abuse, short circuit, internal and external short, and vibration, vacuum, and drop tests

  19. Solid oxide fuel cell development at Topsoe Fuel Cell A/S and Risoe National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, N.; Hansen, J.B.; Holm-Larsen, H. [Topsoe Fuel Cell A/S, Lyngby (Denmark); Linderoth, S.; Larsen, P.H.; Hendriksen, P.V.; Hagen, A. [Risoe National Lab., DTU, Roskilde (Denmark)

    2007-05-15

    Topsoe Fuel Cell A/S (TOFC) and Risoe National Laboratory (Risoe) are jointly carrying out a development programme focusing on low cost manufacturing of flat planar anode-supported cells and stacks employing metallic interconnects. The consortium of Topsoe Fuel Cell A/S and Risoe has up-scaled its production capacity of anode-supported cells to about 1100 per week. TOFC has an extended program to develop the SOFC technology all the way to a marketable product. The road to a successful SOFC technology is first and foremost governed by the ability to produce reliable and cost-effective cells and stacks. Multi stack modules consisting of four 75 cell stacks have been tested for more than 4000 hours with pre-reformed natural gas and modules consisting of twelve stacks are under development. The degradation rate has been reduced to below 0.5% per 1000 hours, especially by improvement of metal alloy interconnects and coatings. In collaboration with Waertsilae, a 24-stack prototype based on natural gas is being tested. For methanol based systems the methanol is methanated upstream the anode using a Haldor Topsoe catalyst. The range of fuels has further been extended to include ethanol and coal syn-gas by development of a new coke resistant catalyst suitable for future SOFC technology. (au)

  20. Self-Adjusting Stack Machines

    CERN Document Server

    Hammer, Matthew A; Chen, Yan; Acar, Umut A

    2011-01-01

    Self-adjusting computation offers a language-based approach to writing programs that automatically respond to dynamically changing data. Recent work made significant progress in developing sound semantics and associated implementations of self-adjusting computation for high-level, functional languages. These techniques, however, do not address issues that arise for low-level languages, i.e., stack-based imperative languages that lack strong type systems and automatic memory management. In this paper, we describe techniques for self-adjusting computation which are suitable for low-level languages. Necessarily, we take a different approach than previous work: instead of starting with a high-level language with additional primitives to support self-adjusting computation, we start with a low-level intermediate language, whose semantics is given by a stack-based abstract machine. We prove that this semantics is sound: it always updates computations in a way that is consistent with full reevaluation. We give a comp...

  1. Development of an accelerated reliability test schedule for terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  2. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  3. Fuel Cell Testing - Degradation of Fuel Cells and its Impact on Fuel Cell Applications

    OpenAIRE

    Pfrang, Andreas

    2008-01-01

    Fuel cells are expected to play a major role in the future energy supply, especially polymer electrolyte membrane fuel cells could become an integral part in future cars. Reduction of degradation of fuel cell performance while keeping fuel cell cost under control is the key for an introduction into mass markets.

  4. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  5. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  6. Gate stack technology for nanoscale devices

    Directory of Open Access Journals (Sweden)

    Byoung Hun Lee

    2006-06-01

    Full Text Available Scaling of the gate stack has been a key to enhancing the performance of complementary metal-oxide-semiconductor (CMOS field-effect transistors (FETs of past technology generations. Because the rate of gate stack scaling has diminished in recent years, the motivation for alternative gate stacks or novel device structures has increased considerably. Intense research during the last decade has led to the development of high dielectric constant (k gate stacks that match the performance of conventional SiO2-based gate dielectrics. However, many challenges remain before alternative gate stacks can be introduced into mainstream technology. We review the current status of and challenges in gate stack research for planar CMOS devices and alternative device technologies to provide insights for future research.

  7. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

  8. Real life testing of a Hybrid PEM Fuel Cell Bus

    Science.gov (United States)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are

  9. Fabrication techniques and stack assembling methods for micro tubular solid oxide fuel cells%微管式固体氧化物燃料电池制备技术及电堆组装工艺

    Institute of Scientific and Technical Information of China (English)

    孟秀霞; 杨乃涛; 尹屹梅; 谭小耀; 马紫峰

    2011-01-01

    微管式固体氧化物燃料电池(MT-SOFC)能显著减小固体氧化物燃料电池(SOFC)的体积,微型化结构使其传质、传热和反应效率明显提高,可实现快速启动与关闭,易于移动和携带.本文概述了微管式固体氧化物燃料电池的结构、关键制备工艺、研究现状、存在问题和应用前景.对电解质支撑型、阳极支撑型及阴极支撑型MT-SOFC结构和性能进行了分析比较,介绍了等静压成型、挤出成型和相转化纺丝法制备陶瓷中空纤维的技术,综述了微管负载型电解质膜技术和微管电池堆组装技术,并对MT-SOFC发展方向及在便携电源、汽车动力电源和微反应器领域的应用进行了展望.%Micro tubular solid oxide fuel cells (MT-SOFCs) have not only the inherent benefits of SOFCs, but exhibit new advantages over conventional SOFCs, such as higher mass transfer/heat transfer, higher reaction efficiency, rapid start-up/shut-down and significantly reduced volume. Therefore, MT-SOFCs show potential applications in portable and mobile power sources. This paper reviews the progress of MT-SOFC studies, focusing on the properties, structures, and fabrications of the cells. The structures and performances of MT-SOFCs supported with electrolyte, anode and cathode respectively are compared and analyzed. The key step for fabrication of MT-SOFCs is the preparation of micro tubes using methods such as isostatic pressing, plastic extrusion and phase inversion spinning methods for hollow fiber ceramics. Preparation of dense electrolyte membrane and assembling of cell stacks are discussed. The challenges and potential applications of MT-SOFCs in portable power sources, electric vehicles and micro reactors are also highlighted.

  10. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  11. The untyped stack calculus and Bohm's theorem

    OpenAIRE

    Alberto Carraro

    2013-01-01

    The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  12. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.

    Science.gov (United States)

    Zhang, Bopeng; Gao, Haiping; Chen, Yongsheng

    2015-12-15

    Reverse electrodialysis (RED) is a promising technique for harvesting energy by mixing seawater with river water. The energy production is usually limited by ionic conductivity in dilute compartments of a RED system. Novel tests were conducted in this research, which used ion-exchange resin beads (IERB) to replace nonconductive spacer fabrics in RED compartments with dilute NaCl solution in a modified stack containing Fumasep FKS and Fumasep FAS membranes. We compared the conductivity of an IERB packed bed with that of an inert glass-beads-packed bed as a control to confirm IERB's effectiveness. When applied in a RED system, IERB decreased the stack resistance by up to 40%. The maximum gross power density improved by 83% in the RED stack compared to that in a regular RED stack at 1.3 cm/s average linear flow velocity. IERB-filled stack resistance was modeled. The model results fit well with experimental data, thereby confirming the effectiveness of the new approach presented here. The net power density is also estimated based on the measured pressure drop and pumping energy model. Both gross and net power density was improved by over 75% at higher flow rate. A net power density of 0.44 W/m(2) was achieved at a cell thickness of 500 μm. To the best of our knowledge, this research is the first to study the impact of IERB on power generation and establishes a new approach to improving the power performance of a RED system. PMID:26560232

  13. Test Series 2: seismic-fragility tests of naturally-aged Class 1E Exide FHC-19 battery cells

    International Nuclear Information System (INIS)

    The seismic-fragility of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and their thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the ''end-of-life'' of a battery if subjected to a seismic event. This report, the second in a test series of an extensive seismic research program, covers the testing of 10-year old lead-calcium Exide FHC-19 cells from the Calvert Cliffs Nuclear Power Station operated by the Baltimore Gas and Electric Company. The Exide cells were tested in two configurations using a triaxial shake table: single-cell tests, both rigidly and loosely mounted; and multicell (three-cell) tests, mounted in a typical battery rack. A total of six electrically active cells was used in the two different cell configurations

  14. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  15. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;

    2011-01-01

    configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the...... spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a...

  16. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  17. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  18. [Gas cooled fuel cell systems technology development program]. Quarterly technical progress narrative No. 21, December 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm{sup 2}; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

  19. Comparison of spatial harmonics in infinite and finite Bragg stacks for metamaterial homogenization

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    2014-01-01

    Metamaterial homogenization may be based on the dominance of a single Floquet-Bloch spatial harmonic in an infinite periodic structure - with the dominance quantified in terms of the relative magnitude of the associated spatial harmonic Poynting vector. For the corresponding finite structure...... of the corresponding infinite Bragg stack. This is even the case for finite Bragg stacks having only two unit cells; thus, the number of unit cells does not influence the homogenizability of this type of configuration. ©...

  20. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  1. Construction and testing of a hydrogen cracking cell

    Directory of Open Access Journals (Sweden)

    F Sahra Gard

    2011-12-01

    Full Text Available A UHV atomic hydrogen-cracking cell has been constructed to produce atomic hydrogen in order to perform in-situ cleaning of semiconductor samples. The cell was calibrated and tested with the objective of cleaning the III-V semiconductor samples such as GaAs. Mass spectroscopy studies during the atomic hydrogen cleaning of the GaAs samples revealed the chemical process of the hydrogen cleaning. X-ray Photoemission Spectroscopy (XPS was also carried out on the samples at different stages of cleaning. Desorption of the native oxide from GaAs samples resulted in a smooth surface, which was confirmed by Reflection High Energy Electron Diffraction (RHEED.

  2. Testing Turing’s theory of morphogenesis in chemical cells

    Science.gov (United States)

    Tompkins, Nathan; Li, Ning; Girabawe, Camille; Heymann, Michael; Ermentrout, G. Bard; Epstein, Irving R.; Fraden, Seth

    2014-01-01

    Alan Turing, in “The Chemical Basis of Morphogenesis” [Turing AM (1952) Philos Trans R Soc Lond 237(641):37–72], described how, in circular arrays of identical biological cells, diffusion can interact with chemical reactions to generate up to six periodic spatiotemporal chemical structures. Turing proposed that one of these structures, a stationary pattern with a chemically determined wavelength, is responsible for differentiation. We quantitatively test Turing’s ideas in a cellular chemical system consisting of an emulsion of aqueous droplets containing the Belousov–Zhabotinsky oscillatory chemical reactants, dispersed in oil, and demonstrate that reaction-diffusion processes lead to chemical differentiation, which drives physical morphogenesis in chemical cells. We observe five of the six structures predicted by Turing. In 2D hexagonal arrays, a seventh structure emerges, incompatible with Turing’s original model, which we explain by modifying the theory to include heterogeneity. PMID:24616508

  3. Dielectric elastomer generators that stack up

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  4. Dielectric elastomer generators that stack up

    Science.gov (United States)

    McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.

    2015-01-01

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  5. A critical test of organic P-N photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bird, G.R. [Rutgers Univ., Piscataway, NJ (United States)

    1996-09-01

    We present an urgent view of the field of organic solid state photovoltaic cells. This is a proper time to select the most promising materials from the Electrophotographic Industry, materials long tried in terms of stability, high quantum yield of charge carriers, but set apart by unusually high quantum yields at low applied fields. Our experience with the candidate dyes has covered new tests for identifiable impurities and removal of these impurities by verifiable methods. A new method of purification, reactive train sublimation, has been developed for DNT, one of the simplest of the outstanding perylene dyes, and the method seems applicable to some of the other promising perylene derivatives. It removes the offending impurity by converting it into the desired pure product. The role of water of hydration in the {open_quotes}wine cellar effect{close_quotes}, the slowly rising performance of newly made phthalocyanine containing cells has been analyzed. Under the concept of feasibility testing before a final refinement for practicality of materials and production methods, the hydration can be controlled for high level testing. At the same time, efforts go forward to eliminate the need. At least one of the best phthalocyanine components, X-H{sub 2}Pc, does not require water for peak performance. Finally, we have attacked BBIP (bis-benzimidazole perylene) one of the best and most enigmatic of the near infrared sensors. It has long been known and used as a mixture of synthetic isomers, and we hypothesize that either of these would be better than the uncontrolled mixture. A partial success in the form of isolating highly enriched crystals for an X-ray structure of the trans-molecule, is first presented here. A simple optical analysis method has been developed to follow enrichment procedures. For all of its difficult history, this material seems closest to a state of readiness for critical feasibility testing.

  6. A cost-benefit model comparing the California Milk Cell Test and Milk Electrical Resistance Test

    Directory of Open Access Journals (Sweden)

    Inge-Marie Petzer

    2013-03-01

    Full Text Available The indirect effects of mastitis treatment are often overlooked in cost-benefit analyses, but it may be beneficial for the dairy industry to consider them. The cost of mastitis treatment may increase when the duration of intra-mammary infections are prolonged due to misdiagnosis of host-adapted mastitis. Laboratory diagnosis of mastitis can be costly and time consuming, therefore cow-side tests such as the California Milk Cell Test (CMCT and Milk Electrical Resistance (MER need to be utilised to their full potential. The aim of this study was to determine the relative benefit of using these two tests separately and in parallel. This was done using a partial-budget analysis and a cost-benefit model to estimate the benefits and costs of each respective test and the parallel combination thereof. Quarter milk samples (n= 1860 were taken from eight different dairy herds in South Africa. Milk samples were evaluated by means of the CMCT, hand-held MER meter and cyto-microbiological laboratory analysis. After determining the most appropriate cut-off points for the two cow-side tests, the sensitivity and specificity of the CMCT (Se= 1.00, Sp= 0.66, MER (Se= 0.92, Sp= 0.62 and the tests done in parallel (Se= 1.00, Sp= 0.87 were calculated. The input data that were used for partial-budget analysis and in the cost-benefit model were based on South African figures at the time of the study, and on literature. The total estimated financial benefit of correct diagnosis of host-adapted mastitis per cow for the CMCT, MER and the tests done in parallel was R898.73, R518.70 and R1064.67 respectively. This involved taking the expected benefit of a correct test result per cow, the expected cost of an error per cow and the cost of the test into account. The CMCT was shown to be 11%more beneficial than the MER test, whilst using the tests in parallel was shown to be the most beneficial method for evaluating the mastitis-control programme. Therefore

  7. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  8. Demagnetizing effects in stacked rectangular prisms

    International Nuclear Information System (INIS)

    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field.

  9. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  10. Excitation transfer in stacked quantum dot chains

    International Nuclear Information System (INIS)

    Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures. (paper)

  11. Do Stack Traces Help Developers Fix Bugs?

    NARCIS (Netherlands)

    Schröter, A.; Bettenburg, N.; Premraj, R.

    2010-01-01

    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by condu

  12. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe;

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  13. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  14. Designing, Building and Testing of an Electropolishing Cell

    Science.gov (United States)

    Al-Ajlouni, M.; Al-Hamdan, A.

    During the work of this research, designing, building and testing of an electropolishing cell has been carried out. Various tests have been performed for three different materials namely, steel, aluminum and brass at different environment conditions in order to a better evaluation of electropolishing. These conditions include the effect of concentration of electrolytes, electrolytes temperature, power supplied and machining time. The results of these tests have been analyzed and performance curves have been drawn. The optimum temperatures and the optimum time have been obtained at which the maximum metal removal and the best surface quality is achieved. These temperature and time for Aluminum, Brass and Steel are T = 60, 50 and 75°C, t = 20, 40 and 50 min, respectively. Surface roughnesses of the specimens have been measured before and after electropolishing. The results showed a significant improvement that effect positively on strength, fatigue resistance and corrosion resistance. Many important conclusions have been extracted from these performance curves and some recommendations have been noted to help in future works.

  15. Hydrogen production test by high temperature electrolysis of steam. Test results with self-supporting planar cell

    International Nuclear Information System (INIS)

    Hydrogen production process by high-temperature electrolysis of steam is expected to be one of hydrogen production processes suitable for high-temperature gas-cooled reactors. A self-supporting planar electrolysis cell was fabricated: the electrolyte of the cell was made from a thin plate of yttria-stabilized zirconia with 0.3 mm in thickness, and an electrode film layered on the plate had an area of 64 cm2. In the electrolysis test conducted at an electrolysis temperature of 850degC, hydrogen was produced at a rate of 2.4 Nl/h. Test results showed that the planar cell had a better hydrogen production performance than the electrolysis tube with 12 cells tested before. This report presents an outline of planar cell, test results, and problems obtained through the electrolysis test. (author)

  16. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  17. Note: A heated-air curtain design using the Coanda effect to protect optical access windows in high-temperature, condensing, and corrosive stack environments

    Science.gov (United States)

    Williams, Gustavious Paul; Keenan, Thomas L.; Herning, James; Kimblin, Clare; DiBenedetto, John; Anthony, Glen

    2011-01-01

    We present an air knife design for creating a heated air curtain to protect optical infrared access windows in high-temperature, condensing, and corrosive stack environments. The design uses the Coanda effect to turn the air curtain and to attach the air curtain to the window surface. The design was tested and verified on our 24 m stack and used extensively over a 6 yr period on several release stacks. During testing and subsequent use no detrimental changes to access window materials have been noted. This design allows stack monitoring without significantly affecting the stack flow profile or chemical concentration.

  18. Pi-stacked interactions in explosive crystals: buffers against external mechanical stimuli.

    Science.gov (United States)

    Zhang, Chaoyang; Wang, Xiaochuan; Huang, Hui

    2008-07-01

    The pi-stacked interactions in some explosive crystal packing are discussed. Taking a typical pi-stacked explosive 2,4,6-trinitrobenzene-1,3,5-triamine (TATB) as a sample and using molecular simulations, we investigated the nature of the pi-stacked interactions versus the external mechanical stimuli causing possible slide and compression of explosives. As a result, between the neighbor layers in the TATB unit cell, the electrostatic attraction decreases with a little decrease of vdW attraction when its top layer slides, whereas the vdW attraction increases with a decrease of electrostatic attraction when TATB crystal is compressed along its c axis. Meanwhile, we studied the correlation between the pi-stacked structures and the impact sensitivities of explosives by means of three representatives including TATB with typical planar pi-stacked structures, 2,2-dinitroethylene-1,1-diamine (Fox-7) with wavelike pi-stacked structures, and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) without pi-stacked structure. The results showed that pi-stacked structures, particularly planar layers, can effectively buffer against external mechanical stimuli. That is, pi-stacked structures can partly convert the mechanical energy acting on them into their intermolecular interaction energy, to avoid the increase of the molecular vibration resulting in the explosive decomposition, the formation of hot spots, and the final detonation. This is another reason for the low mechanical sensitivity of pi-stacked explosives besides their stable conjugated molecular structures. PMID:18529058

  19. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  20. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey

    2014-01-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.