WorldWideScience

Sample records for cell stack temperature

  1. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...

  2. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec P...... of the species as in a LTPEM fuel cell system. The use of the HTPEM fuel cell makes it possible to use reformed gas at high CO concentrations, still with a stable efficient performance....

  3. Electrochemical cell stack assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  4. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...... heating strategies and find a strategy suited for fast startup of the HTPEM fuel cell stacks. Fast start-up of these high temperature systems enables use in a wide range of applications, such as automotive and auxiliary power units, where immediate system response is needed. The development of a dynamic...... model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the startup time of one of the fuel cell stacks from 1 h to about 6 min....

  5. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    consists of a prototype cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes and runs on pure hydrogen in a dead-end anode configuration with a purge valve. The cooling of the stack...

  6. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  7. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  8. Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jespersen, J.L. [Danish Technological Institute, Kongsvang Alle 29, DK-8000 Arhus C (Denmark); Schaltz, E.; Kaer, S.K. [Department of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark); Andreasen, S.J.

    2009-08-15

    In designing and controlling fuel cell systems, it is advantageous to have models which predict fuel cell behaviour in steady-state as well as in dynamic operation. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterising and developing an impedance model for a high temperature PEM (HT-PEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell is a Nyquist plot, which shows the imaginary and real parts of the impedance of the measured system. The full stack impedance depends on the impedance of each of the single cells of the stack. Equivalent circuit models for each single cell can be used to predict the stack impedance at different temperature profiles of the stack. The information available in such models can be used to predict the fuel cell stack performance, e.g. in systems where different electronic components introduce current harmonics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  10. Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures

    Science.gov (United States)

    Ahluwalia, R. K.; Wang, X.

    Polymer electrolyte fuel cell (PEFC) systems for light-duty vehicles must be able to start unassisted and rapidly from temperatures below -20 °C. Managing buildup of ice within the porous cathode catalyst and electrode structure is the key to self-starting a PEFC stack from subfreezing temperatures. The stack temperature must be raised above the melting point of ice before the ice completely covers the cathode catalyst and shuts down the electrochemical reaction. For rapid and robust self-start it is desirable to operate the stack near the short-circuit conditions. This mode of operation maximizes hydrogen utilization, favors production of waste heat that is absorbed by the stack, and delays complete loss of effective electrochemical surface area by causing a large fraction of the ice to form in the gas diffusion layer rather than in the cathode catalyst layer. Preheating the feed gases, using the power generated to electrically heat the stack, and operating pressures have only small effect on the ability to self-start or the startup time. In subfreezing weather, the stack shut-down protocol should include flowing ambient air through the hot cathode passages to vaporize liquid water remaining in the cathode catalyst. Self-start is faster and more robust if the bipolar plates are made from metal rather than graphite.

  11. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    In designing and controlling fuel cell sys-tems it is advantageous having models predicting the behavior of the fuel cells in steady-state as well as in dynamic ope-ration. This work examines the use of electro-chemical impedance spectroscopy (EIS) for characterizing and developing a model for a ...... for a high temperature PEM (HTPEM) fuel cell stack. A Labview virtual interface has been developed to perform the signal generation and acquisition which is needed to perform EIS....

  12. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  13. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    Science.gov (United States)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  14. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2017-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization...

  15. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    Science.gov (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2016-11-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  16. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user...

  17. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... and discussed in the following. Parallel acquisition using electrochemical impedance spectroscopy can be used to detect possible minor differences in the supply of gas to the individual cells, which is important when going to high fuel utilizations. The fuel flow distribution was determined and provides...... carried out on an experimental 14-cell SOFC stack at varying frequencies and fuel utilizations. The results illustrated that THD can be used to detect increasing non-linearities in the current-voltage characteristics of the stack when the stack suffers from fuel starvation by monitoring the stack sum...

  18. Fuel Cell Stacks

    Science.gov (United States)

    1975-04-01

    AD-A009 587 FUEL CELL STACKS Bernard S. Baker Energy Research Corporation Prepared for: Army Mobility Equipment Research and Development Center April... Mobility Equipment Research and Development Center Unclassified For- Belvoir, Virginia 22060 [15. DE.CLASSIFICATION/L.TWNOGRADING SCREOUJLE 16...the majority of effort has been directed at translating technoilogy for small comn- ponent manufacture on a laboratory scale into large size components

  19. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl;

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site. This art...

  20. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  1. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  2. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2016-10-01

    Full Text Available In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack, the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  3. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  4. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  5. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  6. 质子交换膜燃料电池电堆的动态热模型及其温度控制%Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  7. Mechanically stacked concentrator tandem solar cells

    Science.gov (United States)

    Andreev, V. M.; Rumyantsev, V. D.; Karlina, L. B.; Kazantsev, A. B.; Khvostikov, V. P.; Shvarts, M. Z.; Sorokina, S. V.

    1995-01-01

    Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.

  8. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  9. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santa Rosa, D.T.; Pinto, D.G.; Silva, V.S. [SRE - Solucoes Racionais de Energia, S.A., Poligono Industrial do Alto do Ameal, Ramalhal (Portugal); Silva, R.A.; Rangel, C.M. [INETI, Unidade de Electroquimica de Materiais, Lisboa (Portugal)

    2007-12-15

    An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance). The results show that the stack outputs a maximum power density of 310mW/cm{sup 2} at 790mA/cm{sup 2} when operating at ambient temperature, atmospheric air pressure, self-humidifying, air fan voltage at 5.0 V and 250 mbar hydrogen relative pressure. For the studied range of hydrogen relative pressure (150-750 mbar), it is found that the stack performance is practically not affected by this operation condition, although a slightly higher power output for 150 mbar was observed. On the other hand, it is found that the stack performance increases appreciably when operated with forced air convection instead of natural convection. Finally, the continuous fuel flow operation mode does not improve the stack performance in comparison with the hydrogen dead-end mode, in spite of being preferable to operate the stack with hydrogen flow rates above 0.20 l/min. (author)

  10. Polymer electrolyte fuel cell stack research and development

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Barbera, O.; Giacoppo, G.; Urbani, F.; Passalacqua, E. [Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' del CNR (CNR, ITAE), via Salita per, Santa Lucia sopra Contesse 5, Messina (Italy)

    2008-04-15

    The research activity in polymer electrolyte fuel cell (PEFC) is oriented to the evolution of components and devices for the temperature range from 20 to 130{sup o}C, and covers all the aspects of this matter: membranes and electrodes, fuel cell stack engineering (design and manufacturing) and characterization, computational modelling and small demonstration systems prototyping. Particular attention is devoted to portable and automotive application. Membranes research is focused on thermostable polymers (polyetheretherketone, polysulphone, etc.) and composite membranes able to operate at higher temperature (>100{sup o}C) and lower humidification than the commercial Nafion {sup registered}, while Pt load reduction and gas diffusion layer improvement are the main goals for the electrode development. PEFC stack engineering and characterization activity involve different aspects such as the investigation of new materials for stack components, fuel cell modelling and performance optimization by computational techniques, single cell and stack electrochemical characterization, development of investigation tools for stack monitoring and data acquisition. A lot of work has been focused to the fuel cell stack architecture, assembling, gas leakage and cross-over reduction (gasketing), flow field and manifold design. Computational fluid dynamics studies have been performed to investigate and improve reactants distribution inside the cell. A flow field design methodology, developed in this framework and related to serpentine like flow field, is actually under investigation. All of these aspects of PEFC stack research are realized in the framework of National and European research projects, or in collaboration with industries and other research centres. In the present work our stack research activity is reported and the most important results are also considered. (author)

  11. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...... performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature...

  12. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    Energy Technology Data Exchange (ETDEWEB)

    X, Zhang; J. E. O' Brien; R. C. O' Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  13. Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks

    Science.gov (United States)

    Amirfazli, Amir; Asghari, Saeed; Koosha, Morteza

    2014-12-01

    The narrow range of operating temperature and small temperature differences between the stack and the ambient have made the fuel cell thermal management as one of the key factors that influence the performance and durability of polymer electrolyte membrane fuel cell (PEMFC) stacks. In the present study, an analytical model is developed to investigate coolant flow and temperature distributions within a PEMFC stack. The model consists of a coolant flow distribution submodel and a thermal submodel for determination of coolant mass flow distribution between different cooling flow fields of the stack and the temperature distribution within the stack, respectively. The coolant mass flow rate and the temperature distributions in stacks with U and Z configurations are compared with each other using the developed model. The test results of two 65-cells stacks are presented to verify the simulation. The results indicate that the Z configuration results in more uniform temperature distribution than the U configuration in low values of the manifold cross sectional area. However, the Z configuration cannot be applied in the stacks with very small manifold sizes. A parametric analysis is also conducted to assess the effects of some parameters on the temperature distribution in a stack.

  14. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    Science.gov (United States)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  15. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries.

  16. The first self-sustainable microbial fuel cell stack.

    Science.gov (United States)

    Ledezma, Pablo; Stinchcombe, Andrew; Greenman, John; Ieropoulos, Ioannis

    2013-02-21

    This study reports for the first time on the development of a self-sustainable microbial fuel cell stack capable of self-maintenance (feeding, hydration, sensing & reporting). Furthermore, the stack system is producing excess energy, which can be used for improved functionality. The self-maintenance is performed by the stack powering single and multi-channel peristaltic pumps.

  17. Co-flow planar SOFC fuel cell stack

    Science.gov (United States)

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  18. Electrochemical removal of NOx with porous cell stacks

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent; Mogensen, Mogens Bjerg

    2010-01-01

    In this study porous cell stacks were investigated for their ability to remove NOx electrochemically. The cell stacks were made from laminated tapes of porous electrolyte Ce0.9Gd0.1O1.95 and composite electrodes of La1−xSrxMnO3 (x = 0.15, and 0.5) and ceria doped with Gd or Pr. The cell stacks were...

  19. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  20. A metallic interconnect for a solid oxide fuel cell stack

    Science.gov (United States)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  1. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    Science.gov (United States)

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  2. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    Science.gov (United States)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  3. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  4. Micro PEM Fuel Cells and Stacks

    Institute of Scientific and Technical Information of China (English)

    Shou-shing; Hsieh

    2007-01-01

    1 Results The effects of different operating parameters on micro proton exchange membrane (PEM) fuel cell performance were experimentally studied for three different flow field configurations (interdigitated,mesh,and serpentine).Experiments with different cell operating temperatures and different backpressures on the H2 flow channels,as well as various combinations of these parameters,have been conducted for three different flow geometries.The micro PEM fuel cells were designed and fabricated in-house t...

  5. Solid oxide cell stack and method for preparing same

    DEFF Research Database (Denmark)

    2012-01-01

    A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpecte...... voltage improvement this solid oxide cell stack structure is particularly suitable for use in solid oxide fuel cell (SOFC) and solid oxide electrolysing cell (SOEC) applications.......A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpected...

  6. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    OpenAIRE

    Khan, M N; K.P.Tyagi

    2010-01-01

    The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbi...

  7. Behavioral pattern of a monopolar passive direct methanol fuel cell stack

    Science.gov (United States)

    Kim, Young-Jin; Bae, Byungchan; Scibioh, M. Aulice; Cho, EunAe; Ha, Heung Yong

    A passive, air-breathing, monopolar, liquid feed direct methanol fuel cell (DMFC) stack consisting of six unit cells with no external pump, fan or auxiliary devices to feed the reactants has been designed and fabricated for its possible employment as a portable power source. The configurations of the stack of monopolar passive feed DMFCs are different from those of bipolar active feed DMFCs and therefore its operational characteristics completely vary from the active ones. Our present investigation primarily focuses on understanding the unique behavioral patterns of monopolar stack under the influence of certain operating conditions, such as temperature, methanol concentration and reactants feeding methods. With passive reactants supply, the temperature of the stack and open circuit voltage (OCV) undergo changes over time due to a decrease in concentration of methanol in the reservoir as the reaction proceeds. Variations in performance and temperature of the stack are mainly influenced by the concentration of methanol. Continuous operation of the passive stack is influenced by the supply of methanol rather than air supply or water accumulation at the cathode. The monopolar stack made up of six unit cells exhibits a total power of 1000 mW (37 mW cm -2) with 4 M methanol under ambient conditions.

  8. Development of a 100 W PEM fuel cell stack for portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci; Erkan, Serdar [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering

    2010-07-01

    In this work, an air cooled 100 W stack was designed, manufactured and tested. The bipolar plates were manufactured by CNC machining of graphite. Membrane electrode assemblies (MEAs) were produced by spraying catalyst ink onto the gas diffusion layer (GDL). A fuel cell stack was assembled with 20 cells each having 12.25 cm{sup 2} active area. The test was carried out with H{sub 2} at anode and air at cathode side both at 100% relative humidity having 1.2 and 2 stoichiometric ratios, respectively. The operating temperature of the stack was kept at 60 C during the test. The results indicated that the stack has a maximum power of 60 W at 12 V operation. Cell numbers 1, 2, 3 and 20 always had less potential than the 0.6 V average cell voltage. Uniform cell voltage distribution has been achieved by improving thermal management and reactant distribution. (orig.)

  9. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  10. Routes to a commercially viable PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.; Foster, S.E.; Hodgson, D.; Marrett, A.

    2002-07-01

    This report describes the results of a project to design and build a 10 kW{sub e} proton exchange membrane fuel cell (PEMFC) stack, including membrane electrode assemblies (MEAs), bipolar plates and stack hardware. The aim was to prove the design concept and to demonstrate functionality by operating the stack at >1 kW{sub e}/L and 500 W/kg for 200 hours operation. The project was extended to include the assembly and testing of two additional 1 kW{sub e} PEMFC stacks based on coated metal components. Low equivalent weight perfluorinated ionomer ion exchange membranes were prepared and were found to give a superior electrochemical performance to commercial materials. A technique to etch various stainless steel grades and control processes was successfully developed and optimised. Coatings for stainless steel and titanium were successfully developed and met the required performance criteria. All PEMFC stack components were selected and designed to enable subsequent commercial manufacture.

  11. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  12. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Science.gov (United States)

    Wang, X.; Tajiri, K.; Ahluwalia, R. K.

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (λ, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical λ (λ h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 °C. There is a second value of λ (λ l), below which the stack can be self-started without forming ice. Between λ l and λ h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 °C. Both λ l and λ h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical λ for a subsequent successful startup. There is an optimum λ for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the λ is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the λ is much higher than this optimum.

  13. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.K. [Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States)

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content ({lambda}, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical {lambda} ({lambda}{sub h}), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of {lambda} ({lambda}{sub l}), below which the stack can be self-started without forming ice. Between {lambda}{sub l} and {lambda}{sub h}, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both {lambda}{sub l} and {lambda}{sub h} are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical {lambda} for a subsequent successful startup. There is an optimum {lambda} for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the {lambda} is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the {lambda} is much higher than this optimum. (author)

  14. Water transport during startup and shutdown of polymer electrolyte fuel cell stacks.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tajiri, K.; Ahluwalia, R.; Nuclear Engineering Division

    2010-10-01

    A dynamic three-phase transport model is developed to analyze water uptake and transport in the membrane and catalyst layers of polymer electrolyte fuel cells during startup from subfreezing temperatures and subsequent shutdown. The initial membrane water content (?, the number of water molecules per sulfonic acid site) is found to be an important parameter that determines whether a successful unassisted self-start is possible. For a given initial subfreezing temperature at startup, there is a critical ? (?h), above which self-start is not possible because the product water completely engulfs the catalyst layers with ice before the stack can warm-up to 0 C. There is a second value of ? (?l), below which the stack can be self-started without forming ice. Between ?l and ?h, the stack can be self-started, but with intermediate formation of ice that melts as the stack warms up to 0 C. Both ?l and ?h are functions of the initial stack temperature, cell voltage at startup, membrane thickness, catalyst loading, and stack heat capacity. If the stack is purged during the previous shutdown by flowing air in the cathode passages, then depending on the initial amount of water in the membrane and gas diffusion layers and the initial stack temperature, it may not be possible to dry the membrane to the critical ? for a subsequent successful startup. There is an optimum ? for robust and rapid startup and shutdown. Startup and shutdown time and energy may be unacceptable if the ? is much less than the optimum. Conversely, a robust startup from subfreezing temperatures cannot be assured if the ? is much higher than this optimum.

  15. Study of organic solar cells with stacked bulk heterojunction structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-fang; XU Zheng; ZHAO Su-ling; ZHANG Fu-jun; LI Yan; WU Chun-yu; CHEN Yue-ning

    2008-01-01

    Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BILl cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV/Ag/MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/A1). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one.

  16. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  17. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  18. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  19. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  20. Transparent contacts for stacked compound photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  1. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  2. Performance model of a recirculating stack nickel hydrogen cell

    Science.gov (United States)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for

  3. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  4. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    Science.gov (United States)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.

    2014-12-01

    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  5. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  6. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2017-01-01

    electrochemical measurements, and this will be the focus of this chapter. First, the important issue of understanding potential differences and measurements of potentials, which is linked to the choice of proper electrode geometries and test set up configurations for electrode and cell testing, is presented...

  7. Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO2

    DEFF Research Database (Denmark)

    Agersted, Karsten; Chen, Ming; Blennow, Peter

    2016-01-01

    High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety of synth......High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety...... of synthetic fuels such as methane, methanol or DME. Previously we have reported electrolysis operation of solid oxide cell stacks for periods up to about 1000 hours. In this work, operation of a Haldor Topsoe 8-cell stack (stack design of 2014) in co-electrolysis mode for 6000 hours is reported. The stack...

  8. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted

    2011-01-01

    Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks...

  9. Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units

    Science.gov (United States)

    Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail

    A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.

  10. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Chih-Yung; Lin, Yu-Sheng; Lu, Chien-Heng [Department of Aeronautics and Astronautics, National Cheng-Kung University, Tainan 70101 (China)

    2009-04-15

    This work experimentally investigates the effects of the pyrolytic graphite sheets (PGS) on the performance and thermal management of a proton exchange membrane fuel cell (PEMFC) stack. These PGS with the features of light weight and high thermal conductivity serve as heat spreaders in the fuel cell stack for the first time to reduce the volume and weight of cooling systems, and homogenizes the temperature in the reaction areas. A PEMFC stack with an active area of 100 cm{sup 2} and 10 cells in series is constructed and used in this research. Five PGS of thickness 0.1 mm are cut into the shape of flow channels and bound to the central five cathode gas channel plates. Four thermocouples are embedded on the cathode gas channel plates to estimate the temperature variation in the stack. It is shown that the maximum power of the stack increase more than 15% with PGS attached. PGS improve the stack performance and alleviate the flooding problem at low cathode flow rates significantly. Results of this study demonstrate the feasibility of application of PGS to the thermal management of a small-to-medium-sized fuel cell stack. (author)

  11. Hybrid Dynamic Modeling and Control of Molten Carbonate Fuel Cell Stack Shutdown

    Institute of Scientific and Technical Information of China (English)

    LI Yong; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.

  12. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  13. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  14. High-temperature superconductor vertically-stacked Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Y; Kito, T; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H [Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2002-12-01

    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO{sub 3} (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  15. High-temperature superconductor vertically-stacked Josephson junctions

    CERN Document Server

    Yoshinaga, Y; Izawa, S; Maruyama, M; Inoue, M; Fujimaki, A; Hayakawa, H

    2002-01-01

    We study vertically-stacked interface-treated Josephson junctions (ITJs). The barriers of ITJs are formed by Ar ion etching and subsequent annealing, not by depositing an artificial barrier. We have investigated the dependences of the junction properties on the processing parameters. It is found that the control of junction properties can be realized by controlling the incidence angle of Ar, and that the higher accelerating voltage of Ar reduces leakage paths in a barrier. Moreover, we have successfully eliminated the excess current of the junctions using the PrGaO sub 3 (PGO) doping process. We conclude that the conjunction of the interface treatment and the PGO doping technique leads to highly integrated Josephson circuits.

  16. Full scale phosphoric acid fuel cell stack technology development

    Science.gov (United States)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  17. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring ...

  18. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring the temper...

  19. Magnetic levitation using a stack of high temperature superconducting tape annuli

    Science.gov (United States)

    Patel, A.; Hahn, S.; Voccio, J.; Baskys, A.; Hopkins, S. C.; Glowacki, B. A.

    2017-02-01

    Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite J c can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.

  20. Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; DENG Zhong-hua; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable.However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8-2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.

  1. Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, In-Su; Shin, Hyun Khil [GS Caltex Corp, Daejeon (Korea, Republic of)

    2015-04-15

    We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

  2. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  3. Fuel Cell Stack Testing and Durability in Support of Ion Tiger UAV

    Science.gov (United States)

    2010-06-02

    This report covers efforts by the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii under the ONR-funded Ion Tiger UAV award that included testing of Ion Tiger fuel cell stacks in HNEI’s Hawaii Fuel Cell Test Facility located in Honolulu, Hawaii. Work was focused on steady-state stack characteristics of Protonex fuel cell stacks under various operating conditions. In addition, Hardware-in-the-Loop testing was performed to characterize dynamic

  4. Stack air-breathing membraneless glucose microfluidic biofuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Moreno-Zuria, A.; Vallejo-Becerra, V.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.

    2016-11-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm-2 in a series connection (2.2822mAcm-2, 1.3607V), and 0.8427 mWcm-2 in a parallel connection (3.5786mAcm-2, 0.8164V).

  5. Occurrence and implications of voltage reversal in stacked microbial fuel cells.

    Science.gov (United States)

    An, Junyeong; Lee, Hyung-Sool

    2014-06-01

    Voltage reversal in stacked microbial fuel cells (MFCs) is a significant challenge that must be addressed, and the information on its definite cause and occurrence process is still obscure. In this work, we first demonstrated that different anodic reaction rates caused voltage reversal in a stacked MFC. Sluggish reaction rates on the anode in unit 1 of the stacked MFC resulted in a significantly increased anode overpotential of up to 0.132 V, as compared to negligible anode overpotential (0.0247 V) in unit 2. This work clearly verified the process of voltage reversal in the stacked MFC. As the current was gradually increased in the stacked MFC, the voltage in the stacked unit 1 decreased to 0 V prior to that of the stacked unit 2. Then, when the voltage in unit 1 became 0 V, it was converted from a galvanic cell to an electrochemical cell powered by unit 2. We found that the stacked unit 2 provided electrical energy for the stacked unit 1 as a power supply. Finally, the anode potential of the stacked unit 1 significantly increased over cathode potential as current increased further, which caused voltage reversal in unit 1. Voltage reversal occurs in stacked MFCs as a result of non-spontaneous anode overpotential in a unit MFC that has sluggish anode kinetics compared to the other unit MFCs.

  6. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  7. Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Stinchcombe, Andrew; Walter, X Alexis; Greenman, John; Ieropoulos, Ioannis

    2015-08-24

    The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8 mL chamber volume were designed using all biodegradable products: polylactic acid for the frames, natural rubber as the cation-exchange membrane and egg-based, open-to-air cathodes coated with a lanolin gas diffusion layer. Forty MFCs were operated in various configurations. When fed with urine, the biodegradable stack was able to power appliances and was still operational after six months. One useful application for this truly sustainable MFC technology includes onboard power supplies for biodegradable robotic systems. After operation in remote ecological locations, these could degrade harmlessly into the surroundings to leave no trace when the mission is complete.

  8. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  9. High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

    2012-01-01

    High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a very promising technology for energy storage or production of synthetic fuels. By electrolysis of steam, the SOEC provides an efficient way of producing high purity hydrogen and oxygen [1]. Furthermore, the SOEC...... units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (CO+H2), which can be further processed to a variety of synthetic fuels such as methane, methanol or DME [2]. Previously we have shown at stack level that Ni/YSZ electrode supported SOEC cells can be operated at 850 o...

  10. Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY07

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. J. Hartvigsen; J. S. Herring

    2007-09-01

    This report provides documentation of experimental research activities performed at the Idaho National Laboratory and at Ceramatec, Inc. during FY07 under the DOE Nuclear Hydrogen Initiative, High Temperature Electrolysis Program. The activities discussed in this report include tests on single (button) cells, short planar stacks and tubular cells. The objectives of these small-scale tests are to evaluate advanced electrode, electrolyte, and interconnect materials, alternate modes of operation (e.g., coelectrolysis), and alternate cell geometries over a broad range of operating conditions, with the aim of identifying the most promising material et, cell and stack geometry, and operating conditions for the high-temperature electrolysis application. Cell performance is characterized in erms of initial area-specific resistance and long-term stability in the electrolysis mode. Some of the tests were run in the coelectrolysis mode. Research into coelectrolysis was funded by Laboratory Directed Research and Development (LDRD). Coelectrolysis simultaneously converts steam to hydrogen and carbon dioxide to carbon monoxide. This process is complicated by the reverse shift reaction. An equilibrium model was developed to predict outlet compositions of steam, hydrogen, carbon dioxide, and carbon monoxide resulting from coelectrolysis. Predicted ompositions were compared to measurements obtained with a precision micro-channel gas chromatograph.

  11. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  12. A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of proton exchange membrane fuel cell stacks

    Science.gov (United States)

    Zheng, Zhixue; Péra, Marie-Cécile; Hissel, Daniel; Becherif, Mohamed; Agbli, Kréhi-Serge; Li, Yongdong

    2014-12-01

    To improve the performance and lifetime of the low temperature polymer electrolyte membrane fuel cell (PEMFC) stack, water management is an important issue. This paper aims at developing an online diagnostic methodology with the capability of discriminating different degrees of flooding/drying inside the fuel cell stack. Electrochemical impedance spectroscopy (EIS) is utilized as a basis tool and a double-fuzzy method consisting of fuzzy clustering and fuzzy logic is developed to mine diagnostic rules from the experimental data automatically. Through online experimental verification, a high interpretability and computational efficiency of the proposed methodology can be achieved.

  13. Stacked microbial desalination cells to enhance water desalination efficiency.

    Science.gov (United States)

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  14. Advances in the development of a hydrogen/oxygen PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Tori, C.; Garaventta, G.; Visintin, A.; Triaca, W.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 16, Suc. 4 (1900) La Plata (Argentina); Baleztena, M.; Peralta, C.; Calzada, R.; Jorge, E. [Grupo de Investigacion en Energias Sustentables y Eficiencia Energetica (GIESEE), Departamento de Electrotecnia, Universidad Tecnologica Nacional, Facultad Regional La Plata, Av. 60 esq. 124 (1900) La Plata (Argentina); Barsellini, D. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 16, Suc. 4 (1900) La Plata (Argentina); Grupo de Investigacion en Energias Sustentables y Eficiencia Energetica (GIESEE), Departamento de Electrotecnia, Universidad Tecnologica Nacional, Facultad Regional La Plata, Av. 60 esq. 124 (1900) La Plata (Argentina)

    2008-07-15

    Recent advances in the design and construction of a hydrogen/oxygen PEM fuel cell stack are presented. A test bench including measurement and control devices to monitor the fuel cell operating parameters was mounted. The influence of the characteristics of the membrane electrode assembly, bipolar plates, etc., on the performance of the fuel cell stack was studied. The behavior of the fuel cell stack with a different number of cells in series was evaluated. In order to identify and minimize the energy losses a critical analysis of the results was done. (author)

  15. Modelling the impact of creep on the probability of failure of a solid oxidefuel cell stack

    DEFF Research Database (Denmark)

    Greco, Fabio; Frandsen, Henrik Lund; Nakajo, Arata;

    2014-01-01

    of an SOFC stack. A finite element analysis on a single repeating unit of the stack was performed, in which the influence of the mechanical interactions,the temperature-dependent mechanical properties and creep of the SOFC materials are considered. Moreover, stresses from the thermo-mechanical simulation...

  16. Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Lung [Department of Vehicle Engineering, Army Academy, No. 113, Sec.4, Chun-San E. Rd., Chun-Li 320 (China); Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Tashi, Taoyuan 335 (China)

    2010-10-15

    This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4-0.8 A/cm{sup 2}. Since the voltage shift is quite small (roughly 0.73-0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced. (author)

  17. Cell and stack design alternatives. First quarterly report, August 1, 1978-October 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, D.Q.

    1979-01-01

    An apartment house in Albany, New York with HUD minimum insulation was selected as the application to be used in evaluating various system configurations of on-site fuel cell total energy systems. Methods for calculating the static and dynamic thermal loads for a simulated season were developed. Computer models of some major subsystems are now being developed. Finite element models of the electrochemistry, thermodynamics and heat transfer relationships for fuel cells were developed and have been used to calculate current density and temperature distributions for sets of large cells and cooling plates. The results obtained led to several innovative ideas for advanced stack designs. A single lump model of a fuel cell stack was developed for use in the systems study. The available information on methane conditioning was collected and reviewed and a plan for attaining the missing design data has been developed. Simple models of reformer and water-gas shift reactors were developed for use in the systems study. The lines of communication among technical tasks were established, required documentation of plans and progress was prepared and delivered and the monthly review meetings were held as planned.

  18. Vibration mode analysis of the proton exchange membrane fuel cell stack

    Science.gov (United States)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  19. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  20. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  1. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  2. Consideration of Numerical Simulation Parameters and Heat Transfer Models for a Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J.H.; Seo, H.K.; Lim, H.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    A fuel cell stack model based on differential heat balance equations was solved numerically with a computational fluid dynamics code. Theoretical aspects in the simulation of a molten carbonate fuel cell (MCFC) performance model were discussed with regard to numerical accuracy of temperature prediction. The effect of grid setting for gas channel depth was studied to ensure how coarse it can be. A single computational element was sufficient for temperature prediction, while more grid elements are required for calculation of flow field and pressure distribution. The use of constant velocities is not recommended because it cannot account for the change of linear velocity within fuel cells, indicating the momentum equations have to be solved together with the heat balance equations. Thermal radiation has little effect on calculation of temperature field from the model. Gas properties vary within fuel cells, but most of them can be treated constant except for specific heat capacity of anode gas. Convection heat transfer by anode gas can be overestimated when a constant specific heat capacity is used, resulting in prediction of lower temperature curves. (author). 18 refs., 12 figs., 4 tabs.

  3. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  4. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

    Science.gov (United States)

    Kim, Younggy; Logan, Bruce E

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs.

  5. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  6. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard

    2016-01-01

    (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally...

  7. Intermediate temperature solid oxide fuel cells.

    Science.gov (United States)

    Brett, Daniel J L; Atkinson, Alan; Brandon, Nigel P; Skinner, Stephen J

    2008-08-01

    High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components. For smaller scale applications, where integration with a heat engine is not appropriate, there is a trend to move to lower temperatures of operation, into the so-called intermediate temperature (IT) range of 500-750 degrees C. This expands the choice of materials and stack geometries that can be used, offering reduced system cost and, in principle, reducing the corrosion rate of stack and system components. This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime. The main advances made in materials chemistry that have made IT operation possible are described and some of the engineering issues and the new opportunities that reduced temperature operation affords are discussed. This tutorial review examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature. The challenges and advantages of operating in the so-called 'intermediate temperature' range of 500-750 degrees C are discussed and the opportunities for applications not traditionally associated with solid oxide fuel cells are highlighted. This article serves as an introduction for scientists and engineers interested in intermediate temperature solid oxide fuel cells and the challenges and opportunities of reduced temperature operation.

  8. Mechanisms of accelerated degradation in the front cells of PEMFC stacks and some mitigation strategies

    Science.gov (United States)

    Li, Pengcheng; Pei, Pucheng; He, Yongling; Yuan, Xing; Chao, Pengxiang; Wang, Xizhong

    2013-11-01

    The accelerated degradation in the front cells of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and durability of the whole stack. Most researches only focus on the size and configuration of the gas intake manifold, which may lead to the maldistribution of flow and pressure. In order to find out the mechanisms of the accelerated degradation in the front cells, an extensive program of experimental and simulation work is initiated and the results are reported. It is found that after long-term lifetime tests the accelerated degradation in the front cells occurs in all three fuel cell stacks with different flow-fields under the U-type feed configuration. Compared with the rear cells of the stack, the voltage of the front cells is much lower at the same current densities and the membrane electrode assembly(MEA) has smaller active area, more catalyst particle agglomeration and higher ohmic impedance. For further investigation, a series of three dimensional isothermal numerical models are built to investigate the degradation mechanisms based on the experimental data. The simulation results reveal that the dry working condition of the membrane and the effect of high-speed gas scouring the MEA are the main causes of the accelerated degradation in the front cells of a PEM fuel cell stack under the U-type feed configuration. Several mitigation strategies that would mitigate these phenomena are presented: removing cells that have failed and replacing them with those of the same aging condition as the average of the stack; choosing a Z-type feed pattern instead of a U-type one; putting several air flow-field plates without MEA in the front of the stack; or exchanging the gas inlet and outlet alternately at a certain interval. This paper specifies the causes of the accelerated degradation in the front cells and provides the mitigation strategies.

  9. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1996-10-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

  10. Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells

    Science.gov (United States)

    Lee, Youngseok; Gong, Daeyeong; Balaji, Nagarajan; Lee, Youn-Jung; Yi, Junsin

    2012-01-01

    Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and better antireflection of the double stack antireflection coating. It is important that SiNX:H films have strong resistance against stress factors since they are used as antireflective coating for solar cells. However, the tolerance of SiNX:H films to external stresses has never been studied. In this paper, the stability of SiNX:H films prepared by a plasma-enhanced chemical vapor deposition system is studied. The stability tests are conducted using various forms of stress, such as prolonged thermal cycle, humidity, and UV exposure. The heat and damp test was conducted for 100 h, maintaining humidity at 85% and applying thermal cycles of rapidly changing temperatures from -20°C to 85°C over 5 h. UV exposure was conducted for 50 h using a 180-W UV lamp. This confirmed that the double stack antireflection coating is stable against external stress.

  11. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  12. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhidong, E-mail: hlxiao@semi.ac.cn [Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China); Xiao, Hongling [Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China); Wang, Xiaoliang [Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China); ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, Beijing (China); Wang, Cuimei; Deng, Qingwen; Jing, Liang; Ding, Jieqin [Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 (China); Hou, Xun [Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-04-01

    In this study, potential efficiency of InGaN/Si mechanically stacked two-junction solar cell is theoretically investigated by optimizing the band gap and thickness of the top InGaN cell. Results show that the optimum conversion efficiency is 35.2% under AM 1.5 G spectral illuminations, with the bandgap and thickness of top InGaN solar cell are 2.0 eV and 600 nm, respectively. The results and discussion would be helpful in designing and fabricating high efficiency InGaN/Si mechanically stacked solar cell in experiment.

  13. High Temperature Co‐Electrolysis of Steam and CO2 in an SOC Stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, J. U.;

    2013-01-01

    In this work, co‐electrolysis of steam and carbon dioxide was studied in a Topsoe Fuel Cell (TOFC®) 10‐cell stack, containing three different types of Ni/yttria stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells with a footprint of 12 × 12 cm. The stack was operated at 800...... °C and –0.75 A cm–2 with 60% conversion for a period of 1,000 h. One type of the cells showed no long term degradation but actually activation during the entire electrolysis period, while the other two types degraded. The performance and durability of the different cell types is discussed...

  14. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  15. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  16. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    far. Besides a summary of existing test procedures a so called “test matrix” was created. This document includes generic test modules, e.g. current-voltage curves, electrochemical impedance spectroscopy, thermal cycling, electrical current cycling and long-term tests both under steady -state......In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell....../stack assembly in the fuel cell (SOFC), in the electrolysis (SOEC) and in the combined SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. This paper presents the results which have been achieved so...

  17. Simulation and in situ measurement of stress distribution in a polymer electrolyte membrane fuel cell stack

    Science.gov (United States)

    de la Cruz, Javier; Cano, Ulises; Romero, Tatiana

    2016-10-01

    A critical parameter for PEM fuel cell's electric contact is the nominal clamping pressure. Predicting the mechanical behavior of all components in a fuel cell stack is a very complex task due to the diversity of materials properties. Prior to the integration of a 3 kW PEMFC power plant, a numerical simulation was performed in order to obtain the mechanical stress distribution for two of the most pressure sensitive components of the stack: the membrane, and the graphite plates. The stress distribution of the above mentioned components was numerically simulated by finite element analysis and the stress magnitude for the membrane was confirmed using pressure films. Stress values were found within the elastic zone which guarantees mechanical integrity of fuel cell components. These low stress levels particularly for the membrane will allow prolonging the life and integrity of the fuel cell stack according to its design specifications.

  18. Degradation effects in polymer electrolyte membrane fuel cell stacks by sub-zero operation-An in situ and ex situ analysis

    Science.gov (United States)

    Alink, R.; Gerteisen, D.; Oszcipok, M.

    The effect of low temperatures down to -40 °C on the performance and component properties of a polymer electrolyte membrane (PEM) fuel cell stack was investigated. By analyzing the temperature-dependent high-frequency resistance, the mechanism of ice formation within the stack was investigated during freeze/thaw (F/T) cycling while the stack was not operating and during a cold start-up. A step-like change in conductivity at 0 °C indicates that the membranes are dehydrated at sub-zero temperatures due to a change in capillary pressure at the interface membrane/catalyst. Furthermore, it was found that the stack shows little degradation when it is dried out before cooling down. Freezing in a wet state and additional cold start-ups resulted in performance degradation which was mainly attributed to changes in wetting properties. Ex situ environmental scanning electron microscope (ESEM) investigations showed distinct damage and increasing porosity of the electrode in the wet frozen stack, which was most likely the reason for the change in wetting properties. Inductively coupled plasma (ICP) mass spectroscopy showed distinct concentrations of platinum in the exhaust gas of the dry cycled stack, but no additional platinum was found when the stack was cycled in a wet state. Additional ex situ F/T investigations of gas diffusion layers (GDLs) and membrane electrode assemblies (MEAs) within an ESEM confirmed the results, found by in situ investigations of the fuel cell stacks. Serious detachment of electrode material was found without the compressive force applied to an assembly.

  19. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  20. Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell

    NARCIS (Netherlands)

    Dekker, A.J.G.; Heijne, ter A.; Saakes, M.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m2. The ca

  1. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    The market penetration of fuel and electrolysis cell energy systems in Europe requires the development of reliable assessment, testing and prediction of performance and durability of solid oxide cells and stacks (SOC). To advance in this field the EU-project “SOCTESQA” was launched in May 2014. P...... will be confirmed by round robin tests....

  2. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    Science.gov (United States)

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  3. A parametric study of the natural vibration and mode shapes of PEM fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Full Text Available A PEM fuel cell stack is laminated with a number of plate-type cells, and the latest model is assembled by compression from both ends of plates.PEM fuel cells are exposed to high magnitude vibrations, shocks, and cyclic loads in many applications. Vibrations during operation show significant impact in the longer run of the fuel cells. Frequencies which are not close to the resonant frequencies or natural frequencies show very little effect on the overall performance. However, if the frequency ranges of operation approaches the resonant frequency range, the probability of component failure increases. It is possible that there will be lateral transition of cells or leakage of fuel gas and coolant water. Therefore, it is necessary to evaluate the effects vibration has on the fuel cell. This work aims to understand the vibration characteristics of a PEM fuel cell stack and to evaluate their seismic resistance under a vibration environment. Natural frequencies and mode shapes of the PEM fuel cell stack are modelling using finite element methods (FEM.A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young’s modulus, and density for each component layer. In addition, this work provides insight into how the natural frequencies of the PEM fuel cell stack should be tuned to avoid high amplitude vibrations by modifying the material and geometric properties of individual components. The mode shapes of the PEM fuel cell stack provide insight into the maximum displacement exhibited under vibration conditions that should be considered for transportation and stationary applications.

  4. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    OpenAIRE

    Amal M. Al-Amri; Po-Han Fu; Kun-Yu Lai; Hsin-Ping Wang; Lain-Jong Li; Jr-Hau He

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The ex...

  5. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

  6. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-02-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  7. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-01-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  8. Solid Acid Fuel Cell Stack for APU Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Hau H. [SAFCell, Inc., Pasadena, CA (United States)

    2011-04-15

    Solid acid fuel cell technology affords the opportunity to operate at the 200-300 degree centigrade regime that would allow for more fuel flexibility, compared to polymer electrode membrane fuel cell, while avoiding the relatively more expensive and complex system components required by solid oxide fuel cell. This project addresses many factors such as MEA size scalability, fuel robustness, stability, etc., that are essential for successful commercialization of the technology.

  9. Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...

  10. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Tazelaar, Edwin; Shen, Y.; Veenhuizen, Bram; Hofman, T.; Bosch, P. van den

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  11. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.;

    2015-01-01

    /stack assembly in the fuel cell (SOFC), in the electrolysis (SOEC) and in the combined SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. This paper presents the results which have been achieved so...

  12. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  13. Effect of load ratio, testing frequency, temperature, moisture, notch and stacking sequence on the fatigue resistance of woven CFRP laminates

    OpenAIRE

    Lani, Frédéric; 6th International Conference on Fatigue of Composite ICFC2015

    2015-01-01

    A woven CFRP composite laminate has been thoroughly characterized under fatigue. Over 150 tests were performed in order to address the effect of sample geometry (Open Hole Tension, Open Hole Compression, Plain Compression, …), testing frequency (5Hz, 30Hz) with and without cooling system, load ratio (R=10., R=-1., R=0.1), temperature (RT and 120°C), moisture intake (50% RH and 85+% RH at RT), notch (Open Hole Vs. Plain Specimen), stacking sequence (3 different stacking sequences) on the measu...

  14. Identification of critical stacking faults in thin-film CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2014-08-11

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  15. Flow distribution measurements at the exit of bipolar plates in a PEM fuel cell stack; Messung der Stroemungsverteilung am Austritt der Bipolarplatten eines Brennstoffzellen-Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Klinner, Joachim; Willert, Christian [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Abt. Triebwerksmesstechnik; Schneider, Armin; Mack-Gardner, Andre [Adam Opel GmbH, Ruesselsheim (Germany). Alternative Propulsion Center Europe

    2011-07-01

    This paper presents two different experimental approaches which concentrate on capturing the flow distribution close to the anode exit header of a prototype 8-12 KW fuel cell stack operated with air at realistic flow rates. The first approach intends to visualize the penetration depth of millimeter-sized jets towards the exit manifold. The second one is focused on obtaining the exit jet velocity field downstream of the bipolar plate exit header across the entire stack height by repeated 2C-PIV measurements on densely spaced adjacent light sheet planes. An overview of the experimental setup and the data evaluation is given. (orig.)

  16. Analysis of Entropy Generation for the Performance Improvement of a Tubular Solid Oxide Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Vittorio Verda

    2009-03-01

    Full Text Available The aim of the paper is to investigate possible improvements in the design and operation of a tubular solid oxide fuel cell. To achieve this purpose, a CFD model of the cell is introduced. The model includes thermo-fluid dynamics, chemical reactions and electrochemistry. The fluid composition and mass flow rates at the inlet sections are obtained through a finite difference model of the whole stack. This model also provides boundary conditions for the radiation heat transfer. All of these conditions account for the position of each cell within the stack. The analysis of the cell performances is conducted on the basis of the entropy generation. The use of this technique makes it possible to identify the phenomena provoking the main irreversibilities, understand their causes and propose changes in the system design and operation.

  17. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  18. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  19. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  20. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  1. Cassettes for solid-oxide fuel cell stacks and methods of making the same

    Science.gov (United States)

    Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L

    2012-10-23

    Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.

  2. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    Science.gov (United States)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  3. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  4. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    Science.gov (United States)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  5. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol.

    Science.gov (United States)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-02-01

    Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC.

  6. Dynamics of the phase formation process upon the low temperature selenization of Cu/In-multilayer stacks

    Science.gov (United States)

    Oertel, M.; Ronning, C.

    2015-03-01

    Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe2 formation processes depending on the applied temperature. Already, at a heater temperature of 260 °C, the CuInSe2 formation can occur by the reaction of Cu2-xSe with In4Se3 and Se. At 340 °C, CuInSe2 is formed by the reaction of Cu2-xSe with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe2 side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe2 side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe2-absorber-layer at higher temperatures. The approach delivers a CuInSe2 absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe2-thin-film solar cell. A finished formation of CuInSe2 at low temperature was not observed in our experiments but is probably possible for longer dwell times.

  7. Dynamics of the phase formation process upon the low temperature selenization of Cu/In-multilayer stacks

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, M., E-mail: michael.oertel@uni-jena.de; Ronning, C. [Institute of Solid State Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-03-14

    Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe{sub 2} formation processes depending on the applied temperature. Already, at a heater temperature of 260 °C, the CuInSe{sub 2} formation can occur by the reaction of Cu{sub 2−x}Se with In{sub 4}Se{sub 3} and Se. At 340 °C, CuInSe{sub 2} is formed by the reaction of Cu{sub 2−x}Se with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe{sub 2} side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe{sub 2} side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe{sub 2}-absorber-layer at higher temperatures. The approach delivers a CuInSe{sub 2} absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe{sub 2}-thin-film solar cell. A finished formation of CuInSe{sub 2} at low temperature was not observed in our experiments but is probably

  8. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.

    Science.gov (United States)

    Shang, S L; Wang, W Y; Wang, Y; Du, Y; Zhang, J X; Patel, A D; Liu, Z K

    2012-04-18

    Variations of energy, stress, and magnetic moment of fcc Ni as a response to shear deformation and the associated ideal shear strength (τ(IS)), intrinsic (γ(SF)) and unstable (γ(US)) stacking fault energies have been studied in terms of first-principles calculations under both the alias and affine shear regimes within the {111} slip plane along the and directions. It is found that (i) the intrinsic stacking fault energy γ(SF) is nearly independent of the shear deformation regimes used, albeit a slightly smaller value is predicted by pure shear (with relaxation) compared to the one from simple shear (without relaxation); (ii) the minimum ideal shear strength τ(IS) is obtained by pure alias shear of {111}; and (iii) the dissociation of the 1/2[110] dislocation into two partial Shockley dislocations (1/6[211] + 1/6[121]) is observed under pure alias shear of {111}. Based on the quasiharmonic approach from first-principles phonon calculations, the predicted γ(SF) has been extended to finite temperatures. In particular, using a proposed quasistatic approach on the basis of the predicted volume versus temperature relation, the temperature dependence of τ(IS) is also obtained. Both the γ(SF) and the τ(IS) of fcc Ni decrease with increasing temperature. The computed ideal shear strengths as well as the intrinsic and unstable stacking fault energies are in favorable accord with experiments and other predictions in the literature.

  9. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm.

  10. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  11. Identifying same-cell contours in image stacks: a key step in making 3D reconstructions.

    Science.gov (United States)

    Leung, Tony Kin Shun; Veldhuis, Jim H; Krens, S F Gabby; Heisenberg, C P; Brodland, G Wayne

    2011-02-01

    Identification of contours belonging to the same cell is a crucial step in the analysis of confocal stacks and other image sets in which cell outlines are visible, and it is central to the making of 3D cell reconstructions. When the cells are close packed, the contour grouping problem is more complex than that found in medical imaging, for example, because there are multiple regions of interest, the regions are not separable from each other by an identifiable background and regions cannot be distinguished by intensity differences. Here, we present an algorithm that uses three primary metrics-overlap of contour areas in adjacent images, co-linearity of the centroids of these areas across three images in a stack, and cell taper-to assign cells to groups. Decreasing thresholds are used to successively assign contours whose membership is less obvious. In a final step, remaining contours are assigned to existing groups by setting all thresholds to zero and groups having strong hour-glass shapes are partitioned. When applied to synthetic data from isotropic model aggregates, a curved model epithelium in which the long axes of the cells lie at all possible angles to the transection plane, and a confocal image stack, algorithm assignments were between 97 and 100% accurate in sets having at least four contours per cell. The algorithm is not particularly sensitive to the thresholds used, and a single set of parameters was used for all of the tests. The algorithm, which could be extended to time-lapse data, solves a key problem in the translation of image data into cell information.

  12. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Al-Amri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  13. Stabilized efficiency of stacked a-Si solar cell; Sekisogata a-Si taiyo denchi no anteika koritsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahisa, K.; Kojima, T.; Nakamura, K.; Koyanagi, T.; Yanagisawa, T. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Different types of tests combining light and temperature were carried out in a laboratory on predicting long-term performance of stacked amorphous silicon solar cells. Cell terminals were left open, xenon was used as an irradiation light source, and cell temperature was controlled within {+-} 2 degC of the setting. The result of the experiment may be summarized as follows: with regard to the deterioration characteristics, the speed in which the efficiency changes reached a maximum within 10 hours, and thereafter the change has slowed down gradually in the case of temperature at 50 degC; in the case of 25 degC, the maximization is reached between 500 and 1000 hours; the stabilization efficiency turns out to be a pessimistic value according to the saturated value derived from an experimental expression, hence the value would have to be expressed by specifying cell temperatures, light intensities and elapsed time; the minimum value of seasonal variation may be estimated at about 85% as a pessimistic value; for recovery characteristics, the saturated value for the recovery tends to become lower as the lower the value immediately before the recovery; and if the light intensity is varied, the deterioration characteristic shifts to that at an individual light intensity. 4 refs., 11 figs., 2 tabs.

  14. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids.

    Science.gov (United States)

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2017-02-08

    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm(-2) were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm(-2). The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm(-2)), demonstrating the feasibility of employing human blood as energy source.

  15. A look at the current status of the fuel cell technology: Test buying and operation of fuel cell stacks; Wo steht die Brennstoffzellentechnik? Erfahrungen beim Testkauf und -betrieb von BZ-Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Scheppat, Birgit [Hochschule RheinMain, Wiesbaden (Germany)

    2010-10-15

    In a recent projects, scientists of RheinMain university analyzed the challenges facing potential customers who intend to replace a battery or another electric power supply unit by fuel cell stack. (orig.)

  16. Using CrAlN multilayer coatings to improve oxidation resistance of steel interconnects for solid oxide fuel cell stacks

    Science.gov (United States)

    Smith, R. J.; Tripp, C.; Knospe, A.; Ramana, C. V.; Kayani, A.; Gorokhovsky, Vladimir; Shutthanandan, V.; Gelles, D. S.

    2004-06-01

    The requirements of low-cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. The performance of steel plates with multilayer coatings, consisting of CrN for electrical conductivity and CrAlN for oxidation resistance, was investigated. The coatings were deposited using large area filtered arc deposition technology, and subsequently annealed in air for up to 25 hours at 800 °C. The composition, structure, and morphology of the coated plates were characterized using Rutherford backscattering, nuclear reaction analysis, atomic force microscopy, and transmission electron microscopy techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitude. Electrical resistance was measured at room temperature.

  17. Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications

    DEFF Research Database (Denmark)

    Zermeno, Victor M. R.; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2013-01-01

    A homogenization method to model a stack of second generation High Temperature Superconducting tapes under AC applied transport current or magnetic field has been obtained. The idea is to find an anisotropic bulk equivalent for the stack such that the geometrical layout of the internal alternatin...

  18. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

    KAUST Repository

    Chehab, Noura A.

    2014-11-01

    A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations. © 2014 Elsevier B.V.

  19. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set...

  20. Dynamic fuel cell stack model for real-time simulation based on system identification

    Science.gov (United States)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  1. Dynamic fuel cell stack model for real-time simulation based on system identification

    Energy Technology Data Exchange (ETDEWEB)

    Meiler, M.; Schmid, O.; Schudy, M. [Department of MEA and Stack Technology, DaimlerChrysler AG, Neue Str. 95, D-73230 Kirchheim/Teck (Germany); Hofer, E.P. [Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm (Germany)

    2008-02-01

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R and D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests. (author)

  2. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value

    DEFF Research Database (Denmark)

    2011-01-01

    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack......NOVELTY - The end plate is made of material whose thermal expansion coefficient is corresponding to that of material of a cell (103). The thermal expansion coefficient of material is 9asterisk10-6 K-1 to 14asterisk10-6 K11. The thickness of the end plate is within the range of 0.001-1 mm and 0...

  3. MCFC燃料电池的非线性建模及基于FGA的模糊控制%Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control

    Institute of Scientific and Technical Information of China (English)

    戚志东; 朱新坚; 曹广益

    2006-01-01

    To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network's ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.

  4. Development and characterisation of a portable direct methanol fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, A.

    2005-11-21

    This thesis deals with the development and characterisation of a portable direct methanol fuel cell stack. In addition, calculations of the transport of methanol and water in the membrane are compared with experimentally determined values. It also includes investigations of the behaviour of single-cells and some of its components, as the anode gas diffusion layer and the anode flow-field. For the addition of methanol to the anode feed loop, a passive concept based on a permeable tube was developed and verified by both experiments and simulations. (orig.)

  5. Influence of Ring Oxidation-Induced Stack Faults on Efficiency in Silicon Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chun-Lan; WANG Wen-Jing; LI Hai-Ling; ZHAO Lei; DIAO Hong-Wei; LI Xu-Dong

    2008-01-01

    @@ We observe a strong correlation between the ring oxidation-induced stack faults (OISF) formed in the course of phosphor diffusion and the efficiency of Czochralski-grown silicon solar cells. The main reason for ring-OISF formation and growth in substrate is the silicon oxidation and phosphorus diffusion process induced silicon self-interstitial point defect during POCl3 diffusion. The decreasing of minority carrier diffusion length in crystal silicon solar cell induced by ring-OISF defects is identified to be one of the major causes of efficiency loss.

  6. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    Science.gov (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  7. Intermediate Temperature Solid Oxide Fuel Cell Development

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  8. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    Science.gov (United States)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as <0.5 mm. The optimal configuration with 10 desalination cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  9. High temperature PEM fuel cell. Final report. Public part

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf (DTU (DK)); Yde Andersen, S.; Rycke, T. de (IRD Fuel Cells A/S (DK)); Nilsson, M. (Danish Power Systems ApS (DK)); Christensen, Torkild, (DONG Energy (DK))

    2006-07-01

    The main outcome of the project is the development of stacking technology for high temperature PEMFC stacks based on phosphoric acid doped polybenzimidazole membranes (PBI-membranes) and a study of the potential of a possible accommodation of HT-PEMFC in the national energy system. Stacks of different lengths (up to 40 cells) have been built using two different approaches in terms of plate materials and sealing. The stacks still need maturing and further testing to prove satisfactory reliability, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during the project the process has come a long way. The survey of HT-PEM fuel cells and their regulatory power in the utility system concludes that fuel cells will most likely not be the dominating technique for regulation, but as no other technique has that potential alone, fuel cells are well suited to play a role in the system provided that the establishment of a communication system is not too complicated. In order to maintain an efficient power system with high reliability in a distributed generation scenario, it is important that communication between TSO (Transmission System Operator) and fuel cells is included in the fuel cell system design at an early stage. (au)

  10. A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control

    Science.gov (United States)

    Yang, Wei; Li, Jun; Ye, Dingding; Zhang, Liang; Zhu, Xun; Liao, Qiang

    2016-02-01

    Proton accumulation in the anode chamber is the major problem that affects the operational stability and electricity generation performance of double chamber microbial fuel cells (MFCs). In this study, a hybrid microbial fuel cell stack (DS-DS stack) based on single (SCMFCs) and double chamber MFCs (DCMFCs) is proposed for self-sustaining pH control in the MFC stack. It is found that the aerobic microbial oxidation of acetate by the biofilm that is attached to the air cathode of SCMFCs is responsible for the self-sustaining removal of accumulated H+ in the effluent of DCMFCs. Compared with the stack that solely consists of SCMFCs (SS-SS stack) or DCMFCs (DD-DD stack), the hybrid stack exhibits the highest electricity output performance and the most effective conversion of acetate into electricity at high power levels. Furthermore, the hybrid stack demonstrates the operation time of 15.7 ± 1.1 h when the operating voltage is above 0.8 V. This value is much higher than that of the DD-DD (8.5 ± 2.4 h) and SS-SS (8.1 ± 1.4 h) stacks, which suggests that the hybrid stack had a good operational stability.

  11. Developments for improved direct methanol fuel cell stacks for portable power

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, C.; Stimming, U. [Bavarian Center for Applied Energy Research, ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany); Technische Universitaet Muenchen, Department of Physics E19, James-Franck-Str. 1, D-85748 Garching (Germany); Scholz, M.; Seliger, W. [Bavarian Center for Applied Energy Research, ZAE Bayern, Abteilung 1, Walther-Meissner-Str. 6, D-85748 Garching (Germany); Racz, A. [Technische Universitaet Muenchen, Department of Physics E19, James-Franck-Str. 1, D-85748 Garching (Germany); Knechtel, W.; Rittmayr, J.; Grafwallner, F.; Peller, H. [ET EnergieTechnologie GmbH, Eugen-Saenger-Ring 4, D-85649 Brunnthal-Nord (Germany)

    2007-02-15

    Different aspects of the improvement of direct methanol fuel cell (DMFC) systems for portable power generation are investigated, in a project funded by the Bavarian state. The materials research focuses on the development of improved catalysts, in particular for the oxygen reduction reaction. Some recent results on supported ruthenium selenium catalysts are reported. In parallel, tests on other fuel cell materials are performed using MEAs made from industrial unsupported catalysts as the reference. These standard MEAs have catalyst loadings of about 11 mg cm{sup -2} and, at high air flux, can deliver current densities of about 500 mA cm{sup -2} and 100 mA cm{sup -2} at 110 C and 50 C, respectively. At low air flux and 50 C, current densities between 60 and 80 mA cm{sup -2} are possible rate at 500 mV. Using these MEAs, different commercial gas diffusion materials are tested as the cathode backing. Thus, it is found that the Sigracet materials by SGL Carbon are the most suitable for operation at a low air flux. Finally, a demonstration stack, comprised of up to ten cells, is developed using graphite PVDF compound bipolar plates by SGL Carbon. As will be reported, this stack shows a high homogeneity of cell voltages and stable operation under relevant conditions, using standard MEAs. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    Science.gov (United States)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  13. Annealing temperature modulated interfacial chemistry and electrical characteristics of sputtering-derived HfO{sub 2}/Si gate stack

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J. [School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230601 (China); School of Sciences, Anhui University of Science and Technology, Huainan 232001 (China); He, G., E-mail: ganghe01@issp.ac.cn [School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230601 (China); Zhang, J.W.; Deng, B.; Liu, Y.M. [School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230601 (China)

    2015-10-25

    Sputtering-derived HfO{sub 2} high-k gate dielectric thin films have been deposited on Si substrate by means of high vacuum physics vapor deposition method. Via characterization from x-ray photoelectron spectroscopy (XPS) and electrical measurements, the effect of post-deposition annealing temperature on the interfacial and electrical properties of HfO{sub 2}/Si gate stack has been investigated. XPS analyses show that an interfacial layer between HfO{sub 2} and silicon substrate has been found in the post-deposition annealing process. Increase in Hf-silicate layer and reduction in SiO{sub 2} low-k interface layer have been detected. Electrical measurements of MOS capacitor based on Al/HfO{sub 2}/Si gate stacks indicate that annealing HfO{sub 2} sample at 300 °C demonstrated the improved electrical performance. As a result, the leakage current of 3.60 × 10{sup −5} A/cm{sup 2} at applied substrate voltage of 2 V, which is much lower than those samples annealed at other temperature, has been obtained. The leakage current mechanism for different annealing temperature has been discussed systematically. - Highlights: • Sputtering-derived HfO{sub 2}/Si gate stack has been deposited on Si substrate. • Annealing lead to the increase in Hf silicate layer and reduction in SiO{sub 2} interface layer. • For substrate injection, Schottky emission dominates the conduction mechanism at the low fields. • For gate injection, Poole–Frenkle emission dominates the conduction mechanism at the high field.

  14. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  15. Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2009-01-01

    A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.

  16. Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys

    OpenAIRE

    Schulte-Braucks, C; Von Den Driesch, N; Glass, S; Tiedemann, AT; Breuer, U; Besmehn, A; Hartmann, JM; Ikonic, Z; Zhao, QT; Mantl, S; Buca, D.

    2016-01-01

    (Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn bi...

  17. Analysis of early ageing of PEM fuel cell stacks in a SAM light electric vehicle; Analyse der vorzeitigen Alterung des PEM-Stacks im LEV SAM - Jahresbericht/Schlussbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Ruge, M.

    2006-12-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of investigations concerning a PEM fuel cell stack made at the University of Applied Sciences in Bienne, Switzerland. The six-kilowatt stack showed considerable loss of power over a two-year period. The reasons behind these losses are discussed, including those caused by insufficient sealing and long periods of standstill. The measurements made on the fuel cell stack are presented and discussed. The causes of the loss of power are discussed and resulting modifications made to the stack are described. Recommendations concerning the regular use of the fuel cell stack are made in order to ensure correct operation in the future.

  18. A new stochastic algorithm for proton exchange membrane fuel cell stack design optimization

    Science.gov (United States)

    Chakraborty, Uttara

    2012-10-01

    This paper develops a new stochastic heuristic for proton exchange membrane fuel cell stack design optimization. The problem involves finding the optimal size and configuration of stand-alone, fuel-cell-based power supply systems: the stack is to be configured so that it delivers the maximum power output at the load's operating voltage. The problem apparently looks straightforward but is analytically intractable and computationally hard. No exact solution can be found, nor is it easy to find the exact number of local optima; we, therefore, are forced to settle with approximate or near-optimal solutions. This real-world problem, first reported in Journal of Power Sources 131, poses both engineering challenges and computational challenges and is representative of many of today's open problems in fuel cell design involving a mix of discrete and continuous parameters. The new algorithm is compared against genetic algorithm, simulated annealing, and (1+1)-EA. Statistical tests of significance show that the results produced by our method are better than the best-known solutions for this problem published in the literature. A finite Markov chain analysis of the new algorithm establishes an upper bound on the expected time to find the optimum solution.

  19. Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells

    Science.gov (United States)

    Onaka, H.; Iwai, H.; Kishimoto, M.; Saito, M.; Yoshida, H.; Brus, G.; Szmyd, J. S.

    2016-09-01

    An overpotential model for planar solid oxide fuel cells (SOFCs) is developed and applied to a stack numerical simulation. Charge-transfer distribution within the electrodes are approximated using an exponential function, based on which the Ohmic loss and activation overpotential are evaluated. The predicted current-voltage characteristics agree well with the experimental results, and also the overpotentials within the cell can reproduce the results obtained from a numerical analysis where the distribution of the charge-transfer current within the electrodes is fully solved. The proposed model is expected to be useful to maintain the accuracy of SOFC simulations when the cell components, consisting of anode, electrolyte and cathode, are simplified into one layer element.

  20. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V., E-mail: baglio@itae.cnr.i [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E. [Pirelli Labs, Viale Sarca, 222, 20126 Milano (Italy)

    2010-08-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm{sup -2} was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm{sup -2}. Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  1. Low-temperature-dependent property in an avalanche photodiode based on GaN/AlN periodically-stacked structure

    Science.gov (United States)

    Zheng, Jiyuan; Wang, Lai; Yang, Di; Yu, Jiadong; Meng, Xiao; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao; Li, Mo; Li, Qian

    2016-01-01

    In ultra-high sensitive APDs, a vibrate of temperature might bring a fatal decline of the multiplication performance. Conventional method to realize a temperature-stable APD focuses on the optimization of device structure, which has limited effects. While in this paper, a solution by reducing the carrier scattering rate based on an GaN/AlN periodically-stacked structure (PSS) APD is brought out to improve temperature stability essentially. Transport property is systematically investigated. Compared with conventional GaN homojunction (HJ) APDs, electron suffers much less phonon scatterings before it achieves ionization threshold energy and more electrons occupy high energy states in PSS APD. The temperature dependence of ionization coefficient and energy distribution is greatly reduced. As a result, temperature stability on gain is significantly improved when the ionization happens with high efficiency. The change of gain for GaN (10 nm)/AlN (10 nm) PSS APD from 300 K to 310 K is about 20% lower than that for HJ APD. Additionally, thicker period length is found favorable to ionization coefficient ratio but a bit harmful to temperature stability, while increasing the proportion of AlN at each period in a specific range is found favorable to both ionization coefficient ratio and temperature stability. PMID:27775088

  2. The development of a fuel cell stack electronic simulator for enhanced safety and reliability during test and training

    Energy Technology Data Exchange (ETDEWEB)

    Abdulhadi, M.; Al-Garni, M. [King AbdulAziz City for Science and Technology (KACST), Riyadh (Saudi Arabia). Energy Research Inst.

    1996-12-31

    One of the main sub-tasks of HYSOLAR, a joint Saudi-German research and development program in the field of solar hydrogen, is the investigation and characterization of phosphoric acid fuel cells (PAFC). To facilitate this, a fully automated data acquisition and control (DAC) system for fuel cell stacks was developed at KACST`s Solar Village. In order to ensure that the test and training procedures were as safe and reliable as possible, an electronic simulator for the fuel cell stacks was also developed. This paper discusses the background and concept and describes the development and operational characteristics of the simulator. (Author)

  3. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    Science.gov (United States)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  4. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen;

    2014-01-01

    . A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  5. Heat management in a portable high temperature PEM fuel cell module with open cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, T.; Keller, J. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)

    2011-08-15

    The development and characterisation of a portable high temperature PEM fuel cell module is presented. The module consists of a 5-cell stack with open cathodes and coil compression. This design enables the operation and control with only one fan and compact and lightweight packaging. The stack is characterised with polarisation curves and single cell impedance spectroscopy. Temperature distribution in the stack and temperature control is analysed during startup and operation. The results show very similar cell characteristics and stable operation with high power density. Temperature control shows a good reaction on load changes as well as on setpoint changes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  7. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Nam, Joo-Youn; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5 mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production.

  8. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  9. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  10. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  11. High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bentzen, Janet Jonna;

    2013-01-01

    atmospheres at 800°C. Four commercially available alloys: Crofer 22 APU, Crofer 22 H, AL29-4, E-Brite were characterized in humidified hydrogen. One alloy, Crofer 22 APU was also characterized in pure oxygen both in the as-prepared state and after application of a protective coating. Best corrosion resistance......Oxidation rates of ferritic steels used as interconnector plates in Solid Oxide Electrolysis Stacks are of concern as they may be determining for the life time of the technology. In this study oxidation experiments were carried out for up to 1000 hours in hydrogen-side and oxygen-side simulated...... in humidified hydrogen atmosphere was observed for Crofer 22 APU and Crofer 22 H alloys. Corrosion rates for Crofer 22 APU measured in humidified hydrogen are similar to the corrosion rates measured in air. Both coatings of plasma sprayed LSM and dual layer coatings (Co3O4/LSM-Co3O4) applied by wet spraying...

  12. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  13. Analysis and improvement of a scaled-up and stacked microbial fuel cell.

    Science.gov (United States)

    Dekker, Arjan; Ter Heijne, Annemiek; Saakes, Michel; Hamelers, Hubertus V M; Buisman, Cees J N

    2009-12-01

    Scaling up microbial fuel cells (MFCs) is inevitable when power outputs have to be obtained that can power electrical devices other than small sensors. This research has used a bipolar plate MFC stack of four cells with a total working volume of 20 L and a total membrane surface area of 2 m(2). The cathode limited MFC performance due to oxygen reduction rate and cell reversal. Furthermore, residence time distribution curves showed that bending membranes resulted in flow paths through which the catholyte could flow from inlet to outlet, while leaving the reactants unconverted. The cathode was improved by decreasing the pH, purging pure oxygen, and increasing the flow rate, which resulted in a 13-fold power density increase to 144 W m(-3) and a volumetric resistivity of only 1.2 mOmega m(3) per cell. Both results are major achievements compared to results currently published for laboratory and scaled-up MFCs. When designing a scaled-up MFC, it is important to ensure optimal contact between electrodes and substrate and to minimize the distances between electrodes.

  14. Effect of elastic network of ceramic fillers on thermal cycle stability of a solid oxide fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Ho; Kim, Hyoungchul; Kim, Sung Moon; Noh, Tae-Wook; Jung, Hwa-Young; Lim, Hyun-Yup; Jung, Hun-Gi; Son, Ji-Won; Kim, Hae-Ryoung; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon [High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Jae-Chun [Department of Materials Science and Engineering, Myungji University, Yongin, Gyunggi (Korea, Republic of); Song, Huesup [Division of Advanced Materials Engineering, Kongju National University, Chonan, Chungnam (Korea, Republic of)

    2012-04-15

    Glass-based seals for planar solid-oxide fuel-cell (SOFC) stacks are open to uncontrolled deformation and mechanical damages, limiting both sealing integrity and stack reliability, particularly in thermal cycle operations. If the glass-based seals work like an elastomer-based compressive seal, SOFC stacks may survive unprecedented numbers of thermal cycles. A novel composite sealing gasket is successfully developed to mimic the unique features of the elastomer-based compressive seal by controlling the composition and packing behavior of binary ceramic fillers. A single-cell SOFC stack undergoes more than 100 thermal cycles with little performance loss, during which the sealing integrity is lost/recovered repeatedly upon cooling and reheating, corresponding to unloading/loading of the elastomer-based compressive seal. The thermal-cycle responses of the SOFC stack are explained in sequence by the concurrent events of elastic deformation/recovery of ceramic filler network and corresponding redistribution of sealing glass. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Design and development of a 7kW polymer electrolyte membrane fuel cell stack for UPS application

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Giacoppo, G.; Barbera, O.; Urbani, F.; Passalacqua, E. [CNR - Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' (CNR-ITAE), Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Borello, L.; Musso, A.; Rosso, I. [Electro Power Systems spa (EPS), Via Grange Palmero 104, 10091 Alpignano (Italy)

    2010-09-15

    This work presents the PEMFC stack design methodology developed at CNR-ITAE, in the frame of a collaboration with an industrial partner, Electro Power Systems (EPS), operating in the Uninterruptable Power Supply (UPS) market. A detailed description of the design procedure of a 7 kW PEMFC stack is reported, starting from technical requirements of the UPS system to experimental tests. Bipolar plate layout, active area surface and shape, maximum (OCV) and minimum voltage, maximum cooling circuit pressure drop, maximum cathodic flow-field pressure drop, were the main constraint that influenced the constructive solutions. The electrochemical performances of Gore Primea 5621 MEA with SGL Sigracet GDL were chosen as reference to select the appropriate operating point in terms of current density and single cell voltage. A current density of 800 mA/cm{sup 2} was imposed as operating point of the stack, subsequently main stack parameters were calculated. Three different cathodic flow fields, that were designed to fulfill UPS system requirements, were tested in a single cell arrangement, to find the best gas flow path in terms of compromise between cell performance and pressure drop. Also a specific study was dedicated to the selection of gasket material to find the best compromise between cell performance and limited mechanical stress. The assembled 70 cells unit was tested in a test bench simulating the power system. Preliminary tests of the full unit yielded to a power of 6.2kW at 36 V. (author)

  16. In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part II: Operational applications

    Science.gov (United States)

    Niroumand, Amir M.; Homayouni, Hooman; DeVaal, Jake; Golnaraghi, Farid; Kjeang, Erik

    2016-08-01

    This paper describes a diagnostic tool for in-situ characterization of the rate and distribution of hydrogen transfer leaks in Polymer Electrolyte Membrane (PEM) fuel cell stacks. The method is based on reducing the air flow rate from a high to low value at a fixed current, while maintaining an anode overpressure. At high air flow rates, the reduction in air flow results in lower oxygen concentration in the cathode and therefore reduction in cell voltages. Once the air flow rate in each cell reaches a low value at which the cell oxygen-starves, the voltage of the corresponding cell drops to zero. However, oxygen starvation results from two processes: 1) the electrochemical oxygen reduction reaction which produces current; and 2) the chemical reaction between oxygen and the crossed over hydrogen. In this work, a diagnostic technique has been developed that accounts for the effect of the electrochemical reaction on cell voltage to identify the hydrogen leak rate and number of leaky cells in a fuel cell stack. This technique is suitable for leak characterization during fuel cell operation, as it only requires stack air flow and voltage measurements, which are readily available in an operational fuel cell system.

  17. STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.

    Science.gov (United States)

    Kang, Byung-Ho

    2016-01-01

    Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.

  18. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Science.gov (United States)

    Palan, Vikrant; Shepard, W. Steve

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2 mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250 g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength.

  19. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Palan, Vikrant; Shepard, W. Steve [Department of Mechanical Engineering, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487 (United States)

    2006-09-22

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength. (author)

  20. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    Science.gov (United States)

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  1. Thermal resistance optimization of GaN/substrate stacks considering thermal boundary resistance and temperature-dependent thermal conductivity

    Science.gov (United States)

    Park, K.; Bayram, C.

    2016-10-01

    Here, we investigate the effects of thermal boundary resistance (TBR) and temperature-dependent thermal conductivity on the thermal resistance of GaN/substrate stacks. A combination of parameters such as substrates {diamond, silicon carbide, silicon, and sapphire}, thermal boundary resistance {10-60 m2K/GW}, heat source lengths {10 nm-20 μm}, and power dissipation levels {1-8 W} are studied by using technology computer-aided design (TCAD) software Synopsys. Among diamond, silicon carbide, silicon, and sapphire substrates, the diamond provides the lowest thermal resistance due to its superior thermal conductivity. We report that due to non-zero thermal boundary resistance and localized heating in GaN-based high electron mobility transistors, an optimum separation between the heat source and substrate exists. For high power (i.e., 8 W) heat dissipation on high thermal conductive substrates (i.e., diamond), the optimum separation between the heat source and substrate becomes submicron thick (i.e., 500 nm), which reduces the hotspot temperature as much as 50 °C compared to conventional multi-micron thick case (i.e., 4 μm). This is attributed to the thermal conductivity drop in GaN near the heat source. Improving the TBR between GaN and diamond increases temperature reduction by our further approach. Overall, we provide thermal management design guidelines for GaN-based devices.

  2. High efficiency,high power 808nm laser array and stacked arrays optimized for elevated temperature operation

    Institute of Scientific and Technical Information of China (English)

    Crump P A; Wise D; Crum T R; DeVito M; Farmer J; Grimshaw M; Huang Z; Igl S A; Macomber S; Thiagarajan P

    2004-01-01

    Operation of 808-nm laser diode pumping at elevated temperature is crucial to many applications. Reliable operation at high power is limited by high thermal load and low catastrophic optical mirror damage (COMD) threshold at elevated temperature range. We demonstrated high efficiency and high power operation at elevated temperature with high COMD power. These results were achieved through device design optimization such as growth conditions, doping profile, and materials composition of the quantum-well and other layers. Electrical-to-optical efficiency as high as 62% was obtained through lowered threshold current, lowered series resistance and increased slope efficiency. The performance of single broad-area laser diodes scales to that of high power single bars on water-cooled copper micro-channel heatsinks or conductively-cooled CS heatsinks. No reduction in bar performance or significant spectral broadening is seen when these micro-channel coolers are assembled into 6-bar and 18-bar CW stacks for the highest power levels.

  3. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  4. Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole

    Science.gov (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    A high temperature PEM fuel cell stack with a total active area 150 cm 2 has been studied. The PEM technology is based on a polybenzimidazole (PBI) membrane. Cast from a PBI polymer synthesised in our lab, the performance of a three-cell stack was analysed in static and dynamic modes. In static mode, operating at high constant oxygen flow rate (QO2 > 1105 ml O2 / min) produces a small decrease on the stack performance. High constant oxygen stoichiometry (λO2 > 3) does not produce a decrease on the performance of the stack. There are not differences between operating at constant flow rate of oxygen and constant stoichiometry of oxygen in the stack performance. The effect of operating at high temperature with a pressurization system and operating at higher temperatures are beneficial since the performance of the fuel cell is enhanced. A large shut-down stage produces important performance losses due to the loss of catalyst activity and the loss of membrane conductivity. After 150 h of operation at 0.2 A cm -2, it is observed a very high voltage drop. The phosphoric acid leached from the stack was also evaluated and did not exceed 2% (w/w). This fact suggests that the main degradation mechanism of a fuel cell stack based on polybenzimidazole is not the electrolyte loss. In dynamic test mode, it was observed a rapid response of power and current output even at the lower step-time (10 s). In the static mode at 125 °C and 1 atm, the stack reached a power density peak of 0.29 W cm -2 (43.5 W) at 1 V.

  5. Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells.

    Science.gov (United States)

    Jenatsch, Sandra; Wang, Lei; Bulloni, Matia; Véron, Anna C; Ruhstaller, Beat; Altazin, Stéphane; Nüesch, Frank; Hany, Roland

    2016-03-01

    Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am. Chem. Soc. 2013 , 135 , 18008 - 18011 ), these features have been exploited in cyanine light-emitting electrochemical cells (LECs). Here, we demonstrate that stacked, constant-voltage driven trimethine cyanine LECs with various counteranions develop a p-i-n junction that is composed of p- and n-doped zones and an intrinsic region where light-emission occurs. We introduce a method that combines spectral photocurrent response measurements with optical modeling and find that at maximum current the intrinsic region is centered at ∼37% away from the anode. Transient capacitance, photoluminescence and attenuance experiments indicate a device situation with a narrow p-doped region, an undoped region that occupies ∼72% of the dye layer thickness and an n-doped region with a maximum doping concentration of 0.08 dopant/cyanine molecule. Finally, we observe that during device relaxation the parent cyanines are not reformed. We ascribe this to irreversible reactions between doped cyanine radicals. For sterically conservative cyanine dyes, this suggests that undesired radical decomposition pathways limit the LEC long-term stability in general.

  6. Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys.

    Science.gov (United States)

    Schulte-Braucks, C; von den Driesch, N; Glass, S; Tiedemann, A T; Breuer, U; Besmehn, A; Hartmann, J-M; Ikonic, Z; Zhao, Q T; Mantl, S; Buca, D

    2016-05-25

    (Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10(-8) A/cm(2) at -1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance-voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 10(12) cm(-2) eV(-1) range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications.

  7. Electroplating of Protective Coatings on Interconnects Used for Solid Oxide Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Harthøj, Anders

    Solid oxide fuel Cell (SOFC) technology can with a high efficiency produce environmentally clean electricity by converting the chemical energy in a fuel to electrical energy. SOFC systems have a high operation temperature, approx. 600-850 °C. Advantages compared to other types of fuel cells...... and the gaseous chromium species can poison the cathode. Interconnect coatings are a potential solution to reduce the high temperature corrosion issues. An effective coating must consist of a material with the right properties but equally important is the process used for its deposition. It must enable coatings...

  8. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    Energy Technology Data Exchange (ETDEWEB)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  9. Four-Terminal Mechanically Stacked GaAs/Si Tandem Solar Cells

    OpenAIRE

    Hassan, S.

    2015-01-01

    This study investigates a four-terminal mechanically stacked double junction photovoltaic device based on GaAs as a top subcell and Si as a bottom subcell. Unlike two terminal monolithically series connected double junction photovoltaics, four-terminal mechanically stacked devices benefit from the ability to choose a combination of materials that are not constrained to lattice matching condition. GaAs top subcell is the best sensitive to visible light and Si bottom subcell is chosen to be gro...

  10. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  11. Weibull strength variations between room temperature and high temperature Ni-3YSZ half-cells

    DEFF Research Database (Denmark)

    Curran, Declan; Frandsen, Henrik Lund; Hendriksen, Peter Vang

    2013-01-01

    Solid oxide fuel cell stacks are vulnerable to mechanical failures. One of the most relevant failure mechanisms is brittle fracture of the individual ceramic cells, which are an integral part of the stack structure. Even the mechanical failure of one cell can lead to temporary interruption, reduc...

  12. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3......) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours...

  13. Physico-chemical study of the degradation of membrane-electrode assemblies in a proton exchange membrane fuel cell stack

    Science.gov (United States)

    Ferreira-Aparicio, P.; Gallardo-López, B.; Chaparro, A. M.; Daza, L.

    A proton exchange membrane fuel cell stack integrated by 8-elements has been evaluated in an accelerated stress test. The application of techniques such as TEM analyses of ultramicrotome-sliced sections of some samples and XRD, XPS and TGA of spent electrodes reveal the effects of several degradation processes contributing to reduce the cells performance. The reduction of the Pt surface area at the cathode is favored by the oxidation of carbon black agglomerates in the catalytic layer, the agglomeration of Pt particles and by the partial dissolution of Pt, which migrates towards the anode and precipitates within the membrane. In the light of the TEM, EDAX and XPS results, two combined effects are probably responsible of the increase of the internal resistance of the stack cells: (i) a lower proton conductivity of the membranes due to the high affinity of the sulfonic acid groups for ions originated from Pt crystallites and other peripherical elements such as the silicone elastomeric gaskets and (ii) the increment of electrically isolated islands in the cathode gas diffusion electrodes resulting from carbon corrosion and the degradation of the perfluorinated polymers. Water accumulation and inhomogeneous gas distribution throughout the stack cells originate different degradation rates in them.

  14. Review of the micro-tubular solid oxide fuel cell. Part I. Stack design issues and research activities

    Science.gov (United States)

    Lawlor, V.; Griesser, S.; Buchinger, G.; Olabi, A. G.; Cordiner, S.; Meissner, D.

    Fuel cells are devices that convert chemical energy in hydrogen enriched fuels into electricity electrochemically. Micro-tubular solid oxide fuel cells (MT-SOFCs), the type pioneered by K. Kendall in the early 1990s, are a variety of SOFCs that are on the scale of millimetres compared to their much larger SOFC relatives that are typically on the scale of tens of centimetres. The main advantage of the MT-SOFC, over its larger predecessor, is that it is smaller in size and is more suitable for rapid start up. This may allow the SOFC to be used in devices such as auxiliary power units, automotive power supplies, mobile electricity generators and battery re-chargers. The following paper is Part I of a two part series. Part I will introduce the reader to the MT-SOFC stack and its applications, indicating who is researching what in this field and also specifically investigate the design issues related to multi-cell reactor systems called stacks. Part II will review in detail the combinations of materials and methods used to produce the electrodes and electrolytes of MT-SOFC's. Also the role of modelling and validation techniques used in the design and improvement of the electrodes and electrolytes will be investigated. A broad range of scientific and engineering disciplines are involved in a stack design. Scientific and engineering content has been discussed in the areas of thermal-self-sustainability and efficiency, sealing technologies, manifold design, electrical connections and cell performance optimisation.

  15. Effect of number of stack on the thermal escape and non-radiative and radiative recombinations of photoexcited carriers in strain-balanced InGaAs/GaAsP multiple quantum-well-inserted solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Suzuki, Hidetoshi [Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Fujii, Hiromasa; Nakano, Yoshiaki [Research Center for Advanced Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Sugiyama, Masakazu [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2015-02-28

    Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.

  16. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  17. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Lin, Hua-Tay [ORNL; Stafford, Mr Randy [Cummins Inc., Columbus, Indiana

    2016-01-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22 C) and at 50 C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50 C, compared with reductions of 25 and 15% in the respective coefficients at 22 C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  18. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy

    2016-04-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  19. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  20. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  1. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial......Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile...

  2. Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions

    Science.gov (United States)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    The degradation of solid oxide fuel cells (SOFC) depends on stack and system design and operation. A methodology to evaluate synergistically these aspects to achieve the lowest production cost of electricity has not yet been developed. A repeating unit model, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination, is used to investigate the impact of the operating conditions on the lifetime of an SOFC system. It predicts acceleration of the degradation due to the sequential activation of multiple processes. The requirements for the highest system efficiency at start and at long-term differ. Among the selected degradation processes, those on the cathode side here dominate. Simulations suggest that operation at lower system specific power and higher stack temperature can extend the lifetime by a factor up to 10, because the beneficial decrease in cathode overpotential prevails over the higher release of volatile chromium species, faster metallic interconnect corrosion and higher thermodynamic risks of zirconate formation, for maximum SRU temperature below 1150 K. The counter-flow configuration, combined with the beneficial effect of internal reforming on lowering the parasitic air blower consumption, similarly yields longer lifetime than co-flow.

  3. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander;

    2016-01-01

    for the control strategy are summarized. This ensures result comparability as well as stable test conditions. E.g., the stack temperature fluctuation is minimized to about 1 °C. The experiments demonstrate that reactants pressures differ up to 12 kPa if pressure control positions are varied, resulting...... in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  4. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure

    Science.gov (United States)

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; He, Qing; Zhou, Zhiqiang; Sun, Guozhong; Sun, Yun; Chang, Liann-Be; Chen, Jian-Wun

    2014-12-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein.

  5. Live-Cell Imaging of Dual-Labeled Golgi Stacks in Tobacco BY-2 Cells Reveals Similar Behaviors for Different Cisternae during Movement and Brefeldin A Treatment

    Institute of Scientific and Technical Information of China (English)

    Stephanie L. Madison; Andreas Nebenführ

    2011-01-01

    In plant cells,the Golgi apparatus consists of numerous stacks that,in turn,are composed of several flattened cisternae with a clear cis-to-trans polarity.During normal functioning within living cells,this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility,constant membrane flux through the cisternae,and Golgi enzyme recycling through the ER.In order to further investigate various aspects of Golgi stack dynamics and integrity,we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments,movement,and brefeldin A (BFA)-induced disassembly.A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm.The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead,but trans cisternae were also found at the leading edge.During BFA treatments,the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however,no consistent order could be detected.In contrast,the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected.Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER.In addition,we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.

  6. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure

    OpenAIRE

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; He, Qing; Zhou, Zhiqiang; Sun, Guozhong; Sun, Yun; Chang, Liann-Be; Chen, Jian-Wun

    2014-01-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in sele...

  7. Four-Terminal Mechanically Stacked GaAs/Si Tandem Solar Cells

    CERN Document Server

    Hassan, S

    2015-01-01

    This study investigates a four-terminal mechanically stacked double junction photovoltaic device based on GaAs as a top subcell and Si as a bottom subcell. Unlike two terminal monolithically series connected double junction photovoltaics, four-terminal mechanically stacked devices benefit from the ability to choose a combination of materials that are not constrained to lattice matching condition. GaAs top subcell is the best sensitive to visible light and Si bottom subcell is chosen to be grown on Si substrate which has relatively low cost. Moreover, the carriers generated by each subcell is collected independently to the external circuit. This electrical isolation of the subcells ensures higher efficiency, where no current matching nor tunnel junctions and related losses exist. A conversion efficiency of the device with a thickness in the order of 10 microns surpassed 27%.

  8. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    Science.gov (United States)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  9. Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology

    Institute of Scientific and Technical Information of China (English)

    Qi Zhidong; Zhu Xinjian; Cao Guangyi

    2006-01-01

    Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.

  10. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    OpenAIRE

    Jung Tae Park; Won Seok Chi; Sang Jin Kim; Daeyeon Lee; Jong Hak Kim

    2014-01-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-...

  11. Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    1999-01-01

    The invention relates to a method of converting a carbon-comprising material at elevated temperature in the presence of a molecule that comprises at least one oxygen atom. According to the invention the carbon-comprising material in the fuel cell is converted substantially to carbon monoxide in a re

  12. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-15

    We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  13. Determining Outdoor CPV Cell Temperature (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Muller, M.

    2011-04-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This presentation documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  14. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  15. Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaO

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Bentzen, Janet Jonna; Andersen, Kjeld Bøhm;

    2014-01-01

    by infiltration with BaO or La0.85Sr0.15MnO3+δ. The cell stacks were tested in an atmosphere of 1000 ppm NO or NO2 + 10% O2 in Ar with 10% O2 in Ar as reference, and in the temperature range of 250 to 500 °C. The cell stacks were investigated electrochemically with cyclic voltammetry and polarization...

  16. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    Science.gov (United States)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  17. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  18. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  19. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    Science.gov (United States)

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity.

  20. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    Science.gov (United States)

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.

  1. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  2. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  3. Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system.

    Science.gov (United States)

    Cao, Xian; Wang, Hui; Li, Xiao-Qi; Fang, Zhou; Li, Xian-Ning

    2017-03-01

    In this study, a microbial fuel cell (MFC)-biofilm electrode reactor (BER) coupled system was established for degradation of the azo dye Reactive Brilliant Red X-3B. In this system, electrical energy generated by the MFC degrades the azo dye in the BER without the need for an external power supply, and the effluent from the BER was used as the inflow for the MFC, with further degradation. The results indicated that the X-3B removal efficiency was 29.87% higher using this coupled system than in a control group. Moreover, a method was developed to prevent voltage reversal in stacked MFCs. Current was the key factor influencing removal efficiency in the BER. The X-3B degradation pathway and the types and transfer processes of intermediate products were further explored in our system coupled with gas chromatography-mass spectrometry.

  4. Temperature control of a PEM fuel cell test bench for experimental MEA assessment

    Energy Technology Data Exchange (ETDEWEB)

    More, J.J.; Puleston, P.F.; Kunusch, C. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata (UNLP), calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia, N 1917, C1033AAJ, Ciudad Autonoma de Buenos Aires (Argentina); Visintin, A. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Av. Rivadavia, N 1917, C1033AAJ, Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Investigaciones Fisico-Quimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64 s/n, 1900, La Plata (Argentina)

    2010-06-15

    This paper presents the design, implementation and testing of a temperature control for a laboratory PEM fuel cell stack work bench intended for evaluation of experimental MEAs. The controller design is based on a thermal model of the fuel cell stack developed by the authors. The model is extended to the complete temperature range by considering a nonlinear description of the heating resistances. Its parameters are experimentally adjusted and its accuracy is validated in all the temperature operating range. Then, the temperature control is developed, using a proportional-integral structure with anti-windup features. It is implemented in a PC connected to an ad-hoc equipment of acquisition and control, that drives distributed cycles actuators to energize two heating resistances. The controller proved to be capable of regulating the stack temperature in a wide operating range, while eliminating the ripple typical of ON-OFF actuators. Finally, experimental results of closed loop operation are presented, demonstrating the good performance of the proposed control set up and thermal model. (author)

  5. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...... with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner...

  6. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    Science.gov (United States)

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs.

  7. Stacking disorder in ice I.

    Science.gov (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-07

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  8. Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith

    NARCIS (Netherlands)

    Hemmes, K.; Dijkema, G.P.J.

    1998-01-01

    A method of operating a molten carbonate fuel cell having an anode and a cathode and in between a matrix comprising molten carbonate. Carbon dioxide is introduced into the matrix at a distance from the cathode. This greatly reduces the cathode's deterioration and in the system design increases the c

  9. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Tazelaar, Edwin; Veenhuizen, Bram; Middelman, E.; Bosch, P. van den

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  10. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bosch, P.P.J. van den; Hofman, T.; Veenhuizen, Bram; Shen, Y.; Tazelaar, Edwin

    2012-01-01

    Fuel cell hybrid vehicles are believed to provide a solution to cut down emissions in the long term. They provide local zero-emission propulsion and when the hydrogen as fuel is derived from renewable energy sources, fuel cell hybrids enable well-to-wheel zero-emission transportation,

  11. Stacking fault probability and stacking fault energy in CoNi alloys

    Institute of Scientific and Technical Information of China (English)

    周伟敏; 江伯鸿; 刘岩; 漆王睿

    2001-01-01

    The stacking fault probability of CoNi alloys with different contents of Ni was measured by X-ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T. The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability Psf is determined.

  12. Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique

    CERN Document Server

    Zou, Shengnan; Baskys, A; Patel, A; Grilli, Francesco; Glowacki, B A

    2016-01-01

    High temperature superconducting (HTS) bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electrom...

  13. Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture

    Science.gov (United States)

    Ranaweera, Manoj; Kim, Jung-Sik

    2016-05-01

    Understanding the cell temperature distribution of solid oxide fuel cell (SOFC) stacks during normal operation has multifaceted advantages in performance and degradation studies. Present efforts on measuring temperature from operating SOFCs measure only the gas channel temperature and do not reveal the cell level temperature distribution, which is more important for understanding a cell's performance and its temperature-related degradation. The authors propose a cell-integrated, multi-junction thermocouple array for in-situ cell surface temperature monitoring of an operational SOFC. The proposed thermocouple array requires far fewer numbers of thermoelements than that required by sets of thermocouples for the same number of temperature sensing points. Hence, the proposed array causes lower disturbance to cell performance than thermocouples. The thermoelement array was sputter deposited on the cathode of a commercial SOFC using alumel (Ni:Al:Mn:Si - 95:2:2:1 by wt.) and chromel (Ni:Cr - 90:10 by wt.). The thermocouple array was tested in a furnace over the entire operating temperature range of a typical SOFC. The individual sensing points of the array were shown to measure temperature independently from each other with equivalent accuracy to a thermocouple. Thus, the concept of multi-junction thermocouples is experimentally validated and its stability on a porous SOFC cathode is confirmed.

  14. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Electric energy can be harvested from aquatic sediments by utilizing microbialfuelcells (MFCs). A main challenge of this application is the limited voltage output. In this study, an innovative self-stackedsubmersible MFC (SSMFC) was developed to improve the voltage generation from lakesediments....... The SSMFC successfully produced a maximum power density of 294 mW/m2 and had an open circuit voltage (OCV) of 1.12 V. However, voltage reversal was observed in one cell at high current density. Investigation on the cause for voltage reversal revealed that voltage reversal was occurring only when low...... external resistance (≤400 Ω in this study) was applied. In addition, the internal resistance and OCV were the most important parameters for predicting which cell unit had the highest probability to undergo voltage reversal. Use of a capacitor was found to be an effective way to prevent voltage reversal...

  15. Modeling and simulation of high-temperature polymer electrolyte fuel cells; Modellierung und Simulation von Hochtemperatur-Polymerelektrolyt-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kvesic, Mirko

    2012-07-01

    Fuel cells are electrochemical energy converters that convert chemical energy of constantly fed reactants directly into electricity. The most commonly used fuel gas in this respect is hydrogen, which is either produced in pure form by electrolysis, for example, or as a hydrogen-rich gas mixture (reformate gas), produced by reforming diesel or kerosene e.g. However, a disadvantage of reformate gas is that it contains additional carbon monoxide (CO), which leads to catalyst poisoning in the fuel cell. Since higher operating temperatures also lead to a higher CO tolerance, the use of high-temperature Polymer-Electrolyte-Fuel-Cells (HT-PEFCs) is particularly suitable for reformate operation. The aim of the presented work is the modeling and CFD-simulation of HT-PEFC stacks with the intention of gaining a better understanding of multi-physical processes in the stack operation as well as the optimization and analysis of existing stack designs. The geometric modeling used is based on the Porous Volume Model, which significantly reduces the required number of computing elements. Furthermore, the electrochemical models for hydrogen / air and reformate / air operation, which were taking the CO poisoning effects into account, are developed in this work and implemented in the software ANSYS / Fluent. The resulting simulations indicated the optimal flow configuration for the stack operation in terms of the homogeneous current density distribution, which has a positive effect on the stack aging. Thus, the current densities showed a strong homogeneity regarding the stack configuration anode / cathode in counter-flow and anode / cooling in co-flow. The influence of cooling strategies was examined for the stack performance in a similar way. In the following, the local temperature distribution as well as temperature peaks within the stack could be predicted and validated with experimental measurements. Further on, the model scalability and thus the general validity of the developed

  16. High-rate/high-temperature capability of a single-layer zicar-separator nickel-hydrogen cell

    Science.gov (United States)

    Wheeler, James R.

    1995-01-01

    A 50 Ampere-hour nickel-hydrogen cell with a single-layer Zircar separator stack design was fully charged and then discharged at a 2C current rate to an end voltage of 1 volt. This extreme test resulted in high temperatures which were recorded at three locations on the cell, i.e., the cell wall, the boss (barrel of the compression seal), and a terminal. The results provide new information about the high-temperature and high-discharge-rate capabilities of nickel-hydrogen cells. This information also adds to the growing data base for single-layer zirconium-oxide-cloth (Zircar) separator cell designs.

  17. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    Science.gov (United States)

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation.

  18. Stacked Cu1.8S nanoplatelets as Counter Electrode for Quantum Dot-Sensitized Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Savariraj, Dennyson A.; Rajendrakumar, G.; Selvam, Samayanan; Karthick, S. N.; Balamuralitharan, B.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2015-11-09

    It is found that electrocatalytic activity of Cu2-xS thin films used in quantum dots sensitized solar cells (QDSSC) as countner electrode (CE) for the reduction of polysulfide electrolyte depends on the the surface active sulfur species and defficiency of Cu. The preferential bonding between Cu2+ and S2- leading to the selective formation of Cu1.8S stacked platelets like morphology is determined by Cetyl Trimethyl Ammonium Bromide surfactant with temperature and crab like Cu-S coordination bond formed dictates the surface area to volume ratio of the Cu1.8S thin films and the electrocatalytic activity. The Cu deficiency enhances the conductivity of the Cu1.8S thin films and exhibits near- infrared localized surface plasmon resonanc due to free carrier intraband absorption and UV-VIS absorption spectra shows excitonic effect due to quantum size effect. When these Cu1.8S thin films were employed as CE in QDSSC, robust photoconversion efficiency of 5.2 % is yielded by the film deposited at 60°C by a sinlge step chemical bath deposition method.

  19. Model development of integrated CPOx reformer and SOFC stack system

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2016-12-01

    Full Text Available The main purpose of this study was to develop a mathematical model, in a steady state and dynamic mode, of a Catalytic Partial Oxidation (CPOx reformer – Solid Oxide Fuel Cell (SOFC stack integrated system in order to assess the system performance. Mass balance equations were written for each component in the system together with energy equation and implemented into the MATLAB Simulink simulation tool. Temperature, gas concentrations, pressure and current density were computed in the steady-state mode and validated against experimental data. The calculated I–V curve matched well the experimental one. In the dynamic modelling, several different conditions including step changes in fuel flow rates, stack voltage as well as temperature values were applied to estimate the system response against the load variations. Results provide valuable insight into the operating conditions that have to be achieved to ensure efficient CPOx performance for fuel processing for the SOFC stack applications.

  20. Effect of GeO2 deposition temperature in atomic layer deposition on electrical properties of Ge gate stack

    Science.gov (United States)

    Kanematsu, Masayuki; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-08-01

    We investigated the effect of GeO2 deposition temperature (T depo) on electronic properties of Al/Al2O3/GeO2/Ge MOS capacitors. Capacitance-voltage characteristics show frequency dispersions under depletion and strong inversion conditions, which can be attributed from the interface states at the atomic layer deposition (ALD)-GeO2/Ge interface and from the defect states in the quasi-neutral region in the Ge substrate, respectively. We found that the interface state density (D it) shows similar values and energy distributions as T depo decreases to 200 from 300 °C, while a higher D it is observed at a T depo of 150 °C. Also, from the temperature dependence of conductance, the frequency dispersion under the strong inversion condition can be related to the minority carrier diffusion to the quasi-neutral region of the Ge substrate. The frequency dependence of conductance reveals that the undesirable increment of the bulk defect density can be suppressed by decreasing T depo. In this study, the bulk defect density in a MOS capacitor prepared at a T depo of 200 °C decreases one tenth compared with that at a T depo of 300 °C. The ALD of GeO2 at a low temperature of around 200 °C is effective for both obtaining a low D it and preventing the undesirable introduction of bulk defect density.

  1. Influences of Stacking Architectures of TiO2 Nanoparticle Layers on Characteristics of Dye-Sensitized Solar Cells

    OpenAIRE

    Chih-Hung Tsai; Yu-Tang Tsai; Tsung-Wei Huang; Sui-Ying Hsu; Yan-Fang Chen; Yuan-Hsuan Jhang; Lun Hsieh; Chung-Chih Wu; Yen-Shan Chen

    2013-01-01

    We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation o...

  2. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... (RDE) and (ii) a gas diffusion electrode (GDE) setup designed for experiments in conc. H3PO4. The pressurized cell is demonstrated by tests on polycrystalline platinum electrodes up to 150 ºC. Functionality of the RDE system is proved studying the oxygen reduction reaction (ORR) at temperatures up...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...

  3. π(+)-π(+) stacking of imidazolium cations enhances molecular layering of room temperature ionic liquids at their interfaces.

    Science.gov (United States)

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2017-01-25

    The interfacial structure of room temperature ionic liquids (RTILs) controls many of the unique properties of RTILs, such as the high capacitance of RTILs and the efficiency of charge transport between RTILs and electrodes. RTILs have been experimentally shown to exhibit interfacial molecular layering structures over a 10 Å length scale. However, the driving force behind the formation of these layered structures has not been resolved. Here, we report ab initio molecular dynamics simulations of imidazolium RTIL/air and RTIL/graphene interfaces along with force field molecular dynamics simulations. We find that the π(+)-π(+) interaction of imidazolium cations enhances the layering structure of RTILs, despite the electrostatic repulsion. The length scales of the molecular layering at the RTIL/air and RTIL/graphene interfaces are very similar, manifesting the limited effect of the substrate on the interfacial organization of RTILs.

  4. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature

    Science.gov (United States)

    Sun, Shucheng; Yu, Hongmei; Hou, Junbo; Shao, Zhigang; Yi, Baolian; Ming, Pingwen; Hou, Zhongjun

    Fuel cells for automobile application need to operate in a wide temperature range including freezing temperature. However, the rapid startup of a proton exchange membrane fuel cell (PEMFC) at subfreezing temperature, e.g., -20 °C, is very difficult. A cold-start procedure was developed, which made hydrogen and oxygen react to heat the fuel cell considering that the FC flow channel was the characteristic of microchannel reactor. The effect of hydrogen and oxygen reaction on fuel cell performance at ambient temperature was also investigated. The electrochemical characterizations such as I- V plot and cyclic voltammetry (CV) were performed. The heat generated rate for either the single cell or the stack was calculated. The results showed that the heat generated rate was proportional to the gas flow rate when H 2 concentration and the active area were constant. The fuel cell temperature rose rapidly and steadily by controlling gas flow rate.

  5. Optimization of Al2O3/SiNx stacked antireflection structures for N-type surfacepassivated crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    Wu Dawei; Jia Rui; Ding Wuchang; Chen Chen; Wu Deqi; Chen Wei; Li Haofeng; Yue Huihui; Liu Xinyu

    2011-01-01

    In the case of N-type solar cells,the anti-reflection property,as one of the important factors to further improve the energy-conversion efficiency,has been optimized using a stacked Al2O3/SiNx layer.The effect of SiNx layer thickness on the surface reflection property was systematically studied in terms of both experimental and theoretical measurement.In the stacked Al2O3/SiNx layers,results demonstrated that the surface reflection property can be effectively optimized by adding a SiNx layer,leading to the improvement in the final photovoltaic characteristic of the N-type solar cells.

  6. Modelling of tandem cell temperature coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  7. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology...... performance and process input variations need to be carefully accounted for. Such data will additionally provide valuable input for system modeling and optimization. The paper presents an advanced experimental test facility capable of performing static as well as dynamic tests on fuel cell stacks...

  8. Diffractive stacks of metamaterial lattices with a complex unit cell: Self-consistent long-range bianisotropic interactions in experiment and theory

    Science.gov (United States)

    Kwadrin, Andrej; Koenderink, A. Femius

    2014-01-01

    Metasurfaces and metamaterials promise arbitrary rerouting of light using two-dimensional (2D) planar arrangements of electric and magnetic scatterers, respectively, 3D stacks built out of such 2D planes. An important problem is how to self-consistently model the response of these systems in a manner that retains dipole intuition yet does full justice to the self-consistent multiple scattering via near-field and far-field retarded interactions. We set up such a general model for metamaterial lattices of complex 2D unit cells of poly-atomic basis as well as allowing for stacking in a third dimension. In particular, each scatterer is quantified by a magnetoelectric polarizability tensor and Ewald lattice summation deals with all near-field and long-range retarded electric, magnetic, and magnetoelectric couplings self-consistently. We show in theory and experiment that grating diffraction orders of dilute split ring lattices with complex unit cells show a background-free signature of magnetic dipole response. For denser lattices experiment and theory show that complex unit cells can reduce the apparent effect of bianisotropy, i.e., the strong oblique-incidence handed response that was reported for simple split ring lattices. Finally, the method is applied to calculate transmission of finite stacks of lattices. Thereby our simple methodology allows us to trace the emergence of effective material constants when building a 3D metamaterial layer by layer, as well as facilitating the design of metasurfaces.

  9. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    OpenAIRE

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still ...

  10. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    OpenAIRE

    Hong eLiu; Peiwen eLi; Daniel eJuarez-Robles; Kai eWang; Abel eHernandez-Guerrero

    2014-01-01

    In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the b...

  11. Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature

    Directory of Open Access Journals (Sweden)

    Barna Roy

    2014-06-01

    Full Text Available The effect of cryorolling (CR strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density (β increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.

  12. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    demands for this. A 1kW fuel cell stack with optimized  ow plates was heated in 5 minutes using the introduction of an electrical air pre-heater. Using pure hydrogen in compressed form is problematic due to the very small density of hydrogen, even at high pressures. Hydrogen is a very energy e-cient gas...

  13. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  14. Refinement of numerical models and parametric study of SOFC stack performance

    Science.gov (United States)

    Burt, Andrew C.

    The presence of multiple air and fuel channels per fuel cell and the need to combine many cells in series result in complex steady-state temperature distributions within Solid Oxide Fuel Cell (SOFC) stacks. Flow distribution in these channels, when non-uniform, has a significant effect on cell and stack performance. Large SOFC stacks are very difficult to model using full 3-D CFD codes because of the resource requirements needed to solve for the many scales involved. Studies have shown that implementations based on Reduced Order Methods (ROM), if calibrated appropriately, can provide simulations of stacks consisting of more than 20 cells with reasonable computational effort. A pseudo 2-D SOFC stack model capable of studying co-flow and counter-flow cell geometries was developed by solving multiple 1-D SOFC single cell models in parallel on a Beowulf cluster. In order to study cross-flow geometries a novel Multi-Component Multi-Physics (MCMP) scheme was instantiated to produce a Reduced Order 3-D Fuel Cell Model. A C++ implementation of the MCMP scheme developed in this study utilized geometry, control volume, component, and model structures allowing each physical model to be solved only for those components for which it is relevant. Channel flow dynamics were solved using a 1-D flow model to reduce computational effort. A parametric study was conducted to study the influence of mass flow distribution, radiation, and stack size on fuel cell stack performance. Using the pseudo 2-D planar SOFC stack model with stacks of various sizes from 2 to 40 cells it was shown that, with adiabatic wall conditions, the asymmetry of the individual cell can produce a temperature distribution where high and low temperatures are found in the top and bottom cells, respectively. Heat transfer mechanisms such as radiation were found to affect the reduction of the temperature gradient near the top and bottom cell. Results from the reduced order 3-D fuel cell model showed that greater

  15. Montagem e caracterização elétrica de pilhas a combustível de óxido sólido (PaCOS Assembly and electrical characterization of solid oxide fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Hosane Aparecida Tarôco

    2009-01-01

    Full Text Available This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper. For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.

  16. Multibeam collimator uses prism stack

    Science.gov (United States)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  17. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  18. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...

  19. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;

    2011-01-01

    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack...... configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack...... a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field....

  20. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  1. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    Science.gov (United States)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  2. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  3. Gas and water management system in a 5 kW PEM fuel cell stack%5 kW质子交换膜燃料电池堆之气体与水管理系统

    Institute of Scientific and Technical Information of China (English)

    马小康; 郑为阳; 方富民

    2012-01-01

    A gas and water management system has been developed to increase the performance of the 5 kW proton exchange membrane fuel cell stack used for a small on board PEMFC auxiliary power unit(APU).The gas and water management system included four subsystems: oxidant supply subsystem,hydrogen supply subsystem,water cooling subsystem and control subsystem.The original design combined with excessive sensors and over-length pipes would cause the higher heat dissipation and decrease the inlet air temperature.The new compact design with less sensors and shorter pipe length could keep the higher inlet gas flow temperature and better performance of the fuel cell stack.In addition,stack performance could be influenced by the gas relative humidity and the hydrogen consumption under different loads.Hydrogen consumption under high load of 100 A might have 1.44 times more than that under low load of 10 A.Thus,the analysis of the hydrogen consumption under different loads and the gas relative humidity could help us to have an optimal design of the hydrogen recycling and increase the stack efficiency.Another 5 kW PEM fuel cell stack system is fabricated to couple with the original fuel cell stack system to have a 10 kW power output.The two stacks are electrically parallel or cascade;and the diodes are adopted in the circuit to avoid reverse current.The whole system should deliver a high power output stably in a long time because the performances of the two stacks are controlled to be almost identical to one another.The experimental results show that the stack ideal efficiency could reach 65.5% under the input air temperature of 51℃ and relative humidity of 54%.%开发了一个气体与水管理系统,藉以配合5kW质子交换膜燃料电池堆(Ballard 1310),使燃料电池的发电效率提升,并应用在小型运输工具之辅助动力装置(APU).气体与水管理系统包含4个子系统:氧化物供应系统、氢气供应系统、冷却系统与控制系统.

  4. Efficiency of tandem solar cell systems as function of temperature and solar energy concentration ratio

    Science.gov (United States)

    Gokcen, N. A.; Loferski, J. J.

    1979-01-01

    The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent.

  5. Ultra-dark graphene stack metamaterials

    Science.gov (United States)

    Chugh, Sunny; Man, Mengren; Chen, Zhihong; Webb, Kevin J.

    2015-02-01

    We present a fabrication method to achieve a graphene stack metamaterial, a periodic array of unit cells composed of graphene and a thin insulating spacer, that allows accumulation of the strong absorption from individual graphene sheets and low reflectivity from the stack. The complex sheet conductivity of graphene from experimental data models the measured power transmitted as a function of wavelength and number of periods in the stack. Simulated results based on the extracted graphene complex sheet conductivity for thicker stacks suggest that the graphene stack reflectivity and the per-unit-length absorption can be controlled to exceed the performance of competing light absorbers. Furthermore, the electrical properties of graphene coupled with the stack absorption characteristics provide for applications in optoelectronic devices.

  6. Influences of Stacking Architectures of TiO2 Nanoparticle Layers on Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chih-Hung Tsai

    2013-01-01

    Full Text Available We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation of the stacking architectures of TiO2 nanoparticle layers with characteristics of DSSCs. The results suggest that the three-layer DSSC architecture, with sandwiching a 20 nm TiO2 nanoparticle layer between a 37 nm TiO2 nanoparticle layer and a hundred nm sized TiO2 back scattering/reflection layer, is effective in enhancing DSSC efficiencies. The high-total-transmittance 37 nm TiO2 nanoparticle layer with a larger haze can serve as an effective front scattering layer to scatter a portion of the incident light into larger oblique angles and therefore increase optical paths and absorption.

  7. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    Science.gov (United States)

    Khalil, M. I.; Atici, O.; Lucotti, A.; Binetti, S.; Le Donne, A.; Magagnin, L.

    2016-08-01

    In the present work, Kesterite-Cu2ZnSnS4 (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose results matched up with the literatures.

  8. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  9. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Mathieu [Arizona State Univ., Mesa, AZ (United States); Holman, Zachary [Arizona State Univ., Mesa, AZ (United States)

    2015-04-06

    "Very efficient crystalline silicon (c-Si) solar cells have been demonstrated when thin layers of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) are used for passivation and carrier selectivity in a heterojunction device. One limitation of this device structure is the (parasitic) absorption in the front passivation/collection a-Si:H layers; another is the degradation of the a-Si:H-based passivation upon temperature, limiting the post-processes to approximately 200°C thus restricting the contacting possibilities and potential tandem device fabrication. To alleviate these two limitations, we explore the potential of amorphous silicon carbide (a-SiC:H), a widely studied material in use in standard a-Si:H thin-film solar cells, which is known for its wider bandgap, increased hydrogen content and stronger hydrogen bonding compared to a-Si:H. We study the surface passivation of solar-grade textured n-type c-Si wafers for symmetrical stacks of 10-nm-thick intrinsic a-SiC:H with various carbon content followed by either p-doped or n-doped a-Si:H (referred to as i/p or i/n stacks). For both doping types, passivation (assessed through carrier lifetime measurements) is degraded by increasing the carbon content in the intrinsic a-SiC:H layer. Yet, this hierarchy is reversed after annealing at 350°C or more due to drastic passivation improvements upon annealing when an a-SiC:H layer is used. After annealing at 350°C, lifetimes of 0.4 ms and 2.0 ms are reported for i/p and i/n stacks, respectively, when using an intrinsic a-SiC:H layer with approximately 10% of carbon (initial lifetimes of 0.3 ms and 0.1 ms, respectively, corresponding to a 30% and 20-fold increase, respectively). For stacks of pure a-Si:H material the lifetimes degrade from 1.2 ms and 2.0 ms for i/p and i/n stacks, respectively, to less than 0.1 ms and 1.1 ms (12-fold and 2-fold decrease, respectively). For complete solar cells using pure a-Si:H i/p and i/n stacks, the open-circuit voltage (Voc

  10. Quantitative analysis of serotonin secreted by human embryonic stem cells-derived serotonergic neurons via pH-mediated online stacking-CE-ESI-MRM.

    Science.gov (United States)

    Zhong, Xuefei; Hao, Ling; Lu, Jianfeng; Ye, Hui; Zhang, Su-Chun; Li, Lingjun

    2016-04-01

    A CE-ESI-MRM-based assay was developed for targeted analysis of serotonin released by human embryonic stem cells-derived serotonergic neurons in a chemically defined environment. A discontinuous electrolyte system was optimized for pH-mediated online stacking of serotonin. Combining with a liquid-liquid extraction procedure, LOD of serotonin in the Krebs'-Ringer's solution by CE-ESI-MS/MS on a 3D ion trap MS was0.15 ng/mL. The quantitative results confirmed the serotonergic identity of the in vitro developed neurons and the capacity of these neurons to release serotonin in response to stimulus.

  11. Horizontal high speed stacking for batteries with prismatic cans

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  12. Development of amorphous silicon-germanium-alloys for stacked solar cells; Entwicklung von amorphen Silizium-Germanium-Legierungen fuer den Einsatz in Stapelsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lundszien, D.

    2001-01-01

    To obtain high efficiency silicon based thin film solar cells, the concept of stacked solar cells is routinely used. The use of component cells with different optical bandgaps provides a better utilization of the solar spectrum. In a stacked cell structure, a high quality narrow bandgap material is needed for the active layer of the bottom cell. Amorphous silicon-germanium-alloys (a-SiGe:H) have been successfully employed because of their tunable optical bandgap E{sub G} between 1.8 eV (a-Si:H) and 1.1 eV (a-Ge:H). Considerable effort has been put into the development of a-SiGe:H. Still, with increasing Ge content, the material shows a characteristic deterioration of its electronic properties, like an exponential increase of the defect density, thus counteracting the gain in absorption obtained for higher Ge contents. It is the defect density which has the dominant influence on carrier transport and cell efficiency by affecting the mobility lifetime product and the electric field in the devices. The performance of a-SiGe:H pin solar cells with a wide range of Ge contents i.e. a wide range of optical band gaps (E{sub G}=1.3 to 1.6 eV) are compared. It is demonstrated how the deterioration of the material properties can be overcome by careful adjustment of the device design and the use of highly reflective ZnO/Ag back contacts. (orig.)

  13. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  14. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    Science.gov (United States)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  15. Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Zu-Po Yang

    2016-08-01

    Full Text Available Titanium oxide (TiO2 films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon surface passivation of the deposited TiO2 film declines as its thickness increases, probably because of the stress effects, phase transformation, atomic hydrogen and thermal stability of amorphous TiO2 films. For the characterization of 66-nm-thick TiO2 film, the results of transmission electron microscopy show that the anatase TiO2 crystallinity forms close to the surface of the Si. Secondary ion mass spectrometry shows the atomic hydrogen at the interface of TiO2 and Si which serves for chemical passivation. The crystal size of anatase TiO2 and the homogeneity of TiO2 film can be deduced by the measurements of Raman spectroscopy and spectroscopic ellipsometry, respectively. For the passivating contacts of solar cells, in addition, a stack composed of 8-nm-thick TiO2 film and a plasma-enhanced chemical-vapor-deposited 72-nm-thick SiNx layer has been investigated. From the results of the measurement of the reflectivity and effective carrier lifetime, TiO2/SiNx stacks on Si wafers perform with low reflectivity and some degree of surface passivation for the Si wafer.

  16. A Peltier cooling diamond anvil cell for low-temperature Raman spectroscopic measurements

    Science.gov (United States)

    Noguchi, Naoki; Okuchi, Takuo

    2016-12-01

    A new cooling system using Peltier modules is presented for a low-temperature diamond anvil cell instrument. This cooling system has many advantages: it is vibration-free, low-cost, and compact. It consists of double-stacked Peltier modules and heat sinks, where a cooled ethylene glycol-water mixture flows through a chiller. Current is applied to the Peltier modules by two programmable DC power supplies. Sample temperature can be controlled within the range 210-300 K with a precision of ±0.1 K via a Proportional-Integral-Differential (PID) control loop. A Raman spectroscopic study for the H2O ice VII-VIII transition is shown as an example of an application of the Peltier cooling diamond anvil cell system.

  17. On flow maldistribution in PEMFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.; Yan, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Yuan, J.; Sunden, B. [Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.

    2010-07-01

    Fuel cell devices have technical and environmental advantages over thermal power systems. The advantages include high performance characteristics, reliability, durability and low emissions. In order to increase the voltage in a single PEMFC for practical operations, many single cells are serially connected to fabricate a fuel cell stack. This study focused on the flow maldistribution at stack level. The flow maldistribution in unit cells may significantly influence the fuel cell stack performance, including the uniformity of current density and the voltage. Of the few studies on flow maldistribution in PEMFC stacks, the results are unsystematic, scattered, and even contradictory. As such, it is necessary to review and summarize previous studies to gain insight into methods to reduce the flow maldistribution in PEMFC stacks. This paper therefore reviewed existing literature concerning flow maldistributions in PEMFC stacks and discussed the effects of the arrangement of flow configurations, design parameters and operating conditions on the flow maldistribution. Some suggestions were outlined to reduce the flow maldistribution in PEMFC stacks. 34 refs., 1 tab., 13 figs.

  18. Voltage Reversal Behavior during Stacking Microbial Fuel Cells in Series%串联微生物燃料电池的电压反转行为

    Institute of Scientific and Technical Information of China (English)

    陈禧; 朱能武; 李小虎

    2011-01-01

    Stacking microbial fuel cell (MFC) in series is an effective approach to provide higher voltage. However, voltage reversal (VR) adversely affects performance of the stacked MFCs. In this paper, diodes are introduced into three stacked MFCs so as to investigate the VR behavior and offer a diodes-based explanation of the VR. Results show that VR occurs in the different stacked MFCs systems. VR of the stacked MFCs with forward diodes happens in a similar pattern as that without diodes. However, it only happens at the end of a cycle. This can be analyzed that the resistance of the diodes consume a part of the flowing electrons and the speed of potential changes of the electrodes slows down. In the stacked MFCs with reverse diodes, VR happens in the unit MFC with reverse diodes at the cathode end only and the voltages of each unit MFC approximately equal their open circuit voltages. It implies that the imbalanced consumption of electrons in unit MFCs and the potential changes of specific electrode directly result in VR. An effective approach to avoid VR in stacked MFCs is to provide enough substrate for each unit MFC and allow consecutive electrons flowing in the circuit.%微生物燃料电池是一种处理废水同时产电的具有广阔应用前景的新型水处理技术,其串联是产生更高电压的有效方法之一,但是会产生电压反转现象降低串联微生物燃料电池的性能.文章将二极管引入串联微生物燃料电池中以考察电压反转的行为.结果表明,不同的串联微生物燃料电池中均会发生电压反转.串联正向二极管的微生物燃料电池的电压反转行为与没有串联二极管的微生物燃料电池类似,但是前者仪仪发生在一个周期的结束阶段.这可能是因为电子流经二极管时被其消耗,从而减缓了电极电势的变化速率.当串联反向二极管时,电压反转发生在仅阴极端连接二极管的单体微生物燃料电池上,而且各单体电池的电压

  19. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  20. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Bang, Mads; Korsgaard, Anders

    2006-01-01

    ². The development of the bipolar plates and the stack design itself is an ongoing activity using CFD and optimizing for low pressure drop. Later versions of the stack design is expected to result in a much shorter stack. When using pure H2, the hydrogen circuit is running dead end with occasional purging. Single...... cell life time tests indicate that very infrequent purging does not accelerate degradation severely. This is a great advantage compared to the LTPEM which often has problems with flooding when not purged. The air supply is realized using a low power axial fan with a high turn down ratio. The stack...

  1. Interconnects for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  2. Variable conformation of GAP junctions linking bone cells: a transmission electron microscopic study of linear, stacked linear, curvilinear, oval, and annular junctions.

    Science.gov (United States)

    Shapiro, F

    1997-10-01

    There is a marked variability in the conformation of bone cell gap junctions in newborn murine cortical bone as defined by transmission electron microscopy (TEM). Studies were done in newborn BALB/c mouse and Sprague-Dawley rat femurs and tibias. Femoral and tibial cortices were dissected into 1 mm3 fragments and prepared in standardized fashion using modified Karnovsky fixation, 7.5% EDTA decalcification, 1% osmium tetroxide-sym collidine buffer with 1% lanthanum nitrate postfixation, Epon resin, 60 nm sections, lead citrate/uranyl acetate staining, and examination at 60 kV. Previous TEM descriptions of bone junctions have, with rare exceptions, noted only isolated linear or mildly curvilinear structures. In this study we noted gap junctional shapes on thin-section TEM preparations of osteoblasts and osteocytes to be extremely variable and complex encompassing linear, curvilinear, stacked linear, oval, and annular conformations. Multiple observations revealed linear gap junctions linking surface osteoblast cell bodies; linear, curvilinear, stacked linear, and oval junctions linking osteoblast processes in osteoid; linear and curvilinear junctions where cell processes joined with osteocyte cell bodies and each of the five conformations linking osteocyte processes within canaliculi. The annular junctions were found within osteoblast and osteocyte cytoplasm and in osteocyte cell processes within canaliculi. The annular junctions are intracellular, degenerating structures which appear as ultrastructural markers of gap junction involution. The more complex shapes reported here must be considered in (1) interpreting quantitative studies using freeze-fracture replicas, thin sections, and confocal microscopy immunolabeled junction connexin-43 components and (2) assessing gap junction biogenesis and turnover. 3-D reconstruction of bone junctions will enhance our understanding of these complex conformations.

  3. The role of Golgi reassembly and stacking protein 65 phosphorylation in H2O2-induced cell death and Golgi morphological changes.

    Science.gov (United States)

    Ji, Guang; Zhang, Weiwei; Quan, Moyuan; Chen, Yang; Qu, Hui; Hu, Zhiping

    2016-12-01

    This study aimed to investigate the effects of H2O2-induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H2O2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H2O2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H2O2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H2O2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H2O2 treatment, while its role in H2O2-induced Golgi morphological changes may be complex.

  4. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  5. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  6. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    Science.gov (United States)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at

  7. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  8. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  9. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  10. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  11. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  12. Silicon (BSFR) solar cell AC parameters at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R Anil; Suresh, M.S. [ISRO Satellite Center, Bangalore- 560 017 (India); Nagaraju, J. [Solar Energy and Thermodynamic Laboratory, Department of Instrumentation, Indian Institute of Science, Bangalore- 560 012 (India)

    2005-01-31

    The AC parameters of back surface field reflected (BSFR) silicon solar cell are measured at different cell temperatures (198-348K) both in forward and reverse bias under dark condition using impedance spectroscopy technique. It is found that cell capacitance increases with temperature whereas cell resistance decreases, in forward bias voltage. Beyond maximum power point voltage, the cell inductance (0.28{mu}H) is measured, as the inductive reactance is comparable with cell series resistance. The measured cell parameters (cell capacitance, dynamic resistance, etc) are used to calculate the mean carrier lifetime and diode factor at different cell temperatures.

  13. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  14. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra...

  15. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  16. Potential Usage of Thermoelectric Devices in a High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    2012-01-01

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved and they still rely on a large Li-ion battery...... for system startup. In this paper, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. Firstly, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas......-difference model is then employed and two main parameters are identified. Secondly, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well...

  17. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen;

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....

  18. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower...... distribution through each cell. Design studies were carried out to increase power density. An experimental and simulation approach was carried out to design the novel open-cathode system. Two unique parallel serpentine flow designs were developed to yield a low pressure drop and uniform flow distribution, one...... without pins and another with pins. A five-cell stack was fabricated in the lab based on the new design. Performance and flow distribution studies revealed better performance, uniform flow distribution, and a reduced temperature gradient across the stack; improving overall system efficiency....

  19. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per;

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...

  20. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  1. The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

    Science.gov (United States)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Linares, José J.; Piuleac, Ciprian-George; Curteanu, Silvia

    Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.

  2. The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n. 13004, Ciudad Real (Spain); Piuleac, Ciprian-George; Curteanu, Silvia [Gh. Asachi Technical University Iasi, Department of Chemical Engineering (Romania)

    2009-07-01

    Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs. (author)

  3. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bordihn, Stefan, E-mail: s.bordihn2@q-cells.com [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Mertens, Verena; Müller, Jörg W. [Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-01-15

    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H] < 0.5 at. % at 400 °C and 500 °C. The surface passivation performance was investigated after annealing at 300 °C–450 °C and also after firing steps in the typical temperature range of 800 °C–925 °C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10 cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10{sup 12} cm{sup −2} to 3·10{sup 11} cm{sup −2} when T{sub Dep} was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  4. Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h

    Science.gov (United States)

    Morales, M.; Miguel-Pérez, V.; Tarancón, A.; Slodczyk, A.; Torrell, M.; Ballesteros, B.; Ouweltjes, J. P.; Bassat, J. M.; Montinaro, D.; Morata, A.

    2017-03-01

    The state-of-the-art materials for SOFCs are yttria-stabilized zirconia as electrolyte and lanthanum strontium cobalt ferrite as cathode. However, the formation of insulating phases between them requires the use of diffusion barriers, typically made of gadolinia doped ceria. The study of the stability of this layer during the fabrication and in operando is currently one of the major goals of the SOFC industry. In this work, the cation inter-diffusion at the cathode/barrier layer/electrolyte region is analysed for an anode-supported cell industrially fabricated by conventional techniques, assembled in a short-stack and tested under real operation conditions for 3000 h. A comprehensive study of this cell, and an equivalent non-operated one, is performed in order to understand the inter-diffusion mechanisms with possible effects on the final performance. The analyses evidence that the cation diffusion is occurring during the fabrication process. Despite the significant diffusion of Ce,Gd, Zr, Y and Sr cations, the formation of typically reported CGO-YSZ solid solution is not observed while the presence of isolated grains of SrZrO3 is proved. All in all, this study presents new insights into the stability of the typically employed diffusion barriers for solid oxide cells that will guide future strategies to improve their performance and durability.

  5. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks (aka AURORA: Areal Use and Reactant Optimization at Rated Amperage)

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Amedeo [Nuvera Fuel Cells, Inc., Billerica, MA (United States); Dross, Robert [Nuvera Fuel Cells, Inc., Billerica, MA (United States)

    2013-12-06

    Hydrogen fuel cells are recognized as one of the most viable solutions for mobility in the 21st century; however, there are technical challenges that must be addressed before the technology can become available for mass production. One of the most demanding aspects is the costs of present-day fuel cells which are prohibitively high for the majority of envisioned markets. The fuel cell community recognizes two major drivers to an effective cost reduction: (1) decreasing the noble metals content, and (2) increasing the power density in order to reduce the number of cells needed to achieve a specified power level. To date, the majority of development work aimed at increasing the value metric (i.e. W/mg-Pt) has focused on the reduction of precious metal loadings, and this important work continues. Efforts to increase power density have been limited by two main factors: (1) performance limitations associated with mass transport barriers, and (2) the historical prioritization of efficiency over cost. This program is driven by commercialization imperatives, and challenges both of these factors. The premise of this Program, supported by proprietary cost modeling by Nuvera, is that DOE 2015 cost targets can be met by simultaneously exceeding DOE 2015 targets for Platinum loadings (using materials with less than 0.2 mg-Pt/cm2) and MEA power density (operating at higher than 1.0 Watt/cm2). The approach of this program is to combine Nuvera’s stack technology, which has demonstrated the ability to operate stably at high current densities (> 1.5 A/cm2), with low Platinum loading MEAs developed by Johnson Matthey in order to maximize Pt specific power density and reduce stack cost. A predictive performance model developed by PSU/UTK is central to the program allowing the team to study the physics and optimize materials/conditions specific to low Pt loading electrodes and ultra-high current density and operation.

  6. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  7. Investigation of temperature effect on cell mechanics by optofluidic microchips.

    Science.gov (United States)

    Yang, Tie; Nava, Giovanni; Minzioni, Paolo; Veglione, Manuela; Bragheri, Francesca; Lelii, Francesca Demetra; Vazquez, Rebeca Martinez; Osellame, Roberto; Cristiani, Ilaria

    2015-08-01

    Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 - 35 °C. By means of an integrated optical stretcher, we observe that cells' optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature. This finding is supported by the results obtained from a second device, which probes the cells' ability to be squeezed through a constriction. Measured data demonstrate a marked dependence of cell mechanical properties on temperature, thus highlighting the importance of including a proper temperature-control system in the experimental apparatus.

  8. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  9. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  10. High temperature lithium cells with solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  11. Low temperature safety of lithium-thionyl chloride cells

    Science.gov (United States)

    Subbarao, S.; Deligiannis, F.; Shen, D. H.; Dawson, S.; Halpert, G.

    The use of lithium thionyl chloride cells for low-temperature applications is presently restricted because of their unsafe behavior. An attempt is made in the present investigation to identify the safe/unsafe low temperature operating conditions and to understand the low temperature cell chemistry responsible for the unsafe behavior. Cells subjected to extended reversal at low rate and -40 C were found to explode upon warm-up. Lithium was found to deposit on the carbon cathodes during reversal. Warming up to room temperature may be accelerating the lithium corrosion in the electrolyte. This may be one of the reasons for the cell thermal runaway.

  12. Modeling of PEM Fuel Cell Stack System using Feed-forward and Recurrent Neural Networks for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Mr. M. Karthik

    2014-05-01

    Full Text Available Artificial Neural Network (ANN has become a significant modeling tool for predicting the performance of complex systems that provide appropriate mapping between input-output variables without acquiring any empirical relationship due to the intrinsic properties. This paper is focussed towards the modeling of Proton Exchange Membrane (PEM Fuel Cell system using Artificial Neural Networks especially for automotive applications. Three different neural networks such as Static Feed Forward Network (SFFN, Cascaded Feed Forward Network (CFFN & Fully Connected Dynamic Recurrent Network (FCRN are discussed in this paper for modeling the PEM Fuel Cell System. The numerical analysis is carried out between the three Neural Network architectures for predicting the output performance of the PEM Fuel Cell. The performance of the proposed Networks is evaluated using various error criteria such as Mean Square Error, Mean Absolute Percentage Error, Mean Absolute Error, Coefficient of correlation and Iteration Values. The optimum network with high performance indices (low prediction error values and iteration values can be used as an ancillary model in developing the PEM Fuel Cell powered vehicle system. The development of the fuel cell driven vehicle model also incorporates the modeling of DC-DC Power Converter and Vehicle Dynamics. Finally the Performance of the Electric vehicle model is analyzed for two different drive cycle such as M-NEDC & M-UDDS.

  13. Stacked antiaromatic porphyrins

    Science.gov (United States)

    Nozawa, Ryo; Tanaka, Hiroko; Cha, Won-Young; Hong, Yongseok; Hisaki, Ichiro; Shimizu, Soji; Shin, Ji-Young; Kowalczyk, Tim; Irle, Stephan; Kim, Dongho; Shinokubo, Hiroshi

    2016-11-01

    Aromaticity is a key concept in organic chemistry. Even though this concept has already been theoretically extrapolated to three dimensions, it usually still remains restricted to planar molecules in organic chemistry textbooks. Stacking of antiaromatic π-systems has been proposed to induce three-dimensional aromaticity as a result of strong frontier orbital interactions. However, experimental evidence to support this prediction still remains elusive so far. Here we report that close stacking of antiaromatic porphyrins diminishes their inherent antiaromaticity in the solid state as well as in solution. The antiaromatic stacking furthermore allows a delocalization of the π-electrons, which enhances the two-photon absorption cross-section values of the antiaromatic porphyrins. This feature enables the dynamic switching of the non-linear optical properties by controlling the arrangement of antiaromatic π-systems on the basis of intermolecular orbital interactions.

  14. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  15. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...

  16. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  17. Rapid and Semi-Automated Extraction of Neuronal Cell Bodies and Nuclei from Electron Microscopy Image Stacks

    Science.gov (United States)

    Holcomb, Paul S.; Morehead, Michael; Doretto, Gianfranco; Chen, Peter; Berg, Stuart; Plaza, Stephen; Spirou, George

    2016-01-01

    Connectomics—the study of how neurons wire together in the brain—is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes. PMID:27259933

  18. Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors

    OpenAIRE

    Fernandes, P. A.; Salomé, P M P; Cunha, A. F. da; Schubert, Björn-Arvid

    2010-01-01

    In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis....

  19. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads

    Science.gov (United States)

    Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun

    2016-05-01

    In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.

  20. Stabilization of RNA stacking by pseudouridine.

    Science.gov (United States)

    Davis, D R

    1995-01-01

    The effect of the modified nucleoside pseudouridine (psi) on RNA structure was compared with uridine. The extent of base stacking in model RNA oligonucleotides was measured by 1H NMR, UV, and CD spectroscopy. The UV and CD results indicate that the model single-stranded oligoribonucleotides AAUA and AA psi A form stacked structures in solution and the CD results for AA psi A are consistent with a general A-form helical conformation. The AA psi A oligomer exhibits a greater degree of UV hypochromicity over the temperature range 5-55 degrees C, consistent with a better stacked, more A-form structure compared with AAUA. The extent of stacking for each nucleotide residue was inferred from the percent 3'-endo sugar conformation as indicated by the H1'-H2' NMR scalar coupling. This indirect indication of stacking was confirmed by sequential NOE experiments. NMR measurements as a function of temperature indicate that pseudouridine forms a more stable base stacking arrangement than uridine, an effect that is propagated throughout the helix to stabilize stacking of neighboring purine nucleosides. The N1-H imino proton in AA psi A exchanges slowly with solvent, suggesting a role for the extra imino proton in stabilizing the conformation of pseudouridine. These results show that the conformational stabilization is an intrinsic property of pseudouridine occurring at the nucleotide level. The characteristics of pseudouridine in these models are consistent with earlier studies on intact rRNA, indicating that pseudouridine probably performs the same stabilizing function in most structural contexts. PMID:8559660

  1. Stacked Sequential Learning

    Science.gov (United States)

    2005-07-01

    a constant factor of K + 2. (To see this, note sequential stacking requires training K+2 classifiers: the classifiers f1, . . . , fK used in cross...on the non- sequential learners (ME and VP) but improves per- formance of the sequential learners (CRFs and VPH - MMs) less consistently. This pattern

  2. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  3. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  4. The Variation of Electrochemical Cell Potentials with Temperature

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    Electrochemical cell potentials have no simple relationship with temperature but depend on the interplay between the sign and magnitude of the isothermal temperature coefficient, dE[degrees]/dT, and on the magnitude of the reaction quotient, Q. The variations in possible responses of standard and non-standard cell potentials to changes in the…

  5. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz

    2015-01-01

    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed...

  6. Control Device for Temperature Characteristics of a Solar Cell

    OpenAIRE

    N.I. Slipchenko; V.A. Pismenetskiy; N.V. Gerasimenko; A.D. Sheremet`ev

    2013-01-01

    The device for measuring of the temperature coefficients of the photovoltaic characteristics of a solar cell is developed. This device provides a real-time monitoring and study of the energy and photovoltaic parameters of a solar cells and its temperature dependence.

  7. Control Device for Temperature Characteristics of a Solar Cell

    Directory of Open Access Journals (Sweden)

    N.I. Slipchenko

    2013-10-01

    Full Text Available The device for measuring of the temperature coefficients of the photovoltaic characteristics of a solar cell is developed. This device provides a real-time monitoring and study of the energy and photovoltaic parameters of a solar cells and its temperature dependence.

  8. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander;

    2016-01-01

    in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  9. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells

    Science.gov (United States)

    Li, Dazi; Li, Chong; Gao, Zhiqiang; Jin, Qibing

    2015-06-01

    Operating a Proton Exchange Membrane fuel cell (PEMFC) system to maintain the stack temperature stable is one of the key issues in PEMFC's normal electrochemical reaction process. Its temperature characteristic is easily affected by inlet gas humidity, external disturbances, and electrical load changes and so on. Because of the complexity and nonlinearity of the reaction process, it is hard to build a model totally consistent with the real characteristic of the process. If model uncertainty, external disturbances, parameters changes can be regarded as "total disturbance", which is then estimated and compensated, the accurate model is no longer required and the control design can be greatly simplified to meet the practical needs. Based on this idea, an active disturbance rejection control (ADRC) with a switching law is proposed for the problem of precise temperature regulation in PEMFC. Results of the work show that the proposed control system allows the PEMFC to operate successfully at the temperature of 343 K point in the presence of two different disturbances.

  10. Cassette less SOFC stack and method of assembly

    Science.gov (United States)

    Meinhardt, Kerry D

    2014-11-18

    A cassette less SOFC assembly and a method for creating such an assembly. The SOFC stack is characterized by an electrically isolated stack current path which allows welded interconnection between frame portions of the stack. In one embodiment electrically isolating a current path comprises the step of sealing a interconnect plate to a interconnect plate frame with an insulating seal. This enables the current path portion to be isolated from the structural frame an enables the cell frame to be welded together.

  11. A kinetic standard for precise calibration of spectrophotometer cell temperature.

    Science.gov (United States)

    Adams, P A; Berman, M C

    1981-05-01

    We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).

  12. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  13. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  14. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    Science.gov (United States)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRVsolar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide

  15. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  16. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    Science.gov (United States)

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  17. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  18. Review of solar cell temperature coefficients for space

    Science.gov (United States)

    Landis, Geoffrey A.

    1994-01-01

    Energy conversion efficiency is an important parameter for solar cells, and well reported in the literature. However, solar cells heat up in sunlight, and the efficiency decreases. The temperature coefficient of the conversion efficiency is thus also extremely important, especially in mission modeling, but is much less well reported. It is of value to have a table which compiles into a single document values of temperature coefficients reported in the literature. In addition to modeling performance of solar cells in Earth orbit, where operating temperatures may range from about 20 C to as high as 85 C, it is of interest to model solar cells for several other recently proposed missions. These include use for the surface of Mars, for solar electric propulsion missions that may range from Venus to the Asteroid belt, and for laser-photovoltaic power that may involve laser intensities equivalent several suns. For all of these applications, variations in operating temperature away from the nominal test conditions result in significant changes in operating performance. In general the efficiency change with temperature is non-linear, however, in the range from negative 100 C through room temperature to a few hundred degrees C, efficiency is usually quite well modeled as a linear function of temperature (except for a few unusual cell types, such as amorphous silicon, and for extremely low bandgap cells, such as InGaAs).

  19. Measurement of heat conduction through stacked screens.

    Science.gov (United States)

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  20. Development of a small vehicular PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.J. [Department of Environment and Energy, National University of Tainan, Tainan 700 (China); Chang, W.R. [Department of Landscape and Architecture, Chung-Hua University, Hsinchu 300 (China); Weng, F.B.; Su, A. [Department of Mechanical Engineering and Fuel Cell Center, Yuan Ze University, Taoyuan (China); Chen, C.K. [Department of Mechanical Engineering, National Cheng Kung University, Tainan (China)

    2008-07-15

    This paper reports the development of components in a stack assembly and measurements of electrochemical characteristics of a proton exchange membrane (PEM) fuel cell stack. A novel test fixture together with a superposition approach is utilized to assess the Ohmic resistance across the stack. Then, a Tafel-kinetic equation for describing the voltage and current curve for all processes including electrode activation, Ohmic resistance and mass transfer was reported. It was found that the Ohmic resistance inside the fuel cell stack was markedly impacted by clamping torque of the stack. An optimum clamping torque of 90 kgf cm was determined based on measured Ohmic resistance. Uniformity and stability in the stack was verified by measuring cell voltage and temperature distribution. Finally, stack durability was tested by impelling a buggy over a relatively long duration. (author)

  1. A Novel STACK Generation Technique for MOS Analog Cell Circuit Layout%一个新的MOS模拟单元电路版图的STACK生成方法

    Institute of Scientific and Technical Information of China (English)

    李明原; 曾璇; 唐璞山; 周电

    2001-01-01

    This paper proposes a new technique to automatically generateSTACK layout for MOS analog cell circuits. The circuit net-list is first mapped into a diffusion graph. Based on the diffusion graph, circuit partition, pattern recognition and symmetry searching are carried out to generate sub-graphs, each of which can be implemented by a STACK. The proposed symmetry searching algorithm can find the maximal symmetry structures in a none fully symmetric circuit. To guarantee the generation of a Eularian trail, the Atallah Eularian trail generation algorithm is improved by employing the dummy adding technique. In order to evaluate the performance of a generated STACK, a distributed parasitic capacitance model is applied to calculate the STACK node parasitic capacitance, as well as the calculation of STACK area and shape.%提出了一种新的MOS模拟单元电路的STACK版图自动生成方法.该方法将电路网表映射为扩散图,基于扩散图进行电路划分、模板匹配和对称查找.提出的对称查找算法适用于非全对称电路的最大匹配对称结构查找.文中改进了Atallah欧拉路径生成算法,通过增加哑元条保证欧拉路径的生成.对生成的STACK,采用分布式寄生电容模型计算各个节点的寄生电容,并计算STACK的面积和形状,以确保其能够满足设计要求.

  2. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics

    Science.gov (United States)

    Dale, N. V.; Mann, M. D.; Salehfar, H.

    The performance of a 6 kW proton exchange membrane (PEM) electrolyzer was modeled using a semiempirical equation. Total cell voltage was represented as a sum of the Nernst voltage, activation overpotential and ohmic overpotential. A temperature and pressure dependent Nernst potential, derived from thermodynamic principles, was used to model the 20 cell PEM electrolyzer stack. The importance of including the temperature dependence of various model components is clearly demonstrated. The reversible potential without the pressure effect decreases with increasing temperature in a linear fashion. The exchange current densities at both the electrodes and the membrane conductivity were the coefficients of the semiempirical equation. An experimental system designed around a 6 kW PEM electrolyzer was used to obtain the current-voltage characteristics at different stack temperatures. A nonlinear curve fitting method was employed to determine the equation coefficients from the experimental current-voltage characteristics. The modeling results showed an increase in the anode and cathode exchange current densities with increasing electrolyzer stack temperature. The membrane conductivity was also increased with increasing temperature and was modeled as a function of temperature. The electrolyzer energy efficiencies at different temperatures were evaluated using temperature dependent higher heating value voltages instead of a fixed value of 1.48 V.

  3. Fungal melanins differ in planar stacking distances.

    Science.gov (United States)

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  4. InGaN High Temperature Photovoltaic Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I project is to demonstrate InGaN materials are appropriate for high operating temperature single junction solar cells. Single junction...

  5. InGaN High Temperature Photovoltaic Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  6. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  7. Design of high temperature irradiation materials inspection cells. (Spent fuel inspection cells) in the High Temperature Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroichi; Ueta, Shouhei; Suzuki, Hiroshi; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tobita, Tsutomu [Nuclear Engineering Company, Ltd., Tokai, Ibaraki (Japan)

    2002-01-01

    This report summarizes design requirements and design results for shields, ventilation system and fuel handling devices for the high temperature irradiation materials inspection cells (spent fuel inspection cells). These cells are small cells to carry out few post-irradiation examinations of spent fuels, specimen, etc., which are irradiated in the High Temperature Engineering Test Reactor, since the cells should be built in limited space in the HTTR reactor building, the cells are designed considering relationship between the cells and the reactor building to utilize the limited space effectively. The cells consist of three partitioned hot cells with wall for neutron and gamma-ray shields, ventilation system including filtering units and fuel handling devices. The post-irradiation examinations of the fuels and materials are planed by using the cells and the Hot Laboratory of the Japan Materials Testing Reactor to establish the technology basis on high temperature gas-cooled reactors (HTGRs). In future, irradiation tests and post-irradiation examinations will be carried out with the cells to upgrade present HTGR technologies and to make the innovative basic research on high-temperature engineering. (author)

  8. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  9. Electrolytes for low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Berkel, F.P.F. van; Christie, G.M.; Heuveln, F.H. van; Huijsmans, J.P.P. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1995-12-31

    Self-supported electrolytes and electrode supported electrolytes of zirconia and ceria have been developed by means of tape casting. The conductivity data of these compounds have been obtained. Cell tests with these materials were conducted in the temperature range of 600 to 800 C. Operation of SOFC within this temperature range has been shown to be feasible.

  10. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  11. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin

    2015-01-01

    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showin...

  12. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  13. Electrode Kinetics in High Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Bay, Lasse

    1998-01-01

    The O_2 reduction on Pt electrode with an yttria stabilized zirconia (YSZ) electrolyte is examined with potential step, voltammetry and impedance measurements. Inductive hysteresis are observed in all cases, indicating an activation-deactivation process for the electrode reaction. The same is found...... when the electrolyte is Gd doped ceria. The activation is generated by current passage. The time constant for the hysteresis is large considering the high operating temperatures, 800- 1000^oC. For the activation process potential steps give two time constants 10^2s and 10^3s for an anodic current, 10...... treated by modelling. The phenomenological model proposed can explain the principal behaviour of the inductive hysteresis. The activation process has first order dependence of the current density and the deactivation first order with respect to the activation.AFM pictures of the electrode...

  14. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    Science.gov (United States)

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-10-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.

  15. 全钒液流电池10kW单元电堆性能研究%Performance of 10kW cell stack of vanadium redox flow battery

    Institute of Scientific and Technical Information of China (English)

    陈伟; 孟凡明; 李晓兵; 刘效疆; 马海波

    2013-01-01

    详细研究了全钒液流电池10kW单元电堆的功率输出特性和单体电压一致性及不同充放电电流密度与库仑效率和能量效率的关系.研究了电堆长期运行时,库仑效率、能量效率及电压平台的变化.%The power output characteristics and single voltage consistency of 10 kW cell stack of vanadium redox flow battery,as well as the coulombic efficiency and energy efficiency for different charge and discharge current density were studied.The variety of coulombic and energy efficiency and voltage platform of the stack was researched in a long-term operation.

  16. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...

  17. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  18. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  19. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  20. Electrolytes for Li-Ion Cells in Low Temperature Applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.

  1. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Directory of Open Access Journals (Sweden)

    Teruyuki Hayashi

    Full Text Available Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT in combination with fluorescence lifetime imaging microscopy (FLIM. Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  2. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines.

    Science.gov (United States)

    Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

    2015-01-01

    Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature.

  3. Identification and novel adaptive fuzzy control of nonlinear system for PEMFC stack

    Institute of Scientific and Technical Information of China (English)

    WEI Dong; XU Hong; ZHU Xin-jian

    2006-01-01

    The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.

  4. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  5. Temperature dependent electroreflectance study of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, T., E-mail: taavi.raadik@ttu.ee [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, J.; Josepson, R.; Hiie, J. [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Potlog, T.; Spalatu, N. [Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau (Moldova, Republic of)

    2013-05-01

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were E{sub g} = 1.499 eV and E{sub g} = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe{sub 1−x}S{sub x} solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe{sub 1−} {sub x}S{sub x} solid solution layer in the junction area.

  6. InGaN High-Temperature Photovoltaic Cells

    Science.gov (United States)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  7. Indium gallium zinc oxide layer used to decrease optical reflection loss at intermediate adhesive region for fabricating mechanical stacked multijunction solar cells

    Science.gov (United States)

    Sameshima, Toshiyuki; Nimura, Takeshi; Sugawara, Takashi; Ogawa, Yoshihiro; Yoshidomi, Shinya; Kimura, Shunsuke; Hasumi, Masahiko

    2017-01-01

    Reduction of optical reflection loss is discussed in three mechanical stacked samples: top crystalline silicon and bottom crystalline germanium substrates, top crystalline GaAs and bottom crystalline silicon substrates, and top crystalline GaP and bottom crystalline silicon substrates using an epoxy-type adhesive with a reflective index of 1.47. Transparent conductive Indium gallium zinc oxide (IGZO) layers with a refractive index of 1.85 were used as antireflection layers. IGZO layers were formed on the bottom surface of the top substrate and the top surface of the bottom substrate of the three stacked samples with thicknesses of 188, 130, and 102 nm. The insertion of IGZO layers decreased the optical reflectivity of the stacked samples. The IGZO layers provided high effective optical absorbency of bottom substrates of 0.925, 0.943, and 0.931, respectively, for light wavelength regions for light in which the top substrates were transparent and the bottom substrates were opaque.

  8. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  9. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...

  10. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  11. Status and prospects of intermediate temperature solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    Bangwu Liu; Yue Zhang

    2008-01-01

    Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate tem-perature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials.

  12. 箱装发射药堆的温度变化规律及其安全性分析%Analysis of the temperature variation and the safety of ammunition stored in a stack of cases

    Institute of Scientific and Technical Information of China (English)

    姜培学; 任泽霈; 江劲勇; 陈明华; 路桂娥

    2001-01-01

    为研究箱装发射药堆中发射药的温度、发射药的安全性及其所含有的能量随时间的变化规律,采用求解原始变量的通用计算程序PHOENICS(1.4版本)并结合“虚拟密度法”,对具有多个离散内热源的非稳态导热与自然对流换热的耦合传热过程进行了数值模拟。结果表明,当散热通风条件比较好、环境温度和初始温度较低(≤50℃)时,在经历50年后发射药不会发生热自燃,发射药所含有的能量足够高;而当环境温度和初始温度比较高(如:120℃)时,发射药很快就会发生热自燃;在绝热边界条件下,即使在初始温度、环境温度及环境中空气的温度都较低的情况下,发射药也可能发生热自燃。%Abstract: The aim is to investigate the temperature variation,the self-ignition hazard and the energy content in the ammunition. The conjugate heat transfer analysis of the transient thermal conduction and the natural convection in a stack of cases with ammunition №1 or №2, which are modeled as temperature dependent heat sources, were simulated numerically using PHOENICS(Version 1.4) and the false density method. It was found that with reasonable heat transfer conditions at the boundary and relatively low initial and boundary temperatures(≤50 ℃), the ammunition did not self-ignite within the 50 years time period used for the analysis. If the initial and boundary temperatures were high (120 ℃), the ammunition will self-ignite within about 1 h. If the heat transfer conditions on the boundary were very bad, e.g., thermally isolated boundary conditions, the ammunition self-ignited at relatively low initial and boundary temperatures within the stipulated 50 years period.

  13. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  14. Performance of advanced automotive fuel cell systems with heat rejection constraint

    Science.gov (United States)

    Ahluwalia, R. K.; Wang, X.; Steinbach, A. J.

    2016-03-01

    Although maintaining polymer electrolyte fuel cells (PEFC) at temperatures below 80 °C is desirable for extended durability and enhanced performance, the automotive application also requires the PEFC stacks to operate at elevated temperatures and meet the heat rejection constraint, stated as Q/ΔT catalysts in the membrane electrode assemblies. In the illustrative example, stack coolant temperatures >90 °C, stack inlet pressures >2 atm, and cathode stoichiometries cell at the same cell voltage (663 mV) and pressure (2.5 atm) but lower temperature (85 °C), higher cathode stoichiometry (2), and 100% relative humidity.

  15. Phase dynamics modeling of parallel stacks of Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.

    2014-11-01

    The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.

  16. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  17. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.

    2004-01-01

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which distingu

  18. Silicon solar cell monitors high temperature furnace operation

    Science.gov (United States)

    Zellner, G. J.

    1968-01-01

    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  19. New polymer electrolytes for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sundholm, F.; Elomaa, M.; Ennari, J.; Hietala, S.; Paronen, M. [Univ. of Helsinki (Finland). Lab. of Polymer Chemistry

    1998-12-31

    Proton conducting polymer membranes for demanding applications, such as low temperature fuel cells, have been synthesised and characterised. Pre-irradiation methods are used to introduce sulfonic acid groups, directly or using polystyrene grafting, in stable, preformed polymer films. The membranes produced in this work show promise for the development of cost-effective, highly conducting membranes. (orig.)

  20. Statistical mechanics of base stacking and pairing in DNA melting

    OpenAIRE

    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni

    2004-01-01

    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at m...

  1. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones......degreeC. The most promising cathode was integrated onto an anode supported cell and it was found that the cell exhibits electrochemical stability with no measureable degradation during 1500 h operation at 700degreeC. LaCoO3 and Co3O4 infiltrated - CGO cathodes were also investigated and revealed...

  2. Evidence that proliferation of golgi apparatus depends on both de novo generation from the endoplasmic reticulum and formation from pre-existing stacks during the growth of tobacco BY-2 cells.

    Science.gov (United States)

    Abiodun, Moses Olabiyi; Matsuoka, Ken

    2013-04-01

    In higher plants, the numbers of cytoplasmic-distributed Golgi stacks differ based on function, age and cell type. It has not been clarified how the numbers are controlled, whether all the Golgi apparatus in a cell function equally and whether the increase in Golgi number is a result of the de novo formation from the endoplasmic reticulum (ER) or fission of pre-existing stacks. A tobacco prolyl 4-hydroxylase (NtP4H1.1), which is a cis-Golgi-localizing type II membrane protein, was tagged with a photoconvertible fluorescent protein, mKikGR (monomeric Kikume green red), and expressed in tobacco bright yellow 2 (BY-2) cells. Transformed cells were exposed to purple light to convert the fluorescence from green to red. A time-course analysis after the conversion revealed a progressive increase in green puncta and a decrease in the red puncta. From 3 to 6 h, we observed red, yellow and green fluorescent puncta corresponding to pre-existing Golgi; Golgi containing both pre-existing and newly synthesized protein; and newly synthesized Golgi. Analysis of the number and fluorescence of Golgi at different phases of the cell cycle suggested that an increase in Golgi number with both division and de novo synthesis occurred concomitantly with DNA replication. Investigation with different inhibitors suggested that the formation of new Golgi and the generation of Golgi containing both pre-existing and newly synthesized protein are mediated by different machineries. These results and modeling based on quantified results indicate that the Golgi apparatuses in tobacco BY-2 cells are not uniform and suggest that both de novo synthesis from the ER and Golgi division contribute almost equally to the increase in proliferating cells.

  3. Lowering the temperature of solid oxide fuel cells.

    Science.gov (United States)

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  4. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  5. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  6. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.;

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  7. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  8. Optimization of Storage Temperature for Cultured ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Lara Pasovic

    2013-01-01

    Full Text Available Purpose. The establishment of future retinal pigment epithelium (RPE replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7%±9.8%; P<0.01 compared to 4°C, 8°C, and 24°C–37°C; P<0.05 compared to 12°C. Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.

  9. File list: His.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  10. File list: His.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  11. File list: His.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  12. File list: His.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  13. “国井”芝麻香高温堆积过程中微生物与香味成分的变化规律研究%Study on the Change Rules of Microflora and Flavoring Compositions of "Guojing" Sesame-flavor Liquor during High-temperature Stacking

    Institute of Scientific and Technical Information of China (English)

    许玲; 张秋月

    2012-01-01

    运用传统的微生物培养技术与气相色谱分析技术相结合,对扳倒井芝麻香高温堆积过程中微生物与香味成分的变化规律进行了研究,为深入揭示高温堆积在芝麻香型白酒生产中的重要作用奠定了基础。%A study of the change rules of microflora and flavoring compositions of Sesame-flavor liquor during high-temperature stacking was carded out by use of traditional microbe culture methods coupled with GC analytic techniques, which could lay solid foundation for revealing the important roles of high-temperature stacking in Sesame-flavour liquor production.

  14. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  15. Dynamic Thermal Model And Control Of A Pem Fuel Cell System

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2013-01-01

    A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...... the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...... power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess...

  16. Temperature Distribution in Solar Cells Calculated in Three Dimensional Approach

    Directory of Open Access Journals (Sweden)

    Hamdy K. Elminir

    2000-01-01

    Full Text Available Field-testing is costly, time consuming and depends heavily on prevailing weather conditions. Adequate security and weather protection must also provide at the test site. Delays can also be caused due to bad weather and system failures. To overcome these problems, a Photovoltaic (PV array simulation may be used. For system design purpose, the model must reflect the details of the physical process occurring in the cell, to get a closer insight into device operation as well as optimization of particular device parameters. PV cell temperature ratings have a great effect on the main cell performance. Hence, the need for an exact technique to calculate accurately and efficiently the temperature distribution of a PV cell arises, from which we can adjust safe and proper operation at maximum ratings. The Scope of this work is to describe the development of 3D-thermal models, which are used to update the operation temperature, to get a closer insight into the response behavior and to estimate the overall performance.

  17. Evaluation and application of PEMFC fuel cell's technologies developed at IPEN applied to a 500 W{sub e} fuel cell stack; Avaliacao e aplicacao de tecnologias de celulas a combustivel tipo PEMFC desenvolvida no IPEN em um modulo de 500 W{sub e} de potencia nominal

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar Ferrari da

    2009-07-01

    This work is part of a research project on PEMFC technologies carried out in IPEN to develop and optimize a 500 W{sub e} fuel cell stack. The MEAs scaling up from 25 cm{sup 2} to 144 cm{sup 2} produced by the method of sieve printing; computational fluid dynamics by computer simulation of gas flow channels in bipolar plates using COMSOL{sup R} program and the use of Pt/C electrodes developed by alcohol reduction method in single cells were used to build a stack of 500 W{sub e} nominal power for possible commercial applications, produced with national technology and industrial support. A 100 hours fuel cell's test was carried out in a 144 cm{sup 2} single cell to study the stability of the MEA fabricated by sieve printing method. This single cell showed good stability within this period of time. The developed stack has reached the maximum power of 574 W{sub e} at 100 A (694.4 mA cm{sup -2}). The operating power of 500 W{sub e} was obtained at 77.7 A (540.1 mA cm{sup -2}) and potential of 6.43 V, with efficiency of 43.3%. In terms of cogeneration, the thermal power or generated heat by the stack was 652 W{sub t}. The initial estimated cost for the 500 W{sub e} stack was about R$ 4,500.00, considering only the used materials for its construction. (author)

  18. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  19. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  20. Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bowen, Jacob R.

    2013-01-01

    this relatively short time all the metallic nickel in the coating has reacted and formed solid solutions with iron and chromium. Diffusion of Ni into the steel causes formation of the austenite FCC phase. The microstructure and composition of the oxide scale formed on the sample surface after 250 hours is similar......Stainless steels are used as interconnects in Solid Oxide Fuel Cell/Electrolysis stacks. Their high temperature corrosion resistance has been studied mainly to describe oxide scale formation processes. Other corrosion/degradation processes may also be of relevance to overall life time, for example...... diffusion of nickel from the Ni/YSZ electrode or the contact layer into the interconnect plate. Such diffusion can cause austenization of the ferritic structure and could possibly alter corrosion properties of the steel. Whereas this process has already been recognized by SOFC stack developers, only...

  1. Photo-Activated Low Temperature, Micro Fuel Cell Power Source

    Energy Technology Data Exchange (ETDEWEB)

    Harry L. Tuller

    2007-03-30

    A Key objective of this program is to identify electrodes that will make it possible to significantly reduce the operating temperature of micro-SOFC and thin film-based SOFCs. Towards this end, efforts are directed towards: (a) identifying the key rate limiting steps which limit presently utilized electrodes from performing at reduced temperatures, as well as, (b) investigating the use of optical, as opposed to thermal energy, as a means for photocatalyzing electrode reactions and enabling reduced operating temperatures. During Phase I, the following objectives were achieved: (a) assembly and testing of our unique Microprobe Thin Film Characterization System; (b) fabrication of the model cathode materials system in thin film form by both PLD and ink jet printing; and (c) the successful configuration and testing of the model materials as cathodes in electrochemical cells. A further key objective (d) to test the potential of illumination in enhancing electrode performance was also achieved.

  2. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  3. Novel cathodes for low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Xia, C. [Georgia Inst. of Tech., Atlanta, GA (United States). Center for Innovative Fuel Cell and Battery Technologies

    2002-04-04

    A solid-oxide fuel cell that operates at 500 C (instead of 600 C and higher), with lower material cost and better long-term stability, is presented. Its key piece is a cathode made of a silver/copper-doped bismuth vanadate (Ag-BI-CUVOX) composite, which reduces oxygen at lower temperatures and diminishes the resistance between the cathode and the electrolyte. (orig.)

  4. Low cost, high temperature membranes for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-15

    This report details the results of a project to develop novel, low-cost high temperature membranes specifically for automotive fuel cell use. The specific aim of the project was to determine whether a polyaromatic hydrocarbon membrane could be developed that would give a performance (0.68V at 500 mAcm{sub -2}) competitive with an established perfluoronated sulfonic acid (PSA) membrane in a fuel cell at 120{sup o}C and relative humidity of less than 50%. The novel approach used in this project was to increase the concentration of sulphonic groups to a useful level without dissolution by controlling the molecular structure of the membrane through the design of the monomer repeat unit. The physicochemical properties of 70 polymers synthesised in order to determine the effects of controlled sequence distribution were identified using an array of analytical techniques. Appropriate membranes were selected for fuel cell testing and fabricated into membrane electrode assemblies. Most of the homopolymers tested were able to withstand low humidity environments without immediate catastrophic failure and some showed promise from accelerated durability results. The properties of a simple starting polymer structure were found to be enhanced by doping with sulphonated copper phthalocyanine, resulting in high temperature capacity from a potential cheap, simple and scaleable process. The accelerated and long-term durability of such a doped polymer membrane showed that polyaromatics could easily outperform fluoropolymers under high temperature (120{sup o}C) operating conditions.

  5. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  6. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Que, Yande; Xiao, Wende, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Chen, Hui; Wang, Dongfei; Du, Shixuan; Gao, Hong-Jun, E-mail: wdxiao@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-28

    The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(0001) shows a flat surface with a hexagonal lattice due to the screening effect of the bottom two layers and the AB-stacking in the top two layers. The coexistence of AA- and AB-stacking in the bottom two layers leads to three different stacking orders of TLG, namely, ABA-, ABC-, and ABB-stacking. STS measurements combined with TBA calculations reveal that the density of states of TLG with ABC- and ABB-stacking is characterized by one and two sharp peaks near to the Fermi level, respectively, in contrast to the V-shaped feature of TLG with ABA-stacking. Our work demonstrates that TLG on Ru(0001) might be an ideal platform for exploring stacking-dependent electronic properties of graphene.

  7. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    Science.gov (United States)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  8. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion

    DEFF Research Database (Denmark)

    Christiansen, N.; Primdahl, S.; Wandel, Marie;

    2013-01-01

    and manufacturing of materials, cells and stacks based on state of the art as well as innovative strategies. Today TOFC provides the SOFC technology platform: Cells, stacks, integrated multi stack module and PowerCore units that integrate stack modules with hot fuel processing units for high electrical efficiency......Many years of close collaboration between Topsoe Fuel Cell A/S (TOFC) and Risø (to day DTU Energy Conversion) on SOFC development have ensured an efficient transfer of SOFC basic know how to industrial technology. The SOFC development in the consortium includes material development...... increased the efforts on development of next generation cells with metallic support including novel infiltrated nano-structured electrodes for operation in the temperature range 600-700 oC. Recently, record-breaking results have been obtained on cell level as well as on stack level....

  9. Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    C. Stoots; J. O' Brien; J. Herring; J. Hartvigsen

    2008-11-01

    This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

  10. Real-time focal stack compositing for handheld mobile cameras

    Science.gov (United States)

    Solh, Mashhour

    2013-03-01

    Extending the depth of field using a single lens camera on a mobile device can be achieved by capturing a set of images each focused at a different depth or focal stack then combine these samples of the focal stack to form a single all-in-focus image or an image refocused at a desired depth of field. Focal stack compositing in real time for a handheld mobile camera has many challenges including capturing, processing power, handshaking, rolling shutter artifacts, occlusion, and lens zoom effect. In this paper, we describe a system for a real time focal stack compositing system for handheld mobile device with an alignment and compositing algorithms. We will also show all-in-focus images captured and processed by a cell phone camera running on Android OS.

  11. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  12. PBI-based polymer electrolyte membranes fuel cells. Temperature effects on cell performance and catalyst stability

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real (Spain)

    2007-03-10

    In this work, it has been shown that the temperature (ranging from 100 to 175 C) greatly influences the performance of H{sub 3}PO{sub 4}-doped polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells by several and complex processes. The temperature, by itself, increases H{sub 3}PO{sub 4}-doped PBI conductivity and enhances the electrodic reactions as it rises. Nevertheless, high temperatures reduce the level of hydration of the membrane, above 130-140 C accelerate the self-dehydration of H{sub 3}PO{sub 4}, and they may boost the process of catalyst particle agglomeration that takes place in strongly acidic H{sub 3}PO{sub 4} medium (as checked by multi-cycling sweep voltammetry), reducing the overall electrochemical active surface. The first process seems to have a rapid response to changes in the temperature and controls the cell performance immediately after them. The second process seems to develop slower, and influences the cell performance in the 'long-term'. The predominant processes, at each moment and temperature, determine the effect of the temperature on the cell performance, as potentiostatic curves display. 'Long-term' polarization curves grow up to 150 C and decrease at 175 C. 'Short-term' ones continuously increase as the temperature does after 'conditioning' the cell at 125 C. On the contrary, when compared the polarization curves at 175 C a continuous decrease is observed with the 'conditioning' temperature. A discussion of the observed trends is proposed in this work. (author)

  13. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    Science.gov (United States)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  14. Feature-Weighted Linear Stacking

    CERN Document Server

    Sill, Joseph; Mackey, Lester; Lin, David

    2009-01-01

    Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking is demonstrated on the Netflix Prize collaborative filtering da...

  15. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  16. Attachment method for stacked integrated circuit (IC) chips

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Anthony F. (Berkeley, CA); Malba, Vincent (Livermore, CA)

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  17. Attachment method for stacked integrated circuit (IC) chips

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  18. Electrolytes For Intermediate Temperature Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Rękas M.

    2015-06-01

    Full Text Available Solid electrolytes for construction of the intermediate-temperature solid oxide fuel cells, IT-SOFC, have been reviewed. Yttrium stabilized tetragonal zirconia polycrystals, YTZP, as a potential electrolyte of IT-SOFC have been highlighted. The experimental results involving structural, microstructural, electrical properties based on our own studies were presented. In order to study aluminum diffusion in YTZP, aluminum oxide was deposited on the surface of 3 mol.% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP. The samples were annealed at temperatures from 1523 to 1773 K. Diffusion profiles of Al in the form of mean concentration vs. depth in B-type kinetic region were investigated by secondary ion mass spectroscopy (SIMS. Both the lattice (DB and grain boundary (DGB diffusion were determined.

  19. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally...

  20. Silicon Heterojunction Solar Cells: Temperature Impact on Passivation and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Seif, J.; Krishnamani, G.; Demaurex, B.; Martin de Nicholas, S.; Holm, N.; Ballif, C.; De Wolf, S.

    2015-03-23

    Photovoltaic devices deployed in the field can reach operation temperatures (T) as high as 90 °C [1]. Hence, their temperature coefficients (TC1) are of great practical importance as they determine their energy yield. In this study we concentrate on T-related lifetime variations of amorphous/crystalline interfaces and study their influence on the TCs of the individual solar cell parameters. We find that both the open-circuit voltage (Voc) and fill factor (FF) are influenced by these lifetime variations. However, this is only a minor effect compared to the dominant increase of the intrinsic carrier density and the related increase in dark saturation current density. Additionally, in this paper we will show that the TCVoc does not depend solely on the initial value of the Voc [2, 3], but that the structure of the device has to be considered as well.

  1. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  2. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  3. GaAs/Ge solar cell AC parameters at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. Anil; Suresh, M.S. [ISRO Satellite centre, ISRO, Bangalore 560 017 (India); Nagaraju, J. [Department of Instrumentation, Indian Institute of Science, Bangalore 560 012 (India)

    2003-05-15

    The AC parameters of Gallium Arsenide (GaAs/Ge) solar cell were measured at different cell temperatures (198-348K) by varying the cell bias voltage (forward and reverse) under dark condition using impedance spectroscopy technique. It was found that the cell capacitance increases with the cell temperature where as the cell resistance decreases, at any bias voltage. The measured cell parameters were used to calculate the intrinsic concentration of electron-hole pair, cell material relative permittivity and its band gap energy. The diode factor and the cell dynamic resistance at the corresponding maximum power point decrease with the cell temperature.

  4. Statistical mechanics of base stacking and pairing in DNA melting.

    Science.gov (United States)

    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni

    2004-11-01

    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.

  5. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  6. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Ismail B. [West Virginia University, Morgantown, WV (United States)

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  7. Pressurized electrolysis stack with thermal expansion capability

    Science.gov (United States)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  8. File list: Unc.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.50.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  9. File list: Oth.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  10. File list: Oth.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  11. File list: Pol.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  12. File list: Oth.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  13. File list: Unc.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.20.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  14. File list: DNS.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.05.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  15. File list: Pol.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.20.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  16. File list: Unc.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.05.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  17. File list: Oth.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.AllAg.Temperature_sensitive_cells dm3 TFs and others Adult Temperature s...ensitive cells SRX699115 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  18. File list: Pol.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  19. File list: DNS.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.10.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  20. File list: Unc.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adl.10.AllAg.Temperature_sensitive_cells dm3 Unclassified Adult Temperature sen...sitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  1. File list: Pol.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.10.AllAg.Temperature_sensitive_cells dm3 RNA polymerase Adult Temperature s...ensitive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  2. File list: DNS.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.20.AllAg.Temperature_sensitive_cells dm3 DNase-seq Adult Temperature sensit...ive cells http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  3. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu

    2008-01-01

    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  4. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  5. Development and characterization of a portable high-temperature PEM fuel cell system; Entwicklung und Charakterisierung eines portablen Hochtemperatur-PEM-Brennstoffzellensystems

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Timo

    2011-07-01

    In this thesis, the development of a High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) system prototype is presented. In order to identify appropriate operating conditions and design factors, the development is supported by characterisation and modelling of HT-PEM single cells. The specific properties of this fuel cell type, together with the modelling and characterisation results, are used to achieve a compact and portable system design. Two non-isothermal 2D models are developed and coupled to each other in order to obtain fast and precise calculations in all dimensions in the cell. The models account for the conservation of mass, momentum, species, charge and energy. Additionally, the CO tolerance is investigated in detail. This is achieved by calculating catalyst coverage with four different species on the anode catalyst layer. The modelling results are validated using experimental data over a wide operating range. With the two coupled models, variations caused by different channel-rib structures, both parallel and perpendicular to the channel are investigated and optimal channel-rib ratios are identified. Based on the modelling and experimental results, the design of a compact and portable HT-PEMFC stack module is presented. The aim of the prototype development is to construct a modular system with high power density that meets the specific demands of HT-PEMFC operation. In order to reach this goal, innovative constructive details are developed: Stack compression is achieved with an aramid fibre coil to reduce weight and volume compared to threaded bolts. The development of this compression design is supported by experimental and modelling work. The principle of an open cathode is applied to combine the cathode-fed stream with the air cooling by only one channel, reducing the balance of plant. The air channel configuration is designed with the aid of Computational Fluid Dynamics. The developed channel design helps to maintain a small pressure

  6. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Uday B. Pal; Srikanth Gopalan

    2005-01-24

    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  7. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Uday B. Pal; Srikanth Gopalan

    2006-01-12

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  8. Key Materials and Micro-Stack Systems of Single Chamber Solid Oxide Fuel Cells%单气室固体氧化物燃料电池关键材料与微堆系统

    Institute of Scientific and Technical Information of China (English)

    吕喆; 魏波; 田彦婷; 王志红; 苏文辉

    2011-01-01

    单气室固体氧化物燃料电池(SC-SOFC)是一种与传统的双气室结构燃料电池不同的新型燃料电池.SC-SOFC的阴极和阳极都暴露在单一气室中,在工作时通入含有燃料和氧化剂的混合气体,利用阳极和阴极的选择催化作用实现发电.SC-SOFC具有结构简单、无需密封、易于进行堆叠等很多独特的优点.本文介绍了SC-SOFC近期的研究进展,内容包括工作原理的介绍、SC-SOFC的关键材料选择与研究现状、影响SC-SOFC运行的主要因素的讨论,以及微堆(电池组)系统结构设计和试验等.着重介绍了本课题组在SC-SOFC的研究工作,包括对复合阴极材料、Ni修饰氧化物阳极的研究,以及星型和阵列式等多种新型SC-SOFC微堆结构设计与实验等.最后,基于对其优缺点的分析,展望了SC-SOFC各种潜在的应用.%Single chamber solid oxide fuel cell (SC-SOFC) is different from the conventional solid oxide fuel cell with dual gas chamber structure.Both cathode and anode of SC-SOFC are exposed to the only one gas chamber.Mixed gas containing fuel and oxidant is fed during operation and it can generate electric energy by the selectively catalytic activities of cathode and anode.SC-SOFC has many particular advatages, such as more simple structure, eliminating the need for sealing and easy stacking etc.In this paper, the recent research advances of SC-SOFC are reviewed, including brief introduction of operational principle of SC-SOFC, the selection of key materials for SC-SOFC, the discussion of main influencing factors on SC-SOFC, as well as the design and test of micro-stack (battery) system.The investigation results on SC-SOFC of our research group are highlighted, including composite cathode, oxide anode with Ni modification, and some novel designs for SC-SOFC micro stacks, such as star-type and array-type stacks, and so on.Finally, an outlook about the potential applications of SC-SOFC is given according to the analysis of

  9. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  10. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  11. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  12. Determination of the temperature-dependent cell membrane permeabilities using microfluidics with integrated flow and temperature control.

    Science.gov (United States)

    Fang, Cifeng; Ji, Fujun; Shu, Zhiquan; Gao, Dayong

    2017-02-28

    We developed an integrated microfluidic platform for instantaneous flow and localized temperature control. The platform consisted of a flow-focusing region for sample delivery and a cross-junction region embedded with a microheater for cell trapping and localized temperature control by using an active feedback control system. We further used it to measure the membrane transport properties of Jurkat cells, including the osmotically inactive cell volume (Vb) and cell membrane permeabilities to water (Lp) and to cryoprotective agent (CPA) solutions (dimethyl sulfoxide (DMSO) in this study) (PS) at various temperatures (room temperature, 30 °C, and 37 °C). Such characteristics of cells are of great importance in many applications, especially in optimal cryopreservation. With the results, the corresponding activation energy for water and CPA transport was calculated. The comparison of the results from the current study with reference data indicates that the developed platform is a reliable tool for temperature-dependent cell behavior study, which provides valuable tools for general cell manipulation applications with precise temperature control.

  13. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  14. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  15. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied...... in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum...... be a good support for platinum redispersion at PEMFC cathodes....

  16. MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Uday B. Pal; Srikanth Gopalan

    2004-02-15

    AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

  17. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  18. Categorical properties of topological and differentiable stacks

    NARCIS (Netherlands)

    Carchedi, D.J.

    2011-01-01

    The focus of this PhD research is on the theory of topological and differentiable stacks. There are two main themes of this research. The first, is the creation of the theory of compactly generated stacks, which solve many categorical shortcomings of the theory of classical topological stacks. In pa

  19. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    complicated and less imprecise. Time-predictable computer architectures provide solutions to this problem. As accesses to the data in caches are one source of timing unpredictability, devising methods for improving the timepredictability of caches are important. Stack data, with statically analyzable......Embedded systems are computing systems for controlling and interacting with physical environments. Embedded systems with special timing constraints where the system needs to meet deadlines are referred to as real-time systems. In hard real-time systems, missing a deadline causes the system to fail...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...

  20. Fluxons in long and annular intrinsic Josephson junction stacks

    Science.gov (United States)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.

    2002-12-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  1. Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells

    Science.gov (United States)

    Daletou, Maria K.; Kallitsis, Joannis; Neophytides, Stylianos G.

    Fuel cells (FCs) are interesting alternatives to existing power conversion systems since they combine high efficiency with the usage of renewable fuels. Fuel cells can generate power from a fraction of a watt to hundreds of kilowatts and can be used in automotive, stationary or portable applications.1,2,3,4,5,6 A FC is an electrochemical device that converts in a continuous manner the free energy of a chemical reaction into electrical energy (via an electrical current). This galvanic cell consists of an electrolyte (liquid or solid) sandwiched between two porous electrodes. In order to reach desirable amounts of energy power, single cell assemblies can be mechanically compressed across electrically conductive separators to fabricate stacks.

  2. Solid Oxide Fuel Cell (SOFC) Development in Denmark

    DEFF Research Database (Denmark)

    Linderoth, Søren; Larsen, Peter Halvor; Mogensen, Mogens Bjerg;

    2007-01-01

    to develop the SOFC technology all the way to a marketable product. Stack and system modelling including cost optimisation analysis is used to develop multi kW stack modules for operation in the temperature range 700-850oC. To ensure the emergence of cost-competitive solutions, a special effort is focused......The SOFC technology under development at Risø National Laboratory (RISØ) and Topsoe Fuel Cell A/S (TOFC) is based on an integrated approach ranging from basic materials research on single component level over development of cell and stack manufacturing technology to system studies and modelling...... on larger anode-supported cells as well as a new generation of SOFCs based on porous metal supports and new electrode and electrolyte materials. The SOFC program comprises development of next generation of cells and multi stack modules for operation at lower temperature with increased durability...

  3. NOx Conversion of Porous LSF15-CGO10 Cell Stacks

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah; Kammer Hansen, Kent

    2015-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 as electrode and Ce0.9Gd0.1O1.95 as electrolyte, was studied for the electrochemical reduction of NO with Propene. In order to enhance the effect of polarization, the reactor was impregnated with Ce0.9Gd0.1O1.95, CeO2 or Ce0.8Pr0.2O2-d...... nanoparticles. The HC-SCR on the cells was increased on the impregnated cells, but no electrochemical enhancement of this was observed. The applied overpotential on the impregnated cells changed the oxidation reaction of NO into NO2 which is considered an intermediate in the NO reduction to nitrogen....

  4. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  5. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  6. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  7. File list: ALL.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.10.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...811238 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  8. File list: ALL.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.20.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...699108 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  9. File list: ALL.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.05.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...699108 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  10. File list: ALL.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Adl.50.AllAg.Temperature_sensitive_cells dm3 All antigens Adult Temperature sen...811237 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  11. 基于RBF神经网络辨识的直接甲醇燃料电池电堆非成性建模与自适应模糊控制%Nonlinear modeling based on RBF neural networks identification and adaptive fuzzy control of DMFC stack

    Institute of Scientific and Technical Information of China (English)

    苗青; 曹广益; 朱新坚

    2006-01-01

    The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and control problem of DMFC stack. An adaptive fuzzy neural networks temperature controller was designed based on the identification models established, and parameters of the controller were regulated by novel back propagation (BP) algorithm. Simulation results show that the RBF neural networks identification modeling method is correct, effective and the models established have good accuracy. Moreover, performance of the adaptive fuzzy neural networks temperature controller designed is superior.

  12. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging

    Science.gov (United States)

    Meyer, Quentin; Ashton, Sean; Curnick, Oliver; Reisch, Tobias; Adcock, Paul; Ronaszegi, Krisztian; Robinson, James B.; Brett, Daniel J. L.

    2014-05-01

    Dead-ended anode operation, with intermittent purge, is increasingly being used in polymer electrolyte fuel cells as it simplifies the mass flow control of feed and improves fuel efficiency. However, performance is affected through a reduction in voltage during dead-ended operation, particularly at high current density. This study uses electrochemical impedance spectroscopy (EIS), off-gas analysis and high resolution thermal imaging to examine the source of performance decay during dead-ended operation. A novel, 'reconstructed impedance' technique is applied to acquire complete EIS spectra with a temporal resolution that allows the dynamics of cell processes to be studied. The results provide evidence that upon entering dead-ended operation, there is an initial increase in performance associated with an increase in anode compartment pressure and improved hydration of the membrane electrolyte. Subsequent reduction in performance is associated with an increase in mass transport losses due to a combination of water management issues and build-up of N2 in the anode. The purge process rapidly recovers performance. Understanding of the processes involved in the dead-end/purge cycle provides a rationale for determining the optimum cycle frequency and duration as a function of current density.

  13. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  14. Temperature reduction of solar cells in a concentrator photovoltaic system using a long wavelength cut filter

    Science.gov (United States)

    Ahmad, Nawwar; Ota, Yasuyuki; Nishioka, Kensuke

    2017-03-01

    We propose a Fresnel lens optical concentration system that can reduce the solar cell temperature. For the reduction of the solar cell temperature, we added a long-wavelength cut filter in order to utilize the part of the solar spectrum that is beneficial to a solar cell while reflecting the rest of the long-wavelength spectrum. A thermal simulation was conducted to estimate the actual cell temperature for optical systems with and without the long-wavelength cut filter, and the results showed a decrease of approximately 25.3 °C in the solar cell temperature using the filter. The lifetime of a solar cell can be extended by reducing its temperature, and the results showed an increase of 1.9 × 105 h in the lifetime of the solar cell.

  15. Stacking the odds for Golgi cisternal maturation.

    Science.gov (United States)

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo.

  16. Evaluation of thin-film solar cell temperature coefficients for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Simon H.; Simburger, Edward J.; Matsumoto, James; Garcia, Alexander; Ross, Jasen; Nocerino, John [Aerospace Corp., Los Angeles, CA (United States)

    2005-07-01

    At present, commercially available thin-film photovoltaic cells are evaluated for terrestrial applications. To apply thin-film photovoltaic cells for space applications, the assessment of the solar cell performance must be conducted in simulated space conditions. We investigated the temperature coefficients of the I-V characteristics of thin-film amorphous silicon (a-Si) solar cells manufactured by Uni-Solar and Iowa Thin Film Technologies, and CuInGaSe{sub 2} (CIGS) solar cells manufactured by MicroSat Systems with simulated space solar radiation. The temperature coefficient of the thin-film solar cells between temperatures of 15 and 100 deg C was measured with a temperature-controlled vacuum plate. The vacuum plate ensures maximum thermal contact between the plate and the solar cell as well as reducing the thermal gradient in the solar cell. The vacuum plate also serves as a thermal reservoir that provides temperature stability during the performance evaluation when the solar cell is exposed to simulated sunlight radiation. An X-25 sunlight simulator calibrated for AMO conditions provides the necessary radiation in performance characterization of the thin-film solar cell. The I-V characteristics of the solar cell were obtained at various temperatures to gain a thorough knowledge of the cell's performance at different temperatures. (Author)

  17. Electrochemical Impedance Spectroscopy on Industrially-Relevant Solid Oxide Electrolyzer Cell Stacks: A Powerful Tool for in-Situ Investigations of Degradation Mechanisms

    DEFF Research Database (Denmark)

    Zielke, Philipp; Høgh, Jens Valdemar Thorvald; Chen, Ming

    2016-01-01

    that energy services can be covered in a stable and affordable manner. One promising solution is the synthetic fuel production by solid oxide electrolyzers. Electricity can be stored in a power-to-gas process during times of excess electricity production and then further converted to liquid fuels for e.......g. transportation, or at high demands converted back to electricity by either conventional power plants or fuel cells. One of today’s biggest hurdles for a successful commercialization of solid oxide electrolyzers is the stack’s lifetime with current industry targets in the order of five to ten years. To identify......In the current efforts of moving energy production to renewable sources, wind and solar energy are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure...

  18. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andreasen, Birgitta; Andersen, Thomas Rieks

    2012-01-01

    Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped...... zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission...... electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry...

  19. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...... on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact...

  20. Precision cosmography with stacked voids

    CERN Document Server

    Lavaux, Guilhem

    2011-01-01

    We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic re dshift surveys. Our method is an Alcock-Pasczinsky test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, we assess the capability of this approach to constrain dark energy parameters in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectrosc...