WorldWideScience

Sample records for cell specific radiation

  1. Hypoxia- and radiation-inducible, breast cell-specific targeting of retroviral vectors

    International Nuclear Information System (INIS)

    To facilitate a more efficient radiation and chemotherapy of mammary tumours, synthetic enhancer elements responsive to hypoxia and ionizing radiation were coupled to the mammary-specific minimal promoter of the murine whey acidic protein (WAP) encoding gene. The modified WAP promoter was introduced into a retroviral promoter conversion (ProCon) vector. Expression of a transduced reporter gene in response to hypoxia and radiation was analysed in stably infected mammary cancer cell lines and an up to 9-fold increase in gene expression demonstrated in comparison to the respective basic vector. Expression analyses in vitro, moreover, demonstrated a widely preserved mammary cell-specific promoter activity. For in vivo analyses, xenograft tumours consisting of infected human mammary adenocarcinoma cells were established in SCID/beige mice. Immunohistochemical analyses demonstrated a hypoxia-specific, markedly increased WAP promoter-driven expression in these tumours. Thus, this retroviral vector will facilitate a targeted gene therapeutic approach exploiting the unique environmental condition in solid tumours

  2. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  3. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    International Nuclear Information System (INIS)

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  4. Production of antigen-specific suppressive T cell factor by radiation leukemia virus-transformed suppressor T cells

    International Nuclear Information System (INIS)

    Hen egg-white lysozyme-specific suppressor T cells induced in C57BL/6 mice have been selected by sequential passage over plates coated with goat anti-mouse Ig and HEL. These suppressor T cells, 80% I-J+, were infected in vitro with radiation leukemia virus and injected intravenously into sublethally irradiated syngeneic recipients. After 4 to 6 months, 6 out of 20 injected mice developed thymic lymphomas, which were maintained by transplantation into histocompatible hosts and subsequently established as permanent cell lines. Cells of these six thymomas were screened for the presence of Thy 1.2, Lyt 1, Lyt 2, I-J/sup b/, and Ig cell surface antigens by direct or indirect immunofluorescence. One tumor was found to express the expected phenotype of suppressor T cells. High-speed supernatants of extracts obtained from L4 cells were able to induce HEL-specific suppression in a T cell proliferative assay, demonstrating the presence of an antigen-specific suppressive T cell factor

  5. Production of antigen-specific suppressive T cell factor by radiation leukemia virus-transformed suppressor T cells.

    OpenAIRE

    Ricciardi-Castagnoli, P; Doria, G; Adorini, L

    1981-01-01

    Hen egg-white lysozyme (HEL)-specific suppressor T cells induced in C57BL/6 mice have been selected by sequential passage over plates coated with goat anti-mouse Ig and HEL. These suppressor T cells, 80% I-J+, were infected in vitro with radiation leukemia virus (RadLV/Nu1) and injected intravenously into sublethally irradiated syngeneic recipients. After 4-6 months, 6 out of 20 injected mice developed thymic lymphomas, which were maintained by transplantation into histocompatible hosts and s...

  6. Single cell and tissue specific methods for evaluation of radiation and microgravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Van Oostveldt, P.; Vangestel, S. [Laboratory for Biochemistry and Molecular Cytology, Coupure Links 653, B-9000 Gent (Belgium); Meesen, G.; Poffyen, A. [Institute for Nuclear Science, University Gent, Proeftuinstraat 86, B-9000 Gent (Belgium); Coene, E.D.; Schelfhout, V.R.J.; De Potter, C.R. [N Goormaghtigh Institute for Pathology, University Hospital, De Pintelaan 185, B-9000 Gent (Belgium)

    1999-12-06

    A discussion of different methods to evaluate dose/response and biological effects of ionizing radiation is given. Confocal scanning laser microscopy (CSLM) is presented as a high performing observation method for evaluating different cytological effects. Standard cytochemical techniques can be used to analyse the cell in situ with minimal disturbance of morphology and structure. If a relatively small number of cells are affected by the treatment, the use of confocal microscope observations is fast and has a better resolution than conventional fluorescence microscopy. The optical sectioning capability of the CSLM makes it possible to analyse stacks of cells on detectors up to a depth of 200 {mu}m with a resolution of 0.7 {mu}m. This is used to analyse single cell electrophoresis results and nuclear track analysis in poly allyl diglycol carbonate (PADC). Consecutive analysis of cells cultivated on PADC, and analysis of nuclear tracks after chemical etched tracks in the PADC, will make it possible to correlate physical dose with direct cellular effects. This is a promising method for single cell analysis and the study of the effects of ionizing radiation at low particle flux density.

  7. Sex-specific differences in fetal germ cell apoptosis induced by ionizing radiation

    International Nuclear Information System (INIS)

    Background: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin α, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. Methods and results: Both male and female fetal germ cells displayed a similar number of γH2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin α did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. Conclusions: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress-irradiation with oogonia being less sensitive and undergoing p53-independent apoptosis. (authors)

  8. Explanation for the specification of dose estimation for the radiation victims in the early stage using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Based on the extensive research of literature,systematic study of the relevant laws and regulations related to the specification, the Specification of Dose Estimation for the Radiation Victims in the Early Stage Using Single Cell Gel Electrophoresis was enacted according to the principles about it. It can be used for the quantitative assay of DNA damage induced by whole body uniform irradiation in case of low linear energy transfer. To correctly implement this specification,contents in it were interpreted in this article. (authors)

  9. Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints

    International Nuclear Information System (INIS)

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalised human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha-particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown and the involvement of radiation in DU-induced biological effects could have significant implication for current risk estimates for internalised DU exposure. Two approaches were used to address this question. The frequency of dicentrics was measured in HOS cells following DU exposure in vitro. Data demonstrated that DU exposure (50 μM, 24h) induced a significant elevation in dicentric frequency in vitro in contrast to incubation with the heavy metals, nickel and tungsten which did not increase dicentric frequency above background levels. Using the same concentration (50 μM) of three uranyl nitrate compounds that have different uranium isotopic concentrations and therefore, different specific activities, the effect on neoplastic transformation in vitro was examined. HOS cells were exposed to one of three-uranyl nitrate compounds (238U-uranyl nitrate, specific activity 0.33 μCi.g-1: DU-uranyl nitrate, specific activity 0.44 μCi.g-1: and 235U-uranyl nitrate, specific activity 2.2 μCi.g-1) delivered at a concentration of 50 μM for 24 h. Results showed, at equal uranium concentration, there was a specific activity dependent increase in neoplastic transformation frequency. Taken together these data suggest that radiation can play a role in DU-induced biological effects in vitro. (author)

  10. Resistance of CD45RA- T cells to apoptosis and functional impairment, and activation of tumor-antigen specific T cells during radiation therapy of prostate cancer.

    Science.gov (United States)

    Tabi, Zsuzsanna; Spary, Lisa K; Coleman, Sharon; Clayton, Aled; Mason, Malcolm D; Staffurth, John

    2010-07-15

    The effect of radiation therapy (RT) to the pelvis on circulating T cells was studied in prostate cancer (PCa) patients to provide a baseline for a more informed design of combination radioimmunotherapy. Peripheral blood samples taken from 12 PCa patients with locally advanced tumor before, during, and after hypofractionated RT were analyzed for T cell phenotype and function. There was significantly more loss of naive and early memory compared with more differentiated T cells during RT. The proportions of annexin-V(+) and Fas-expressing T cells were elevated in patients during RT and in PBMC irradiated in vitro ( 2-fold in the presence of an IkappaB-kinase inhibitor, indicating a protective effect via this pathway. T cell proliferation was impaired during RT with IL-2-dependent recovery post-RT. Recall T cell responses to common viral Ags, measured by IFN-gamma production, were little affected by RT. In vitro irradiation of healthy donor PBMCs resulted in a significantly increased frequency of responding T cells, due at least partly to the preferential elimination of CD45RA(+) T cells. Most importantly, antitumor CD4(+) and CD8(+) T cell responses were detectable after, but not before or during RT. The results indicate that generating tumor-specific T cell responses before RT and boosting their activity post-RT are ways likely to amplify the frequency and function of antitumor T cells, with implications for scheduling immunotherapy in PCa. PMID:20548027

  11. Comparison of the effectiveness of different radiations for the induction of reproductive death, chromosome aberrations, morphological transformations and specific mutations in cultured mammalian cells

    International Nuclear Information System (INIS)

    Ionizing radiations can induce a variety of changes in cultured mammalian cells, many of which are initiated by damage to the chromosomes. If the primary mechanisms of damage at the molecular level are similar, it can be expected that dose-effect relationships for the different cellular responses should exhibit common characteristics. A comparison of dose-effect relationships has been made for published data on several types of cells treated with radiations of different Linear Energy Transfer (LET) and assessed with respect to two or more endpoints. Various types of cells have different sensitivities to low LET as well as to high LET radiation and cellular effects are induced at different frequencies per unit dose. Cell reproductive death and chromosome aberrations can presumably be induced as a result of damage in any one of the chromosomes. Chromosome breaks leading to deletions may occur at many sites. The probability of breaks may not be uniform along chromosomes, but this is difficult to establish. Cell transformation is more frequently (30 to 1000 times) induced by ionizing radiations than specific gene mutations and it may therefore be inferred that many, if not all, chromosomes contain one or more sites with genes which, if damaged, deleted or transposed to another site, may cause morphological malignant transformation. (Auth./C.F.)

  12. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    International Nuclear Information System (INIS)

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive

  13. Protecting effects specifically from low doses of ionizing radiation to mammalian cells challenge the concept of linearity

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced changes in intracellular signaling that induce mechanisms of DNA damage control different from those operating at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. The aim of this paper is to demonstrate that by use of microdosimetric concepts, the energy deposited in cell mass can be related to the occurrence of cellular responses, both damaging and defensive.

  14. Radiation Protection Department. Specific activities

    International Nuclear Information System (INIS)

    The Radiation Protection Department is formed of two groups. The physical measurement group is charged with the radioprotection control, radioelement analysis, monitoring the working posts, expertise (accelerators, irradiators, etc), research and development. The dosimetry group is charged with measurements of individual exposure to ionizing radiations, by means of films, dosimeters and FLi

  15. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  16. Simple Benchmark Specifications for Space Radiation Protection

    Science.gov (United States)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  17. Cell-specific precursor processing

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bundgaard, Jens R

    2010-01-01

    The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene...... varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in...... different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The...

  18. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  19. Effect of strand-specific excision repair on the spectra of mutations induced by benzo[a]pyrene-diol epoxide and ultraviolet radiation in diploid human cells

    International Nuclear Information System (INIS)

    To study the effect of excision repair on the spectra of mutations induced in diploid human cells by UV and ±-7β, 8α-dihydroxy-9α,10α-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), the author synchronized repair-proficient cells, treated them at the beginning of S phase or in G1 phase several hours prior to the onset of S phase, selected for thioguanine resistant cells, and determined the spectra of mutations in the coding region of the hyproxanthine(guanine)phosphoribosyl-transferase (HPRT) gene in the mutants. As a control, the spectra of mutations similarly induced in repair-deficient xeroderma pigmentosum (XP) cells were compared. There was no difference in the kinds of mutations observed in mutants derived from either cell strain treated with a particular mutagen either in S or in G1. With BPDE, the majority were G.C→T.A transversions; with UV, they were mainly G.C.→A.T transitions. The strand distribution of premutagenic lesions in mutants from repair-proficient cells treated in S or G1 differed significantly. The results strongly support the hypothesis that human cells preferentially repair UV- and BPDE-induced lesions from the transcribed strand of the HPRT gene. To test this, the rate of repair of BPDE adducts from individual strands of the HPRT gene was measured, using the UvrABC exinuclease and Southern hybridizations with strand-specific probes to detect lesions remaining. BPDE lesions were removed from the transcribed strand at a significantly faster rate than from the nontranscribed strand, consistent with my hypothesis. It was found that BPDE adducts were removed faster from either strand of the HPRT gene than from a transcriptionally inactive locus, indicating preferential repair of active genes. The results of these studies provide biochemical and biological evidence of strand-specific DNA repair of BPDE adducts in human cells

  20. Adult Mesenchymal Stem Cells and Radiation Injury.

    Science.gov (United States)

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  1. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  2. Toxic properties of specific radiation determinant molecules, derived from radiated species

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a

  3. Cell Phone RF Radiation

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2015-01-01

    In a recent article in "Physics Today," Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors. In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological…

  4. Antihistamine provides sex-specific radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underly antihistamine and estrogen radiation protection.

  5. H-2 restriction specificity of T cells from H-2 incompatible radiation bone marrow chimeras: further evidence for the absence of crucial influence of the host/thymus environment on the generation of H-2 restricted TNP-specific T lymphocyte precursors

    International Nuclear Information System (INIS)

    Experiments were conducted to answer the questions related to (a) the role played by the antigen-presenting cells (APCs) present within the thymus and (b) the effect of radiation dose to the recipients on the H-2 restriction profile of TNP-specific cytotoxic T lymphocyte precursors (CTLP) recovered from spleens and/or thymuses of H-2 incompatible radiation bone marrow chimeras (BMC). The H-2 restriction profile of intrathymically differentiating TNP-specific CTLPs was also analyzed in order to test an argument that donor-H-2 restricted CTLP detected in spleens of H-2 incompatible BMC were due to the extrathymically differentiated T cells under the influence of donor-derived lymphoreticular cells. The results indicated the following: (i) splenic T cells from B10(H-2b) leads to (B10(H-2b) leads to B10.BR(H-2k)) chimeras, which were constructed by irradiating primary B10 leads to B10.BR chimeras with 1100 R and reconstituting them with donor-type (B10) bone marrow cells as long as 8 months after their construction, manifested restriction specificities for both donor- and host-type H-2, (ii) splenic T cells from two types of (B10 X B10.BR)F1 leads to B10 chimeras which were reconstituted after exposure of the recipients with either 900 or 1100 R with donor-type bone marrow cells generated both donor- and host-H-2 restricted TNP-specific cytotoxic T cells, and (iii) the TNP-specific CTLPs present in the regenerating thymuses of B10.BR leads to B10 and (B10 X B10.BR)F1 leads to B10 chimeras 4 weeks after their construction were also shown to manifest both donor- and host-H-2 restriction specificities. The significance of these findings on the H-2 restriction profile of CTLP generated in BMCs is discussed

  6. Antihistamine provides sex-specific radiation protection. [Ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.

    1981-04-01

    Rats suffer an early transient performance decrement immediately after a sufficiently large dose of ionizing radiation. However, it has been shown that males experience a more severe incapacitation than females. This sex difference has been attributed to the low estrogen levels in the male. In support of this notion, supplemental estrogens in castrated male rats have produced less-severe performance decrements post-irradiation. Antihistamines have also previously been shown to alleviate radiation's effect on behavior. The present study revealed that antihistamines are only effective in altering the behavioral incapacitation of sexually intact male subjects. This contrasts with previous work which indicates that estrogens can only benefit gonadectomized rats. These findings suggest that different mechanisms may underlie antihistamine and estrogen radiation protection.

  7. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  8. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  9. Specification for lead bricks for radiation shielding

    International Nuclear Information System (INIS)

    Specification with metric dimensions for two systems of interlocking lead bricks for building permanent or temporary shielding walls including numbering system with illustrations, and schedule for ordering purposes. (author)

  10. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation

    DEFF Research Database (Denmark)

    Graakjaer, Jesper; Christensen, Rikke; Kølvrå, Steen;

    2007-01-01

    investigate the existence and maintenance of the telomere length pattern in stem cells. For this aim we studied telomere length in primary human mesenchymal stem cells (hMSC) and their telomerase-immortalised counterpart (hMSC-telo1) during extended proliferation as well as after irradiation. Telomere lengths...

  11. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  12. Radiation dose specification for equipment qualification

    International Nuclear Information System (INIS)

    The methodology of radiological conditions calculation for the purpose of Equipment Qualification (EQ) is described in the paper and is illustrated with the example of calculation that was performed in the frame of Equipment Qualification Parameters determination for NPP Krsko. The complete process is explained what include: identification and calculation of fission product inventory; release, dilution and removal in the containment; leakage to the containment annulus; deposition in the containment sump; influence of the recirculating radioactive fluid outside containment. The analysis is focused on the evaluation of accident doses in the containment, but it is also accompanied with the calculation of doses outside containment during recirculation phase of LOCA and with discussion of normal operating doses determination. In addition, the paper emphasize the specific problems that came up during the implementation in the NEK EQ program, i.e., the influence of the beta particle energy, calculation of Bremsstrahlung effect and the impact of the enclosure volume size on the dose. The methodology is consistent with US NRC requirements and involves the usage of several computer codes (ORIGEN - fission product inventory calculation, ELISA dose calculation in the containment atmosphere, DIDOS and QUADUE calculation of doses from concentrated radioactive sources).(author)

  13. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe;

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled...... later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and...

  14. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten; Andersen, Mads Hald

    2016-01-01

    Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1......-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune...

  15. Space radiation effects on plant and mammalian cells

    Science.gov (United States)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  16. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  17. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Havelek, Radim, E-mail: radim.havelek@upce.cz [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10 (Czech Republic); Cmielova, Jana [Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38 (Czech Republic); Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10 (Czech Republic); Sinkorova, Zuzana; Vavrova, Jirina [Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, Hradec Kralove 500 01 (Czech Republic); Rezacova, Martina [Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38 (Czech Republic)

    2014-10-24

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells.

  18. Apoptin: specific killer of tumor cells?

    Science.gov (United States)

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  19. Apoptin: Specific killer of tumor cells?

    OpenAIRE

    Tavassoli, M; Guelen, L.; Luxon, B. A.; Gäken, J

    2005-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apo...

  20. Target cells involved in radiation and radiation leukemia virus leukemogenesis

    International Nuclear Information System (INIS)

    Comparative studies concerned with the induction and early proliferation phases of preleukemic cells in relation to host environments using radiation or radiation leukemia virus as the leukemogenic agents, indicated different developmental pathways. The lack of thymus in mice exposed to fractionated irradiation did not prevent preleukemic cell induction but did interfere with the incidence of RadLV induced preleukemic cells. Thymus removal within several days following RadLV inoculation prevented the establishment of preleukemic cells in the bone marrow. The radiation induced preleukemic cells in the bone marrow. The radiation induced preleukemic cells were not lysed by anti-Thy-1.2 serum treatment and guinea pig complement whereas the RadLV induced ones were lysed to different degrees. Elimination of Thy-1.2 bearing cells from the virus induced preleukemic population reduced the development of overt T leukemias of donor origin. The thymus seemed of essential importance for establishing the proliferation of RadLV induced preleukemic cells but not for those induced by fractionated irradiation

  1. Cell-Specific Aptamers as Emerging Therapeutics

    OpenAIRE

    Cindy Meyer; Ulrich Hahn; Andrea Rentmeister

    2011-01-01

    Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment). Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have...

  2. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  3. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  4. Haemopoietic cell renewal in radiation fields.

    Science.gov (United States)

    Fliedner, T M; Nothdurft, W; Tibken, B; Hofer, E; Weiss, M; Kindler, H

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a "turbulence region" for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a "blood stem cell bank" might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container. PMID:11539991

  5. Haemopoietic cell renewal in radiation fields

    Science.gov (United States)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  6. Comet assay analysis of repair of DNA strand breaks in normal and deficient human cells exposed to radiations and chemicals. Evidence for a repair pathway specificity of DNA ligation

    International Nuclear Information System (INIS)

    The induction and resealing of DNA strand breaks in a cell line with a proven defect in DNA ligase I, 46BR, and in two Bloom's syndrome cell lines. YBL6 and GM 1492, were compared to those observed in normal human 1BR/3 fibroblasts after treatment with a variety of genotoxic agents whose lesions are processed by different repair pathways. This analysis was performed using the single-cell gel electrophoresis assay. The three types of cells were found to have similar capabilities to recognize and incise ultraviolet photoproducts and also demonstrated similar amounts of DNA breaks immediately after γ irradiation. During post-treatment incubation, 46BR cells showed a marked DNA re-ligation defect after ultraviolet radiation damage, GM 1492 cells demonstrated a highly reduced DNA joining ability after relatively high doses of ultraviolet radiation, and YBL6 cells were particularly affected in DNA re-ligation after damage by 4-nitroquinoline-1-oxide. The two Bloom's syndrome cell lines and 46BR cells had a nearly normal ability to reseal breaks resulting from γ irradiation or treatment with xanthine plus xanthine oxidase. These findings suggest that different DNA ligases may be involved in different DNA repair pathways in human cells. 60 refs., 7 figs

  7. Radiation induced mitochondrial biogenesis: limitations of metabolic viability based assays in measuring radiation induced cell death

    International Nuclear Information System (INIS)

    Many techniques based on metabolic viability of cells employing MTT and MTS assay are being widely used to measure the radiation and chemotherapeutics induced cell death, because of their high throughput capability. These assays are based on mitochondrial potential of cells to convert the substrate in to measurable products and remain dependent on this notion that all the cells untreated and treated will have equal mitochondrial content and metabolic potential. However, it is increasingly becoming clear that treatment induced changes in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if metabolic viability based assays are true measure of radiation induced cell death using the widely used cell lines like RAW264.7, HEK293, NIH3T3, J774.1, BMG-1, MDAMB231, MCF-7, A549 and HeLa. Cells were irradiated with gamma rays (60Co) and enumerated cell numbers (by hemocytometer) and metabolic viability using MTT assay at 24 and 48 hours after exposure. At all the absorbed doses (0-5 Gy), the extent of reduction in cell number was found to be larger than the decrease in formazan formation in all the cell lines tested. Further, this difference in the cell number and formazan formation varied significantly among the cell lines. To test if the increased formazan formation is due to increased mitochondrial content per cell, we analyzed the radiation induced mitochondrial biogenesis using mitochondria specific dye mitotracker red and found a 1.5 to 2 fold increase in mitochondrial content. These findings suggest that radiation induces mitochondrial biogenesis that enhances the metabolic potential leading to increased formazan formation. Therefore, conclusions drawn on radiation induced cytotoxicity based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival. (author)

  8. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4+CD25hiFoxp3+ lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4+CD25hiFoxp3+ Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  9. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  10. Radiation Specifications for Fission Power Conversion Component Materials

    Science.gov (United States)

    Bowman, Cheryl L.; Shin, E. Eugene; Mireles, Omar R.; Radel, Ross F.; Qualls, A. Louis

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system heritage that can be transferred to the design and fabrication of a fission power system for space missions, but there are certain design aspects that require qualification. The radiation tolerance of the power conversion system requires scrutiny because the compact nature of a space power plant restricts the dose reduction methodologies compared to those used in terrestrial systems. An integrated research program has been conducted to establish the radiation tolerance of power conversion system-component materials. The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad ionizing dose and 5 x 10(exp 14) neutron per square centimeter fluence for a convertor operating at 150 C. Specific component materials and their radiation tolerances are discussed. This assessment is for the power convertor hardware; electronic components are not covered here.

  11. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  12. The myth of cell phone radiation

    OpenAIRE

    Natarajan, Vasant

    2012-01-01

    We discuss the purported link between cell-phone radiation and cancer. We show that it is inconsistent with the photoelectric effect, and that epidemiological studies of any link have no scientific basis.

  13. The myth of cell phone radiation

    CERN Document Server

    Natarajan, Vasant

    2012-01-01

    We discuss the purported link between cell phone radiation and cancer. We show that it is inconsistent with the photoelectric effect, and that epidemiological studies of any link have no scientific basis.

  14. A specific case: Cosmic radiation exposures of flight crew

    International Nuclear Information System (INIS)

    Full text: The average annual effective dose due to occupational cosmic radiation exposure is 3.0 mSv (about 60% neutrons), which is higher than that due to other enhanced natural sources such as coal mining, non-coal mining or mineral processing according to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report. Individual variability in annual exposures can be up to 25 fold (0.25 mSv/a), depending on the routes flown, which are often related to seniority in the profession. The collective dose for aircrew is 320 man Sv/a (UNSCEAR 1993 Report). In the specific case of cosmic radiation exposure of aircrew, the radiation control options include rotation of staff for reduction in individual hours worked, reduction in aircraft altitudes, reduction in flight route latitudes and postponement or rerouting of flights during known solar particle events. In the classic occupational hygiene exposure control paradigm, these measures would be categorized as administrative controls: reducing the time exposed or increasing the distance to source. Clearly, there are no feasible engineering controls or personal protective controls such as aircraft or personal shielding. International Commission on Radiological Protection Publication 60 (1991) provided international recommendations that practices involving radiation exposures be justified by benefit to individuals or society, that protection be optimized by constraining individual doses or risks, and that limits be set for individual doses and risks. Additionally, proposed interventions should do more harm than good and the cost benefit should be maximized. However, from a regulatory standpoint, differences exist between countries in the approach taken. In the United States of America, aircrew are not yet considered radiation workers and occupational exposures to cosmic radiation are still treated as unregulated natural background radiation. The US Federal Aviation Administration (FAA

  15. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  16. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  17. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection

    Science.gov (United States)

    Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo

    2003-09-01

    There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy.

  18. Radiation-induced genetic effects in germ cells of mammals

    International Nuclear Information System (INIS)

    The objectives of the project are a better understanding of the fundamental principles that determine the radiation sensitivity in humans, with specific attention for the role of DNA repair in germ cells. The induction and repair of damage in DNA of germ cells of the Syrian golden hamster exposed to ionizing radiation is studied at biologically relevant doses. It has also been investigated which aspects of DNA sequence or chromosomal organisation are important with respect to their influence on the repairability of DNA damage. (R.P.) 10 refs

  19. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  20. Stem cells and radiation: effects in targeted and non-targeted cells

    International Nuclear Information System (INIS)

    The renewing tissues of the body are hierarchically organized and maintained by a small population of self-maintaining stem cells that are important targets for malignant transformation and also for gene therapy and tissue engineering approaches in regenerative medicine. Deleterious effects of toxic insults such as ionizing radiation may be due to stem cell death, with consequent loss of mature functional cells, or to stem cell damage that leads to aberrant responses to regulatory mechanisms. However, because the homeostatic regulation of these tissues is complex (involving intercellular signalling and cellular interactions that control cell proliferation, differentiation and death) radiation effects on stromal cells that perturb the microenvironmental control may also result in deleterious effects on the stem cell compartment. The rapidly developing fields of research investigating radiation-induced genomic instability and bystander effects also indicate that radiation effects on stem cells can be indirect. Although the non-targeted mechanisms responsible for bystander effects and the induction and maintenance of the inducible instability phenotype are not understood, inter-cellular signalling and free radical-mediated processes may be common features. Inter-cellular signalling and production of free radicals are also features of inflammatory responses; a recently identified indirect consequence of radiation with the potential for both persisting and bystander-mediated damage as well as for conferring a predisposition to malignancy. The production of clastogenic factors and their capacity for indirect cell damage after irradiation, the involvement of stromal cells in malignancy and bystander-mediated genetic instability may all reflect aspects of non-specific inflammatory-type responses to radiation-induced stress and injury. Recent investigations demonstrating that radiation-induced signalling processes are influenced by tissue-specific and genetic factors add

  1. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  2. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  3. Radiation Protection: The Specific Case of Cabin Crew

    International Nuclear Information System (INIS)

    Exposure to cosmic radiation is one important element of the in-flight working environment. The new requirements of the Council Directive 96/29 Euratom set out basic safety standards in radiation protection which are particularly important to cabin crew. There are two major reasons why they relate specifically to this category of crew member. One is the great diversity of or in some cases the lack of, medical requirements and surveillance. The situation in this area notably differs from that relating to the cockpit crew, who have an aeronautical licence with detailed and rigid medical requirements. The other major reason is the very high percentage of women among the cabin crew (from 65% to 100% depending on the airline concerned), which emphasises the question of protection during pregnancy. The issue of radiation protection of aircrew therefore differs not only according to country and airline, but also according to the crew members concerned. The need is stressed for a harmonised application of the new requirements of the Council Directive 96/29 Euratom and, hopefully in the future, for equivalent protective provisions to be applied worldwide. (author)

  4. Signal transduction underlying ionizing radiation dose effects on cell growth

    International Nuclear Information System (INIS)

    Phosphorylation/dephosphorylation is commonly utilized in the irradiated cells to transmit intracellular information, such as that monitoring the severity of lesions, effectiveness of repair of damages, and fate of cells. Thus, the radiation dose effects on the flow of information through these intracellular networks should reveal the mechanisms underlying the cellular radiosensitivity, which needs to be monitored before performing radiation therapy on cancer patients. Antibodies that specifically recognize phosphorylated state of amino acids can be utilized to detect phosphorylation/dephosphorylation networks. It will be necessary to identify the antigenic proteins of the anti-phosphorylated amino acid antibody for further understanding. Mass spectrometry, which can determine the amino acid sequence of small peptide, will be important for this purpose. The radiation sensitivity measured by the flow of intracellular information will have general applications as a biomarker reflecting the state of homeostasis of cells in patients affected by various diseases or healthy aging individuals. (authors)

  5. Countermeasure development : Specific Immunoprophylaxis and Immunotherapy of Combined Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Combined Acute Radiation Syndromes (CARS) are extremely severe injuries. Combination of Radiation and Thermal factors induce development of the acute pathologi-cal processes in irradiated mammals: systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). Also, high doses of Radiation and Thermal injury induce for-mation of following Toxin groups: A. Specific Radiation Toxins; B. Specific Thermal Toxins; C. Nonspecific Histiogenic Pro-inflammatory and Inflammatory Toxins (NHIT). Specific Radi-ation Toxins (SRT) include four major group of Toxins: Cerebrovascular Radiation Toxins (Cv RT), Cardiovascular Radiation Toxins (Cr RT), Gastrointestinal Radiation Toxins (Gi RT), and Hematopoietic Radiation Toxins (Hp RT). CvRT, Cr RT, Gi RT groups of toxins are defined as Neurotoxins and Hp RT group is defined as Hematotoxins. Specific Thermal Toxins (STT) were isolated from the burned skin (Voul S., Colker I. 1972). The group of Nonspecific Histio-genic Inflammatory Toxins (NHIT) includes high amount of tissue toxins which are peptides with medium molecular weight. This group of polypeptides can be a significant factor as a part of developing of the general inflammation reaction. However, NHIT toxins can't induce many reactions and changes which are specific for radiation. Specific Radiation Toxins (SRT) can induce specific processes and reactions such as clonogenic cell death -programmed apoptotic necrosis. Although besides high doses of radiation, other forms of cell death such as Pyroptosis or Oncosis should be considered. We postulate that NHIT toxins are similar for high doses of radiation and thermal injury. Specific Radiation Toxins (SRT) are induced by high doses of radiation. Specific Thermal Toxins (STT) toxins which formation is induced by a Thermal Factor are different from SRT. Administration of STT toxins or NHIT toxins (IV or IM) to

  6. The Effect of 5-FU and Radiation on A549 Cells In Vitro

    International Nuclear Information System (INIS)

    Effects of ionizing radiation alone and combined with chemotherapy on tumor growth and it clonal specificity Monitored by changes in distribution of chromosome number were studies in A549 cell line originated from human adenocarcinoma of the lung. Radiation (300 rad, 600 rad and 900 rad) were delivered with or without 5-FU. Forty eight hours later, 57.5% of growth inhibition of cell was Seen in cells treated with 5-FU concentration of 0.47g/ml for 24 hr exposure. Cell survival carves after radiation with and without 5-FU were made. Chromosomal analysis of cells in metaphase in control, and in cells treated with 300 rad of radiation, or 0.47g/ml of 5-FU treatment, and combined treatment of cloth were 77ne to examine the changes in ploidy and number of chromosome. Radiation combined with 5-FU enhanced growth inhibition of A549 cells. However, no evidence of synergetic effects in growth inhibition was observed in the cells treated with the combination therapy. Pattern of chromosomal distribution of survived cells were shifted from hyperploidy to hypoploidy by single dose of radiation(300 rad). As radiation dose increased a large number of hypoploidy cells were observed. Following treatment of cells with 5-FU, chomosomal distribution of survived cells were also shifted to hypodiploidy, which were seen in cells treated with radiation. The cell treated with 5-FU and followed by radiation within 24 hrs had cell with increased number of hypodiploidy cells. Almost same type of chromosomal changes were reproduced in cells treated with combined treatment with radiation and 5-FU. Minor differences were that cells with fewer number of chromosome were more frequent in cells treated with combined therapy. Further increase in cells of hypoploidy(93%) having 1-10 chromosome were induced by additional radiation. Therefore, the enhanced therapeutic effect of 5-FU combined with radiation of A549 cells appeared to be additive rather than synergistic

  7. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  8. Comparison of GSM Modulated and CW Radiofrequency Radiation on Cells

    International Nuclear Information System (INIS)

    The aim of our study was to evaluate and compare effect of global system of mobile (GSM) modulation and continuous wave (CW) radiofrequency radiation (RF) on proliferation ability and viability of V79 Chinese hamster lung cells. Previously prepared samples of cells in culture were exposed for 1, 2 and 3 hours both to 915 MHz GSM modulated and to 935 MHz CW RF field in gigahertz transversal electromagnetic mode cell (GTEM-cell). Electric field strength for cells exposed to GSM modulation was set at 10 V/m and for CW exposed cells was 8.2 V/m. Average specific absorption rate (SAR) was calculated to be for GSM 0.23 W/kg and for CW 0.12 W/kg. V79 samples were plated in concentration of 1x104cells/mL. Cell proliferation was determined by cell counts for each hour of exposure during five post-exposure days. Trypan blue exclusion test was used to determine cell viability. In comparison to control cell samples, proliferation of GSM irradiated cells showed significant decrease after 3 hours of exposure on the second and third post-exposure day. CW exposed cell samples showed significant decrease after 3 hours of exposure on the third post-exposure day. Viability of GSM and CW exposed cells did not significantly differ from matched control cell samples. Both applied RF fields have shown similar effect on cell culture growth, and cell viability of V79 cell line. In addition, applied GSM modulated RF radiation demonstrate bigger influence on proliferation of cells. (author)

  9. Modeling the biological effectiveness of radiations of different qualities: Lethal damage induced by low-energy protons in V79 cells and correlations with energy deposition, radical distribution, and specific DNA damage

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel; Davídková, Marie; Štěpán, Václav; Palajová, Zdenka; Judas, Libor

    Heidelberg : IRPA, 2007, s. 51-51. ISBN 978-3-8249-1071-7. ISSN 1013-4506. [Workshop of Heavy CHarged Particles in Biology and Medicine /11./. Heidelberg (DE), 26.09.2007-29.09.2007] R&D Projects: GA ČR GA202/05/2728; GA ČR(CZ) GD202/05/H031 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : biophysical modeling * V79 cells * lethal radiation damage Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  10. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  11. Specification for dispersed fuel-cell generator

    Science.gov (United States)

    Handley, L. M.; Cohen, R.

    1981-11-01

    A general description and performance definition for a standard 11-mw fuel cell power plant designed for electric utility dispersed-generation applications are provided. Additional features available at the option of the purchaser are also described. The power plant can operate singly or grouped with other power plants to produce larger mutli-megawatt power stations. A 33-mw station is discussed as representative of multiple power plant installations. The power plant specification defines power rating, heat rate, fuels, operating modes, siting characteristics, and available options. A general description included in the attachments covers equipment, typical site arrangement, auxiliary subsystems, maintenance, fuel flexibility, and general fluid and electrical schematics.

  12. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  13. Radiation therapy for intracranial germ cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Wakako; Takizawa, Yoshikazu; Yoshida, Hiroshi; Aruga, Moriyo; Arimizu, Noboru (Chiba Univ. (Japan). School of Medicine); Itami, Jun

    1993-05-01

    From 1974 through 1988, 27 patients with intracranial germ cell tumor underwent radiotherapy in Chiba University Hospital. Radiation field encompassed the whole neuroaxis in 19 patients, the local area in 5, and the whole brain in 3. Overall 5-year survival rate of all 27 patients was 88.9%. There was no significant difference in 5-year overall survival rate between the patients who were treated by the neuroaxis radiation and by the more limited fields. The most significant prognostic factor was pathology of the tumors. Germinoma and histology-unknown tumors which showed good response to irradiation have more favorable prognosis than embryonal carcinoma and choriocarcinoma. From our data, three possibilities emerged: (1) some germinomas might be controlled by localized radiation; (2) optimal dose might be 45[approx]50 Gy; (3) if histology-unknown tumor has good response to radiation at 20 Gy, the tumor can be treated by the same way as germinoma. (author).

  14. Design Specifications for a Radiation Tolerant Beam Loss Measurement ASIC

    CERN Document Server

    Venturini, G G; Effinger, E; Zamantzas, C

    2009-01-01

    A novel radiation-hardened current digitizer ASIC is in planning stage, aimed at the acquisition of the current signals from the ionization chambers employed in the Beam Loss Monitoring system at CERN. The purpose is to match and exceed the performance of the existing discrete component design, currently in operation in the Large Hadron Collider (LHC). The specifications include: a dynamic range of nine decades, defaulting to the 1 pA-1mA range but adjustable by the user, ability to withstand a total integrated dose of 10 kGy at least in 20 years of operation and user selectable integrating windows, as low as 500 ns. Moreover, the integrated circuit should be able to digitize currents of both polarity with a minimum number of external components and without needing any configuration. The target technology is the IBM 130nm CMOS process. The specifications, the architecture choices and the reasons on which they are based upon are discussed in this paper.

  15. Radiation response of human hematopoietic cells

    International Nuclear Information System (INIS)

    The radiosensitivity and capacity to accumulate and repair sub-lethal damage has been studied in hematopoietic cell lines of human origin and in stem cells derived from blood and bone narrow of normal human donors. The results were analysed in terms of the linear quadratic and multitarget models. For the cell lines intrinsic radiosensitivity varied widely with D/sub o/'s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed same capacity to accumulate sub-lethal damage and in three of these survival was enhanced by dose fractionation or reduction of dose rate. Among the cell lines of leukemic origin, several did not conform in one or more respects with the highly radiosensitive and repair deficient model associated with hematopoietic cells. There was no apparent correlation between radiation response and the phenotype (myeloid, lymphoid or undifferentiated) of the cell lines studied. Variability of radiation response and in some cases an unpredicted degree of radioresistance and capacity to repair sub-lethal damage has now been demonstrated for both cultured and primary explants of human leukemic cells. These observations have implications for the design of Total Body Irradiation protocols for use prior to bone narrow transplant

  16. Specific features of electron radiation in ondulators with intense fields

    International Nuclear Information System (INIS)

    Ondulator radiation properties in a great-amplitude sign-variable magnetic field have been analytically analyzed. A difference is considered between spectral-angular and polarization characteristics of electron radiation in the ondulator and corresponding characteristics of electron radiaiton in storage-ring bending magnets. Discussed also is the radiation in the frequency range with the radiation maximum for fields near to the optimal one in the plane passing through the ondulator axis and normal to the particle oscillation plane

  17. Radiation protection measures for hot cell sanitation

    International Nuclear Information System (INIS)

    The cell 5 of the Hot Cell Facility of the Kernforschungszentrum Karlsruhe GmbH (KfK) was to be restored and reequipped after 12 years of operation. The decontamination work was first done remotely controlled and afterwards by 38 persons entering the cell, which took about 2 months. The radiation protection methods and personal dosimetry systems are described. At the beginning of the work the γ-dose rate amounted up to 900 mSv/h. After completion of the remotely controlled decontamination work the γ-dose rate decreased to 1.5 mSv/h. At that time the (α+β-contamination was 105 Bq/cm2. Till the end of the work the removable activity dropped to 102 - 103 Bq/cm2 for β-radiation, to 0.3 - 30 Bq/cm2 for α-radiation and the local dose rate to about 0.03 mSv/h. During the work the accumulated collective doses were listed for breast, hand, head, gonads and foot. In the figure the development with the time of the doses for breast and hand is shown. During restoration work of the cell the accumulated collective whole-body dose amounted to 30 mSv. (orig.)

  18. Radiation therapy for intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shingo; Hayakawa, Kazushige; Tsuchiya, Miwako; Arai, Masahiko; Kazumoto, Tomoko; Niibe, Hideo; Tamura, Masaru

    1988-04-01

    The results of radiation therapy in 31 patients with intracranial germ cell tumors have been analyzed. The five-year survival rates were 70.1 % for germinomas and 38.1 % for teratomas. Three patients with germinoma have since died of spinal seeding. The prophylactic irradiation of the spinal canal has been found effective in protecting spinal seeding, since no relapse of germinoma has been observed in cases that received entire neuraxis iradiation, whereas teratomas and marker (AFP, HCG) positive tumors did not respond favorably to radiation therapy, and the cause of death in these patients has been local failure. Long-term survivors over 3 years after radiation therapy have been determined as having a good quality of life.

  19. Radiation response in prostate cancer stem cells

    International Nuclear Information System (INIS)

    The full text of the publication follows. Introduction: Currently, there is no successful treatment for secondary prostate cancer. Resistance of secondary tumours and metastases to radiotherapy and chemotherapy might be explained by cancer stem cells (CSCs). Prostate (P) CSCs are rare cells defined by cell surface markers, CD133+, a2b1integrinhi and CD44+, and are capable of self-renewal, differentiation and invasion in vitro and tumour initiation in vivo. Hypothesis: PCSCs have an alternative DNA damage response following radiation and are resistant to radiation treatment. Methods: Primary prostate (benign and cancer) epithelial stem (SC) transit amplifying (TA, CD133-/a2b1integrinhi/CD44+) and committed basal (CB, CD133-/a2b1integrinlo/CD44+) cells were exposed to 2 Gy of radiation (IR) to induce a DNA damage response. Immunofluorescence was used to quantify nuclear foci, representative of DNA damage response proteins (g-H2AX, 53BP1, phosphorylated ATM/ATR substrates, phospho-Chk2Th68). Immunofluorescence was also used to co-stain for heterochromatin and DNA damage markers. Comet assays (neutral and alkaline) were used to directly assess DNA damage. Results: In benign and cancer cells, the SCs had a lower percentage of cells containing initial foci (30 min post-IR), compared to the TA and CB cells. At 24 h post-IR there was a reduced percentage of cells positive for foci in TA and CB cells suggesting repair. Whilst there were also signs of repair in benign SCs, in the PCSCs there was an increase in percentage of cells positive for foci at 24 h, indicative of a delayed damage response. Comet assays indicated that SCs sustain different kinds of DNA damage to TA and CB cells. Heterochromatin staining indicated that DNA damage foci preferentially formed in euchromatin. Future work: Further studies will include apoptosis and clonogenic assays to measure PCSC survival. In addition, PCSC chromatin status will be examined to elucidate DNA repair kinetics. If we are able

  20. Phytosphingosine can overcome resistance to ionizing radiation in ionizing radiation-resistant cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Taek; Choi, Jung A; Kim, Min Jeong; Bae, Sang Woo; Kang, Chang Mo; Cho, Chul Koo; Lee, Yun Sil; Lee, Su Jae [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kang, Seong Man [Graduate School of Biotechnology, Korea University, Seoul (Korea, Republic of); Chung, Hee Yong [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2004-07-01

    Although the majority of cancer cells are killed by inonizing radiation, certain types show resistance to it. We previously reported that phytosphingosine also induces apoptotic cell death in caspase dependent pathway in human cancer cells. In the present study, we examined whether phytosphingosine could overcome radiation resistance in the variant Jurkat clones. We first selected radiation-resistant Jurkat clones and examined cross-responsiveness of the clones between radiation and phytosphingosine. Treatment with phytosphingosine significantly did not affect apoptosis in all the clones, indicating that there seemed to be cross-resistance between radiation and phytosphingosine. Nevertheless, combined treatment of phytosphingosine with radiation synergistically enhanced killing of radiation-resistant cells, compared to radiation or phytosphingosine alone. The pan-caspase inhibitor z-VAD-fmk did not completely inhibit the synergistic cell killing induced by combined treatment of ionizing radiation and phytosphingosine. These results demonstrated that apoptosis induced by combined treatment of radiation and phytosphingosine in radiation-resistant cells was associated with caspase independent pathway. We also found that apoptotic cell death induced by combined treatment of ionizing radiation and phytosphingosine correlated to the increases of ROS. The enhancement of ROS generation induced the loss of mitochondria transmembrane potential. In conclusion, ROS generation in combined treatment of phytosphingosine with radiation significantly induced the translocation of AIF to nucleus from mitochondria, suggesting a potential clinical application of combination treatment of radiation and phytosphingosine to radiation-resistant cancer cells.

  1. Myogenic differentiation of FSHD patient specific induced pluripotent stem cells

    OpenAIRE

    Bosnakovski, Darko

    2012-01-01

    Human induced pluripotent stem (IPS) cells overcome several disadvantages of human embryonic stem cells, including host specificity and ethical issues. Patient-specific IPS cells can be generated from every donor by using different cell types, making them a suitable tool for autologous cell therapy and tissue engineering. IPS cells generated from patients with genetic disorders capture the disease genotype in the cell, making them a good model for studying the pathology of the diseas...

  2. Radiation response of rodent neural precursor cells

    International Nuclear Information System (INIS)

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  3. Simple method to demonstrate radiation-inducible radiation resistance in microbial cells.

    OpenAIRE

    Tan, S. T.; Maxcy, R. B.

    1986-01-01

    A simple method for detection of radiation-inducible radiation resistance was developed by irradiating aliquots (0.01 ml) of cell suspension on agar plates. Part of each experimental plate was subjected to an induction treatment, and subsequent radiation resistance was compared with that of untreated cells on the same plate. The UV radiation resistance of a Micrococcus sp. was increased approximately 1.6 times by an induction treatment. This simple procedure of irradiating cells in a "fixed" ...

  4. DNA methylation changes in cells regrowing after fractioned ionizing radiation

    International Nuclear Information System (INIS)

    Background and purpose: Repeated exposure to ionizing radiation (IR) can result in adaptive reactions. While DNA methylation changes in adaption to repeated stress exposure are established for a variety of drugs, their role in fractioned ionizing radiation is largely unknown. Material and methods: MCF7 breast cancer cells were treated 5 times a week with IR in fractions of 2 Gy, resulting in total doses of 10 and 20 Gy. Cells were harvested 48 and 72 h after the last irradiation, as well as after a recovery period of at least 14 d. To identify genes differentially methylated in irradiated versus non-irradiated cells, we used methyl-CpG immunoprecipitation (MCIp) followed by global methylation profiling on CpG island microarrays. Results: MCIp profiling revealed methylation changes in several CpG islands 48 h after FIR with 10 and 20 Gy. Cells receiving a total dose of 10 Gy started regrowing after 14 d and exhibited similar radioresistance as mock-treated cells. Differential methylation of the CpG units associated with FOXC1 (p < 0.001) and TRAPPC9 (p < 0.001) could be confirmed by time-of-flight mass spectrometry (Sequenom). Conclusions: In summary, these data indicate that regrowth of MCF7 cells after 10 Gy FIR is associated with locus-specific alterations in DNA methylation.

  5. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found

  6. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha;

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  7. Enhancement of T cell responses as a result of synergy between lower doses of radiation and T cell stimulation.

    Science.gov (United States)

    Spary, Lisa K; Al-Taei, Saly; Salimu, Josephine; Cook, Alexander D; Ager, Ann; Watson, H Angharad; Clayton, Aled; Staffurth, John; Mason, Malcolm D; Tabi, Zsuzsanna

    2014-04-01

    As a side effect of cancer radiotherapy, immune cells receive varying doses of radiation. Whereas high doses of radiation (>10 Gy) can lead to lymphopenia, lower radiation doses (2-4 Gy) represent a valid treatment option in some hematological cancers, triggering clinically relevant immunological changes. Based on our earlier observations, we hypothesized that lower radiation doses have a direct positive effect on T cells. In this study, we show that 0.6-2.4 Gy radiation enhances proliferation and IFN-γ production of PBMC or purified T cells induced by stimulation via the TCR. Radiation with 1.2 Gy also lowered T cell activation threshold and broadened the Th1 cytokine profile. Although radiation alone did not activate T cells, when followed by TCR stimulation, ERK1/2 and Akt phosphorylation increased above that induced by stimulation alone. These changes were followed by an early increase in glucose uptake. Naive (CD45RA(+)) or memory (CD45RA(-)) T cell responses to stimulation were boosted at similar rates by radiation. Whereas increased Ag-specific cytotoxic activity of a CD8(+) T cell line manifested in a 4-h assay (10-20% increase), highly significant (5- to 10-fold) differences in cytokine production were detected in 6-d Ag-stimulation assays of PBMC, probably as a net outcome of death of nonstimulated and enhanced response of Ag-stimulated T cells. T cells from patients receiving pelvic radiation (2.2-2.75 Gy) also displayed increased cytokine production when stimulated in vitro. We report in this study enhanced T cell function induced by synergistic radiation treatment, with potential physiological significance in a wide range of T cell responses. PMID:24600032

  8. Immediate and long-term effects of radiation on the immune system of specific-pathogen-free mice

    International Nuclear Information System (INIS)

    Studies on the immediate and long-term effects of radiation on the immune system of specific-pathogen-free mice are summarized in this paper. There was a striking difference in the radiation response of lymphocyte subsets; B cells consist of a fairly radiosensitive homogeneous population, whereas T cells consist of a large percentage (> 90%) of radiosensitive and a small percentage (+ and Ly 2+ lymphocytes appear equally radiosensitive, although the percentage of radioresistant cells was slightly larger for the former (∼ 5.5%) than the latter (∼ 2.5%). There was a significant strain difference in the radiosensitivity of immune-response potential in mice; immunocompetent cells of C3H mice were more radioresistant than those of BALB/c, C57BL/6, and B10.BR mice. Studies on the long-term effect of radiation on immune system in mice indicated no evidence for accelerated ageing of the immunologic functions when radiation exposure was given to young adults. Preliminary results on the enhancing effect of low dose radiation on cytotoxic T cell response in vitro are also discussed. (author)

  9. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  10. Ionizing radiation induces heritable disruption of epithelial cell interactions

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization

  11. Radiolabeled blood cells: radiation dosimetry and significance

    International Nuclear Information System (INIS)

    Over the past few years blood cells labeled with In-111 have become increasingly useful in clinical diagnosis and biomedical research. Indium-111 by the virtue of its physical characteristics and ability to bind to cell cytoplasmic components, provides an excellent cell tracer and thereby, allows investigators to monitor in vivo cell distribution by external imaging and help determine a course of regimen in treating life threatening diseases. Due to natural phenomena such as margination, blood pool, and reticuloendothelial cell activity, in the normal state, depending upon the cell type and the quality of cell preparations, 30%-50% of the administered radioactivity is immediately distributed in the liver, spleen and bone marrow. Over a period of time the radioactivity in these organs slightly increases and decays with a physical half-life of In-111. The resulting radiation dose to these organs ranges between 1-25 rads/mCi In-111 administered. The authors have developed a new In-111 labeling technique which preserves platelet ultrastructure and shown that human lymphocytes labeled with In-111 in mixed leukocytes preparations a) are only 0.003% of the total -body lymphocytes population and b) are killed. The consequence if any may be considered insignificant, particularly because 5.6% metaphases from normal men and 6.5% metaphases from normal women in the US have at least one chromosome aberration. Calculations have shown that the risk of fatal hematological malignancy, over a 30 year period, in recipients of 100 million lymphocytes labeled with 100 μCi In-111 is 1/million patients studied. This risk is less than 0.025% of the 1981 spontaneous cancer patient rate in the country. 32 references, 10 tables

  12. Probabilities of Radiation Myelopathy Specific to Stereotactic Body Radiation Therapy to Guide Safe Practice

    Energy Technology Data Exchange (ETDEWEB)

    Sahgal, Arjun, E-mail: arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Weinberg, Vivian [University of California San Francisco Helen Diller Family Comprehensive Cancer Center Biostatistics Core, San Francisco, California (United States); Ma, Lijun [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California (United States); Chang, Eric [Department of Radiation Oncology, University of Southern California and University of Texas MD Anderson Cancer Center, University of Texas, Houston, Texas (United States); Chao, Sam [Department of Radiation Oncology and Neurosurgery, Cleveland Clinic, Cleveland, Ohio (United States); Muacevic, Alexander [European Cyberknife Center Munich in affiliation with University Hospitals of Munich, Munich (Germany); Gorgulho, Alessandra [Department of Neurosurgery, University of California at Los Angeles, Los Angeles, California (United States); Soltys, Scott [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Gerszten, Peter C. [Departments of Neurological Surgery and Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Ryu, Sam [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Angelov, Lilyana [Department of Radiation Oncology and Neurosurgery, Cleveland Clinic, Cleveland, Ohio (United States); Gibbs, Iris [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Larson, David A. [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California (United States)

    2013-02-01

    Purpose: Dose-volume histogram (DVH) results for 9 cases of post spine stereotactic body radiation therapy (SBRT) radiation myelopathy (RM) are reported and compared with a cohort of 66 spine SBRT patients without RM. Methods and Materials: DVH data were centrally analyzed according to the thecal sac point maximum (Pmax) volume, 0.1- to 1-cc volumes in increments of 0.1 cc, and to the 2 cc volume. 2-Gy biologically equivalent doses (nBED) were calculated using an {alpha}/{beta} = 2 Gy (units = Gy{sub 2/2}). For the 2 cohorts, the nBED means and distributions were compared using the t test and Mann-Whitney test, respectively. Significance (P<.05) was defined as concordance of both tests at each specified volume. A logistic regression model was developed to estimate the probability of RM using the dose distribution for a given volume. Results: Significant differences in both the means and distributions at the Pmax and up to the 0.8-cc volume were observed. Concordant significance was greatest for the Pmax volume. At the Pmax volume the fit of the logistic regression model, summarized by the area under the curve, was 0.87. A risk of RM of 5% or less was observed when limiting the thecal sac Pmax volume doses to 12.4 Gy in a single fraction, 17.0 Gy in 2 fractions, 20.3 Gy in 3 fractions, 23.0 Gy in 4 fractions, and 25.3 Gy in 5 fractions. Conclusion: We report the first logistic regression model yielding estimates for the probability of human RM specific to SBRT.

  13. Enteric glial cells have specific immunosuppressive properties.

    Science.gov (United States)

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  14. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  15. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  16. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  17. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  18. Simple method to demonstrate radiation-inducible radiation resistance in microbial cells

    International Nuclear Information System (INIS)

    A simple method for detection of radiation-inducible radiation resistance was developed by irradiating aliquots (0.01 ml) of cell suspension on agar plates. Part of each experimental plate was subjected to an induction treatment, and subsequent radiation resistance was compared with that of untreated cells on the same plate. The UV radiation resistance of a Micrococcus sp. was increased approximately 1.6 times by an induction treatment. This simple procedure of irradiating cells in a fixed position on agar avoided washing, centrifugation, and cell enumeration required in traditional methods

  19. Measles virus-specific murine T cell clones: characterization of fine specificity function.

    NARCIS (Netherlands)

    P. de Vries (Petra); J.P.M. Versteeg-van Oosten (José); I.K.G. Visser (Ilona); R.S. van Binnendijk (Rob); S.A. Langeveld (Sacha); A.D.M.E. Osterhaus (Ab); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractMeasles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable

  20. The concept of radiation-enhanced stem cell differentiation

    International Nuclear Information System (INIS)

    Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types

  1. Advances in radiation biology: Radiosensitization in DNA and living cells

    Science.gov (United States)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  2. Allergen-Specific CD4(+) T Cells in Human Asthma.

    Science.gov (United States)

    Ling, Morris F; Luster, Andrew D

    2016-03-01

    In allergic asthma, aeroallergen exposure of sensitized individuals mobilizes robust innate and adaptive airway immune responses, stimulating eosinophilic airway inflammation and the activation and infiltration of allergen-specific CD4(+) T cells into the airways. Allergen-specific CD4(+) T cells are thought to be central players in the asthmatic response as they specifically recognize the allergen and initiate and orchestrate the asthmatic inflammatory response. In this article, we briefly review the role of allergen-specific CD4(+) T cells in the pathogenesis of human allergic airway inflammation in allergic individuals, discuss the use of allergen-major histocompatibility complex class II tetramers to characterize allergen-specific CD4(+) T cells, and highlight current gaps in knowledge and directions for future research pertaining to the role of allergen-specific CD4(+) T cells in human asthma. PMID:27027948

  3. Curcumin Sensitizes Hepatocellular Carcinoma Cells to Radiation via Suppression of Radiation-Induced NF-κB Activity

    Directory of Open Access Journals (Sweden)

    Fei-Ting Hsu

    2015-01-01

    Full Text Available The effects and possible underlying mechanism of curcumin combined with radiation in human hepatocellular carcinoma (HCC cells in vitro were evaluated. The effects of curcumin, radiation, and combination of both on cell viability, apoptosis, NF-κB activation, and expressions of NF-κB downstream effector proteins were investigated with 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, NF-κB reporter gene, mitochondrial membrane potential (MMP, electrophoretic mobility shift (EMSA, and Western blot assays in Huh7-NF-κB-luc2, Hep3B, and HepG2 cells. Effect of I kappa B alpha mutant (IκBαM vector, a specific inhibitor of NF-κB activation, on radiation-induced loss of MMP was also evaluated. Results show that curcumin not only significantly enhances radiation-induced cytotoxicity and depletion of MMP but inhibits radiation-induced NF-κB activity and expressions of NF-κB downstream proteins in HCC cells. IκBαM vector also shows similar effects. In conclusion, we suggest that curcumin augments anticancer effects of radiation via the suppression of NF-κB activation.

  4. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  5. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  6. Radiation-induced apoptosis in microvascular endothelial cells.

    OpenAIRE

    Langley, R. E.; Bump, E A; Quartuccio, S. G.; Medeiros, D.; Braunhut, S. J.

    1997-01-01

    The response of the microvasculature to ionizing radiation is thought to be an important factor in the overall response of both normal tissues and tumours. It has recently been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects large vessel endothelial cells from radiation-induced apoptosis in vitro. Microvessel cells are phenotypically distinct from large vessel cells. We studied the apoptotic response of confluent monolayers of capillary en...

  7. Birthdating studies reshape models for pituitary gland cell specification.

    Science.gov (United States)

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. PMID:21262217

  8. Radiation Hybrid Mapping of the Species Cytoplasm-Specific (scsae) Gene in Wheat

    OpenAIRE

    Hossain, Khwaja G.; Riera-Lizarazu, Oscar; Kalavacharla, Venugopal; Vales, M. Isabel; Maan, Schivcharan S.; Kianian, Shahryar F

    2004-01-01

    Radiation hybrid (RH) mapping is based on radiation-induced chromosome breakage and analysis of chromosome segment retention or loss using molecular markers. In durum wheat (Triticum turgidum L., AABB), an alloplasmic durum line [(lo) durum] has been identified with chromosome 1D of T. aestivum L. (AABBDD) carrying the species cytoplasm-specific (scsae) gene. The chromosome 1D of this line segregates as a whole without recombination, precluding the use of conventional genome mapping. A radiat...

  9. Training requirements for persons with specific radiation safety roles defined in United Kingdom legislation

    International Nuclear Information System (INIS)

    This article describes the respective roles of key persons who have specific responsibilities under United Kingdom (UK) legislation for ensuring that work with sources of ionising radiation is undertaken safely. It also considers the training requirements for these people and how they are typically addressed. Particular focus is placed on the roles of persons who directly supervise work with ionising radiation and the qualified experts who provide advice on radiation protection legislation and safety requirements. (orig.)

  10. Cell type-specific transcriptome profiling in mammalian brains.

    Science.gov (United States)

    LoVerso, Peter R; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  11. Effect of ionizing radiation on immunogenicity of dendritic and tumor cells

    International Nuclear Information System (INIS)

    Radiation therapy is an important treatment modality for cancer. But apart from direct cytotoxic effects on tumor cells, ionizing radiation (IR) can also mobilize tumor specific immunity. We have studied the efficacy of IR in inducing immunogenicity of dendritic cells and tumor cells. Irradiated (0.5-5 Gy) bone marrow (BM) cells were differentiated to dendritic cells in presence of GM-CSF and IL-4. Phenotypic and functional maturation of DC were assessed by expression of CD40, 80, 86 and MHC as well as MLR respectively. Expression of NKG2D ligands, MHC class I-related chain (MICA/MICB) on tumor cells was studied using specific antibodies and flow cytometry. NK cell killing was assessed by calcein release assay

  12. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  13. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism

  14. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  15. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  16. Space solar cells - High efficiency and radiation damage

    Science.gov (United States)

    Brandhorst, H. W., Jr.; Bernatowicz, D. T.

    1980-01-01

    The proceedings of the Third Solar Cell High Efficiency and Radiation Damage Meeting are outlined. The topics covered included high efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance, and 30 percent conversion devices. The study of radiation damage from a fundamental defect-centered basis is discussed and evaluated as a focus of future work. 18% AM0 efficiency and 0.7 V open-circuit voltages are designated as achievable goals for silicon solar cells, and the potential for 30% AM0 efficiencies from monolithic tandem cell designs without sunlight concentration is noted. In addition to its potential for 20% AM0 efficiencies, the GaAs cell offers the possibility of a radiation-insensitive power supply when operated at temperatures near 200 C.

  17. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    Science.gov (United States)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    -immunostaining. Osteoblastogenesis was estimated by measurement of alkaline phosphatase (ALP) activity and production of mineralized matrix (von-Kossa staining, Alizarin Red staining). During the process of osteoblastic cell differentiation, the expression of the bone specific marker genes osteocalcin (OCN) and osteopontin (OPN) were recorded by quantitative real time reverse transcription PCR (qRT-PCR). Compared with standard culture conditions, the osteogenic marker genes OCN and OPN were highly expressed during the differentiation process induced either by osteo-inductive media additives (50 µg/ml ascorbic acid, 10 mmol/l β-glycero phosphate) or by sparsely ionizing radiation (X-rays). After 21 days of postirradiation incubation sparsely ionizing radiation could be shown to induce the formation of bone-like nodules (von-Kossa staining) for OCT-1 and MC3T3-E1 S4 cells but nor for MC3T3- E1 S24 cells. Ionizing radiation leads to a cell cycle arrest which is resolved in a dose and time dependent way. This was accompanied by a dose dependent regulation of the cyclin kinase inhibitor CDKN1A (p21/WAF) and transforming growth factor beta 1 (TGF-β1). TGF-β1 is known to affect osteoblast differentiation, matrix formation and mineralization. Modulation of its expression could influence the expression of main osteogenic transcription factors. For exposure with high LET radiation a pronounced cell cycle block was evident. The expression of the osteogenic marker genes OCN and Osterix (OSX) was increased in the OCT-1 cells with differentiation potential for exposure to α particles and accelerated carbon and argon ions. The results on the expression of differentiation markers during radiation-induced premature differentiation of bone cells of the osteoblast lineage show that densely ionizing radiation results in expression of proteins essential for bone formation and consequently in an increase in bone volume. Such an effect has been observed in in-vivo carbon ion irradiated rats. As radiation dependent

  18. Altruistic cell suicide in relation to radiation hormesis

    International Nuclear Information System (INIS)

    The high radiosensitivity to killing of undifferentiated primordial cells (Bergonie and Tribondeau 1906) can be described as a manifestation of the suicide of injured cells for the benefit of an organism as a whole if their suicide stimulates proliferation of healthy cells to replace them, resulting in complete elimination of injury. This process is called cell-replacement repair, to distinguish it from DNA repair which is rarely complete. 'Cell suicide', 'programmed death' and 'apoptosis' are terms used for the same type of active cell death. Cell suicide is not always altruistic. Altruistic suicide in Drosophila, mice, humans, plants, and E. coli is reviewed in this paper to illustrate its widely different facets. The hypothesis that in animals, radiation hormesis results from altruistic cell suicide is proposed. This hypothesis can explain the hormetic effect of low doses of radiation on the immune system in mice. In contrast, in plants, radiation hormesis seems to be mainly due to non-altruistic cell death. (author)

  19. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  20. Cyclic-radiation response of murine fibrosarcoma cells grown as pulmonary nodules

    International Nuclear Information System (INIS)

    The radiation age response of murine fibrosarcoma (FSa) cells grown as pulmonary nudules in C3Hf/Kam mice was determined. FSa cells were irradiated in vivo either with 10 Gy as 14 day-old lung tumors (i.e., artifical micrometastases) following cell separation and synchronization by centrifugal elutriation. Flow microfluorometry (FMF) was used to determine cell-cycle parameters and the relative synchrony of the separated populations, as well as the percent contamination of normal diploid cells in each of the tumor cells populations. Tumor populations containing up to 90% G1-, 60% S-, and 75% G2+M-phase tumor cells were obtained. Cell clonogenicity, determined using a lung colony assay, ranged from 0.7 to 6% for control FSa cells from the various elutriator fractions. The radiation sensitivity of these separated cell populations varied by a factor of 6, regardless of whether the cells were irradiated as artifical micro or macro-metastases. In each experiment, tumor population most enriched in S-phase cells exhibited the greatest radiation sensitivity. To confirm that these populations were highly enriched in S-phase cells and to demonstrate that they were more radiosensitive than FSa cells in other parts of the cell cycle, the elutriated tumor population were exposed to either suicide labeling by high specific activity tritated thymidine or hydroxyurea. The resultant age response curves were qualitatively similar to those obtained following irradiation and reflected the S-phase sensitivity of FSa cells to these agents

  1. Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity

    International Nuclear Information System (INIS)

    The pathogenesis of pneumonitis and fibrosis secondary to lung irradiation is incompletely understood. The role of the type II alveolar epithelial pneumocyte in these processes has been under investigation. The type II pneumocyte has been shown in vivo to respond to radiation induced injury with release of pulmonary surfactant. The effect of irradiation on cell cultures of type II pneumocytes was studied to determine if this could be reproduced in vitro. Type II pneumocytes were found to release surfactant material with a threshold of radiation dose between 1000 and 1500 rad. This is similar to the dosage range over which the same effect has been demonstrated in vivo. Experimental results support the concept that the release of surfactant is not due to either cell disruption or non-specific release of phospholipid from cell membranes. Irradiation appears to trigger membrane receptor mediated surfactant release. In addition, irradiation abolishes the ability of cells to subsequently respond to a physiologic agonist, suggesting radiation induced damage to the secretory mechanism. These studies establish that surfactant release in response to irradiation in vivo is a direct effect on type II pneumocytes. Cell cultures of type II pneumocytes can serve as a laboratory model of lung cell radiation toxicity

  2. p53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    International Nuclear Information System (INIS)

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  3. Cell Theory, Specificity, and Reproduction, 1837–1870

    OpenAIRE

    Müller-Wille, Staffan

    2010-01-01

    The cell is not only the structural, physiological, and developmental, but also the reproductive unit of life. So far, however, this aspect of the cell has received little attention by historians and philosophers of biology. I will argue that cell theory had far-reaching consequences for how biologists conceptualized the reproductive relationships between germs and adult organisms. Cell theory, as formulated by Theodor Schwann in 1839, implied that this relationship was a specific and lawful ...

  4. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  5. Stem cell-based therapies for acute radiation syndrome

    International Nuclear Information System (INIS)

    Exposure to high doses of ionizing radiation in the event of accidental or intentional incident such as nuclear/radiological terrorism can lead to debilitating injuries to multiple organs resulting in death within days depending on the amount of radiation dose and the quality of radiation. Unfortunately, there is not a single FDA-licensed drug approved against acute radiation injury. The RadStem Center for Medical Countermeasures against Radiation (RadStem CMGR) program at Einstein is developing stem cell-based therapies to treat acute radiation syndrome (ARS). We have demonstrated that intravenous transplantation of bone marrow-derived and adipose-derived stromal cells, consisting of a mixture of mesenchymal, endothelial and myeloid progenitors can mitigate mice exposed to whole body irradiation of 12 Gy or whole abdominal irradiation of up to 20 Gy. We identified a variety of growth and differentiation factors that individually is unable to improve survival of animals exposed to lethal irradiation, but when administered sequentially mitigates radiation injury and improves survival. We termed this phenomenon as synthetic survival and describe a new paradigm whereby the 'synthetic survival' of irradiated tissues can be promoted by systemic administration of growth factors to amplify residual stem cell clonogens post-radiation exposure, followed by a differentiation factor that favors tissue stem cell differentiation. Synthetic survival can be applied to mitigate lethal radiation injury in multiple organs following radiation-induced hematopoeitic, gastrointestinal and pulmonary syndromes. (author)

  6. Isolating specific embryonic cells of the sea urchin by FACS.

    Science.gov (United States)

    Juliano, Celina; Swartz, S Zachary; Wessel, Gary

    2014-01-01

    Isolating cells based on specific gene expression enables a focused biochemical and molecular analysis. While cultured cells and hematopoietic cells, for example, are routinely isolated by fluorescence activated cell sorting (FACS), early embryonic cells are a relatively untapped source for FACS applications often because the embryos of many animals are quite limiting. Furthermore, many applications require genetic model organisms in which cells can be labeled by fluorescent transgenes, or antibodies against cell surface antigens. Here we define conditions in the sea urchin embryo for isolation of embryonic cells based on expression of specific proteins. We use the sea urchin embryo for which a nearly unlimited supply of embryonic cells is available and demonstrate the conditions for separation of the embryo into single cells, fixation of the cells for antibody penetration into the cells, and conditions for FACS of a rare cell type in the embryo. This protocol may be adapted for analysis of mRNA, chromatin, protein, or carbohydrates and depends only on the probe availability for the cell of interest. We anticipate that this protocol will be broadly applicable to embryos of other species. PMID:24567215

  7. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke;

    2011-01-01

    In multiple sclerosis (MS), myelin-specific T cells are normally associated with destruction of myelin and axonal damage. However, in acute MS plaque, remyelination occurs concurrent with T-cell infiltration, which raises the question of whether T cells might stimulate myelin repair. We investiga...... calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  8. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells

    Science.gov (United States)

    Church, Sarah E; Jensen, Shawn M; Antony, Paul A; Restifo, Nicholas P; Fox, Bernard A

    2014-01-01

    Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4+ T cells enhance CD8+ T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4+ transgenic T cells-CD4+ T cells and pmel-CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor-specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4+ and CD8+ T cells for treatment of patients with cancer. PMID:24114780

  9. Quantification of circulating cell-free DNA in the plasma of cancer patients during radiation therapy

    International Nuclear Information System (INIS)

    Cell-free plasma DNA is elevated in cancer patients and decreases in response to effective treatments. Consequently, these nucleic acids have potential as new tumor markers. In our current study, we investigated whether the plasma DNA concentrations in patients with cancer are altered during the course of radiation therapy. To first determine the origin of cell-free plasma DNA, plasma samples from mice bearing transplanted human tumors were analyzed for human-specific and mouse-specific cell-free DNA. Human-specific DNA was detectable only in plasma from tumor-bearing mice. However, mouse-specific plasma DNA was significantly higher in tumor-bearing mice than in normal mice, suggesting that cell-free plasma DNA originated from both tumor and normal cells. We measured the total cell-free plasma DNA levels by quantitative polymerase chain reaction in 15 cancer patients undergoing radiation therapy and compared these values with healthy control subjects. The cancer patients showed higher pretreatment plasma DNA concentrations than the healthy controls. Eleven of these patients showed a transient increase of up to eightfold in their cell-free plasma DNA concentrations during the first or second week of radiation therapy, followed by decreasing concentrations toward the end of treatment. In two other cancer patients, the cell-free plasma DNA concentrations only decreased over the course of the treatment. The total cell-free plasma DNA levels in cancer patients thus show dynamic changes associated with the progression of radiation therapy. Additional prospective studies will be required to elucidate the potential clinical utility and biological implications of dynamic changes in cell-free plasma DNA during radiation therapy. (author)

  10. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  11. Mesenchymal stem cell therapy for acute radiation syndrome.

    Science.gov (United States)

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  12. Human cell responses to ionizing radiation are differentially affected by the expressed connexins

    International Nuclear Information System (INIS)

    In multicellular organisms, intercellular communication is essential for homeostatic functions and has a major role in tissue responses to stress. Here, we describe the effects of expression of different connexins, which form gap junction channels with different permeabilities, on the responses of human cells to ionizing radiation. Exposure of confluent HeLa cell cultures to 137Cs γ rays, 3.7 MeV α particles, 1000 MeV protons or 1000 MeV/u iron ions resulted in distinct effects when the cells expressed gap junction channels composed of either connexin26 (Cx26) or connexin32 (Cx32). Irradiated HeLa cells expressing Cx26 generally showed decreased clonogenic survival and reduced metabolic activity relative to parental cells lacking gap junction communication. In contrast, irradiated HeLa cells expressing Cx32 generally showed enhanced survival and greater metabolic activity relative to the control cells. The effects on clonogenic survival correlated more strongly with effects on metabolic activity than with DNA damage as assessed by micronucleus formation. The data also showed that the ability of a connexin to affect clonogenic survival following ionizing radiation can depend on the specific type of radiation. Together, these findings show that specific types of connexin channels are targets that may be exploited to enhance radiotherapeutic efficacy and to formulate countermeasures to the harmful effects of specific types of ionizing radiation. (author)

  13. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  14. A simple model of space radiation damage in GaAs solar cells

    Science.gov (United States)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  15. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis

    International Nuclear Information System (INIS)

    TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation on normal tissues. Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo 205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of PARP processing. Upregulation of death receptors was quantified by flow cytometry. The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition, pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL. Based on the in vitro data, TRAIL represents a very promising candidate for combination with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor

  16. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.;

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...... that is specifically associated with a plant cell separation process that results in complete cell detachment....... is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is...... specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified...

  17. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  18. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. ...

  19. Effect of troglitazone on radiation sensitivity in cervix cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Zheng Zhe; Liu, Xian Guang; Song, Hye Jin; Choi, Chi Hwan; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma} ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu{sup 2+}/Zn{sup 2+} -superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 {mu}M of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 {mu}M TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0- G1 phase cells were increased in HeLa and Me180 by 5 {mu}M TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 {mu}M TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 {mu}M TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalasemediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR {gamma} expression level.

  20. Radiation-induced cerebral cell apoptosis in rats

    International Nuclear Information System (INIS)

    Objective: To study the influence of radiation on rat cerebral cells including neurons and gliocytes. Methods: The rats were divided into control group and X-ray radiation groups with different doses. The apoptosis of cells at different time points after radiation was observed by optic microscopy, electron microscopy and DNA agarose gel electrophoresis. The double label method (in situ end-labeling of DNA strand breaks for labeling apoptotic cells, and immunohistochemistry for labeling cell type) was used to label apoptotic neurons and gliocytes cells separately. Results: The distinct morphological features of apoptosis and the DNA fragmentation ladders on agarose gel electrophoresis were seen in radiation groups. The rate of apoptosis in the adult rat brain was low. There were many apoptotic glial cells (about 93%) and a few apoptotic neurons (about 5%) after radiation. The apoptotic rate in high dose group was higher than that in low dose group. Conclusion: Apoptosis can be induced by radiation in rat brain, the apoptotic rate increases with a increasing dose in the range of 2-8 Gy. The gliocytes are more sensitive to radiation-induced apoptosis than the neurons

  1. Cell-Type Specific Four-Component Hydrogel

    OpenAIRE

    Timo Aberle; Katrin Franke; Elke Rist; Karin Benz; Burkhard Schlosshauer

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appr...

  2. T-cell regulatory mechanisms in specific immunotherapy

    OpenAIRE

    Jutel, M; Akdis, C. A.

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, ...

  3. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    detected by gel electrophoresis procedures but this technique is laborious and difficult to quantify. Centrifugation procedures of irradiation cells which had been pre-labeled with 3H-thymidine showed ∼18% of total cellular DNA to be fragmented within 12 hr, after which time the extent of DNA fragmentation plateaued. The labeling of 3'-OH ends in cellular DNA by the immunofluorescence reagent, ApopTag[reg], showed ∼15% of cells to undergo apoptotic degradation. Staining of irradiated cells with LIVE/DEAD[reg] EUKOLIGHTTM and trypan blue showed 20-25% cell death. Although the vital stain assays are not specific for apoptosis, the proportion of rapid cell death (within 24-48 hr) which they measure is close to that obtained with the apoptotic-specific assays. These studies indicate that 24 hr after irradiation with 10 Gy, approximately 20% of DU-145 cells undergo death by apoptosis. Survival curves constructed with different radiation doses indicate that this rapid mechanism of cell death follows single-hit kinetics and constitutes between 10-30% of the total α coefficient measured by clonogenic assays with this cell line. Conclusion: Two phases of cell death are observed after ionizing radiation of the DU-145 prostate cancer cell line. Rapid cell death occurs within ∼24 hr and appears to correlate with apoptotic cell death. The vital stains, LIVE/DEAD[reg] EUKOLIGHTTM and trypan blue, yield quantitatively similar estimates of rapid cell killing to the apoptosis-specific assays. We are currently extending these studies to other human prostate tumor cell lines and to tumor cells released from human prostate biopsies. Such assays may provide additional prognostic information for predicting radiotherapy outcome of patients receiving radiotherapy

  4. Radiation-induced changes to mammalian cells as a precipitating factor in somatic radiation injuries

    International Nuclear Information System (INIS)

    Radiation-induced inhibitions of proliferation were assessed in cell cultures examined for their colony-forming abilities as well as from changes of growth curves. The results of those measurements, along with simulating calculations, underlined the fact that the colony-forming capacity of a cell can by no means be equated with cell survival, unless due attention is given to the size of the colony formed. It is the size of the colony that provides a measure of the damage done to the irradiated cell. Cells counts are the most reliable method to ascertain the course of proliferation following radiation exposure. The difference between the two methods mentioned became particularly evident in studies with radiation protection substances. Dithiothreitol (DTT) and mercaptopropionyl glycine (MPG) were on the basis of colony formation clearly shown to offer protection against radiation. The growth curves, however, revealed that the proliferation of cells irradiated in the presence of radiation protection substances was even more strongly inhibited than that of cells influenced by irradiation alone. The neutral elution method failed to provide irrefutable evidence that the rate of double strand breaks was reduced by those two substances. Cysteamine and DTT were, however, able to inhibit radiation-induced changes to the proteins of human erythrocyte membranes. (orig./MG)

  5. Stem cells in radiation and oral cancer research

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are defined as a small sub population of cancer cells that constitute a pool of self sustaining cells with the exclusive ability to cause the heterogeneous lineages of cancer cells that comprise the tumour. There are three main characteristics of CSCs. Initially the cell must show potent tumour initiation in that it can regenerate the tumour which it was derived from a limited number of cells. In addition, the cells should demonstrate self renewal in vivo, which is practically observed via regrowth of phenotypically indistinguishable and heterogeneous tumours following serial transplantation of re-isolated CSCs in secondary and tertiary recipients. Finally, the cells must show a differentiation capacity, allowing them to give rise to a heterogeneous progeny, which represents a phenocopy of the original tumour. This article highlights the radiation therapy resulting in radiation resistance in cancer stem cells. (author)

  6. Specific uptake of serotonin by murine lymphoid cells

    International Nuclear Information System (INIS)

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated 3H-5HT(10-8 to 2.5 x 10-6M) in a saturable manner, at 370C. Specificity of uptake was indicated by competition with excess (10-5M) unlabelled 5HT and with 10-5M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of 3H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10-7M and Vmax of 501 +/- 108 pM/3 x 106 cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific 3H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated

  7. Open Cell Conducting Foams for High Synchrotron Radiation Beam Liners

    OpenAIRE

    Petracca, Stefania; Stabile, Arturo

    2014-01-01

    The possible use of open-cell conductive foams in high synchrotron radiation particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are discussed, and preliminary conclusions are drawn.

  8. Engineering hot-cell windows for radiation protection

    International Nuclear Information System (INIS)

    Radiation protection considerations in the design and construction of hot-cell windows are discussed. The importance of evaluating the potential gamma spectra and neutron source terms is stressed. 11 references

  9. Human Y-79 retinoblastoma cells exhibit specific insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Saviolakis, G.A.; Kyritsis, A.P.; Chader, G.J.

    1986-07-01

    The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of (/sup 125/I) insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.

  10. Low dose ionizing radiation responses and knockdown of ATM kinase activity in glioma stem cells

    International Nuclear Information System (INIS)

    Genesis of new cells in the mammalian brain has previously been regarded as a negligible event; an assumption that long limited our understanding in the development of neoplasias. The recent discovery of perpetual lineages derived from neural stem cells has resulted in a new approach to studying the cellular behaviour of potential cancer stem cells in the brain. Glioblastoma multiforme (GBM), the most aggressive and lethal brain tumour is derived from a group of cancerous stem cells known as glioma stem cells. GBM cells are impervious to conventional therapies such as surgical resection and ionizing radiation because of their pluripotent and radioresistant properties. Thus in our study, we aim to investigate whether a combination of chemo- and radio- therapies is an effective treatment for glioma stem cells. The study utilizes a specific kinase inhibitor (ATMi) of the ATM (Ataxia-telangiectasia mutated) protein which is an essential protein in DNA-damage responses. In the presence of both low dose radiation and ATMi, glioma stem cells have rapid onset of cell death and reduction in growth. Since DNA damage can be inherited through cell division, accumulated DNA breaks in later generations may also lead to cell death. The limitation of conventional radiation therapy is that administration of fractionated (low) doses to reduce any potential harm to the surrounding healthy cells in the brain outweighs the benefits of high radiation doses to induce actual arrest in the propagation of malignant cells. Our study demonstrates a benefit in using low dose radiation combined with chemotherapy resulting in a reduction in malignancy of glioma stem cells. (author)

  11. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects.

    Science.gov (United States)

    Sabanero, Myrna; Azorín-Vega, Juan Carlos; Flores-Villavicencio, Lérida Liss; Castruita-Dominguez, J Pedro; Vallejo, Miguel Angel; Barbosa-Sabanero, Gloria; Cordova-Fraga, Teodoro; Sosa-Aquino, Modesto

    2016-02-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 μM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. PMID:26656429

  12. Gene expression signatures of radiation response are specific, durable and accurate in mice and humans.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    Full Text Available BACKGROUND: Previous work has demonstrated the potential for peripheral blood (PB gene expression profiling for the detection of disease or environmental exposures. METHODS AND FINDINGS: We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy. A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively. CONCLUSIONS: We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.

  13. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels; Skou, Rikke Birgitte Lyngaa; Donia, Marco; Ellebæk, Eva; Svane, Inge Marie; Schumacher, Ton N; Thor Straten, Per; Hadrup, Sine Reker

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma......-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  14. Apoptosis of smooth muscle cells induced by radiation

    International Nuclear Information System (INIS)

    Objective: To study the effects and mechanism of 188Re on apoptosis of cultured smooth muscle cells (SMCs), and to explore the value of radiation induced SMCs apoptosis for preventing restenosis. Methods: The SMCs cultured in vitro were irradiated by 188Re with different doses. The trypan blue exclusion test, flow cytometry, JAM test, transmission electron microscopy and immunocytochemistry assay were used to investigate the effects of β-particles on apoptosis of SMCs, such as cell viability, cell apoptosis rate, DNA fragmentation, cell ultrastructural changes and related gene expression. Results: There were no significant changes of SMCs viability, cell apoptosis rate, DNA fragmentation and cellular ultrastructure in low-dose irradiation group, compared with control group. High-dose radiation (>2.96 GBq/L) on SMCs showed that viable cell proportion was markedly decreased, while cell apoptosis rate and DNA fragmentation were significantly increased, and cellular ultrastructure was destroyed. The expression of p53, bax gene was up regulated and bcl-2/bax was decreased while SMCs apoptosis occurred. Conclusions: Low-dose radiation on SMCs, which could inhibit completely SMCs proliferation, did not show any effects on cell viability, cell apoptosis rate, cell ultrastructure and DNA fragmentation. High-dose radiation could result in significant SMCs apoptosis. Up-regulated p53, bcl-2 and bax gene took a part in cell apoptosis induced by radiation. Low-dose and low-dose rate radiation appeared to be an ideal intravascular radiotherapy for preventing restenosis, which could not only inhibit SMCs proliferation, but also preserve cell viability and integrity

  15. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part II: combination with external radiation improves survival

    International Nuclear Information System (INIS)

    A peptide mimetic of a ligand for the galactose/N-acetylgalactosamine-specific C-type lectin receptors (GCLR) exhibited monocyte-stimulating activity, but did not extend survival when applied alone against a syngeneic murine malignant glioma. In this study, the combined effect of GCLRP with radiation was investigated. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells. Animals were grouped based on randomized tumor size by magnetic resonance imaging on day seven. One group that received cranial radiation (4 Gy on days seven and nine) only were compared with animals treated with radiation and GCLRP (4 Gy on days seven and nine combined with subcutaneous injection of 1 nmol/g on alternative days beginning on day seven). Magnetic resonance imaging was used to assess tumor growth and correlated with survival rate. Blood and brain tissues were analyzed with regard to tumor and contralateral hemisphere using fluorescence-activated cell sorting analysis, histology, and enzyme-linked immunosorbent assay. GCLRP activated peripheral monocytes and was associated with increased blood precursors of dendritic cells. Mean survival increased (P < 0.001) and tumor size was smaller (P < 0.02) in the GCLRP + radiation group compared to the radiation-only group. Accumulation of dendritic cells in both the tumoral hemisphere (P < 0.005) and contralateral tumor-free hemisphere (P < 0.01) was associated with treatment. Specific populations of monocyte-derived brain cells develop critical relationships with malignant gliomas. The biological effect of GCLRP in combination with radiation may be more successful because of the damage incurred by tumor cells by radiation and the enhanced or preserved presentation of tumor cell antigens by GCLRP-activated immune cells. Monocyte-derived brain cells may be important targets for creating effective immunological modalities such as employing the receptor system described in this study

  16. Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation.

    Science.gov (United States)

    Zheng, Hang; Wang, Miao; Wu, Jing; Wang, Zhi-Ming; Nan, Hai-Jun; Sun, He

    2016-06-01

    Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation. PMID:26999331

  17. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. (author)

  18. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  19. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    International Nuclear Information System (INIS)

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G1 phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G1-phase delay in ataxia telangiectasia cells is accompanied by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G1/S-phase delay. When the progress of irradiated G1-phase cells was followed into the subsequent G2 and G1 phases ataxia telangiectasia cells showed a more pronounced accumulation in G2 phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G2 phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G1 and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs

  20. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  1. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  2. A magnetic vehicle realized tumor cell-targeted radiotherapy using low-dose radiation.

    Science.gov (United States)

    Chen, Hsiao-Ping; Tung, Fu-I; Chen, Ming-Hong; Liu, Tse-Ying

    2016-03-28

    Radiotherapy, a common cancer treatment, often adversely affects the surrounding healthy tissue and/or cells. Some tumor tissue-focused radiation therapies have been developed to lower radiation-induced lesion formation; however, achieving tumor cell-targeted radiotherapy (i.e., precisely focusing the radiation efficacy to tumor cells) remains a challenge. In the present study, we developed a novel tumor cell-targeted radiotherapy, named targeted sensitization-enhanced radiotherapy (TSER), that exploits tumor-specific folic acid-conjugated carboxymethyl lauryl chitosan/superparamagnetic iron oxide (FA-CLC/SPIO) micelles to effectively deliver chlorin e6 (Ce6, a sonosensitizer) to mitochondria of HeLa cells under magnetic guidance. For the in vitro tests, the sensitization of Ce6 induced by ultrasound, that could weaken the radiation resistant ability of tumor cells, occurred only in Ce6-internalizing tumor cells. Therefore, low-dose X-ray irradiation, that was not harmful to normal cells, could exert high tumor cell-specific killing ability. The ratio of viable normal cells to tumor cells was increased considerably, from 7.8 (at 24h) to 97.1 (at 72h), after they had received TSER treatment. Our data suggest that TSER treatment significantly weakens tumor cells, resulting in decreased viability in vitro as well as decreased in vivo subcutaneous tumor growth in nude mice, while the adverse effects were minimal. Taken together, TSER treatment appears to be an effective, clinically feasible tumor cell-targeted radiotherapy that can solve the problems of traditional radiotherapy and photodynamic therapy. PMID:26892750

  3. Models relevant to radiation effects on stem cell pools

    International Nuclear Information System (INIS)

    of haemopoiesis. There is no information available to indicate what regulates the differentiation of the primitive CFU into the ERC or other similar precursor populations. There is also no clear or unequivocal evidence which could indicate whether the ERC and the potential GRC are different or related to each other. There is no information available on a committed precursor population for the thrombocytic series of cells. There is, however, evidence in the small rodent that the potential focus-forming cells detected by immunological methods may represent a precursor population, specific for future antibody-producing cells. The mechanisms involved in the 'second step' differentiation, e.g. that of the ERC into the erythron, are beginning to be understood and it is clear that humoral factors, e.g. erythropoietin, are involved. There is also increasing evidence for the existence of a humoral thrombopoietic factor, although no clear evidence is yet available regarding the existence of a 'granulopoietin'. The outstanding problem at the moment is to understand the mechanisms regulating the differentiation of the CFU into the precursor populations and the nature of the control of the population size of the CFU population itself. Understanding and eventual manipulation of these two phenomena would greatly enhance our capacity in modifying radiation damage to haemopoietic tissues

  4. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    International Nuclear Information System (INIS)

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  5. Radiation-induced genetic effects in germ cells of mammals

    International Nuclear Information System (INIS)

    The possibility of the induction of malformations after radiation exposure during pregnancy is a serious radiation hazard. The objectives of the project refer to radiation exposure of germ cell stages with different radiation qualities (X-, gamma- or beta-rays) and different dose rates (1 Gy/min and below 0.01 Gy/min). The uterine content is examined on day 19 of gestation as to early and late resorptions, dead and malformed fetuses and fetal weights are determined. (R.P.) 4 refs., 1 tab

  6. Secondary specific immune response in vitro to MSV tumor cells.

    Science.gov (United States)

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  7. Cybernetical investigations on the radiation effects on tumour cells

    International Nuclear Information System (INIS)

    The goal of this work was to find suitable conditions for the in-vitro investigations with these E.A.T. cells so that basic experiments carried out with yeast cells will also be possible. Systematic investigations on cell multiplication led to reliable and definite test conditions for these cells. For the evaluation of the data which had been measured with several sorts of radiation the cybernetic model was applied. (orig./MG)

  8. Radiation response of floating gate EEPROM memory cells

    International Nuclear Information System (INIS)

    The effect of radiation on a floating gate EEPROM nonvolatile memory cell is determined experimentally and modeled analytically. The new model predicts the threshold voltage change resulting from radiation. A screen based on the initial 1 state (excess electron) threshold voltage is shown to be necessary to assure data retention during irradiation. Techniques to increase radiation hardness are also described. The hardness of floating gate cells is shown to be limited to less than 100 krad(Si) for a fixed reference sense amplifier. The use of a differential sense amplifier may increase this limit. Therefore, floating gate memories should be useful for those applications requiring low total-doses

  9. Type-specific cell line models for type-specific ovarian cancer research.

    Directory of Open Access Journals (Sweden)

    Michael S Anglesio

    Full Text Available BACKGROUND: OVARIAN CARCINOMAS CONSIST OF AT LEAST FIVE DISTINCT DISEASES: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. METHODS: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 "ovarian cancer" cell lines has been classified into histotypes using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. RESULTS: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. CONCLUSIONS: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histotype of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic "ovarian carcinoma" cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of

  10. Potentiation of T cell-mediated immunity by low dose radiation

    International Nuclear Information System (INIS)

    Full text: Low dose radiation is reported to have beneficial effect on organisms in some cases, though high dose radiation is harmful. Attenuation of diabetes, auto-immune diseases and cancer is the example of this beneficial effect of radiation, i.e. radiation hormesis. Because the disorder of accommodation in immune system is involved in such diseases, immunological network is assumed to be one of the targets for radiation hormesis. In this study, we utilized mice immunized with allogeneic tumor cells to evaluate the hormetic effect of continuous irradiation with low dose rate gamma-ray on the host immune system. C57BL/6 mice (H-2b) were exposed to gamma-ray in an irradiation room bearing 50,000 Ci 60Co at 97 μGy/h, the dose rate where no significant effect on life span is detected by continuous whole body irradiation. Ninety-eight hour after the initiation of the irradiation, they were intraperitoneally immunized with an allogeneic mastocytoma, P815 (H-2b), and further irradiated for 335 h. We found that antigen-specific killer T cell activity was significantly enhanced by the irradiation. Ability of spleen cells to produce T cell lymphokines such as IL-2, IL-4 and IL-10 was also significantly elevated. Antigen-specific IgG1 titer in serum which is highly dependent on T cells, increased, while IgM titer was not marginally affected. In addition, T cell population in spleen was increased and B cell population decreased in naive mice irradiated with the same schedule, while natural killer activity decreased. These results suggest that the continuous whole body exposure to low dose rate gamma-ray potentiates T cell mediated immunity and shifts the immunological balance from humoral immunity to cellular immunity. Modulation of such immunological balance might be involved in the beneficial effect of low dose rate radiation

  11. Radiation effects on membranes - 1. Cellular permeability and cell survival

    International Nuclear Information System (INIS)

    The effect of various doses of γ radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of γ radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to γ radiation

  12. The concept of radiation-enhanced stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Mieloch Adam A.

    2015-09-01

    Full Text Available Background. Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented.

  13. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  14. Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea

    International Nuclear Information System (INIS)

    In a combined experiment, dominant cataract mutations and specific-locus mutations were scored in the same offspring. In radiation experiments, a total of 15 dominant cataract and 38 specific-locus mutations was scored in 29396 offspring. In experiments with ethylnitrosourea (ENU), a total of 12 dominant cataracts and 54 specific-locus mutations was observed in 12712 offspring. The control frequency for dominant cataracts was 0 in 9954 offspring and for specific-locus mutations 11 in 169955 offspring. The two characteristic features of radiation-induced specific-locus mutations - the augmenting effect of dose fractionation and the quantitative differences in the mutation rates between spermatogonial and post-spermatogonial stages - can also be demonstrated for the induction of dominant cataracts. The dominant cataract mutations recovered can be categorized into 7 phenotypic classes. The only noteworthy difference observed between the radiation- and ENU-induced mutations recovered was that, of the 2 radiation-induced total lens opacities, both were associated with an iris anomaly and microphthalmia whereas the ENU-induced total opacities were not. (orig./MG)

  15. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  16. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    International Nuclear Information System (INIS)

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells

  17. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  18. Cell-type specific four-component hydrogel.

    Science.gov (United States)

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  19. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  20. Classical Radiation Reaction in Particle-In-Cell Simulations

    CERN Document Server

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementatio...

  1. Investigating Striatal Function through Cell-Type-Specific Manipulations

    OpenAIRE

    Kreitzer, Anatol C.; Berke, Joshua D.

    2011-01-01

    The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons has been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has be...

  2. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  3. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  4. T-cell regulatory mechanisms in specific immunotherapy.

    Science.gov (United States)

    Jutel, Marek; Akdis, Cezmi A

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, anergy and/or immune response modulation by Treg cells are essential mechanisms of peripheral T-cell tolerance. There is growing evidence that anergy, tolerance and active suppression are not entirely distinct, but rather represent linked mechanisms possibly involving the same cells and multiple suppressor mechanisms. Skewing of allergen-specific effector T cells to Treg cells appears as a crucial event in the control of healthy immune response to allergens and successful allergen-SIT. The Treg cell response is characterized by abolished allergen- induced specific T-cell proliferation and suppressed Thelper (Th)1- and Th2-type cytokine secretion. In addition, mediators of allergic inflammation that trigger cAMP-associated G-protein-coupled receptors, such as histamine receptor-2, may contribute to peripheral tolerance mechanisms. The increased levels of interleukin-10 and transforming growth factor-Beta that are produced by Treg cells potently suppress IgE production, while simultaneously increasing production of non-inflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress effector cells of allergic inflammation such as mast cells, basophils and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms. It is associated with regulation of antibody isotypes and effector cells to the direction of a healthy immune response. By the application of the recent knowledge in Treg

  5. Solar ultraviolet radiation as a trigger of cell signal transduction

    International Nuclear Information System (INIS)

    Ultraviolet light radiation in sunlight is known to cause major alterations in growth and differentiation patterns of exposed human tissues. The specific effects depend on the wavelengths and doses of the light, and the nature of the exposed tissue. Both growth inhibition and proliferation are observed, as well as inflammation and immune suppression. Whereas in the clinical setting, these responses may be beneficial, for example, in the treatment of psoriasis and atopic dermatitis, as an environmental toxicant, ultraviolet light can induce significant tissue damage. Thus, in the eye, ultraviolet light causes cataracts, while in the skin, it induces premature aging and the development of cancer. Although ultraviolet light can damage many tissue components including membrane phospholipids, proteins, and nucleic acids, it is now recognized that many of its cellular effects are due to alterations in growth factor- and cytokine-mediated signal transduction pathways leading to aberrant gene expression. It is generally thought that reactive oxygen intermediates are mediators of some of the damage induced by ultraviolet light. Generated when ultraviolet light is absorbed by endogenous photosensitizers in the presence of molecular oxygen, reactive oxygen intermediates and their metabolites induce damage by reacting with cellular electrophiles, some of which can directly initiate cell signaling processes. In an additional layer of complexity, ultraviolet light-damaged nucleic acids initiate signaling during the activation of repair processes. Thus, mechanisms by which solar ultraviolet radiation triggers cell signal transduction are multifactorial. The present review summarizes some of the mechanisms by which ultraviolet light alters signaling pathways as well as the genes important in the beneficial and toxic effects of ultraviolet light

  6. Radiation sensitization studies by silymarin on HCT-15 cells

    International Nuclear Information System (INIS)

    Radiotherapy has been widely used for treatment of human cancers. However, cancer cells develop radioresistant phenotypes following multiple exposures to the treatment agent that decrease the efficacy of radiotherapy. Here it was investigated that the radiation sensitization effects of silymarin found in colon cancer. The aim of this study was to investigate mechanisms involved in radiation sensitization growth inhibitory effect of silymarin in combination with radiation, in Human colon carcinoma (HCT-15). The human colon carcinoma was utilized and SRB-assay was performed to study anti-proliferative effect of silymarin in combination with gamma radiation (2 Gy) appropriate radiation dose was optimized and confirmed by clonogenic assay. Microscopic analysis was done by staining with Hoechst-33342, DAPI, Propidium iodide to confirm the presence of apoptosis. Nitric oxide production, changes in lipid peroxidation, Cell cycle analysis were carried out and mitochondrial membrane potential was measured by uptake of cationic dye JC-1 by using flow cytometer. Silymarin in combination with radiation (2 Gy) inhibited 70% ± 5% population growth of HCT-15 cells in time and dose dependent manner. Pre treatment of cells with silymarin for 30 min before radiation was found to be most effective for radiation sensitization. There was 25% increase in levels of nitric oxide as compare to control, whereas 2.5 fold change in lipid peroxidation with respect to control. IR-induced apoptosis in HCT-15 cell line was significantly enhanced by silymarin, as reflected by viability, DNA fragmentation, and mitochondrial dysfunction. Additionally, silymarin in combination with IR is found to be effective in sensitization of HCT-15 cells. In vivo studies on development of tumor and sensitization aspects needs to done in future. (author)

  7. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    Science.gov (United States)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  8. Detailed analysis of radiation-induced litter-size reduction in specific-locus experiments

    International Nuclear Information System (INIS)

    A detailed analysis of the records from past specific-locus experiments is in progress. Our analysis of the extent of the litter-size reduction induced by radiation has been completed. The analysis involved approximately 900,000 litters from 14 radiation experiments. It appears that the litter-size reduction at 600 R is 4.12% instead of our earlier crude estimate of 2.96%. Although an adjustment for this new estimate would raise the BEIR estimate of the number of individuals having a serious handcap because of radiation-induced segmental aneuploidy from 0.35 to 0.49 per million for 1 R of low-LET radiation, this analysis strengthens the view that these data clearly indicate that the risk from such induced gross chromosomal damage among liveborn individuals is slight

  9. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  10. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  11. Consequences of PAI-1 specific deletion in endothelium on radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Radiation-induced injury to healthy tissues is a real public health problem, since they are one of the most limiting factors that restrict efficiency of radiation therapy. This problematic is also part of the French Cancer Plan 2014-2017, and involves clinical research. Concepts surrounding the development of radiation-induced damage have gradually evolved into a contemporary and integrated view of the pathogenesis, involving all compartments of target tissue. Among them, endothelium seems to be central in the sequence of interrelated events that lead to the development of radiation-induced damage, although there are rare concrete elements that support this concept. By using new transgenic mouse models, this PhD project provides a direct demonstration of an endothelium-dependent continuum in evolution of radiation-induced intestinal damage. Indeed, changes in the endothelial phenotype through targeted deletion of the gene SERPINE1, chosen because of its key role in the development of radiation enteritis, influences various parameters of the development of the disease. Thus, lack of PAI-1 secretion by endothelial cells significantly improves survival of the animals, and limits severity of early and late tissue damage after a localized small bowel irradiation. Furthermore, these mice partially KO for PAI-1 showed a decrease in the number of apoptotic intestinal stem cells in the hours following irradiation, a decrease in the macrophages infiltrate density one week after irradiation, and a change in the polarization of macrophages throughout the pathophysiological process. In an effort to protect healthy tissues from radiation therapy side effects, without hindering the cancer treatment, PAI-1 seems to be an obvious therapeutic target. Conceptually, this work represents the direct demonstration of the link between endothelium phenotype and radiation enteritis pathogenesis. (author)

  12. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  13. Radiation biology of Caenorhabditis elegans. Germ cell response, aging and behavior

    International Nuclear Information System (INIS)

    The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good 'in vivo' model system in the field of radiation biology. (author)

  14. Applications of single cell gel electrophoresis assay in radiation research

    International Nuclear Information System (INIS)

    The single cell gel electrophoresis (SCGE), also called comet assay, is a sensitive and rapid method for DNA damage detection in individual mammalian cell. Its use has increased significantly in the past few years. Applications in the field of radiation medicine are reviewed and possible future directions of the technique are briefly explored

  15. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  16. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  17. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2008-01-01

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  18. The radiation response of cells recovering after chronic hypoxia

    International Nuclear Information System (INIS)

    Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment

  19. Roles of ionizing radiation in cell transformation

    International Nuclear Information System (INIS)

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures

  20. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  1. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

  2. Specific uptake of serotonin by murine lymphoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.C.; Walker, R.F.; Brooks, W.H.; Roszman, T.L.

    1986-03-01

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated /sup 3/H-5HT(10/sup -8/ to 2.5 x 10/sup -6/M) in a saturable manner, at 37/sup 0/C. Specificity of uptake was indicated by competition with excess (10/sup -5/M) unlabelled 5HT and with 10/sup -5/M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of /sup 3/H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10/sup -7/M and Vmax of 501 +/- 108 pM/3 x 10/sup 6/ cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific /sup 3/H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated.

  3. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  4. Enhancing photovoltaic efficiency through radiative cooling of solar cells below ambient temperature

    Science.gov (United States)

    Safi, Taqiyyah; Munday, Jeremy

    Sunlight heats up solar cells and the resulting elevated solar cell temperature adversely effects the photovoltaic efficiency and the reliability of the cell. Currently, a variety of active and passive cooling strategies are used to lower the operating temperature of the solar cell. Passive radiative cooling requires no energy input, and is ideal for solar cells; however, previously demonstrated devices still operate above the ambient, leading to a lower efficiency as compared to the ideal Shockley-Queisser limit, which is defined for a cell in contact with an ideal heat sink at ambient temperature (300 K). In this talk, we will describe the use of radiative cooling techniques to lower the cell temperature below the ambient temperature. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that these structures yield an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for cells in an extraterrestrial environment in near-earth orbit.

  5. Ethacrynic acid: a novel radiation enhancer in human carcinoma cells

    International Nuclear Information System (INIS)

    Purpose: Because agents that interfere with thiol metabolism and glutathione S-transferase (GST) functions have been shown to enhance antitumor effects of alkylating agents in vitro and in vivo, the present study was conceived on the basis that an inhibitor of GST would enhance the radiation response of some selected human carcinoma cells. Ethacrynic acid (EA) was chosen for the study because it is an effective inhibitor of GST and is a well known diuretic in humans. Methods and Materials: Experiments were carried out with well-established human tumor cells in culture growing in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum (FCS). Cell lines used were MCF-7, MCF-7 adriamycin resistant (AR) cells (breast carcinoma), HT-29 cells (colon carcinoma), DU-145 cells (prostate carcinoma), and U-373 cells (malignant glioma). Cell survival following the exposure of cells to drug alone, radiation alone, and a combined treatment was assayed by determining the colony-forming ability of single plated cells in culture to obtain dose-survival curves. The drug enhancement ratio was correlated with levels of GST. Results: The cytotoxicity of EA was most pronounced in MCF-7, U-373, and DU-145 cells compared to MCF-7 AR and HT-29 cells. The levels of GST activity were found to be lower in those EA-sensitive cells. A significant radiation enhancement was obtained with EA-sensitive cells exposed to nontoxic concentrations of the drug immediately before or after irradiation. The sensitizer enhancement ratio (SER) of MCF-7 cells was 1.55 with EA (20 μg/ml), while the SER of MCF-7 AR was less than 1.1. Based on five different human tumor cells, a clear inverse relationship was demonstrated between the magnitude of SER and GST levels of tumor cells prior to the combined treatment. Conclusion: The present results suggest that EA, which acts as both a reversible and irreversible inhibitor of GST activity, could significantly enhance the radiation response of

  6. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H2O2/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  7. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  8. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  9. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I; Pasculescu, Adrian; Poliakov, Alexei; Hsiung, Marilyn; Larsen, Brett; Wilkinson, David G; Linding, Rune; Pawson, Tony

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and...... revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between...

  10. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  11. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment. PMID:17549235

  12. CELL DETACHMENT BY PROLYL-SPECIFIC ENDOPEPTIDASE FROM WOLFIPORIA COCOS

    Directory of Open Access Journals (Sweden)

    Katharina Cierpka

    2014-01-01

    Full Text Available As requirements for Advanced Therapy Medicinal Product (ATMP production differ from other production processes (e.g., therapeutic protein production, cell detachment is often a crucial step for the process success. In most cases, cell detachment is done enzymatically. Although many peptidases are established in cell culture in R&D, e.g., Trypsin as gold standard, many of them seem to be unsuitable in ATMP production processes. Therefore, the present study investigated a novel endopeptidase used in food biotechnology for its applicability in ATMP processes where cell detachment is needed. The Prolyl-specific Peptidase (PsP is of non-mammalian origin and considered as safe for humans. PsP was purified from the supernatant of the fungus Wolfiporia cocos. The isolation and purification resulted in an enzyme solution with 0.19 U mg-1 prolyl-specific activity. By in silico analysis it was confirmed that attachment-promoting proteins can be cleaved by PsP in a similar amount than with Trypsin. Further the proteolytic activity was determined for PsP and Trypsin by using the same enzymatic assay. Detachment with both enzymes was compared for cells used in typical therapeutic production processes namely a mesenchymal stem cell line (hMSC-TERT as a model for a cell therapeutic, Vero and MA104 cells used for viral therapeutic or vaccine production. The cell detachment experiments were performed with comparable enzyme activities (1.6 U mL-1. hMSC-TERT detachment was faster with PsP than with Trypsin. For Vero cells the detachment with PsP was not only faster but also more efficient. For MA104 cells the detachment rate with PsP was similar to Trypsin. For all cell types, detachment with PsP showed less influence on cell growth and metabolism compared to standard Trypsin.Thus, three cell types used in ATMP, viral therapeutics or vaccine production can be detached efficiently and gently with PsP. Therefore, PsP shows

  13. Applications of Synchrotron Radiation Micro Beams in Cell Micro Biology and Medicine

    CERN Document Server

    Ide-Ektessabi, Ari

    2007-01-01

    This book demonstrates the applications of synchrotron radiation in certain aspects of cell microbiology, specifically non-destructive elemental analyses, chemical-state analyses and imaging (distribution) of the elements within a cell. The basics for understanding and applications of synchrotron radiation are also described to make the contents easier to be understood for a wide group of researchers in medical and biological sciences who might not be familiar with the physics of synchrotron radiation. The two main techniques that are discussed in this book are the x-ray fluorescence spectroscopy (XRF) and the x-ray fine structure analysis (XAFS). Application of these techniques in investigations of several important scientific fields, such as neurodegeneration and other diseases related to cell malfunctioning, are demonstrated in this book.

  14. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  15. High efficiency cell-specific targeting of cytokine activity

    Science.gov (United States)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  16. Development of materials for fuel cell application by radiation technology

    International Nuclear Information System (INIS)

    The development of the single cell of SOFC with low operation temperature at and below 650 .deg. C(above 400 mW/cm2) Ο The development of fabrication method for the single cell of solid oxide fuel cell (SOFC) by dip-coating of nanoparticles such as NiO, YSZ, Ag, and Ag/C, etc. Ο The optimization of the preparation and performance of SOFC by using nanoparticles. Ο The preparation of samples for SOFC with large dimension. The development of fluoropolymer-based fuel cell membranes with crosslinked structure by radiation grafting technique Ο The development of fuel cell membranes with low methanol permeability via the introduction of novel monomers (e. g. vinylbenzyl chloride and vinylether chloride) by radiation grafting technique Ο The development of hydrocarbon fuel cell membrane by radiation crosslinking technique Ο The structure analysis and the evaluations of the property, performance, and radiation effect of the prepared membranes Ο The optimization of the preparation and performance of DMFC fuel cell membrane via the structure-property analysis (power: above 130 mW/cm2/50 cm2 at 5M methanol) Ο The preparation of samples for MEA stack assembly

  17. Target cell specific antibody-based photosensitizers for photodynamic therapy

    Science.gov (United States)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (SDS-PAGE).

  18. Radiation-induced motility alterations in medulloblastoma cells

    OpenAIRE

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Klaus J. Weber; Debus, Jürgen; Combs, Stephanie E

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metallop...

  19. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    International Nuclear Information System (INIS)

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy

  20. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  1. Molecular targeting of intracellular compartments specifically in cancer cells.

    Science.gov (United States)

    Pandya, Hetal; Gibo, Denise M; Debinski, Waldemar

    2010-05-01

    We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action. PMID:20740056

  2. Removal of radiation damage by subpopulations of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Specific cellular radiobiology studies are often required to test aspects of the mathematical models developed in the Radiation Dosimetry program. These studies are designed to determine whether specific mathematical expressions, which characterize the expected effect of biochemical mechanisms on observable biological responses, are consistent with the behavior of selected cell lines. Since these tests place stringent requirements on the cellular system, special techniques and culture conditions are required to minimize biological variability. The use of specialized cell populations is providing data on the extent of repair following low doses, and on the changes in the types of damage that can be repaired as the cell progresses toward mitosis. The stationary-phase Chinese hamster ovary (CHO) cells are composed primarily of G(1)-phase cells (83%), with the remainder comprising both G(2) and S phases. Removal of radiation damage by cells was studied in split-dose experiments. To date, we have observed no significant differences in cellular repair rate. This suggests, therefore, that each of the repair processes found in stationary-phase cells is cell-age independent. However, cellular radiation sensitivity does change rapidly and considerably as the cells progress from one phase to the next through the cell cycle. Since the rate of damage removal appears invariant, the change in survival must reflect the efficiency of producing that damage. The experimental data suggest that production of one or another sort of damage probably dominates during specific phases of the cell cycle, while the capacity for removal of all types of damage remains relatively constant

  3. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  4. Micro-magnet arrays for specific single bacterial cell positioning

    International Nuclear Information System (INIS)

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology

  5. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  6. Specific effect of electromagnetic radiation of SHF on genome and some genetic processes in the norm and in case of radiation injury

    International Nuclear Information System (INIS)

    Modifying effect of electromagnetic radiation of SHF in a wide frequency range on chromosomal aberration yield in various biological objects which is an important test of radiation injury at molecular-cellular level was studied. The presented results testify to the ability of SHF electromagnetic radiation specific effect on the processes of gene expression and to SHD ability to modify radiation injuries at various levels. 13 refs.; 3 figs

  7. Human cell culture models for investigating molecular and cytogenetic changes in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Primary cultures of human epithelial cells have proved difficult to transform because of the inherent short duration that these cells can be cultured. However, primary cultures of human cells can be immortalised using the catalytic sub-unit of telomerase (hTERT). Radiation carcinogenesis has been investigated using a human retinal pigment epithelial cell line (340RPE-T53 hTERT). Transformants can be selected using anchorage independent growth and cell lines derived from these are tumourigenic in immunosupressed mice. Molecular cytogenetic changes using CGH, SKY and FISH with breakpoint-specific YAC- and BAC- probes revealed a high level amplification on 10p11.2 in several clones which has been identified as an atypical protein kinase C binding protein using FISH gene-specific PCR products. Patterns of gene expression were studied using HuGen Human cDNA arrays using indirect labelling. The control parent RPE cell line could then be compared with cloned radiation-induced tumour cell lines derived from it following fractionated doses of gamma irradiation. Osteonectin was down regulated in 4 different tumour lines. This gene maps to a region of chromosome 5q that is commonly deleted in leukaemia. Nexin and p105 were down regulated in 3 lines and tumour suppressing subtransferable candidate 1 in I line. Further hTERT immortalised cell lines have been derived from primary cultures of human mammary epithelial cells. The breast epithelium contains a number of different cell types and the lines have been characterised using immunocytochemical techniques. The cells are cytokeratin 19 negative but CD10, cytokeratin 5 and p63 positive indicating a basal cell phenotype. Following exposure to fractionated doses of gamma irradiation anchorage independent colonies are formed. Thus human cell lines immortalised with hTERT are providing a useful model system for investigating radiation carcinogenesis and the molecular and cytogenetic changes induced. Supported by EC Nuclear Fission

  8. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs.

    Science.gov (United States)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV

  9. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    International Nuclear Information System (INIS)

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  10. Ionizing radiation induces a p53-dependent apoptotic mechanism in ARPE-19 cells

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the molecular mechanisms for cell growth inhibition or apoptosis in human retinal pigment epithelium (RPE) cells after ionizing radiation. Cell survival studies, a TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay, and a caspase-3 immunocytochemical analysis were performed on irradiated ARPE-19 cell cultures at different time periods. Transcriptional levels of p53, p21, Bax, Fas/Fas-L, vascular endothelial growth factor (VEGF), and pigment epithelium-derived growth factor (PEDF) were evaluated by semiquantitative reverse transcriptional polymerase chain reaction. Mutations in the p53 gene, were analyzed by DNA sequencing. Protein levels of p53, VEGF, and PEDF were evaluated by Western blot. Cell viability was inversely related to radiation dose. TUNEL-positive cells were detected 6 h after radiation exposure. Caspase-3 immunocytochemical analysis revealed increased immunoreactivity in the TUNEL-positive cells. Levels of p53, p21, and Bax mRNA were greatest at the 2-h postradiation period. VEGF and PEDF mRNA and protein levels were constant. Protein levels of p53 were increased at the 4- and 6-h postradiation period. Ionizing radiation induces apoptosis in normal proliferating RPE cells through p53 activation, without affecting expression of VEGF or PEDF. We documented a molecular basis for explaining the decrease in effectiveness of radiation therapy, particularly for age-related macular degeneration. In the clinical setting, selection of appropriate radiation therapy methods and the doses for specific diseases need careful evaluation. (author)

  11. Functional genomics of UV radiation responses in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Paiz, Christine A.; Amundson, Sally A.; Bittner, Michael L.; Meltzer, Paul S.; Fornace, Albert J

    2004-05-18

    The gene expression responses of MCF-7, a p53 wild-type (wt) human cell line, were monitored by cDNA microarray hybridization after exposure to different wavelengths of UV irradiation. Equitoxic doses of UVA, UVB, and UVC radiation were used to reduce survival to 37%. The effects of suramin, a signal pathway inhibitor, on the gene expression responses to the three UV wavelengths were also compared in this model system. UVB radiation triggered the broadest gene expression responses, and 172 genes were found to be consistently responsive in at least two-thirds of independent UVB experiments. These UVB radiation-responsive genes encode proteins with diverse cellular roles including cell cycle control, DNA repair, signaling, transcription, protein synthesis, protein degradation, and RNA metabolism. The set of UVB-responsive genes included most of the genes responding to an equitoxic dose of UVC radiation, plus additional genes that were not strongly triggered by UVC radiation. There was also some overlap with genes responding to an equitoxic dose of UVA radiation, although responses to this lower energy UV radiation were overall weaker. Signaling through growth factor receptors and other cytokine receptors was shown to have a major role in mediating UV radiation stress responses, as suramin, which inhibits such receptors, attenuated responses to UV radiation in nearly all the cases. Inhibition by suramin was greater for UVC than for UVB irradiation. This probably reflects the more prominent role in UVB damage response of signaling by reactive oxygen species, which would not be affected by suramin. Our results with suramin demonstrate the power of cDNA microarray hybridization to illuminate the global effects of a pharmacologic inhibitor on cell signaling.

  12. Effect of ionizing radiation on human skeletal muscle precursor cells

    OpenAIRE

    Marš, Tomaž; Čemažar, Maja; Jurdana, Mihaela; Pegan, Katarina

    2015-01-01

    Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures.Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shoc...

  13. Factors affecting mutational specificity induced by ionizing radiation and oxidizing radicals

    International Nuclear Information System (INIS)

    We propose to analyze the factors affecting the specificity of mutational change as induced by ionizing radiation and oxidizing radicals. We want to understand not only the rules that affect base substitution, but also the mechanism(s) by which additions and deletions are produced, since detections are a common consequence of radiation. We wish to carry out this analysis in an in vitro mutation system that permits us to analyze the role of base sequence, of polymerase and of mutagenic agent. Our system is designed to screen out most direct breaks as a cause of mutation and should indicate the changes resulting from base damage to the DNA

  14. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    International Nuclear Information System (INIS)

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  15. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon [Korea Institute of Radiologicaland Medical Sciences, Seoul (Korea, Republic of)

    2010-11-15

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  16. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  17. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  18. Radiation contributing to the space development. Radiation deterioration of space solar cell and its forecasting

    International Nuclear Information System (INIS)

    Radiation deterioration of the efficient triple-junction space solar cell (TSSC) recently developed and now put to practical use, is complicated due to its structure. This paper describes the characteristics of TSSC radiation deterioration and its forecast based radiological data. TSSC sub-cell has a 3-layered structure of InGaP surface light-receiving SC, GaAs middle SC and Ge back SC. TSSC panel is composed from layers of the cover glass to shield the radiation, of TSSC sub-cell, and of substrate plate panel of Al honeycomb core. Among the space radiation, the particular electron and proton particles that are of high energy, highly transmittable and much more abundant than other particles, mainly cause the deterioration of TSSC. The flux per unit time of those electron and proton depends on the position of the spacecraft because the particles are originated from the solar wind, trapped radiation and galactic cosmic rays, and thus the forecast of deterioration of TSSC is possible when the orbit of the committed craft is decided. Essential data of TSSC necessary for forecast are such as those of particle energy (MeV) vs conservation rate (power voltage ratio at the beginning/end of SC life under mimic sunlight), and vs relative damage coefficient, an indicator of conservation (deterioration). Highly efficient SC will be developed further and the concomitant forecasting technique will be required, for which development of radiation technology is also essential. (T.T.)

  19. Cell population-specific expression analysis of human cerebellum

    Directory of Open Access Journals (Sweden)

    Kuhn Alexandre

    2012-11-01

    Full Text Available Abstract Background Interpreting gene expression profiles obtained from heterogeneous samples can be difficult because bulk gene expression measures are not resolved to individual cell populations. We have recently devised Population-Specific Expression Analysis (PSEA, a statistical method that identifies individual cell types expressing genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure makes use of marker gene expression and circumvents the need for additional experimental information like tissue composition. Results To systematically assess the performance of statistical deconvolution, we applied PSEA to gene expression profiles from cerebellum tissue samples and compared with parallel, experimental separation methods. Owing to the particular histological organization of the cerebellum, we could obtain cellular expression data from in situ hybridization and laser-capture microdissection experiments and successfully validated computational predictions made with PSEA. Upon statistical deconvolution of whole tissue samples, we identified a set of transcripts showing age-related expression changes in the astrocyte population. Conclusions PSEA can predict cell-type specific expression levels from tissues homogenates on a genome-wide scale. It thus represents a computational alternative to experimental separation methods and allowed us to identify age-related expression changes in the astrocytes of the cerebellum. These molecular changes might underlie important physiological modifications previously observed in the aging brain.

  20. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  1. Targeting vault nanoparticles to specific cell surface receptors.

    Science.gov (United States)

    Kickhoefer, Valerie A; Han, Muri; Raval-Fernandes, Sujna; Poderycki, Michael J; Moniz, Raymond J; Vaccari, Dana; Silvestry, Mariena; Stewart, Phoebe L; Kelly, Kathleen A; Rome, Leonard H

    2009-01-27

    As a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 x 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins. In this study, three different tags were engineered onto the C-terminus of MVP: an 11 amino acid epitope tag, a 33 amino acid IgG-binding peptide, and the 55 amino acid epidermal growth factor (EGF). These modified vaults were produced using a baculovirus expression system. Our studies demonstrate that recombinant vaults assembled from MVPs containing C-terminal peptide extensions display these tags at the top and bottom of the vault on the outside of the particle and can be used to specifically bind the modified vaults to epithelial cancer cells (A431) via the epidermal growth factor receptor (EGFR), either directly (EGF modified vaults) or as mediated by a monoclonal antibody (anti-EGFR) bound to recombinant vaults containing the IgG-binding peptide. The ability to target vaults to specific cells represents an essential advance toward using recombinant vaults as delivery vehicles. PMID:19206245

  2. Modification of radiation response in V79 cells with solcoseryl

    International Nuclear Information System (INIS)

    Solcoseryl is a deproteinized extract of calf serum which has been used for various purposes. It has been shown to simulate wound healing, to protect against carbon monoxide poisoning and to prevent teratogenic effects of cyclosphosphamide in mice. In addition, it has been reported to be a radiation protector and to modify radiation response in patients undergoing radiation treatment. The present study attempted to assess the effect of Solcoseryl on V79 cell survival and DNA damage after gamma irradiation. WR-1065 (4mM) was tested for comparative purpose. DNA damage was assayed using the alkaline elution technique while cell survival was determined in vitro using a standard clongenic assay. The results indicate that Solcoseryl doses protect against single-strand DNA breaks (SSB) but has little if any protective effect on cell survival. WR-1065- however, protects against both SSB and survival after gamma irradiation

  3. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  4. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  5. Cellular automaton model of cell response to targeted radiation

    International Nuclear Information System (INIS)

    It has been shown that the response of cells to low doses of radiation is not linear and cannot be accurately extrapolated from the high dose response. To investigate possible mechanisms involved in the behaviour of cells under very low doses of radiation, a cellular automaton (CA) model was created. The diffusion and consumption of glucose in the culture dish were computed in parallel to the growth of cells. A new model for calculating survival probability was introduced; the communication between targeted and non-targeted cells was also included. Early results on the response of non-confluent cells to targeted irradiation showed the capability of the model to take account for the non-linear response in the low-dose domain

  6. Redirecting T Cell Specificity Using T Cell Receptor Messenger RNA Electroporation.

    Science.gov (United States)

    Koh, Sarene; Shimasaki, Noriko; Bertoletti, Antonio

    2016-01-01

    Autologous T lymphocytes genetically modified to express T cell receptors or chimeric antigen receptors have shown great promise in the treatment of several cancers, including melanoma and leukemia. In addition to tumor-associated antigens and tumor-specific neoantigens, tumors expressing viral peptides can also be recognized by specific T cells and are attractive targets for cell therapy. Hepatocellular carcinoma cells often have hepatitis B virus DNA integration and can be targeted by hepatitis B virus-specific T cells. Here, we describe a method to engineer hepatitis B virus-specific T cell receptors in primary human T lymphocytes based on electroporation of hepatitis B virus T cell receptor messenger RNA. This method can be extended to a large scale therapeutic T cell production following current good manufacturing practice compliance and is applicable to the redirection of T lymphocytes with T cell receptors of other virus specificities such as Epstein-Barr virus, cytomegalovirus, and chimeric receptors specific for other antigens expressed on cancer cells. PMID:27236807

  7. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  8. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  9. Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells.

    Science.gov (United States)

    Nava, V E; Cuvillier, O; Edsall, L C; Kimura, K; Milstien, S; Gelmann, E P; Spiegel, S

    2000-08-15

    Ceramide has been implicated as an important component of radiation-induced apoptosis of human prostate cancer cells. We examined the role of the sphingolipid metabolites--ceramide, sphingosine, and sphingosine-1-phosphate--in susceptibility to radiation-induced apoptosis in prostate cancer cell lines with different sensitivities to gamma-irradiation. Exposure of radiation-sensitive TSU-Pr1 cells to 8-Gy irradiation led to a sustained increase in ceramide, beginning after 12 h of treatment and increasing to 2.5- to 3-fold within 48 h. Moreover, irradiation of TSU-Pr1 cells also produced a marked and rapid 50% decrease in the activity of sphingosine kinase, the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. In contrast, the radiation-insensitive cell line, LNCaP, had sustained sphingosine kinase activity and did not produce elevated ceramide levels on 8-Gy irradiation. Although LNCaP cells are highly resistant to gamma-irradiation-induced apoptosis, they are sensitive to the death-inducing effects of tumor necrosis factor alpha, which also increases ceramide levels in these cells (K. Kimura et al., Cancer Res., 59: 1606-1614, 1999). Moreover, we found that although irradiation alone did not increase sphingosine levels in LNCaP cells, tumor necrosis factor alpha plus irradiation induced significantly higher sphingosine levels and markedly reduced intracellular levels of sphingosine-1-phosphate. The elevation of sphingosine levels either by exogenous sphingosine or by treatment with the sphingosine kinase inhibitor N,N-dimethylsphingosine induced apoptosis and also sensitized LNCaP cells to gamma-irradiation-induced apoptosis. Our data suggest that the relative levels of sphingolipid metabolites may play a role in determining the radiosensitivity of prostate cancer cells, and that the enhancement of ceramide and sphingosine generation could be of therapeutic value. PMID:10969794

  10. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  11. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    International Nuclear Information System (INIS)

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  12. Influence of ionizing radiation on specific pigments appearing in antique objects

    International Nuclear Information System (INIS)

    Use of radiation technology for disinfection of works of art requires meticulous analysis of influence of ionizing radiation on their every element including pigments and dyes. The gamma radiation influence on specific pigments which were mainly used hundreds of years ago in Poland. For experiments samples of pigments in the commercial form (powder) and on the wood were used. Changes were analysed with such methods as reflection spectrophotometry in visual range as well as near infrared and infrared spectroscopy. In the range of doses used in disinfection (max. 10 kGy) no changes were found in all studied pigments. There were various changes for each pigment when doses of 1000 and 2000 kGy were used. The least resistant from all studied pigments was 'leaden white' and the most resistant were 'terra di siena' and green earth. (author)

  13. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  14. Potential cell-specific functions of CXCR4 in atherosclerosis.

    Science.gov (United States)

    Weber, Christian; Döring, Yvonne; Noels, Heidi

    2016-05-10

    The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis. PMID:25586789

  15. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    Science.gov (United States)

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  16. Targeting Vault Nanoparticles to Specific Cell Surface Receptors

    OpenAIRE

    Kickhoefer, Valerie A; Han, Muri; Raval-Fernandes, Sujna; Poderycki, Michael J.; Moniz, Raymond J.; Vaccari, Dana; Silvestry, Mariena; Stewart, Phoebe L.; Kelly, Kathleen A.; Rome, Leonard H.

    2009-01-01

    As a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 × 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins. In this study, three different tags were engineered onto the C-terminus of MVP: an 11 amino a...

  17. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain...... acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the...

  18. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  19. Molecular signals in antigen presentation. II. Activation of cytolytic cells in vitro after ultraviolet radiation or combined gamma and ultraviolet radiation treatment of antigen-presenting cells

    International Nuclear Information System (INIS)

    Murine low-density spleen cells have potent antigen-presenting ability in a hapten-specific cytolytic T lymphocyte (CTL) system using the hapten azobenzenearsonate (ABA). Exposure of these cells to 0.33 KJ/m2 of ultraviolet radiation (UVR) after coupling to hapten results in markedly inhibited antigen-presenting function that can be substantially corrected or bypassed by interleukin 1 (IL 1). These results have been interpreted to reflect an inhibition of Lyt-1+ T cell activation by UVR-treated APC. Treatment of these cells sequentially with 1500 rad of γ-radiation (GR) prior to hapten coupling, followed by 0.33 KJ/m2 of UVR radiation after coupling, results in an antigen-resenting defect only minimally improved by IL 1. However, partially purified interleukin 2 (IL 2) can completely bypass or correct this defect. Thus, combined Cr and UVR induces a different or more profound defect in APC function when compared to UVR alone. However, these cells do provide a signal(s) other than hapten necessary for CTL activation because ABA-coupled high density spleen cells do not activate CTL cells, even with the addition of IL 2. Fluorescence-activated cell sorter analysis demonstrates that exposure of these low density spleen cells to GP or UVR results in decreased I-A antigen expression at 24 hr; exposure to both GR and UVR results in a greater decrease in I-A antigen expression at 24 hr than either alone. The addition of nonhapten-coupled low-density APC partially reconstitutes the ability of combined GR/UVR-treated LD-APC to present antigen, and this effect is enhanced by the administration of exogenous IL 1

  20. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    International Nuclear Information System (INIS)

    A radiated bone marrow chimera mouse has been constructed by grafting. This chimera mouse was thought useful for analyzing gene specific functions in vivo. This study aimed to construct a vector available for a study on the functions of various genes that were cloned from animals through their constitutive expressions. Construction of a retroviral vector was attempted using spleen focus forming virus (SFFV), a mouse leukemia virus. The virus thus obtained was demonstrated to be able to express the gene when infected to NIH3T3, a mouse fibroblast cell line. Furthermore, packaging cells were constructed by transfecting the retroviral vector into the fibroblast cell. Bone marrow cells were incubated with the packaging cells for several days to make gene transfection into the bone marrow cells. After radiation exposure at a lethal dose, the mouse was grafted with the bone marrow cells. Thus, it became possible to investigate in vivo functions of a cloned gene through its expression in the cells. Then, development of a retroviral vector was attempted to use for transfection into bone marrow cells. Aujeszky's disease virus, a large size DNA virus was exposed to Co radiation at -78degC, but the infectivity of the irradiated virus was not detectable. Since viral RNA was demonstrated to be already broken 24 hours after the exposure to β-ray, the effects of β-radiation were examined with swine vesicular disease virus, a small RNA virus. This virus was exposed to α-32dATP (37MBq) as a β-ray source for 1 hour to 96 hours. However, there were no significant differences in the infectivity titer between the virus exposed for any of the durations and the control, non-radiated virus. This suggested that the virus was not inactivated under the present conditions. Further investigation to determine exposure conditions is under way. (M.N.)

  1. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  2. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  3. Treatment of radiation syndrome with emphasis on stem cell implantation

    International Nuclear Information System (INIS)

    Within few years, the possibility that the human body contains cells that can repair and regenerate damaged and diseased tissue has gone from an unlikely proposition to a virtual certainty. Patients who have received doses of radiation in the potentially low to mid-lethal range (2-6 Gy) will have depression in bone-marrow function with cessation of blood-cell production leading to pancytopenia. Selection of cases for stem cell transplantation is based upon clinical signs and symptoms. Hematopoietic stem cell which produces blood cell progeny provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Another cell type termed mesenchymal or stromal also exists in the marrow. This cell provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Stem cells are obtained from bone marrow, peripheral blood, placental and umbilical cord blood, embryonic stem cells and embryonic germ cells. These cells have great potential for clinical research due to their potential to regenerate tissue. As well known, the cryo preservation process can store any cell type, particularly blood cells, for an indeterminate time. (author)

  4. Radiation induction of multiaberrant cells in Allium cepa L

    International Nuclear Information System (INIS)

    'Rogue' cells determined by human geneticists as the cells with many chromosome aberrations. The main enigma of this phenomenon is its levels are unexpected higher in many studies. Frequently, these cells emergence in human are linked with radiation or viruses. 'Rogue' cells supposed to be very important in mutagenesis, oncogenesis and even in evolution process. We use plant assay (Allium cepa L.) to analyze the induction of cells with many chromosome aberration of different types. Cytogenetic damage of gamma-irradiation as frequency of multiaberrant cells in the root tip cells of Allium was determined. The empiric numbers of cells with many aberrations were compared with those expected in theoretical distributions (Poisson, geometric and Pascal). The frequency of multiaberrant cells in root tip cells was increased up to 83,33 ± 10,76 % under gamma-irradiation in various doses. Gamma-irradiation induced more multiaberrant cells in A. cepa meristems than expected in theoretical distributions. We supposed dependency of chromosome aberrations origin in the same cell after irradiation. The data obtained elucidate that under gamma-irradiation accumulation of aberrations in aberrant cells are not random, the appearance of one aberration in cell induced the appearance of others in the same cell. (author)

  5. Radiation-Induced Hypomethylation Triggers Urokinase Plasminogen Activator Transcription in Meningioma Cells

    Directory of Open Access Journals (Sweden)

    Kiran Kumar Velpula

    2013-02-01

    Full Text Available Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5-methyltransferase 1 (DNMT1 and methyl-CpG binding domain protein (MBD expression. However, oxidative damage by H2O2 or pretreatment of irradiated cells with N-acetyl cysteine (NAC did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK-extracellular signal-regulated kinase (ERK in radiation-treated cells, while U0126 (MEK/ERK inhibitor blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation

  6. Combined Effects of Radiation and Mercury on PLHC-1 Cells

    International Nuclear Information System (INIS)

    It is inevitable for living objects to expose themselves to multiple factors present in the environment. The combined effect of multi-factors is hard to estimate and predict in advance. Especially factors harmful to organisms can synergistically interact with each other. When the effect of the combined action is greater than expected additivity, it is called synergism or supra-additivity. Ionizing radiation can cause cell death, mainly due to its ability to produce reactive oxygen species in cells. Mercury is one of widespread environmental pollutants which is known to have toxic effects on organisms. There are many reports indicating its genotoxic potential in a variety of aquatic species. Synergistic effects of radiation and mercury on human cells was previously reported. Aerobically growing organisms suffer from exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species. These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components against reactive oxygen species. Reactive oxygen species can also be formed by exposure of cells either to ionizing radiation or redox cycling chemicals present in the environment like heavy metals. PLHC-1 hepatoma cell line derived from top minnow (Poeciliopsis lucida) is the most commonly used cell line in toxicology. The PLHC-1 cells are easy to cultivate, and can be used for screening the toxicity of chemicals. The present study was done to evaluate the combined effects of radiation with mercury chloride on the PLHC-1 cells

  7. Cell-specific regulation of apoptosis by designed enediynes.

    OpenAIRE

    Nicolaou, K. C.; Stabila, P; Esmaeli-Azad, B; Wrasidlo, W; Hiatt, A

    1993-01-01

    The naturally occurring enediyne antibiotics are a unique class of antitumor drugs that combine reactive enediynes with additional structural features conferring affinity for DNA. Dynemicin A, in which an enediyne core is attached to an anthraquinone group capable of DNA intercalation, readily cleaves double-stranded DNA. This activity is thought to be the basis of its potent antitumor cytotoxicity. To investigate cell-specific mechanisms of cytotoxicity in the absence of DNA affinity, we hav...

  8. Anatomy of a new B-cell-specific enhancer.

    OpenAIRE

    Koch, W; Benoist, C.; Mathis, D

    1989-01-01

    The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhanc...

  9. Autophagy contributes to resistance of tumor cells to ionizing radiation

    International Nuclear Information System (INIS)

    Background and purpose: Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Materials and methods: Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. Results: LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Conclusion: Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance.

  10. Residual radiation effect in the murine hematopoietic stem cell compartment

    International Nuclear Information System (INIS)

    Stem cells surviving radiation injury may carry defects which contribute to long-term effects. The ratio of 125-iododeoxyuridine (IUdR) uptake into spleens of lethally irradiated recipient mice between day 3 and day 5 after cell transfusion revealed reduced proliferative ability (PF) of spleen seeding cells in parallel with reduced CFU-S content of donors throughout the study period of one year after 5 Gy gamma irradiation. Additional data aided in evaluating possible mechanisms of PF reduction. Within the range of the graft sizes used, PF was independent of the numbers of cells or CFU-S transfused. Radiation-induced increase in loss of label between days 3 and 5 and prolonged doubling time of proliferating cells indicated enhancement of cell maturation and increase in mitotic cycle time. Increased IUdR uptake per transfused CFUsub(S) suggested extra divisions of transit cells due to insufficiency in the stem cell compartment. It is concluded that persisting defects in surviving stem cells interfere in a complex way with cell proliferation in the hemopoietic system. (orig.)

  11. EORTC radiation proctitis-specific quality of life module - Pretesting in four European countries

    International Nuclear Information System (INIS)

    Background and purpose: Radiation proctitis is a side effect which can occur after pelvic radiation therapy. Currently available questionnaires do not comprehensively assess the range of problems, nor impact on quality of life associated with proctitis. This article reports on the cultural testing phase of an EORTC module (QLQ-PRT21) developed to assess radiation proctitis specific issues and designed to be used in conjunction with the EORTC core quality of life questionnaire (QLQ-C30). Methods: The previously developed 21-item module, pre-tested in Australia, was translated into Norwegian, German, French and Italian. Patients completed the EORTC QLQ-C30 and module questionnaires towards the end of their radical pelvic radiation treatment to target acute side effects. Patients experiencing chronic proctitis were also surveyed. Patients also participated in structured interviews to determine issues of comprehensibility, coverage and relevance. Results were compared with Australian data. Results: Questionnaires were completed by 64 European patients. The module was found to be relevant and culturally acceptable to participants. Feedback has led to minor translation modifications and the inclusion of two additional questions. Conclusion: This module is ready for Phase IV testing which will consist of large scale field testing with the aim to perform psychometric analysis and finalise a module that will be suitable in the assessment of radiation induced proctitis.

  12. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system

    International Nuclear Information System (INIS)

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data

  13. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  14. Influence of acute hypoxia and radiation quality on cell survival

    OpenAIRE

    Tinganelli, Walter; Ma, Ning-Yi; von Neubeck, Cläre; Maier, Andreas; Schicker, Corinna; Kraft-Weyrather, Wilma; Durante, Marco

    2013-01-01

    To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy ...

  15. Suppressor cells in transplantation tolerance: the mechanisms of tolerance in radiation chimeras

    International Nuclear Information System (INIS)

    Histoincompatible-complete radiation chimeras, after resolving acute graft-vs-host (GVHD), establish specific tolerance to host and donor alloantigens. This tolerance can be perturbed with immunosuppressive agents and infusions of small numbers of donor-type cells with infusions of massive numbers of donor-type cells, or with infusions of a small number of donor-type cells, that were sensitized against host antigens prior to transfer. These chimeras possess T lymphocytes in the spleen that specifically suppress donor to host mixed lymphocyte reactions and adoptively transfer suppression of GVHD to secondary hosts. Nylon-wool fractionation of chimeric spleen cells restores the response of chimeric lymphocytes to host alloantigens, suggesting that transplantation tolerance is not attributable to clonal deletion but the activity of nylon-wool-adherent T suppressor spleen cells

  16. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    International Nuclear Information System (INIS)

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLex-mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  17. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  18. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  19. Specific inactivation of glucose metabolism from eucaryotic cells by pentalenolactone.

    Science.gov (United States)

    Duszenko, M; Balla, H; Mecke, D

    1982-02-01

    Pentalenolactone, an antibiotic related to the class of the sesquiterpene-lactones and produced by the strain Streptomyces arenae Tü-469, inhibits specifically the glucose metabolism by inactivation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating) ED 1.2.1.1.2). The sensitivity of several eucaryotic cell-systems for pentalenolactone was shown under in vivo conditions. The glycolytic as well as the gluconeogenetic pathway of mammalian cells can be completely inhibited with low concentrations of the antibiotic. In all cases, the minimum inhibitory concentration is dependent on cell density. The inhibitory effect in vivo and in vitro does not seem to be species-specific. In erythrocytes from rats, in Ehrlich-ascites tumor cells and in Plasmodium vinckei infected erythrocytes from mice glycolysis can be inhibited with concentrations of 18--90 micrometers pentalenolactone. In hepatocytes, glycolysis as well as gluconeogenesis in prevented by the same concentrations. In contrast to these results, in yeast the inhibition depends on growth conditions. The inhibition in glucose medium is cancelled by precultivation on acetate-containing medium. PMID:7034785

  20. Germ tube-specific antigens of Candida albicans cell walls

    International Nuclear Information System (INIS)

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with 125I, or metabolically with [35S] methionine or [3H] mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen

  1. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells

    OpenAIRE

    MALLA, RAMA RAO; Gopinath, Sreelatha; Alapati, Kiranmai; Gorantla, Bharathi; Christopher S Gondi; Rao, Jasti S.

    2012-01-01

    Glioblastomas present as diffuse tumors with invasion into normal brain tissue and frequently recur or progress after radiation as focal masses because of glioma-initiating cells. The role of the urokinase-type plasminogen activator receptor (uPAR) and cathepsin B in stem-like phenotype has been extensively studied in several solid tumors. In the present study, we demonstrated that selection of glioma-initiating cells using CD133 expression leads to a specific enrichment of CD133+ cells in bo...

  2. Effect of ionizing radiation on nitric oxide production in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Full text: Nitric oxide (NO) is an important biological molecule with a wide variety of functions in physiological and pathophysiological events. We reported previously the presence of nitric oxide synthase (NOS) isoforms such as inducible, endothelial and neuronal types in the rat mammary glands. In addition, we demonstrated that a selective inhibitor of inducible NOS and NO-specific scavenger prevent radiation-induced rat mammary tumors, and that radiation-induced NO might contribute to tumor initiation of mammary glands in rat. However, the production and action of NO in the epithelium of mammary glands after the exposure of radiation are still unclear. In this current study we, therefore, examined the effects of ionizing radiation on a mouse mammary epithelial cell line (HC11) to provide a concrete evidence regarding the production of NO in the mammary epithelial cells after irradiation. The HC11 cells, established from COMMA-1D mouse mammary epithelial cell line, were cultured in RPMI-1640 growth medium containing 10% FCS, EGF and insulin until become confluence, then irradiated by X-ray with a dose at 10 or 30 Gy (1 Gy/min). After the irradiation, NO produced and secreted by HC11 cells into culture medium was estimated by the measurement of nitrite concentration in the culture medium with a Griess assay. HC11 cells produced NO spontaneously, and NO concentration was gradually increased during the experimented period. On the other hand, NO production was transiently enhanced immediately after irradiation of the cells in a dose-dependent manner. It, then, descended in an hour after irradiation, and returned to a basal level in 24 hours. These indicate that NO production was undoubtedly increased by irradiation in mammary epithelial cells, and support our previous propose that radiation-induced NO might contribute to initiation of tumorigenesis of mammary glands

  3. Radiation-induced genetic effects in germ cells of mammals

    International Nuclear Information System (INIS)

    The aim of the project is to gain information on the effects of ionizing radiation on germ cells of rodents and primates as measured by induced chromosomal translocations. Different aspects of the very significant interspecies differences between the mouse and the rhesus monkey (Macaca mulatta) for translocation induction in spermatogonial stem cells were studied. In addition, possible mechanisms for the well established reduced transmission of induced mouse translocations were investigated. (R.P.) 6 refs

  4. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  5. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Cook John A

    2010-02-01

    Full Text Available Abstract Background The histamine receptor-1 (H1-antagonist, loratadine has been shown to inhibit growth of human colon cancer xenografts in part due to cell cycle arrest in G2/M. Since this is a radiation sensitive phase of the cell cycle, we sought to determine if loratadine modifies radiosensitivity in several human tumor cell lines with emphasis on human colon carcinoma (HT29. Methods Cells were treated with several doses of loratadine at several time points before and after exposure to radiation. Radiation dose modifying factors (DMF were determined using full radiation dose response survival curves. Cell cycle phase was determined by flow cytometry and the expression of the cell cycle-associated proteins Chk1, pChk1ser345, and Cyclin B was analyzed by western blot. Results Loratadine pre-treatment of exponentially growing cells (75 μM, 24 hours increased radiation-induced cytotoxicity yielding a radiation DMF of 1.95. However, treatment of plateau phase cells also yielded a DMF of 1.3 suggesting that mechanisms other than cell cycle arrest also contribute to loratadine-mediated radiation modification. Like irradiation, loratadine initially induced G2/M arrest and activation of the cell-cycle associated protein Chk1 to pChk1ser345, however a subsequent decrease in expression of total Chk1 and Cyclin B correlated with abrogation of the G2/M checkpoint. Analysis of DNA repair enzyme expression and DNA fragmentation revealed a distinct pattern of DNA damage in loratadine-treated cells in addition to enhanced radiation-induced damage. Taken together, these data suggest that the observed effects of loratadine are multifactorial in that loratadine 1 directly damages DNA, 2 activates Chk1 thereby promoting G2/M arrest making cells more susceptible to radiation-induced DNA damage and, 3 downregulates total Chk1 and Cyclin B abrogating the radiation-induced G2/M checkpoint and allowing cells to re-enter the cell cycle despite the persistence of

  6. Radiation-induced motility alterations in medulloblastoma cells.

    Science.gov (United States)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  7. Radiation-induced motility alterations in medulloblastoma cells

    International Nuclear Information System (INIS)

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. (author)

  8. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  9. Sesamol protects human embryonic kidney cells from radiation induced cell death: a potential radioprotective agent

    International Nuclear Information System (INIS)

    Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. In our earlier studies, we have demonstrated that sesamol protected DNA (plasmid and calf thymus) and V79 cells from radiation induced cell death and the effect was higher (DMF=2) in comparison to melatonin (DMF=1.3). This prompted us to study, sesamol mediated radioprotection in detail to understand the mechanism of action. We have chosen human embryonic kidney (HEK) cells to understand the mechanism of radioprotection. The HEK cells were treated with sesamol before exposure of g rays (60Co teletherapy, Bhabhatron II) in the radiation dose range 0-7 Gy for clonogenic survival. Toxicity, antioxidant enzyme activity other biochemical assays were performed. Flow cytometric analysis (FACS Calibre, BD, USA) was used to determine the apoptotic population and mitochondrial membrane potential (Rh 123, JC-1). ROS was determined using DCFHDA. Cell cycle analysis, caspase 3 activity and cytochrome C were also measured. Results suggested that sesamol protected HEK cells from cell death. The dose modifying factor for sesamol was 1.3, whereas the alpha protection factor was 2. Sesamol inhibited radiation induced cell cycle arrest in G2/M phase; ROS generation and depolarization of mitochondrial membrane potential and caspase-3 activity. Sesamol inhibited damage of critical cellular components (protein, lipids, membrane and amino acid) and maintained the redox status of cells. The results will be helpful in understanding the mechanistic aspects and development of sesamol based radioprotector. (author)

  10. Radiation improves gene transfer into human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Purpose/Objective: Poor gene transfer is the major stumbling block to successful gene therapy today. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. During studies to quantitate radiation activated recombination, we also found that both plasmid and adenoviral vector transduction could be increased by irradiation. The studies presented here describe the effects of irradiation on gene transduction efficiency (both transient and stable transduction) in several human ovarian carcinoma lines, as a prelude to in vivo animal studies. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human ovarian carcinoma cell lines (SKOV3, CAOV3 and PA1). Either irradiated or unirradiated cells were transfected with pRSVZ plasmid (containing a LacZ expression cassette) in either the supercoiled and linearized (XmnI) forms and β-galactosidase expression followed with time. Transfection efficiency was measured by flow cytometry following FDG staining at 0, 48, and 96 hours after irradiation. FDG is converted to a fluorescent metabolite by LacZ, and thus reflects the transfection efficiency of the LacZ containing vector. Vector quantitation was also performed by southern hybridization. Stable transduction efficiency was measured 14 -35 days after irradiation. Optimization of the time of irradiation with respect to transfection was performed. Since cells demonstrated increased stable recombination for as long as 96 hours after irradiation, continuous low dose rate and multiple radiation fractions were also tested. These experiments were repeated using the Ad5CMVlacZ. Dividing cells were exposed to Ad5CMVlacZ at an MOI of 0.1,1,5,10 and 100 to determine optimum transfection concentration. Transduction efficiency was again measured at various intervals to determine the radiation dose and interval post transfection which provides the maximum increase in transfection

  11. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    Science.gov (United States)

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  12. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    the infrastructure aimed at achieving its maximum efficiency, and extensively covers performance regulations. The BSS cover the application of ionizing radiation for all practices and interventions and are, therefore, basic and general in nature. Users must apply these basic requirements to their own particular practices. In this context, the preamble of the BSS states that: 'The Regulatory Authority may need to provide guidance on how certain regulatory requirements are to be fulfilled for various practices, for example in regulatory guideline documents.' There are certain requirements that, when applied to specific practices, can be fulfilled through virtually only one practical solution. In these cases, the regulatory authority would use a 'shall' statement for this solution. To meet other requirements, there may be more than one option. In these cases the regulatory authority would usually indicate the recommended option with a 'should' statement, which implies that licensees may choose another alternative provided that the level of safety is equivalent. This distinction has been maintained in this 'model regulations' for irradiation facilities in order to facilitate the decision of regulatory authorities on the degree of obligation

  13. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  14. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sommer, Eva; Lopez, Ramon; Wirkner, Ute [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sisombath, Sonevisay [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Ho, Anthony D.; Saffrich, Rainer [Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg (Germany); Huber, Peter E. [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  15. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  16. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    Science.gov (United States)

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  17. Restriction specificity of virus-specific cytotoxic T cells from thymectomised irradiated bone marrow chimeras reconstituted with thymus grafts

    International Nuclear Information System (INIS)

    Adult-thymectomised lethally irradiated mice A that were reconstituted with T-cell-depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of (B X C)F1 origin generated virus-specific T cells restricted to B alone; adult-thymectomised and lethally irradiated (A X B)F1 mice that were reconstituted with T-cell depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of A and of B origin generated virus-specific T cells restricted to A or to B. These results do not reveal obvious suppressive influences of host or stem-cell origin that might have explained results obtained with various irradiated bone marrow or thymus chimeras, they indicate that the thymus' influence on maturing T cells is one of the limiting steps in the selection of T cells' restriction specificities. (Auth.)

  18. From the Cover: Specific chemical and structural damage to proteins produced by synchrotron radiation

    Science.gov (United States)

    Weik, Martin; Ravelli, Raimond B. G.; Kryger, Gitay; McSweeney, Sean; Raves, Maria L.; Harel, Michal; Gros, Piet; Silman, Israel; Kroon, Jan; Sussman, Joel L.

    2000-01-01

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  19. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R; Geinitz, H; Brakebusch, C

    2006-01-01

    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...... findings in tumor cells, human A-172 glioma cells were examined under the same conditions after siRNA-mediated silencing of beta1-integrins. We found that beta1A-integrin-mediated adhesion to fibronectin, collagen-III or beta1-IgG was essential for cell survival after radiation-induced genotoxic injury...... central role of beta1-integrins in Akt- and p130Cas/paxillin-mediated prosurvival signaling. These findings suggest beta1-integrins as critical regulators of cell survival after radiation-induced genotoxic injury. Elucidation of the molecular circuitry of prosurvival beta1-integrin-mediated signaling in...

  20. Simulation of TGF-Beta Activation by Low-Dose HZE Radiation in a Cell Culture

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    High charge (Z) and energy (E) (HZE) nuclei comprised in the galactic cosmic rays are main contributors to space radiation risk. They induce many lesions in living matter such as non-specific oxidative damage and the double-strand breaks (DSBs), which are considered key precursors of early and late effects of radiation. There is increasing evidence that cells respond collectively rather than individually to radiation, suggesting the importance of cell signaling1. The transforming growth factor (TGF ) is a signaling peptide that is expressed in nearly all cell type and regulates a large array of cellular processes2. TGF have been shown to mediate cellular response to DNA damage3 and to induce apoptosis in non-irradiated cells cocultured with irradiated cells4. TFG molecules are secreted by cells in an inactive complex known as the latency-associated peptide (LAP). TGF is released from the LAP by a conformational change triggered by proteases, thrombospondin-1, integrins, acidic conditions and .OH radical5. TGF then binds to cells receptors and activates a cascade of events mediated by Smad proteins6, which might interfere with the repair of DNA. Meanwhile, increasingly sophisticated Brownian Dynamics (BD) algorithms have appeared recently in the literature7 and can be applied to study the interaction of molecules with receptors. These BD computer models have contributed to the elucidation of signal transduction, ligand accumulation and autocrine loops in the epidermal growth factor (EGF) and its receptor (EFGR) system8. To investigate the possible roles of TGF in an irradiated cell culture, our Monte-Carlo simulation codes of the radiation track structure9 will be used to calculate the activation of TFG triggered by .OH produced by low doses of HZE ions. The TGF molecules will then be followed by a BD algorithm in a medium representative of a cell culture to estimate the number of activated receptors.

  1. Radiation Dose Effects into LCO in Technical Specification by Iodine in Hanul units 1,2

    International Nuclear Information System (INIS)

    This study estimates the impact of the 1-th coolant system in NPP to the LCO (Limiting Condition of Operation) limits which is in the site boundary. Dose limit is merged into the effective dose from whole body and thyroid dose limits, that is possible to combine the two LCOs to a unified LCO. To estimate the limits, the radiation dose of one of the designed accidents should be chosen to check the radiation dose response. The selected accident is based on Seung Chan Lee's study at KHNP in 2011. Using the selected accident, Iodine dose effect is reviewed depending on the LCO limiting responsibility and the specific behavior. In order to evaluate the radiation dose effect in Technical Specification of Hanul 1,2, SGTR is selected for some sensitivity analysis. From the results, in Hanul site, the case of LOOP plus ADV plus GIS is the most severe case and the dose limit margin is about 110% in LCO

  2. Radiation Dose Effects into LCO in Technical Specification by Iodine in Hanul units 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Min; Lee, Seung Chan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This study estimates the impact of the 1-th coolant system in NPP to the LCO (Limiting Condition of Operation) limits which is in the site boundary. Dose limit is merged into the effective dose from whole body and thyroid dose limits, that is possible to combine the two LCOs to a unified LCO. To estimate the limits, the radiation dose of one of the designed accidents should be chosen to check the radiation dose response. The selected accident is based on Seung Chan Lee's study at KHNP in 2011. Using the selected accident, Iodine dose effect is reviewed depending on the LCO limiting responsibility and the specific behavior. In order to evaluate the radiation dose effect in Technical Specification of Hanul 1,2, SGTR is selected for some sensitivity analysis. From the results, in Hanul site, the case of LOOP plus ADV plus GIS is the most severe case and the dose limit margin is about 110% in LCO.

  3. Characterization of UV radiation sensitive frog cell lines

    International Nuclear Information System (INIS)

    Twenty-one subclones of nine frog cell isolates were tested for sensitivity to a panel of DNA damaging agents. Two clones were identified which had a greater than wild type level of sensitivity to UV radiation but had a wild type level of sensitivity to the other agents. These clones were the haploid RRP602-7 and the diploid RRP802-1. RRP802-1 was found to be unstable with respect to UV sensitivity. The line was cloned in order to isolate stable sensitive and wild type derivatives. RRP802-1-16, a UV sensitive clone and RRP802-1-13, a clone with a wild type level of sensitivity to UV radiation, were isolated. The UV radiation sensitivity of RRP602-7, RRP802-1 and RRP802-1-16 did not correlate with cell size, cell shape, cell cycle distribution or ploidy. The cell cycle distribution after UV irradiation, the rate of DNA synthesis after UV-irradiation, the DNA polymerase α activity and the sister chromatid exchange frequency were all measured in RRP602-7, RRP802-1 and RRP802-1-16 in order to examine the DNA repair capacity. The presence of DNA repair pathways was examined directly in RRP602-7, RRP802-1 and RRP802-1-16. All were found to be proficient in photo-reactivation repair and postreplication repair of UV elicited DNA damage

  4. Effects of ionizing radiation. The measurable consequences at the level of the cell

    International Nuclear Information System (INIS)

    The exposition of an organism to ionizing radiations has measurable consequences at the DNA level, but also other cell structures. After the bringing to the fore of received doses indicators based on the observation of damaged chromosomes, the evolution of molecular biology techniques and their sensitivity have allowed to develop biological indicators of cellular effects. Without having the specificity of previous ones, these ones lead to better understand the radioinduced effects to reach diagnosis and prognosis factors of irradiation. (N.C.)

  5. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  6. Radiation damage and annealing of amorphous silicon solar cells

    Science.gov (United States)

    Byvik, C. E.; Slemp, W. S.; Smith, B. T.; Buoncristiani, A. M.

    1984-01-01

    Amorphous silicon solar cells were irradiated with 1 MeV electrons at the Space Environmental Effects Laboratory of the NASA Langley Research Center. The cells accumulated a total fluence of 10 to the 14th, 10 to the 15th, and 10 to the 16th electrons per square centimeter and exhibited increasing degradation with each irradiation. This degradation was tracked by evaluating the I-V curves for AM0 illumination and the relative spectral response. The observed radiation damage was reversed following an anneal of the cells under vacuum at 200 C for 2 hours.

  7. Radiation induced cell death in cervical squamous cell carcinoma. An immunohistochemical and ultrastructural study

    International Nuclear Information System (INIS)

    To study the process of cell death in cervical squamous cell carcinoma (SCC) after radiation, an ultrastructural and immunohistochemical study was performed. Paraffin-embedded tissue blocks of biopsy samples pre- and post-radiation stage III SCC (n=15) were collected. Irradiation caused varying ultrastructural changes including nuclear and cytoplasmic disorganization suggesting cell necrosis. Immunohistochemically, the pre-radiation specimens showed no positive reaction for tumor necrosis factor-alpha (TNF-α), tumor necrosis factor-receptor (TNF-γ) or Fas. C-fos, p53 and bcl-2 showed positive reactions in only a few non-irradiated specimens. All of the irradiated specimens showed a positive reaction for TNF-α, and variable positive reactions were observed for TNF-γ, Fas, p53, c-fos and bcl-2. These results suggest that TNF-α, TNF-γ, and c-fos are responsible for radiation induced cell death in cervical SCC. (author)

  8. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells

    Directory of Open Access Journals (Sweden)

    Natália Batista DAROIT

    2015-01-01

    Full Text Available The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  9. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    International Nuclear Information System (INIS)

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that differences in the radiation sensitivity of squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent differences in tumor cell radiosensitivity or in the success or failure of radiotherapy of squamous cell carcinomas. 21 refs., 1 fig., 1 tab

  10. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137Cs gamma rays, and electrons from a 90Sr/90Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  11. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  12. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  13. Classical radiation reaction in particle-in-cell simulations

    Science.gov (United States)

    Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.

  14. How much can we say about site-specific cancer radiation risks?

    Science.gov (United States)

    Preston, D L; Krestinina, L Yu; Sokolnikov, M E; Ron, E; Davis, F G; Ostroumova, E V; Gilbert, E S

    2010-12-01

    Studies of Mayak workers and people who lived along the Techa River have demonstrated significant associations between low-dose-rate radiation exposure and increased solid cancer risk. It is of interest to use the long-term follow-up data from these cohorts to describe radiation effects for specific types of cancer; however, statistical variability in the site-specific risk estimates is large. The goal of this work is to describe this variability and provide Bayesian adjusted risk estimates. We assume that the site-specific estimates can be viewed as a sample from some underlying distribution and use Bayesian methods to produce adjusted excess relative risk per gray estimates in the Mayak and Techa River cohorts. The impact of the adjustment is compared to that seen in similar analyses in the atomic bomb survivors. Site-specific risk estimates in the Mayak and Techa River cohorts have large uncertainties. Unadjusted estimates vary from implausibly large decreases to large increases, with a range that greatly exceeds that found in the A-bomb survivors. The Bayesian adjustment markedly reduced the range of the site-specific estimates for the Techa River and Mayak studies. The extreme variability in the site-specific risk estimates is largely a consequence of the small number of excess cases. The adjusted estimates provide a useful perspective on variation in the actual risks. However, additional work on interpretation of the adjusted estimates, extension of the methods used in describing effect modification, and making more use of prior knowledge is needed to make these methods useful. PMID:21128806

  15. The determination of mother cell-specific mating type of switching in yeast by a specific regulator of HO transcription

    OpenAIRE

    Nasmyth, Kim

    1987-01-01

    In haploid homothallic budding yeast, cell division gives rise to a mother cell which proceeds to switch its mating type and a daughter cell (the bud) which does not. Switching is initiated by a specific double strand cleavage of mating type DNA by an endonuclease encoded by the HO gene. Previous data suggest that the pattern of HO transcription is responsible for the mother cell specificity of switching. HO is transcribed transiently, at START, during the cell cycle of mother cells but not a...

  16. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  17. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  18. Radiation response characteristics of human cell in vitro

    International Nuclear Information System (INIS)

    Improvements in tissue culture techniques and growth media have made it possible to culture a range of cells of human origin, both normal and malignant. The most recent addition to the list are endothelial cells. Interesting results have been obtained, some of which may have implications in Radiation Therapy. (i) Repair of Potentially Lethal Damage (PLDR) has been observed in all cell lines investigated; cells of normal origin repair PLD at least as well as malignant cells, which makes clinical trials of PLDR inhibitors of doubtful usefulness. (ii) PLD in fibroblasts of human origin appears to have a component that is repaired rapidly, in a matter of minutes, as well as a slower component that takes hours to repair. (iii) Sublethal damage repair, manifest by a dose-rate effect, has also been observed in all human cell lines tested. Cells of normal tissue origin, including fibroblasts and endothelial cells, exhibit a dose-rate effect that is intermediate between that for cells from traditionally resistant tumors (melanoma and osteosarcoma) and cells from more sensitive tumors (neuroblastoma and breast). (iv) Fibroblasts from patients with Ataxia Telangectasia (AT) are much more sensitive to x-rays, with a D/sub o/ about half that for normal human fibroblasts. Nevertheless repair of both PLD and SLD can be demonstrated in these cells

  19. The action of ultraviolet radiation on the cell proliferation of two-cell mouse embryos

    International Nuclear Information System (INIS)

    The two-cell mouse embryo has a unique cell cycle of a short DNA synthesis (S) phase and an extremely long post-DNA synthesis (G2) phase. An attempt was made to investigate the radiation biology of the long G2 phase using UV radiation as a probe. Two cell mouse embryos, at various positions in the cell cycle, were UV-irradiated in phosphate-buffered saline. The embryos were cultured for a few hours to 3 days to assay for their cell proliferative characteristics. The embryos were most sensitive to the killing action of UV radiation in the late G2 phase. The embryos divided more than two times after low UV fluences before dying and experienced G2 phase delays. These results can be contrasted to the situation in somatic cells, in which the action of UV radiation is S phase selective. One possibility is that the target for the action of UV radiation is different in two-cell mouse embryos from that in somatic cells and that the target is similar to that for X-ray effects. (author)

  20. Radiation enteropathy and leucocyte-endothelial cell reactions in a refined small bowel model

    Directory of Open Access Journals (Sweden)

    Osman Nadia

    2004-09-01

    Full Text Available Abstract Background Leucocyte recruitment and inflammation are key features of high dose radiation-induced tissue injury. The inflammatory response in the gut may be more pronounced following radiotherapy due to its high bacterial load in comparison to the response in other organs. We designed a model to enable us to study the effects of radiation on leucocyte-endothelium interactions and on intestinal microflora in the murine ileum. This model enables us to study specifically the local effects of radiation therapy. Method A midline laparotomy was performed in male C57/Bl6 mice and a five-centimetre segment of ileum is irradiated using the chamber. Leucocyte responses (rolling and adhesion were then analysed in ileal venules 2 – 48 hours after high dose irradiation, made possible by an inverted approach using intravital fluorescence microscopy. Furthermore, intestinal microflora, myeloperoxidase (MPO and cell histology were analysed. Results The highest and most reproducible increase in leucocyte rolling was exhibited 2 hours after high dose irradiation whereas leucocyte adhesion was greatest after 16 hours. Radiation reduced the intestinal microflora count compared to sham animals with a significant decrease in the aerobic count after 2 hours of radiation. Further, the total aerobic counts, Enterobacteriaceae and Lactobacillus decreased significantly after 16 hours. In the radiation groups, the bacterial count showed a progressive increase from 2 to 24 hours after radiation. Conclusion This study presents a refinement of a previous method of examining mechanisms of radiation enteropathy, and a new approach at investigating radiation induced leucocyte responses in the ileal microcirculation. Radiation induced maximum leucocyte rolling at 2 hours and adhesion peaked at 16 hours. It also reduces the microflora count, which then starts to increase steadily afterwards. This model may be instrumental in developing strategies against pathological

  1. Involvement of protease activation in modulating radiation-sensitivity of human cells

    International Nuclear Information System (INIS)

    Molecular mechanisms that supervise radiation-susceptibility of human cells are one of the important problems in molecular biology. We previously hypothesized that proteases may play a key role in cellular functions triggered by radiation as well as those in SOS functions of E. coli. We describe proteases activity induced immediately after UV (254-nm wavelength ultraviolet ray) and X-ray irradiation of cultured human cells. The activity was estimated by reaction in vitro, using enzyme preparations of cell lysates and 125I-fibrin as a substrate in the presence of plasminogen. Based on the previous findings that the activity of UV-induced proteases is specifically inhibited by antipain and enhanced by interferons, partial purification was performed, revealing a single activity peak of approximate 20 kDa on gel filtration chromatography. This activity seemed to be involved in the radio-resistance of cells against UV, because the activation correlated with increased resistance of cells to UV cell-killing. Moreover, the activation was also observed in association with hypomutable change of cells mutagenized with ethylmethanesulfonate and cells pretreated with human interferons prior to UV irradiation, when UV-induced mutagenicity was estimated by detection of K-ras codon 12 mutations. However, human RSa cells, with high sensitivity to cell-killing and mutagenicity of X-ray, showed increased levels of proteases activity immediately after X-ray irradiation. Therefore, it seems likely that proteases are activated by different ionizing or non-ionizing radiation, and that the proteases may play radio -sensitive or -protective roles in human cells. (author)

  2. Effect of ionizing radiation on acinar morphogenesis of human prostatic epithelial cells under three-dimensional culture conditions.

    Science.gov (United States)

    Wang, T; X, S Ma; Kong, D; Yi, H; Wang, X; Liang, B; Xu, H; He, M; Jia, L; Qased, A B; Yang, Y; Liu, X

    2012-01-01

    Homeostasis is maintained by the interplay of multiple factors that directly or indirectly regulate cell proliferation and cell death. Complex multiple interactions between cells and the extracellular matrix occur during acinar morphogenesis and changes in these might indicate carcinogenesis of cells from a normal to a malignant, invasive phenotype. In this study, the human prostatic epithelial cell line RWPE-1 was cultured under three-dimensional (3-D) culture conditions, and the effect of ionizing radiation on acinar morphogenesis and its association with autophagy were discussed. The results illustrated that formation of specific spheroid (acinar) structures was detectable under 3-D culture conditions. Radiation induced the disruption of acini in different cell models using either gene overexpression (Akt) or gene knock-down (Beclin 1 and ATG7). Introduction of Akt not only accelerated the growth of cells (i.e., caused the cells to manifest elongating and microspike-like structures that are obviously different from structures seen in wild-type RWPE-1 cells under two-dimensional conditions), but also changed their morphological characteristics under 3-D culture conditions. Knock-down of autophagy-related genes (Beclin 1 and ATG7) increased the radiosensitivity of cells under 3-D culture conditions, and cells died of non-apoptotic death after radiation. The results suggested that ionizing radiation may change the cell phenotype and the formation of acini. Additionally even the autophagy mechanism may play a role in these processes. PMID:22296497

  3. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin

    Directory of Open Access Journals (Sweden)

    Jacquemont Céline

    2012-04-01

    Full Text Available Abstract Background Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment. Since the Fanconi anemia (FA pathway is a DNA damage response pathway required for cellular resistance to DNA interstrand crosslinking agents, identification of small molecules that inhibit the FA pathway may reveal classes of chemicals that sensitize cancer cells to cisplatin. Results Through a cell-based screening assay of over 16,000 chemicals, we identified 26 small molecules that inhibit ionizing radiation and cisplatin-induced FANCD2 foci formation, a marker of FA pathway activity, in multiple human cell lines. Most of these small molecules also compromised ionizing radiation-induced RAD51 foci formation and homologous recombination repair, indicating that they are not selective toward the regulation of FANCD2. These compounds include known inhibitors of the proteasome, cathepsin B, lysosome, CHK1, HSP90, CDK and PKC, and several uncharacterized chemicals including a novel proteasome inhibitor (Chembridge compound 5929407. Isobologram analyses demonstrated that half of the identified molecules sensitized ovarian cancer cells to cisplatin. Among them, 9 demonstrated increased efficiency toward FA pathway-proficient, cisplatin-resistant ovarian cancer cells. Six small molecules, including bortezomib (proteasome inhibitor, CA-074-Me (cathepsin B inhibitor and 17-AAG (HSP90 inhibitor, synergized with cisplatin specifically in FA-proficient ovarian cancer cells (2008 + FANCF, but not in FA-deficient isogenic cells (2008. In addition, geldanamycin (HSP90 inhibitor and two CHK1 inhibitors (UCN-01 and SB218078 exhibited a significantly stronger synergism with cisplatin in FA

  4. Radiation-responsive transcriptome analysis in human lymphoid cells

    International Nuclear Information System (INIS)

    Ionising radiation (IR) causes DNA (deoxyribonucleic acid) injury and activates intracellular signal pathways including the regulation of DNA repair and cell cycle. However, the further knowledge of molecular events involved in radiation exposure is essential to more comprehensively understand the effects of irradiation. Therefore, the gene expressions of mRNA (messenger ribonucleic acid) by X-ray irradiation in human B lymphoblasts cell line (IM-9) using a microarray were investigated. The mRNA expressions of 65 genes were shown to be up-regulated at >2.0-fold in irradiated cells (4 Gy) when compared with non-irradiated cells (0 Gy) by microarray analysis. Among 65 genes, a large number of genes were up-regulated with an X-ray dose-dependent change. These results indicate that the up-regulation of their mRNAs is the effects of irradiation and may be due to biological dosimetric markers for the evaluation of radiation exposure in the future. (authors)

  5. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  6. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  7. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  8. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  9. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x104cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO2. Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  10. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    Science.gov (United States)

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  11. Ultrastructural effects of radiation on cells and tissues: concluding remarks

    International Nuclear Information System (INIS)

    Concluding remarks which condense the subject matter covered in the preceding series of reports which indicate the complex nature of the biological response to ionizing radiation and the inherent difficulties associated with developing unifying concepts and definitions. The multiplicity of the major response variables, i.e., specimen type, radiation parameters, analytical approach and endpoints measured, is undoubtedly a major problem. In these studies, the specimens analyzed ranged from eucaryotic algae grown in vitro in suspension cultures to brain tissue of cancer patients. Specimens were irradiated with now fewer than seven types of ionizing radiation, which varied both in quality (i.e., high and low LET) and quantity (i.e., doses from 0.1 to 90 Gy). Exposure regimens included single, fractionated, and chronic exposures. Further, there were major differences in the analytical approach employed (e.g., structural and functional assays) and end-points measured (e.g., lethality, cell growth, surface topography, etc.)

  12. Radiation damage to DNA-protein specific complexes: estrogen response element – estrogen receptor complex

    Czech Academy of Sciences Publication Activity Database

    Štísová, Viktorie; Goffinont, S.; Maurizot, M. S.; Davídková, Marie

    2007-01-01

    Roč. 122, 1-4 (2007), s. 106-109. ISSN 0144-8420. [Symposium on Microdosimetry /14./. Venezia, 13.11.2005-18.11.2005] R&D Projects: GA MŠk 1P05OC085 Grant ostatní: GA MŠk(CS1) Barrande 2005-6-018-1 Institutional research plan: CEZ:AV0Z10480505 Keywords : specific DNA-protein complexes * radiolysis * ionizing radiation Subject RIV: BO - Biophysics Impact factor: 0.528, year: 2007

  13. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E; Fugger, L; Engberg, J; Buus, S

    1996-01-01

    lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined......Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might...

  14. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  15. Comparison of gamma radiation - induced effects in two human prostate cancer cells

    International Nuclear Information System (INIS)

    In this study, the effects of gamma radiation on two hormone refractory human prostate cancer cell lines, DU 145 and PC-3, were followed. It was shown that gamma radiation induced significant inhibition of cell proliferation and viability in dose dependent manner. Antiproliferative effects of radiation were similar in both cell lines, and more pronounced than cytotoxic effects. In addition to that, PC-3 cell line was more resistant to radiation -induced cytotoxicity. (author)

  16. Cell-specific modulation of surfactant proteins by ambroxol treatment

    International Nuclear Information System (INIS)

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression

  17. A specific Fc gamma receptor on cultured rat mesangial cells

    International Nuclear Information System (INIS)

    Mesangial cells represent specialized pericytes in the renal glomerulus that contribute to the regulation of a variety of glomerular functions. Recently we and others have shown that cultured mesangial cells bind and take up immune complexes in an Fc-dependent manner leading in turn to generation of PGE2, reactive oxygen, and platelet-activating factor. The present studies were designed to further characterize potential Fc-gamma R on mesangial cells. Binding assays with either monomeric or heat aggregated (HA) [125I] labeled rat subclass-specific IgG were performed at 4 degrees C for 2 h on subcultured rat mesangial cells. Monomeric rat IgG2a, IgG2b, IgG1 and HA IgG2a bound only nonspecifically. Saturable Fc-dependent binding occurred for HA IgG2b and HA IgG1 though maximal binding and affinity were much higher for IgG2b. The presence of an Fc-gamma R was confirmed by surface protein iodination of mesangial cells (MC) and immunoprecipitation with either a polyclonal or mAb 2.4G2 prepared against murine Fc-gamma R. Both antibodies precipitated a 45-kDa iodinated protein band from cultured rat MC that comigrated with that from murine macrophage J774 cells on SDS-PAGE. This protein band also reacted with the polyclonal anti Fc-gamma R antibody on immunoblots. In contrast rat renal papillary epithelial cells were negative. The 45-kDa protein recognized by the rat anti-Fc-gamma R antibody 2.4G2 probably represents the binding site for HA IgG2b, as the 2.4G2 antibody also blocked binding of HA IgG2b. By immunofluorescence microscopy all MC stained positively with the polyclonal anti-Fc-gamma R antibody. A cDNA probe for the Fc-gamma RII-alpha on murine macrophages hybridized to mRNA from cultured rat MC which was of the same size (though less abundant) as that from J774 macrophages

  18. A specific Fc gamma receptor on cultured rat mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, A.; Satriano, J.; DeCandido, S.; Holthofer, H.; Schreiber, R.; Unkeless, J.; Schlondorff, D. (Albert Einstein College of Medicine, NY (USA))

    1989-10-15

    Mesangial cells represent specialized pericytes in the renal glomerulus that contribute to the regulation of a variety of glomerular functions. Recently we and others have shown that cultured mesangial cells bind and take up immune complexes in an Fc-dependent manner leading in turn to generation of PGE2, reactive oxygen, and platelet-activating factor. The present studies were designed to further characterize potential Fc-gamma R on mesangial cells. Binding assays with either monomeric or heat aggregated (HA) (125I) labeled rat subclass-specific IgG were performed at 4 degrees C for 2 h on subcultured rat mesangial cells. Monomeric rat IgG2a, IgG2b, IgG1 and HA IgG2a bound only nonspecifically. Saturable Fc-dependent binding occurred for HA IgG2b and HA IgG1 though maximal binding and affinity were much higher for IgG2b. The presence of an Fc-gamma R was confirmed by surface protein iodination of mesangial cells (MC) and immunoprecipitation with either a polyclonal or mAb 2.4G2 prepared against murine Fc-gamma R. Both antibodies precipitated a 45-kDa iodinated protein band from cultured rat MC that comigrated with that from murine macrophage J774 cells on SDS-PAGE. This protein band also reacted with the polyclonal anti Fc-gamma R antibody on immunoblots. In contrast rat renal papillary epithelial cells were negative. The 45-kDa protein recognized by the rat anti-Fc-gamma R antibody 2.4G2 probably represents the binding site for HA IgG2b, as the 2.4G2 antibody also blocked binding of HA IgG2b. By immunofluorescence microscopy all MC stained positively with the polyclonal anti-Fc-gamma R antibody. A cDNA probe for the Fc-gamma RII-alpha on murine macrophages hybridized to mRNA from cultured rat MC which was of the same size (though less abundant) as that from J774 macrophages.

  19. Radiation- and chemoinduced multidrug resistance in colon carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, Detlef; Stempfhuber, Michael; Wiegel, Thomas; Bottke, Dirk [Dept. of Radiotherapy and Radiooncology, Univ. of Ulm (Germany)

    2009-12-15

    Background and purpose: radiation can induce multidrug resistance (MDR) and thus interfere with simultaneous or subsequent chemotherapy. In SW620 colon carcinoma cells, the interrelation of various biological endpoints of MDR was analyzed and the potential of fractionated irradiation and chemoselection to evoke MDR was compared. Material and methods: to induce/select an MDR phenotype, SW620 were exposed to either 27 Gy in 1.8-Gy daily fractions or to 50% inhibiting concentrations of doxorubicin or cisplatin, given over 6-15 weeks. Expression of genes involved in MDR, including glutathione metabolism, was determined by semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Efflux was analyzed by flow cytometry after staining with rhodamine-123 or 5-chloromethyl fluorescein diacetate. Apoptosis was monitored after pulse exposure to doxorubicin or cisplatin. Colony-forming assays were performed under continuous drug exposure. Results: a pronounced gene induction was found in MRP2 after cisplatin selection and up to 3 weeks after radiation. LRP was activated only shortly after radiation. Radiation enhanced rhodamine-123 efflux to a similar extent as short-term chemoselection but not as much as long-term drug exposure. Drug-induced apoptosis was slightly delayed in preirradiated cells. Clonogenic growth in the progeny of irradiated cells was less sensitive to cisplatin but not to doxorubicin. Conclusion: fractionated radiation can induce an MDR phenotype in SW620. However, long-term drug exposure establishes a more efficient selection. Various endpoints are not fully concordant regarding the extent of MDR. Posttranscriptional modifications, pleiotropic regulation, and alternative pathways may cause these discrepancies. (orig.)

  20. Stem cell, cytokine and plastic surgical management for radiation injuries

    International Nuclear Information System (INIS)

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  1. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. We assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the U.S. Environmental Protection Agency's Federal Guidance Report No. 13, we show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk that applying the annual dose limit to the critical group of any age. (author)

  2. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. The authors assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the US Environmental Protection Agency's Federal Guidance Report No. 13, the authors show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk than applying the annual dose limit to the critical group of any age

  3. Endonuclease activity from tobacco nuclei specific for ultraviolet radiation-damaged DNA

    International Nuclear Information System (INIS)

    Endonuclease activity specific for UV damaged DNA was isolated from tobacco leaf nuclei and detected by relaxation of supercoiled pUC 19 plasmid DNA. The activity did not require divalent cations or ATP. It acted on photoproducts induced by as little as 24 J m−2 of UV-C (primarily 254 nm) radiation. but not on photoproducts produced by UV-B (290–320 nm) radiation in the presence of acetophenone and a N2 atmosphere or by UV-A (320–400 nm) radiation in the presence of 4′-methoxy-methyltrioxsalen in a N2 atmosphere and not on the products of OsO4 oxidation of the DNA. Using end-labeled DNA of defined sequence, it was possible to identify sites in UV-C-irradiated DNA that were cut by the endonuclease preparation: most sites were assocrated with pyrimidine pairs. Cleavage by the tobacco endonuclease was not eliminated by treatment with Escherichia coli photolyase and light, suggesting that the endonuclease did not recognize cyclobutadipyrimidines. (author)

  4. Radiation-induced forward and reverse specific locus mutations and dominant cataract mutations in treated strain BALB/c and DBA/2 male mice

    International Nuclear Information System (INIS)

    In the present experiments the genotype of the X-irradiated male mouse was varied. Males were mated to untreated, standard Test-stock females. Mutagenic effects were determined for treated stem cell spermatogonia. Since stem cell spermatogonia are repair competent, should genetic variability in the DNA repair processes exist it would be evident in the induced mutation rates. Based upon the above-mentioned sensitivity to induced killing, reduction in female fecundity, dominant lethal mutation frequency and unscheduled DNA synthesis, strain BALB/c was chosen as sensitive to radiation-induced mutagenesis and strain DBA/2 was chosen as repair competent. The mutation rates to recessive specific locus and dominant cataract alleles were determined. Additionally, employing treated BALB/c and DBA/2 male mice allowed, for the first time, the determination of the radiation-induced reverse mutation rate at 4 specific loci. Results indicate no effect of genotype on the radiation-induced forward mutation rate at the specific loci, although a possibly higher radiation induced mutation rate to dominant cataract alleles was observed in treated DBA/2 mice as compared to treated BALB/c or (101/E1 x C3H/E1)F1 mice but these results require confirmation, and the reverse mutation rate at the a and d loci following paternal irradiation was higher than the spontaneous frequency. (Auth.)

  5. Radiation-induced cell transformation: transformation efficiencies of different types of ionizing radiation and molecular changes in radiation transformants and tumor cell lines.

    OpenAIRE

    Hieber, L; Trutschler, K; Smida, J. (Jan); Wachsmann, M.; Ponsel, G; Kellerer, Albrecht M.

    1990-01-01

    This study aims to compare the efficiencies of 5.4 keV soft X-rays, alpha-particles, and gamma-rays in transforming C3H 10T1/2 cells and to assess the sequence of cellular and molecular changes during the process of radiation-induced transformation of Syrian hamster embryo (SHE) cells. The somewhat more densely ionizing soft X-rays are more effective than gamma-rays both for cell inactivation and cell transformation. The relative biological effectiveness (RBE) appears to be independent of dos...

  6. Estimated Radiation on Mars, Hits per Cell Nucleus

    Science.gov (United States)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis.

    Science.gov (United States)

    Li, Changzhao; Athar, Mohammad

    2016-03-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  8. Influence of chronic hypoxia and radiation quality on cell survival

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the influence of chronic hypoxia and anoxia on cell survival after low- and high-linear energy transfer (LET) radiation, Chinese hamster ovary K1 (CHO-K1) cells were kept for 24 h under chronic hypoxia (94.5% N2; 5% CO2; 0.5% O2) or chronic anoxia (95% N2; 5% CO2). Irradiation was performed using 250 kVp X-rays or carbon ions with a dose average LET of 100 keV/μm either directly under the chronic oxygenation states, or at different time points after reoxygenation. Moreover, the cell cycle distribution for cells irradiated under different chronic oxic states was measured over 24 h during reoxygenation. The measurements showed a fairly uniform cell cycle distribution under chronic hypoxia, similar to normoxic conditions. Chronic anoxia induced a block in G1 and a strong reduction of S-phase cells. A distribution similar to normoxic conditions was reached after 12 h of reoxygenation. CHO cells had a similar survival under both acute and chronic hypoxia. In contrast, survival after irradiation under chronic anoxia was slightly reduced compared to that under acute anoxia. We conclude that, in hamster cells, chronic anoxia is less effective than acute anoxia in inducing radioresistance for both X-rays and carbon ions, whereas in hypoxia, acute and chronic exposures have a similar impact on cell killing. (author)

  9. Radiation redux: reserve intestinal stem cells miss the call to duty.

    Science.gov (United States)

    Shivdasani, Ramesh A

    2014-02-01

    Distinct stem cell populations in intestinal crypts mediate tissue homeostasis and responses to epithelial damage such as radiation. Now in Cell Stem Cell, Metcalfe et al. (2014) demonstrate that homeostatic, proliferative Lrg5(+) cells are necessary to regenerate the epithelium after radiation, whereas quiescent Lgr5(-) reserve stem cells are surprisingly radiosensitive. PMID:24506878

  10. In vitro assays for cell-mediated immunity in dogs with radiation-induced osteosarcoma

    International Nuclear Information System (INIS)

    The Radiobiology Laboratory experimental study on 226Ra toxicity provides a model for the study of immune response in high-risk dogs and dogs with radiation-induced osteosarcoma. Studies were undertaken to measure both general immune response and specific immune response of dogs following amputation of the tumor-bearing limb using autochthonous cultured tumors. The cell-mediated immune competence (CMI) of dogs as measured by degree of stimulation of purified lymphocytes with phytohemagglutinin (PHA) has been determined in five available amputated dogs. The stimulation index was computed as the net ratio of 3H-thymidine incorporation in stimulated vs unstimulated cells

  11. Investigation of bias radiation effect on PV cell measurement

    Science.gov (United States)

    Huang, Xuebo; Quan, Chenggen; Chan, Joanne; Ng, Patrick

    2013-06-01

    Photovoltaic (PV) cells are photo-electrical devices that convert light energy directly into electricity through the photovoltaic effect. PV cell assemblies are used to make solar modules employed in a variety of ways ranging from space applications to domestic energy consumption. Characterisation and performance testing of PV cells are critical to the development of PV technologies and growth of the solar industry. As new solar products are being developed, its energy conversion efficiency and other critical parameters must be accurately measured and tested against globally recognised metrological standards. The differential spectral responsivity (DSR) measurement is one of the primary methods for calibrating reference PV cells. This is done by calculating its spectral responsivities through measuring the AC short-circuit current produced by a PV cell under a modulated monochromatic radiation and different levels of steady-state broadband bias light radiation. It is observed that different types of bias light source will produce different signal-to-noise levels and significantly influence measurement accuracy. This paper aims to investigate the noise sources caused by different types of bias light sources (e.g. xenon arc and tungsten-halogen lamps) and the relevant measurement uncertainties so as to propose a guideline for selection of bias light source which can improve the signal-to-noise level and measurement uncertainty. The DSRs of the PV cells are measured using a commercial DSR measurement system under different levels of bias radiation from 0 to 1 kWm-2. The data analysis and uncertainty evaluation are presented in this paper using experimental data and mathematical tools.

  12. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  13. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  14. Tinnitus and cell phones: the role of electromagnetic radiofrequency radiation

    OpenAIRE

    Luisa Nascimento Medeiros; Tanit Ganz Sanchez

    2016-01-01

    ABSTRACT INTRODUCTION: Tinnitus is a multifactorial condition and its prevalence has increased on the past decades. The worldwide progressive increase of the use of cell phones has exposed the peripheral auditory pathways to a higher dose of electromagnetic radiofrequency radiation (EMRFR). Some tinnitus patients report that the abusive use of mobiles, especially when repeated in the same ear, might worsen ipsilateral tinnitus. OBJECTIVE: The aim of this study was to evaluate the availabl...

  15. Radiation-resistant B-1 cells: A possible initiating cells of neoplastic transformation.

    Science.gov (United States)

    Guimarães-Cunha, Caroline Ferreira; Alvares-Saraiva, Anuska Marcelino; de Souza Apostolico, Juliana; Popi, Ana Flavia

    2016-07-01

    The role of B-1 cells in the hyperproliferative hematologic disease has been described. Several reports bring evidences that B-1 cells are the main cell population in the chronic lymphatic leukemia. It is also described that these cells have an important involvement in the lupus erythematous systemic. The murine model used to investigate both disease models is NZB/NZW. Data from literature point that mutation in micro-RNA 15a and 16 are the responsible for the B-1 hyperplasia in these mice. Interestingly, it was demonstrated that NZB/NZW B-1 cells are radioresistant, contrariwise to observe in other mouse lineage derived B-1 cells and B-2 cells. However, some reports bring evidences that a small percentage of B-1 cells in healthy mice are also able to survive to irradiation. Herein, we aim to investigate the malignant potential of ionizing-radiation resistant B-1 cells in vitro. Our main goal is to establish a model that mimics the neoplastic transformation originate to a damage exposure of DNA, and not only related to intrinsic mutations. Data shown here demonstrated that radiation-resistant B-1 cells were able to survive long periods in culture. Further, these cells show proliferation index increase in relation to non-irradiated B-1 cells. In addition, radiation resistant B-1 cells showed hyperploid, morphologic alterations, increased induction of apoptosis after anti-IgM stimulation. Based on these results, we could suggest that radiation resistant B-1 cells showed some modifications in that could be related to induction of malignant potential. PMID:26898918

  16. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells

    OpenAIRE

    Natália Batista DAROIT; Visioli, Fernanda; Alessandra Selinger MAGNUSSON; Geila Radunz VIEIRA; Rados, Pantelis Varvaki

    2015-01-01

    The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the m...

  17. Mitigation of radiation induced hematopoietic injury via regulation of Nrf-2 and increasing hematopoietic stem cells

    International Nuclear Information System (INIS)

    Therapeutic doses of ionizing radiation (IR) that can be delivered to tumors are restricted due to radiation induced damage to surrounding normal tissues thereby limiting the effectiveness of radiotherapy. Strategies to develop agents that selectively protect normal cells yielded limited success in the past. There is pressing need to develop safe, syndrome specific and effective radiation countermeasures to prevent or mitigate the harmful consequences of radiation exposure. Survival of bone marrow stem cells (HSCs) play a key role in protecting against IR induced hematopoietic injury. Many studies have shown manipulation of HSC frequency and/or survival as principal mechanism of radioprotection. It is known that, Nrf-2 plays crucial role in HSC survival and maintenance under oxidative stress conditions. In the present study, we have investigated the radioprotective ability of a flavonoid baicalein (5,6,7-trihydroxyflavone), extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. There are numerous reports showing anti-inflammatory, anti-apoptotic, anti-oxidant, anti-cancer, anti-microbial, anti-mutagenic and neuroprotective properties of baicalein. Based on these reports, we have investigated the ability of baicalein to protect against radiation induced hematopoietic injury. Baicalein administration to mice protected against WBI induced mortality. Interestingly, the stem cell frequency increased in bone marrow cells obtained from baicalein administered mice as compared to vehicle treated mice. Baicalein treatment led to increased phospho-Nrf-2 levels in lineage negative BM-MNC. Administration of mice with Nrf-2 inhibitor prior to baicalein treatment led to significant abrogation of radioprotective ability of baicalein. This result suggests that, Nrf-2 may be playing a key role in baicalein mediated radioprotection. Here, we have shown that baicalein administration augments stem cell frequency, induces

  18. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    Science.gov (United States)

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  19. Nuclear thread bridging the sister cells prior to radiation-induced cell fusion

    International Nuclear Information System (INIS)

    Intercellular protoplasmic bridges between sister cells prior to radiation-induced cell fusion were examined by various methods which included time-lapse photography, chemical staining, autoradiography, and scanning electron microscopy. It was concluded that these bridges contained nuclear material and that fusion occurred mainly as a consequence of chromosome or chromatin bridges

  20. Mechanisms of linear energy transfer-dependent radiation resistance in myeloid leukemia cells

    Science.gov (United States)

    Haro, Kurtis John

    Ionizing radiations (IRs) of high linear energy transfer (LET), such as alpha particles, produce fundamentally different forms of DNA damage in cells than conventional low LET radiation, such as gamma rays. Alpha particle therapies have recently emerged as important potential treatments of cancer, particularly for relatively easily-accessible malignancies of the hematopoietic system. Therefore, we created stable radioresistant myeloid leukemia HL60 cell clones derived after irradiation from either gamma rays (RG) or alpha particles (RA) in order to understand whether resistance to high LET (IR) was possible and the potential differences in radioresistance that could arise from radiations of different LET. Repeated irradiations yielded radioresistant HL60 clones and, regardless of derivation, displayed similar levels of resistance to IR of either type of radiation. The resistant phenotype in each type of radioresistant clone was driven by similar, multifactorial changes that included significant reductions in apoptosis, a decreased late G2/M checkpoint accumulation that was indicative of increased genomic instability, as well as more robust repair of specific types of DNA lesions that included DNA double-strand breaks (DSBs). The relative changes in resistance to alpha particles, however, were substantially lower than the increase in resistance to gamma rays. The data suggest that these processes were interdependent, as inhibition of homology directed repair in the resistant clones sensitized them to gamma IR to a larger extent than naive HL60 cells. Finally, we identified the downregulation of iron regulatory protein 1 (IRP1) in gamma-resistant cells but not in alpha-resistant cells. Short-hairpin RNA-mediated reductions in expression of IRP1 in radiation-naive HL60 cells led to significant radioresistance to gamma rays, but not alpha particles. The IRP1-mediated radioresistance was associated with changes in iron-mediated oxidative stress that led to significant

  1. UVB radiation induced effects on cells studied by FTIR spectroscopy

    CERN Document Server

    Di Giambattista, Lucia; Gaudenzi, S; Pozzi, D; Grandi, M; Morrone, S; Silvestri, I; Castellano, A Congiu; 10.1007/s00249-009-0446-9

    2010-01-01

    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes ...

  2. Hypoxic cell sensitizers and heavy charged-particle radiations

    International Nuclear Information System (INIS)

    Stationary-phase populations of Chinese hamster V-79 cells were irradiated with 250 kV X-rays and the Bragg peaks (spread to a width of 4 cm) of energetic He-, C-, Ne-, and A-ion beams produced at the 184-inch cyclotron and BEVALAC ar Lawrence Berkeley Laboratory. Survival curves were generated with each radiation for cells suspended in air-saturated and nitrogen-saturated medium with and without sensitizer present. The oxygen enhancement ratios (OERs) measured for X-rays with 1 mM metronidazole and 0.5 nM misonidazole were 2.0 and 1.6 respectively. The OERs without sensitizer for He-,C-, Ne-, and A-ion Bragg peaks were 2.4, 1.7, 1.6 and 1.4 respectively. For each type of radiation tested the presence of hypoxic-cell sensitizers resulted in an additional reduction in the measured OERs, indicating that these drugs should be of benefit in the radiotherapy planned with these and other high LET radiations. (author)

  3. Ultrasonic radiation to enable improvement of direct methanol fuel cell.

    Science.gov (United States)

    Wu, Chaoqun; Wu, Jiang; Luo, Hao; Wang, Sanwu; Chen, Tao

    2016-03-01

    To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC. PMID:26585016

  4. The sensitivity of human mesenchymal stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy

  5. Radiation-induced chromosomal instability in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  6. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline;

    2015-01-01

    Heart muscle cells produce peptide hormones such as natriuretic peptides. Developing hearts also express the gene for the classic intestinal hormone cholecystokinin (CCK) in amounts similar to those in the intestine and brain. However, cardiac expression of peptides other than natriuretic peptides...... has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  7. Radiation response of spermatogonial stem cells in the mouse

    International Nuclear Information System (INIS)

    Spermatogonial stem cells are able to repopulate the testis by forming clones that elongate along the walls of the seminiferous tubules depleted of spermatogenetic cells as a result of an irradiation. The surviving number of stem cells after irradiation was estimated by determining the fraction of repopulated tubules in cross-sections of the testis 11 weeks after irradiation. This fraction, called the 'repopulation index', is assumed to be directly proportional to the number of surviving stem cells. The response of spermatogonial stem cells in the CBA mouse to 1-MeV fission neutrons was investigated. Radioresistant, colony forming stem cells in the mouse testis move into a much more radiosensitive phase of their cell cycle shortly after irradiation. This is demonstrated in publication II in experiments in which total doses of 300 rad of neutrons and 1200 rad of X-rays were split into two equal fractions. The radiation response of spermatogonial stem cells in the mouse which survived various doses of fission neutrons 24 hours before was studied in publication III. Twenty four hours after a dose of 150 rad of fission neutrons all first-dose survivors have moved from a radioresistant (D0 89+-4 rad in this study) towards a radiosensitive phase of their cell cycle. Spermatogonial stem cells which survive a neutron dose of 150 rad all belong to a radioresistant stem cell population in the seminiferous epithelium. The data in publication IV show that during the first 26 days after a dose of 150 rad of neutrons the stem cell population first increases and then slowly decreases its radiosensitivity, to stay fixed at a relatively high level. (Auth.)

  8. Survival and signaling changes in antigen presenting cell subsets after radiation

    Science.gov (United States)

    Parker, Jennifer Janell

    examine co-stimulatory receptor activation, pro-inflammatory cytokine release, and T cell proliferation with and without radiation and inhibition of the NFkappaB pathway, demonstrated that NEMO is necessary for the activation, maturation, and enhanced responsiveness of human subsets of antigen presenting cells that occur after radiation. These findings provided insight into the mechanism of action of radiation-enhanced promotion of the antigen presenting cell responses. The methods of analysis employed can be used for monitoring immune changes that impact immune modulation in transplantation and tumor vaccines studies. Furthermore, NFkappaB pathway proteins have the potential to serve as biomarkers for optimal antitumor responses. The NBD peptide may also have usefulness as a therapeutic agent for inhibition of graft versus host disease (GVHD) in patients who have undergone transplantation. While the first set of experiments focused on antigen presenting cell responsiveness, the second set of experiments were designed to enhance our understanding of why antigen presenting cells, specifically monocytes and dendritic cells, are more radioresistant than conventional T cells. Flow cytometric analysis of various surface markers and intracellular signaling markers were used to examine the mechanisms behind the radioresistance of antigen presenting cells. The experiments described here showed a hierarchy of radiosensitivity among T cells, with naive CD8 T cells being the most radiosensitive and CD4 memory T cells being the most radioresistant. Antigen presenting cells were found to be significantly more radioresistant than T cell subsets (survival may have importance for the generation of anti-tumor immunity and post-transplantation immune sequelae such as GVHD. In addition, elucidation of the mechanism of death of APC and T cell subsets, as described in chapter 3, provides potential markers of cell death that can be correlated to good graft versus tumor (GVT) effects versus bad

  9. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  10. Common and cell type-specific responses of human cells to mitochondrial dysfunction

    International Nuclear Information System (INIS)

    In yeast, mitochondrial dysfunction activates a specific pathway, termed retrograde regulation, which alters the expression of specific nuclear genes and results in increased replicative life span. In mammalian cells, the specific nuclear genes induced in response to loss of mitochondrial function are less well defined. This study characterizes responses in nuclear gene expression to loss of mitochondrial DNA sequences in three different human cell types: T143B, an osteosarcoma-derived cell line; ARPE19, a retinal pigment epithelium cell line; and GMO6225, a fibroblast cell population from an individual with Kearns-Sayre syndrome (KSS). Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure gene expression of a selection of glycolysis, TCA cycle, mitochondrial, peroxisomal, extracellular matrix, stress response, and regulatory genes. Gene expression changes that were common to all three cell types included up-regulation of GCK (glucokinase), CS (citrate synthase), HOX1 (heme oxygenase 1), CKMT2 (mitochondrial creatine kinase 2), MYC (v-myc myelocytomatosis viral oncogene homolog), and WRN (Werner syndrome helicase), and down-regulation of FBP1 (fructose-1, 6-bisphosphatase 1) and COL4A1 (collagen, type IV, alpha 1). RNA interference experiments show that induction of MYC is important in ρ0 cells for the up-regulation of glycolysis. In addition, a variety of cell type-specific gene changes was detected and most likely depended upon the differentiated functions of the individual cell types. These expression changes may help explain the response of different tissues to the loss of mitochondrial function due to aging or disease

  11. Effect of lazer radiation on Chinese hamster cells cultured in vitro

    International Nuclear Information System (INIS)

    Helium-neon (lambda=633 nm) and neodymium (lambda=534 nm) lazer radiation as well as monochromatic radiation of non-lazer sources (540 and 630 nm) produced a stimulatory effect on the survival rate of Chinese hamster cells. It was shown that the stimulatory effect is related mainly to the action of radiation on the adhesive poperties of cells. With the combined action of X- and lazer-radiation the deleterious effect of X-radiation is reduced

  12. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  13. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  14. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  15. Interactions between endothelial cells and T cells modulate responses to mixed neutron/gamma radiation.

    Science.gov (United States)

    Cary, Lynnette H; Noutai, Daniel; Salber, Rudolph E; Williams, Margaret S; Ngudiankama, Barbara F; Whitnall, Mark H

    2014-06-01

    Detonation of an improvised nuclear device near a population center would cause significant casualties from the acute radiation syndrome (ARS) due to exposure to mixed neutron/gamma fields (MF). The pathophysiology of ARS involves inflammation, microvascular damage and alterations in immune function. Interactions between endothelial cells (EC) and hematopoietic cells are important not only for regulating immune cell traffic and function, but also for providing the microenvironment that controls survival, differentiation and migration of hematopoietic stem and progenitor cells in blood-forming tissues. Endothelial cells/leukocyte interactions also influence tumor progression and the results of anticancer therapies. In this study, we hypothesized that irradiation of endothelial cells would modulate their effects on hematopoietic cells and vice versa. Human umbilical vein endothelial cells (HUVEC) and immortalized T lymphocytes (Jurkat cells) were cultured individually and in co-culture after exposure to mixed fields. Effects of nonirradiated cells were compared to effects of irradiated cells and alterations in signaling pathways were determined. Mitogen-activated protein kinases (MAPKs) p38 and p44/42 (ERK1/2) in HUVEC exhibited higher levels of phosphorylated protein after exposure to mixed field radiation. IL-6, IL-8, G-CSF, platelet derived growth factor (PDGF) and angiopoietin 2 (ANG2) protein expression were upregulated in HUVEC by exposure to mixed field radiation. PCR arrays using HUVEC mRNA revealed alterations in gene expression after exposure to mixed fields and/or co-culture with Jurkat cells. The presence of HUVEC also influenced the function of Jurkat cells. Nonirradiated Jurkat cells showed an increase in proliferation when co-cultured with nonirradiated HUVEC, and a decrease in proliferation when co-cultured with irradiated HUVEC. Additionally, nonirradiated Jurkat cells incubated in media from irradiated HUVEC exhibited upregulation of activated

  16. Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    O. Sackett

    2014-05-01

    Full Text Available Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value, furthermore data on taxon-specific responses is almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate and carbohydrates. In contrast to some previous studies, silicate levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements

  17. Prostate-specific antigen and radiation therapy for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Purpose: This study was undertaken to: (a) define the prognostic significance of pretreatment serum prostate-specific antigen (PSA) levels in localized prostate cancer treated with radiation; (b) define the prognostic usefulness of postradiation PSA levels; (c) evaluate the outcome of radiation using PSA as an endpoint. Methods and Materials: Disease outcome in 707 patients with Stages T1 (205 men), T2 (256 men), T3 (239 men), and T4 (7 men), receiving definitive external radiation as sole therapy, was evaluated using univariate and multivariate techniques. Results: At a mean follow-up of 31 months, 157 patients (22%) developed relapse or a rising PSA. Multivariate analysis revealed pretreatment PSA level to be the most significant prognostic factor, with lesser though significant contributions due to Gleason grade (2-6 vs. 7-10) and transurethral resection in (T3(T4)) disease. The following four prognostic groupings were defined: group I, PSA ≤ 4 ng/ml, any grade; group II, 4 20, any grade. Five-year actuarial relapse rates in these groups were: I, 12%; II, 34%; III, 40%; and IV, 81%. Posttreatment nadir PSA was an independent determinant of outcome and only patients with nadir values < 1 ng/ml fared well (5-year relapse rate 20%). Using rising PSA as an endpoint the 461 patients with (T1(T2)) disease had an actuarial freedom from disease rate of 70% at 5 years, which appeared to plateau, suggesting that many were cured. No plateau was evident for (T3(T4)) disease. Conclusion: Pretreatment serum PSA is the single most important predictor of disease outcome after radiation for local prostate cancer. Tumor grade has a lesser though significant prognostic role. Postirradiation nadir PSA value during the first year is a sensitive indicator of response to treatment. Only nadir values < 1 ng/ml are associated with a favorable outlook. A significant fraction of men with (T1(T2)) disease may be cured with radiation. There was no evidence for a cured fraction among

  18. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  19. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  20. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  1. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    International Nuclear Information System (INIS)

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells

  2. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  3. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    OpenAIRE

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dep...

  4. BCL-2 activation by ionizing radiation in a glioblastoma cell line

    International Nuclear Information System (INIS)

    Purpose: p53 is known to be involved in the cellular response to DNA damage. Alterations of the p53 gene also represent the most common changes found in cancer cells. In order to investigate specific gene expression changes following ionizing radiation of p53-deficient cells we have used as a model system a highly radioresistant glioblastoma cell line with inducible p53 Materials and Methods: Human glioblastoma T98G cells growing either exponentially or after release from G0/G1 synchrony were irradiated and the expression level of Bcl-2 and related cell survival factors were evaluated after different doses of ionizing radiation. A derivative of the T98G cell line, harboring a dexamethasone-inducible wild-type p53 was also used to investigate the role of p53 in Bcl-2 induction. Western analyses were mainly used to analyze expression levels of Bcl-2, Mcl-1, Bcl-X, and cyclins. In our search for differentially-induced genes which might mediate activation of Bcl-2 we have used the RNA arbitrarily primed polymerase chain reaction (RAP-PCR). Differentially expressed gene products were gel-purified, cloned, sequenced and their expression tested by Northern analyses. Results: We have found an increase in Bcl-2, Mcl-1, and Bcl-x protein levels after irradiation of T98G cells. The induction was maximal in synchronized cells, when irradiation was done 16 hrs following exit from Go/G1. A 3-fold Bcl-2 induction and 4-fold Mcl-1 increase was observed starting 4 hr after 4 Gy irradiation. This increase was maintained for at least 24 hrs for both proteins, although the peak of Mcl-1 induction was reached after 8 hrs. The induction coincided with cyclin A accumulation, suggesting that the cells were irradiated in G1 and the increase of Bcl-2 protein levels happened when the cells reached S-phase. GM47.23 cells showed a similar induction in the absence, but not presence of Dex, the inducer used to activate wild-type p53. Cells treated with Dex produced wild-type p53 protein, which

  5. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  6. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  7. The influence of the cellular phone radiation on the growth of mark145 cell

    International Nuclear Information System (INIS)

    Objective: To explore the effects of radiation of cellular phone on the growth of cells. Methods: A radiation cycle was designed as working 25 minutes and then resting for 5 minutes for cellular phone. The Mark145 cell bottles were divided into six groups. The first two groups were radiated for two cycles, and the second two groups for four cycles, and the third two groups for five cycles. Each two groups were put 10cm far away from cellular phone and attach to it separately. Results: After culturing for 3 days there are many dead cells in the bottles. After culturing for 6 days, there is few living cells. Conclusions: cellular phone radiation is fatal to Mark145 cells, and the quantity of the dead cells change with the radiation time and the distance to radiation. That is to say, with the prolonging of radiation time and the shortening of the distance, the quantity of the dead cells is increasing. (authors)

  8. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  9. Radiation-induced DNA double-strand break frequencies in human squamous cell carcinoma cell lines of different radiation sensitivities

    International Nuclear Information System (INIS)

    DNA neutral (pH 9-6) filter elution was used to measure radiation-induced DNA double-strand break (dsb) frequencies in eight human squamous cell carcinoma cell lines with radiosensitivities (D0) ranging from 1.07 to 2.66 Gy and D-bar values ranging from 1.46 to 4.08 Gy. Elution profiles of unirradiated samples from more radiosensitive cell lines were all steeper in slope than profiles from resistant cells. The shapes of the dsb induction curves were curvilinear and there was some variability from cell line to cell line in the dose-response for the induction of DNA dsb after exposures to 5-100 Gy 60Co γ-rays. There was no relation between shapes of survival curves and shapes of the dose-responses for the induction of DNA dsb. At low doses (5-25 Gy), three out of four of the more sensitive cell lines (D-bar3.0 Gy). Although the low-dose (5-25 Gy) elution results were variable, they suggest that DNA neutral elution will detect differences between sensitive and resistant tumour cells in initial DNA dsb frequencies. (author)

  10. Photoreactivation of ICR 2A frog cells after exposure to monochromatic ultraviolet radiation in the 252-313 nm range

    International Nuclear Information System (INIS)

    Exposure of ICR 2A frog cells to photoreactivating light after treatment with monochromatic ultraviolet (UV) radiation in the 252-313nm range resulted in an increase in survival with similar photoreactivable sectors for each of the wavelengths tested. As photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, these findings support the hypothesis that these are critical lesions responsible for killing of cells exposed to UV radiation in this wavelength range. The action spectra for cell killing and production of UV-endonuclease sensitive sites were similar to the DNA absorption spectrum though not identical. Because the number of endonuclease sensitive sites is a reflection of the yield of pyrimidine dimers, these data also suggest that the induction of dimers in DNA by UV radiation in the 252-313 nm range is the principle event leading to cell death. (author)

  11. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Modifications occurred in Escherichia coli cells exposed to gamma radiation (60Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  12. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels.

    Science.gov (United States)

    Mendes, Fernando; Sales, Tiago; Domingues, Cátia; Schugk, Susann; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Teixo, Ricardo; Silva, Rita; Casalta-Lopes, João; Rocha, Clara; Laranjo, Mafalda; Simões, Paulo César; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena; Rosa, Manuel Santos

    2015-12-01

    Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5-60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success. PMID:26582337

  13. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    The phenotypic appearance of cell surface antigens on murine thymocytes from long-term radiation bone marrow chimeras was analyzed using indirect immunofluorescence and flow microfluorometry. Cells maturing in the thymi of these mice were typed for MHC (Kk, I-Ak, H-2b, Kb, and Ib) and non-MHC (Lty 1, Ly 9, and TL) determinants. All cells were of donor origin as determined by non-MHC (Ly) phenotype in P1 leads to P2, P1 x P2 leads to P1, and P1 leads to P2 radiation chimeras. In contrast, the MHC phenotypes of these thymocytes were markedly affected by the host environment. Specifically, H-2 and I-A determinants of both parental phenotypes were detected on thymocytes from P1 leads to P1 x P2 chimeras; I-A determinants of host phenotype were present, whereas I-A determinants of donor phenotype were reduced on thymocytes from P1 x P2 leads to P1 chimeras; and thymocytes from P1 leads to P2 chimeras possessed H-2 and I-A determinants of host phenotype but showed reduction of donor I-A phenotype determinants. The appearance of host cell surface H-2 and I-A determinants on thymocytes from chimeras closely parallels the functional recognition of MHC determinants by T cells from chimeric mice and thus may be significantly related to the development of the self-recognition repertoire by maturing T cells

  14. Characterization of efferent T suppressor cells induced by Paracoccidioides brasiliensis-specific afferent T suppressor cells.

    OpenAIRE

    Jimenez-Finkel, B E; Murphy, J W

    1988-01-01

    Previously, we reported that Paracoccidioides brasiliensis culture filtrate antigen (Pb.Ag) when injected i.v. into mice induces antigen-specific suppressor cells which down-regulate the anti-P. brasiliensis delayed-type hypersensitivity (DTH) response. The suppressor cells are present in both spleens and lymph nodes of Pb.Ag-treated animals and suppress the afferent limb but not the efferent limb of the DTH response to P. brasiliensis. The suppressor cells induced by Pb.Ag are L3T4+ Lyt-1+2-...

  15. Modulation of human cell responses to space radiation by gap-junction communication

    Science.gov (United States)

    Autsavapromporn, Narongchai; de Toledo, Sonia M.; Buonanno, Manuela; Yang, Zhi; Harris, Andrew; Jay-Gerin, Jean-Paul; Azzam, Edouard

    Understanding the biological effects of space radiation and their underlying mechanism is critical to estimating the health risk associated with human exploration of space. A coordinated interaction of multiple cellular processes is likely involved in the sensing and processing of stressful effects induced by different types of space radiation. Here, we focused on the role of gap-junction intercellular communication (GJIC) in responses of human cells exposed to 1 GeV/n protons or 56 Fe-ions. We compared the results with data obtained in human cells exposed, in parallel, to γ-rays or α-particles. As expected, a higher level of cell killing and DNA damage, per unit dose, was induced in confluent, density-inhibited cells (98% in G0 /G1 ) exposed to α-particles or energetic 56 Fe-ions than γ-rays or protons. Strikingly, greatly attenuated effects occurred when sub-confluent cultures, synchronized in G0 /G1 ,were exposed to 56 Fe-ions. These data suggest that direct intercellular communication is involved in the effects of high linear energy transfer (LET) 56 Fe-ions. To examine the role of gap-junctions in propagating stressful effect, confluent cultures were exposed to 56 Fe-ions or α-particles and incubated for various time periods at 37° C in the presence or absence of the gap-junction inhibitor α-glycyrrhetinic acid (AGA). No repair of potentially lethal radiation damage occurred in cells incubated in the absence of AGA. In contrast, inhibition of functional GJIC significantly enhanced clonogenic survival of irradiated cells. To test the role of junctional channel permeability in the observed effects, we used human adenocarcinoma (HeLa) cells in which specific connexins (Cx) can be expressed in the absence of endogenous connexins. Whereas HeLa cells with selective inducible expression of Cx26 gap-junctions promoted radiation toxic effects, expression of Cx32 junctional channels in HeLa cells promoted pro-survival effects. Experiments are in progress to

  16. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  17. Gene analysis and dynamics of tumor stem cell in human glioblastoma cells after radiation

    International Nuclear Information System (INIS)

    Because glioblastoma is the most malignant central nervous system (CNS) tumor, it is very difficult to cure despite surgery and adjuvant therapy. At present, surgery, radiotherapy, and chemotherapy are combined in the treatment of each patient. However, glioblastoma have radiotherapy and chemotherapy resistance, and this is not a radical treatment. We suspect that the tumor stem cell affects the recurrence, radiotherapy resistance and chemotherapy resistance of the tumor. Many studies suggest that tumor stem cells play an important role in tumorgenesis and tumor progression. Using human glioblastoma cell lines (T98G, A172), irradiated (0 Gy, 30 Gy, 60 Gy) glioblastoma cells were prepared under the same conditions as clinical therapy. We performed the analysis of cell proliferation rate, side population analysis by fluorescence-activated cell sorter (FACS), isolation of CD133+ cells and genetic analysis (human stem cell), using these cells. In the results of this study, the stem cell-related genes were highly expressed in the CD133+ cells compared with the CD133- cells. Therefore, it suggested that the CD133+ cells may contain tumor stem cells. In T98G, when compared to unirradiated cells and 60 Gy-irradiated cells, the cell proliferation rate for 30 Gy-irradiated cells tended to be higher, and stem cell-related genes were highly expressed in 30 Gy-irradiated CD133+ cells. In other words, in T98G, from the viewpoint of antitumor effects, the results suggest that chemotherapy may show more effect in 30 Gy-irradiated. In this genetic analysis, we suggest that CD133+ cells strongly affect tumor proliferation. In addition, CD133+ cells affect the resistance and the effect of treatments because some kind of changes occur in CD133+ cells after radiation. (author)

  18. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  19. Influence of acute hypoxia and radiation quality on cell survival

    International Nuclear Information System (INIS)

    The purpose of this study was to measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and R-3327-AT1 (RAT-1) rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100-160 keV/μm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/μm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions. (author)

  20. A study on immobilized ethanol yeast cells by radiation technique

    International Nuclear Information System (INIS)

    Hydrophilic monomer 2-hydroxyethyl acrylate (HEA) and a series of polyethylene glycol dimethacrylate monomers were copolymerized by radiation technique at low temperature (-78 degree C) and hydrophilic hydrogels were obtained. The immobilization of yeast cells with these copolymer carriers led to a higher ethanol productivity than free cells. Of all copolymer carriers, the ethanol yield with poly (HEA-14 G) was the highest, about 2.45 times as high as that of free yeast cells. In addition, the ethanol productivity of 12 batch repeated reactions with poly (HEA-14G) carrier was all higher than that of free yeast cells. The ethanol productivity of immobilized yeast cells was dependent on the proportion of hydrophilic monomer to other monomers in copolymer systems, the chain length of the bifunctional monomer, the degree of hydration of copolymer carriers, the structure of copolymer carriers and porosity in the internal structure of carriers. The ethanol yield of immobilized cells depended on swelling ability and porosity of copolymer carriers

  1. Open-Source Radiation Exposure Extraction Engine (RE3) with Patient-Specific Outlier Detection.

    Science.gov (United States)

    Weisenthal, Samuel J; Folio, Les; Kovacs, William; Seff, Ari; Derderian, Vana; Summers, Ronald M; Yao, Jianhua

    2016-08-01

    We present an open-source, picture archiving and communication system (PACS)-integrated radiation exposure extraction engine (RE3) that provides study-, series-, and slice-specific data for automated monitoring of computed tomography (CT) radiation exposure. RE3 was built using open-source components and seamlessly integrates with the PACS. RE3 calculations of dose length product (DLP) from the Digital imaging and communications in medicine (DICOM) headers showed high agreement (R (2) = 0.99) with the vendor dose pages. For study-specific outlier detection, RE3 constructs robust, automatically updating multivariable regression models to predict DLP in the context of patient gender and age, scan length, water-equivalent diameter (D w), and scanned body volume (SBV). As proof of concept, the model was trained on 811 CT chest, abdomen + pelvis (CAP) exams and 29 outliers were detected. The continuous variables used in the outlier detection model were scan length (R (2)  = 0.45), D w (R (2) = 0.70), SBV (R (2) = 0.80), and age (R (2) = 0.01). The categorical variables were gender (male average 1182.7 ± 26.3 and female 1047.1 ± 26.9 mGy cm) and pediatric status (pediatric average 710.7 ± 73.6 mGy cm and adult 1134.5 ± 19.3 mGy cm). PMID:26644157

  2. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  3. Recombinant scorpion insectotoxin AaIT kills specifically insect cells but not human cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was confirmed by N-terminal peptide sequencing. Two groups of bioassays, artificial diet incorporation assay and contact insecticidal effect assay, were carried out separately to verify the toxicity of this recombinant toxin. At the end of a 24 h experimental period, more than 60% of the testing diamondback moth (Plutella xylostella) larvae were killed in both groups with LCs0 value of 18.4 uM and 0.70 μM respectively. Cytotoxicity assay using cultured Sf9 insect cells and MCF-7 human cells demonstrated that the toxin AaIT had specific toxicity against insect cells but not human cells. Only 0.13 μM recombinant toxin was needed to kill 50% of cultured insect cells while as much as 1.3μM toxin had absolutely no effect on human cells. Insect cells produced obvious intrusions from their plasma membrane before broken up. We infer that toxin AaIT bind to a putative sodium channel in these insect cells and open the channel persistently, which would result in Na+ influx and finally cause destruction of insect cells.

  4. 电离辐射诱导DNA-PKcs缺失小鼠T细胞特异的V(D)J 重组恢复%Restoration of T Cell-specific V(D)J Recombination in DNA-PKcs-/-Mice by Ionizing Radiation: The Effects on Survival,Development, and Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    李小玲; 沈守荣; 王飒; 欧阳红海; LI Gloria C

    2002-01-01

    DNA-dependent protein kinase (DNA-PK) is a DNA-activated nuclear serine/threonine protein kinase. DNA-PK consists of a heterodimeric Ku subunit (composed of a 70 and 86 kD subunit) which binds DNA ends and targets the catalytic subunit DNA-PKcs to DNA strand breaks. DNA-PK plays a major role in the repair of double-strand breaks (DSB) induced in DNA after exposure to ionizing radiation. To better understand the nature of DNA repair defect associated with DNA-PKcs deficiency, we have established DNA-PKcs-/- mouse embryo fibroblast cell lines and DNA-PKcs-/- null mice, and investigated the response of these mutant cells and mice to DNA damage. DNA-PKcs-/- cells are hypersensitive to γ-irradiation, as evidenced by their low survival as assayed by colony formation efficiencies. Consistent with the radiation hypersensitive phenotype of the cell lines, DNA-PKcs-/- mice also display an extreme radiosensitivity, characterized by enhanced mortality after γ-irradiation. Treatment of newborn DNA-PKcs-/- mice with sublethal doses of ionizing radiation restores T cell receptor (TCR)β recombination and T cell maturation. However, radiation does not restore B cell development. All these mice eventually developed thymic lymphoma. These observations suggest an interrelationship between DSB repair, V(D)J recombination and lymphomagenesis, and provide an in vivo model to elucidate the critical pathways between the regulation of DNA DSB repair, V(D)J recombination, and the molecular mechanism of lymphoid neoplasia.%DNA依赖的蛋白激酶(DNA-PK)是一种DNA活化的核丝氨酸苏氨酸蛋白激酶. DNA-PK 由一种与DNA末端结合的调节亚单位异构二聚体Ku蛋白和DNA-PK催化亚单位(DNA-PKcs)组成. DNA-PK 在DNA暴露于电离辐射后诱导的双链损伤修复中起主要作用. 为了更好地了解与DNA-PKcs缺失相关的DNA修复缺陷的本质. 建立了DNA-PKcs-/-小鼠胚胎成纤维细胞株和裸鼠模型, 调查这些突变的细

  5. GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice

    NARCIS (Netherlands)

    M.E. García (Marcos); R.G.J. Klein Wolterink (Roel); F. Lemâitre (Fabrice); C. Le Goff (Carine); M. Hasan (Milena); R.W. Hendriks (Rudi); A. Cumano (Ana); J.P. di Santo (James)

    2013-01-01

    textabstractTranscription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly unde

  6. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    International Nuclear Information System (INIS)

    To test the generality of radiofrequency radiation-induced changes in 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant 45Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced 45Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon

  7. Radiosensitization and radiation chemistry studies using CHO cells

    International Nuclear Information System (INIS)

    The cytotoxicity, radiosensitization and radiation chemistry studies on several recently synthesized isoindole-4,7-diones using chinese hamster ovary cells (CHO) have been carried out. The cytotoxicity studies have shown that these quinones have cytotoxic activity under oxic and hypoxic conditions. Radiosensitization studies using a Cs-137 irradiator at different radiation doses demonstrate that these isoindole-diones have radiosensitization characteristics under hypoxic conditions. The results are compared with the well known radiosensitizer, misoidazole, under the same conditions. The electron redox potential of these quinones are in the vicinity of -440mv to -360mv, which demonstrates that they have the appropriate electron affinity to transfer electrons quite readily. The interaction of glutathione, a well known radioprotector, with these quinones was also studied. The concentration of glutathione in CHO cells decreases very little in the presence of the isoindole-diones. The results of these experiments show that the radiosensitization mechanism of these isoindole-diones is mainly due to electron transfer reactions and not to interaction with chemical radioprotectors such as glutathione in the CHO cells

  8. Sensitivity of human cells defective of DNA repair enzyme genes to radiation and medical agents

    International Nuclear Information System (INIS)

    Homologous recombination and non-homologous end-joining (NHEJ) are the known mechanisms of repairing DNA with double strand break (DSB) yielded by radiation and cell-cycle independent NHEJ is thought to be major in higher eukaryotes. Recognized now are 7 proteins like Artemis and XRCC4 concerned in NHEJ, but little is known for functions of those proteins in human cells. Authors have developed a method to destroy the specific gene by targeting for the study of the responses to DNA damage in human Artemis-/- and XRCC4-/- cells, which is described in this paper. Parent cell strain is a human colorectal cancer-derived epithelial HCT116, and those defective cells are obtained by targeting with puromycin and neomycin resistant vectors. Their sensitivities to X-ray (0.6 Gy/min), to etoposide and to other anti-cancers are examined by survival vs dose; and the relationship between the sensitivity to damaged DNA stress and DSB production is tested by chromosome aberration frequency and by γH22AX focus formation (a measure of DSB yield) after X-exposure. Results obtained show the important role of Artemis and XRCC4 also in human cell DSB response. With reactive oxygen species (H2O2), those cells are further used in similar experiments to above, which suggesting a different mechanism of DSB induction by H2O2 from that by radiation. Other genes than the two here in NHEJ will be investigated in future with gene targeting techniques for systematic, molecular elucidation of radiation effects in humans. (K.T.)

  9. Equivalent circuit analysis of radiative coupling in monolithic tandem solar cells

    International Nuclear Information System (INIS)

    As solar cell efficiency improves towards the Shockley-Queisser limit, so does the radiative efficiency of the cell. For tandem stacks of cells where energy conversion efficiency now exceeds 46%, radiative coupling between the cells is becoming increasingly important to consider in cell design, measurement, and performance prediction. We show how an equivalent circuit model can capture the complex radiative interactions between cells in such tandem stacks, allowing more insight into the impact on cell performance. The circuit's use is demonstrated by deriving results relevant to the critical step of eliminating coupling effects from measured cell spectral responses

  10. Tissue-specific stem cells: friend or foe?

    Institute of Scientific and Technical Information of China (English)

    Joerg Huelsken

    2009-01-01

    @@ In the face of a hostile environ-ment, the integrity of many tissues in the adult organism is maintained by a constant replacement of cells. This involves a hierarchical organization of the tissue with rare multi-potent stem cells giving rise to proliferating cells of limited proliferative capacity which in turn produce differentiating cells.

  11. Sensitivity of Roberts Syndrome Cells to gamma radiation, mitomycin C, and protein synthesis inhibitors

    International Nuclear Information System (INIS)

    Roberts syndrome (RS) is a rare autosomal recessive disorder characterized by pre- and postnatal growth retardation, limb reduction abnormalities, and craniofacial anomalies. Mitotic chromosomes from RS individuals display repulsion of heterochromatin regions or centromere splitting, leading to a railroad-track appearance of mitotic chromosomes. Abnormalities in metaphase duration, anaphase progression, nuclear morphology, and increased frequency of micronucleation have been reported in RS cells. Cells from RS heterozygotes are normal in these respects, and in vitro complementation of the defects in somatic cell hybrids has been reported. Therefore, in preparation for the isolation of cDNAs that complement the RS defect, the authors investigated various drug treatments to identify an agent that specifically involves the growth of RS cells. Based on the cytogenetic and cell biologic findings, they chose agents that increase micronucleation or inhibit protein synthesis. They found that RS cells are hypersensitive to gamma radiation, mitomycin C, G418 and hygromycin B, but not to colcemid or streptonigrin when compared to normal cells. DNA content and cell viability analysis confirmed that the sensitivity to gamma irradiation was primarily due to increased cell death

  12. Genome-wide gene expression induced by ionizing radiation and hydrogen peroxide in human thyroid primary cultures and T-cells

    International Nuclear Information System (INIS)

    Ionizing radiation is an established cause of thyroid cancer and growing evidence supports a role for H2O2 (hydrogen peroxide) in spontaneous thyroid carcinogenesis. The molecular programs activated by these two agents in the thyroid are not fully understood. We have profiled genome-wide gene expression induced by low dose γ-radiation and H2O2 in primary human thyroid cells, and also in T-cells in order to gain insight into cell type-specific effects. While γ-radiation causes similar amounts of DNA damage and similar transcriptional responses in T-cells and thyroid cells, H2O2 incurs less damage and a weaker transcriptional response in thyroid cells than in T-cells, suggesting that thyroid-specific protective mechanisms may be at work

  13. Genome-wide gene expression induced by ionizing radiation and hydrogen peroxide in human thyroid primary cultures and T-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wersteyhe, S.; Driessens, N.; Tarabichi, M.; Dumont, J.E.; Miot, F.; Corvilain, B.; Detours, V. [IRIBHM, ULB, Brussels (Belgium)

    2012-07-01

    Ionizing radiation is an established cause of thyroid cancer and growing evidence supports a role for H{sub 2}O{sub 2} (hydrogen peroxide) in spontaneous thyroid carcinogenesis. The molecular programs activated by these two agents in the thyroid are not fully understood. We have profiled genome-wide gene expression induced by low dose {gamma}-radiation and H{sub 2}O{sub 2} in primary human thyroid cells, and also in T-cells in order to gain insight into cell type-specific effects. While {gamma}-radiation causes similar amounts of DNA damage and similar transcriptional responses in T-cells and thyroid cells, H{sub 2}O{sub 2} incurs less damage and a weaker transcriptional response in thyroid cells than in T-cells, suggesting that thyroid-specific protective mechanisms may be at work

  14. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  15. Study of Electromagnetic Radiation and Specific Absorption Rate of Mobile Phones with Fractional Human Head Models via Green's Functions

    Directory of Open Access Journals (Sweden)

    Nookala S. Rao

    2011-01-01

    Full Text Available Problem statement: Electromagnetic Radiation from mobile hand set is identified as one of the side effects for increasing rate of brain tumor. Due to this reason, Mobile phone industries are attentive towards safety issues of human health. Specific Absorption Rate is one of the important parameter while modeling the radiation effect on human head. Brain material with homogeneity is treated as an equivalent model of human head. The radiation caused by antennas mounted on mobile set is assumed to be monopolar. Approach: Apart from the Specific Absorption Rate, period of exposure to radiation is an extremely important parameter while assessing the effects on brain tissue. Correlation between the amount of radiation versus spherical model of brain is a complex phenomena, addressed in various simulation models. In the present work the field distribution inside the head are modeled using Dyadic Greens Functions while describing the effect of radiation pattern. Multilayered homogeneous lossy spherical model is proposed as an equivalent to head. Results: In this paper we present the depth of penetration of radiation and its effect on brain tissue. In essence the amount of electromagnetic power absorbed by biological tissues for various exposure conditions and types of emitting sources, utilizing a detailed model of the human head. Conclusion: Bio-heat equation is used to predict heat distribution inside the brain when exposed to radiation. The medium is assumed to be homogeneous, isotropic, linear, non dispersive and stationary. A critical evaluation of the method is discussed.

  16. Radiation-induced genetic effects in germ cells of mammals

    International Nuclear Information System (INIS)

    The aim of the project is a radiosensitivity investigation of the 'resting' oocytes, which represent some 90% of the total population of oocytes in the ovary and are the most important female germ cells from the genetic point of view, since they receive the largest part of the genetically significant lifetime dose of radiation. An evaluation of the radiosensitivity of the resting oocyte of the guinea-pig at its two different nuclear states is presented. This project concentrates on long-term reproductive effects and on cytogenetic effects. (R.P.) 1 ref

  17. Radiative recombination and photon recycling in gallium arsenide solar cells

    Science.gov (United States)

    Lundstrom, M. S.; Melloch, M. R.; Lush, G. B.; Patkar, M. P.; Young, M.; Durbin, S. M.; Gray, J. L.; MacMillan, H. F.; Keyes, B. M.; Levi, D. H.; Ahrenkiel, R. K.

    1992-12-01

    This talk reviews experimental work to develop a detailed understanding of radiative recombination in n-GaAs. Photoluminescence decay studies of minority carrier lifetimes versus doping in n-GaAs are presented. We show that when the substrate is removed by etching, photon recycling is enhanced, and lifetimes increase by nearly a factor of 10. The doping-dependent absorption coefficient is measured, and detailed balance arguments are used to relate absorption and recombination. Modeling surfaces, verified by comparison with experiments, are used to examine the effects of recycling in conventional solar cells and to explore new design options.

  18. Intervention of oxygen-control ability to radiation sensitivity, cell aging and cell transformation

    International Nuclear Information System (INIS)

    Oxygen is essential for life, and cells have therefore developed numerous adaptive responses to oxygen change. Here, we examined the difference in oxygen-control functions of human (HE), mouse (ME), and Syrian hamster embryo (SHE) cells cultured under different oxygen conditions (0.5%, 2% and 20%), and also examined whether oxygen tensions contributed to cellular lifespan and transformation. HE cells had their replicative lifespan slightly extended under hypoxic (0.5% and 2% oxygen) conditions, but were not immortalized under any of the oxygen concentrations. On the other hand, although ME cells cultured under 20% oxygen tension decreased their proliferation potency temporarily at early stage, all rodent cells were immortalized and acquired anchorage-independency, regardless of oxygen tension. These results suggest that cellular oxygen control function is related to sensitivities cellular immortalization and transformation. To understand intervention of oxygen control ability on cellular immortalization and transformation, we examined the intracellular oxidative level, mitochondria functions and radiation sensitivity. Intracellular oxidative levels of hypoxically cultured rodent cells were significantly enhanced. Mitochondrial membrane potential was altered depend on oxygen tensions, but the change was not parallel to mitochondria number in rodent cells. ME cells were particularly sensitive to oxygen change, and showed a clear oxygen effect on the X-ray survival. However, there was no difference in frequency of radiation-induced micronuclei between HE and ME cells. These results suggest that the response to oxygen change differs markedly in HE and rodent cells. (author)

  19. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    Science.gov (United States)

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression. PMID:27260669

  20. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines

    International Nuclear Information System (INIS)

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique -the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.)

  1. Gradual regeneration of mouse testicular stem cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The regeneration of mouse testicular stem cells during 60 weeks after exposure to 600 or 1200 rad of γ radiation was examined. Restoration of spermatogenesis depended on stem cell survival, regeneration, and differentiation. Several assays were employed to measure the number of stem cells and their ability to repopulate the seminiferous epithelium as follows. Assay 1: The percentage of repopulated tubular cross sections was determined histologically at various times after irradiation. Assay 2: Mice were irradiated and, after given time intervals to allow for regeneration of stem cell numbers, a second dose was given. The percentage of repopulated tubular cross sections was determined 5 weeks later. Assay 3: The ability of the stem cells to produce spermatocytes and spermatids was assayed by the levels of the germ cell specific isoenzyme, LDH-X. Assay 4: The ability of the stem cells to produce sperm was assayed by the number of sperm heads in the testes. In addition, the ability of the stem cells to produce functional spermatozoa was measured by the fertility of the animals. The results obtained were as follows. All assays demonstrated that gradual regeneration of stem cell number occurred simultaneously with repopulation of the seminiferous epithelium by differentiating cells derived from stem cells. The regeneration kinetics of stem cells followed an exponential increase approaching a dose-dependent plateau below the level prior to irradiation. The doubling time for stem cells during the exponential portion was about 2 weeks. The regeneration of stem cell number after depletion by irradiation was gradual and incomplete, and only partially restored spermatogenesis. Correlation of regeneration with fertility data demonstrated that fertility was reestablished when sperm production returned to about 15% of control levels

  2. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jeppesen, Stefan S; Schytte, Tine; Jensen, Henrik R;

    2013-01-01

    Abstract Introduction. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) is now an accepted and patient friendly treatment, but still controversy exists about its comparability to conventional radiation therapy (RT). The purpose of this single...... SBRT predicted improved prognosis. However, staging procedure, confirmation procedure of recurrence and technical improvements of radiation treatment is likely to influence outcomes. However, SBRT seems to be as efficient as conventional RT and is a more convenient treatment for the patients....

  3. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    Science.gov (United States)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  4. Studies on radiation transformation of cultured mammalian cells

    International Nuclear Information System (INIS)

    In an attempt to induce in vitro transformation by radiation, several cell lines and primary cultures derived from embryonal tissues of hamster, mouse and man were tested. Under various conditions favorable for transformation, none of these were successfully transformed except for C3H mouse embryo-derived 10Tl/2 cells. Normally the cells contact-inhibited were irradiated with single graded doses and dispersed 3 hours after, followed by inoculation and 8-week cultivation with repeated medium renewals. A few types of focus were identified according to the description of Reznikoff et al. The foci characterized by (i) high cell density, (ii) increased affinity to a basic dye, and (iii) piled-up structure, were taken as an indication of transformation. The frequency of transformation was 6.5 x 10-4 for 300 R which was 4 times higher than the frequency found in the untreated control. It increased dose-dependently until 500 R and then levelled off. Another type of experiment using TR cells derived from a leukemia-prone trisomy 21 human embryo, revealed that a single 300 R exposure to x-ray induced clones showing higher plating efficiency and plateau density than unirradiated control after 200 days of post-irradiation cultivation. However, the clones isolated did not show any particular transformational properties in vitro and tumorigenic activity on inoculation into nude mice. (author)

  5. Species-specific transformation of T cells by HVMNE

    International Nuclear Information System (INIS)

    HVMNE is an Epstein-Barr virus (EBV)-like lymphocryptovirus (LCV) originally isolated from a Macaca nemestrina with CD8+ T cell mycosis fungoides/cutaneous T cell lymphoma (Blood 98 (2001), 2193). HVMNE transforms rabbit T cells in vitro and causes T cell lymphoma in New Zealand white rabbits. Here we demonstrate that HVMNE also immortalizes T cells from mustached tamarins but not those from owl monkeys, common marmosets, squirrel monkeys, black-capped capuchins, and humans. Cytogenetic and FACS analysis revealed the true origin and T cell lineage of the transformed tamarin T cell lines. Tamarin T cells contained HVMNE DNA sequence and displayed a decreased requirement for the IL-2 cytokine for growth. Thus, this EBV-like virus from M. nemestrina differs from the other EBV-like viruses found in nonhuman primates inasmuch as it appears to preferentially transform T cells

  6. Response of hematopoietic stem cells to ionizing radiation; Reponse des cellules souches hematopoitiques aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Simonnet, A

    2008-12-15

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SP{sup SK} cells positive for established indicators of HSC presence: CD150{sup +} and CD105{sup +}. A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin{sup -/low} Sca-1{sup +} c-Kit{sup +} (LSK) stem/progenitor compartment: CD150{sup +}/Flk2{sup -} and CD150{sup -}/Flk2{sup +} LSK cell frequencies are increased and dramatically reduced, respectively. CD150{sup +} LSK cells also show impaired reconstitution capacity, accrued number of {gamma}-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying

  7. An evaluation of Korean specific tissue weighting factors and their applicability in radiation protection

    International Nuclear Information System (INIS)

    The methodology of ICRP 60 was applied to evaluate Korean specific tissue weighting factors. The radiation induced fatal risk coefficients were projected to the Korean population using different models: the additive model for particular tissues, the constant relative risk model and the NIH hybrid model. The 1995 life table and the statistics of cancer deaths in 1995 and 1996 were used, which were provided by the National Statistical Office of Korea. After calculating the age- and sex- specific risks using both the relative and NIH models, the risk values were averaged over ages, projection models, and both sexes to get a set of attributable risk data for each tissue at risk. Then, the non-fatal detriments were calculated by use of the lethality data for each cancer site given in ICRP 60 with the assumption that detriment is proportional to the lethality fraction. By weighting the relative length of life lost to the sum of fatal detriments and non-fatal detriments, aggregated detriments were obtained. When comparing the aggregated detriments or their relative contributions by organs to the total detriment with the corresponding values given in ICRP 60 for the defined general population (DGP), notable deviations were found at lung and stomach: the rounded relative contributions of lung for Korean and for DGP are 0.15 and 0.11, respectively, and 0.17 and 0.14 for stomach. The contributions of minor organs for Korean are less than those of ICRP 60, in return. If the same grouping scheme as in the ICRP 60 is applied, however, the deviations are of no effect to the values of tissue weighting factors. If we take the higher contributions of lung and stomach more serious and choose a different weighting strategy, a modified set of the tissue weighting factors for Korean is obtained: 0.03 (bladder, breast, liver, thyroid), 0.12 (bone marrow, colon), 0.01 (bone surface, skin), 0.16 (lung, stomach), 0.02 (oesophagus), 0.08 (remainders) and 0.20 (gonads). For some organs, the

  8. Response of hematopoietic stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of HSC presence: CD150+ and CD105+. A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin-/low Sca-1+ c-Kit+ (LSK) stem/progenitor compartment: CD150+/Flk2- and CD150-/Flk2+ LSK cell frequencies are increased and dramatically reduced, respectively. CD150+ LSK cells also show impaired reconstitution capacity, accrued number of γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying this effect, and found in a competitive transplant experiment that a

  9. ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae

    OpenAIRE

    Laabs, Tracy L.; Markwardt, David D.; Slattery, Matthew G.; Newcomb, Laura L.; Stillman, David J.; Heideman, Warren

    2003-01-01

    Saccharomyces cerevisiae cells reproduce by budding to yield a mother cell and a smaller daughter cell. Although both mother and daughter begin G1 simultaneously, the mother cell progresses through G1 more rapidly. Daughter cell G1 delay has long been thought to be due to a requirement for attaining a certain critical cell size before passing the commitment point in the cell cycle known as START. We present an alternative model in which the daughter cell-specific Ace2 ...

  10. Analysis of radiation resistance of InGaP/GaAs dual-junction thin-film space solar cell

    International Nuclear Information System (INIS)

    Thin-film III-V multi-junction solar cells can realize the advantages of being high-efficiency and light-weight, as such these cells meets the requirement for higher specific power and lower stowage volume solar panels. Here we report the development results of an InGaP/GaAs thin-film dual-junction (TF2J) solar cell. In this paper, we study the radiation resistance of the TF2J cells with efficiency of 20-23% under AM0.1 sun at 25degC. The cells were subjected to proton irradiation with an energy range of 100keV-10MeV. The results were compared with the radiation resistance of a conventional InGaP/GaAs/Ge triple-junction (3J) cell. In the proton energy range of 200-400keV, radiation resistance of the TF2J cell is superior to that of the 3J cell. Particularly, the 1sc of the TF2J cell is significantly higher than that of the 3J cell after exposure to 380keV protons, which results in higher remaining factor of Pmax for the TF2J cell. In additions, Voc of the cells after the irradiations are almost equivalent, even though the TF2J cell is a dual-junction structure. The higher 1sc of the TF2J cell after irradiation is due to higher radiation resistance of the GaAs subcell according to the comparison of the spectral response. (author)

  11. Radiation signature on exposed cells: Relevance in dose estimation

    Institute of Scientific and Technical Information of China (English)

    Venkatachalam; Perumal; Tamizh; Selvan; Gnana; Sekaran; Venkateswarlu; Raavi; Safa; Abdul; Syed; Basheerudeen; Karthik; Kanagaraj; Amith; Roy; Chowdhury; Solomon; FD; Paul

    2015-01-01

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence insitu hybridization and an emerging protein marker the g-H2 AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.

  12. Radiation signature on exposed cells: Relevance in dose estimation.

    Science.gov (United States)

    Perumal, Venkatachalam; Gnana Sekaran, Tamizh Selvan; Raavi, Venkateswarlu; Basheerudeen, Safa Abdul Syed; Kanagaraj, Karthik; Chowdhury, Amith Roy; Paul, Solomon Fd

    2015-09-28

    The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net. PMID:26435777

  13. Radiation transformation in differentiated human cells in culture

    International Nuclear Information System (INIS)

    A tissue culture technique is described for human thyroid tissue as an approach to studying mechanisms of human radiation carcinogenesis. Normal human tissue obtained from surgery is treated in one of two ways, depending upon size of specimen. Large pieces are completely digested in trypsin/ collagenase solution to a single cell suspension. Small pieces of tissue are plated as explants following partial digestion in trypsin/collagenase solution. Following irradiation of the primary differentiated monolayers (normally 10 days after plating), the development of transformed characteristics is monitored in the subsequent subcultures. A very high level of morphological and functional differentiation is apparent in the primary cultures. Over a period of approx. 6 months, the irradiated surviving cells continue to grow in culture, unlike the unirradiated controls which senesce after 2-3 subcultures. (UK)

  14. Role of radiation therapy in large cell lymphoma

    International Nuclear Information System (INIS)

    This paper compares the results of treatment for large cell lymphoma with use of radiation therapy (RT), chemotherapy (CT), or both. The authors retrospectively studied 142 patients with large cell lymphoma. Seventy-two has stage I or II disease and 70, stage III or IV; 37% had B symptoms. CT was used in 66 patients, RT in 22, both in 46, and surgery with or without RT or CT in eight. CT regimens were CHOP, 38 patients; C-MOPP/COPP, 25; CHOP-bleo/BACOP, 15; COP-BLAN-MEL, 8; M-BACOD, 8; COP/CVP, 5; COP-BLAM, 5; and other regimens, 12. Statistical analysis showed that age, stage B symptoms, and treatment were significant variables determining survival. In stages I and II, the 5-year survival rate with RT plus CT was 65%; with CT, 35%; and with RT, 9% (P = < .01)

  15. Enhancement of radiation response in human cancer cells in vitro and in vivo by phytosphingosine

    International Nuclear Information System (INIS)

    Recent discoveries have revealed that sphingolipids (ceramide, sphingosine, sphingosine 1-phosphate, etc.) are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation and apoptosis. However, the physiological roles of phytosphingosine are largely unknown. In the present study, we have investigated effect of phytosphingosine on anti-tumor activities of radiation in human cervical, breast, lung cancer cells and T cell lymphoma. Cells were treated with various concentrations of phytosphingosine and/or various doses of radiation. Phytosongosine sensitized cells in vitro and in vivo for treatment with ionizing radiation. Phytosphingosine in combination with ionizing radiation synergistically decreased clonogenic survival in a dose dependent manner. Similar to the result of clonogenic survival, in human cancer cells, combined treatment with phytosphingosine and ionizing radiation drastically induced apoptotic cell death. At dose levels of phytosphingosine with only minimal apoptotic effect, pretreatment of phytosphingosine synergistically enhanced ionizing radiation-induced apoptosis. Combined treatment with phytosphingosine and ionizing radiation resulted in an increased caspase family activation. In vivo, treatment of phytosphingosine (3 x 20 mg/kg) in combination with ionizing radiation exerted substantial tumor growth regression for human lung and cervical tumor xenograft. These results indicate that phytosphingosine can synergistically enhance radiosensitivity of human cancer cells in vitro and in vivo, suggesting a potential clinical application of combination treatment with phytosphingosine and ionizing radiation

  16. MarCell trademark software for modeling bone marrow radiation cell kinetics

    International Nuclear Information System (INIS)

    Differential equations were used to model cellular injury, repair, and compensatory proliferation in the irradiated bone marrow. Recently, that model was implemented as MarCell trademark, a user-friendly MS-DOS computer program that allows users from a variety of technical disciplines to evaluate complex radiation exposure. The software allows menu selections for different sources of ionizing radiation. Choices for cell lineages include progenitor, stroma, and malignant, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive feature is that any protracted irradiation can be compared with an equivalent prompt dose (EPD) in terms of cell kinetics for either the source used or for a reference such as 250 kVp x rays or 60Co. EPD is used to mean a dose rate for which no meaningful biological recovery occurs during the period of irradiation. For human as species, output from MarCell trademark includes: risk of 30-day mortality; risk of whole-body cancer and leukemia based either on radiation-induced cytopenia or compensatory cell proliferation; cell survival and repopulation plots as functions of time or dose; and 4-week recovery following treatment. copyright 1997 American Association of Physicists in Medicine

  17. Specific differentiation of mesenchymal stem cells by small molecules

    OpenAIRE

    Song, Heesang; Chang, Woochul; Song, Byeong-Wook; Hwang, Ki-Chul

    2011-01-01

    Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells harboring multi-lineage differentiation potential and immunosuppressive properties that make them an attractive candidate for biological cell-based regenerative medicine. In addition to its undoubted clinical interest, controlling the fate and behaviors of MSCs is a crucial prerequisite for their therapeutic applications in regenerative medicine. Stem cell differentiation and modulation of functional activities are generally c...

  18. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiesc

  19. Specifications

    International Nuclear Information System (INIS)

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The specifications for the elements with U3O8-Al fuel are presented here as an illustration only. Specifications for the elements with U3Si2-Al fuel were very similar. In this example, materials, material numbers, documents numbers, and drawing numbers specific to a single fabricator have been deleted. (author)

  20. Physico-chemical studies of radiation effects in cells. Progress report, November 15, 1980-February 14, 1984

    International Nuclear Information System (INIS)

    The primary interest is investigating and understanding the chemical mechanisms involved in radiation-induced cellular damage. Most recently the perturbating devices have been metals which increase, in various ways and modes, the radiation sensitivity of several cell types. While the chief cell type has been the bacterial spore, chosen because of its biological inertness and its hardiness, allowing it to survive the unphysiological conditions of the physical chemist and, thus, inquiry into the free radical mechanisms involved very soon after energy absorption, recently vegetative cells have been introduced. A number of metals have been used and practically all of them sensitize - but to varying degrees. Straight biological techniques such as the measurement of cell survival under various conditions in the different cells have been used, as well as parallel experiments in pulse radiolysis to attack the specific leads in a chemical fashion suggested by the biology

  1. Radiation-hardened gate-around n-MOSFET structure for radiation-tolerant application-specific integrated circuits

    International Nuclear Information System (INIS)

    To overcome the total ionizing dose effect on an n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET), we designed a radiation-hardened gate-around n-MOSFET structure and evaluated it through a radiation-exposure experiment. Each test device was fabricated in a commercial 0.35-micron complementary metal-oxide-semiconductor (CMOS) process. The fabricated devices were evaluated under a total dose of 1 Mrad (Si) at a dose rate of 250 krad/h to obtain very high reliability for space electronics. The experimental results showed that the gate-around n-MOSFET structure had very good performance against 1 Mrad (Si) of gamma radiation, while the conventional n-MOSFET experienced a considerable amount of radiation-induced leakage current. Furthermore, a source follower designed with the gate-around transistor worked properly at 1 Mrad (Si) of gamma radiation while a source follower designed with the conventional n-MOSFET lost its functionality.

  2. Radiation-hardened gate-around n-MOSFET structure for radiation-tolerant application-specific integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Su; Lee, Hee Chul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-11-15

    To overcome the total ionizing dose effect on an n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET), we designed a radiation-hardened gate-around n-MOSFET structure and evaluated it through a radiation-exposure experiment. Each test device was fabricated in a commercial 0.35-micron complementary metal-oxide-semiconductor (CMOS) process. The fabricated devices were evaluated under a total dose of 1 Mrad (Si) at a dose rate of 250 krad/h to obtain very high reliability for space electronics. The experimental results showed that the gate-around n-MOSFET structure had very good performance against 1 Mrad (Si) of gamma radiation, while the conventional n-MOSFET experienced a considerable amount of radiation-induced leakage current. Furthermore, a source follower designed with the gate-around transistor worked properly at 1 Mrad (Si) of gamma radiation while a source follower designed with the conventional n-MOSFET lost its functionality.

  3. Role of oxygen-derived free radicals in radiation-induced damage and death of nondividing eucaryotic cells

    International Nuclear Information System (INIS)

    Isolated alveolar macrophages were exposed in vitro to varying doses of x-radiation. Using dye exclusion as a test for viability, this cell was found to be quite radioresistant relative to other eucaryotic cells. A dose of 11,500 rad was required to kill 50% of the cells when viability was assessed 24 hr after irradiation. Superoxide dismutase, catalase, and diethylenetriaminepentaacetic acid (DETAPAC) gave significant protection, whereas ethylenediaminetetraacetic acid and mannitol provided little or no protection. Analysis by scanning electron microscopy confirmed these results. In addition to the assessment of macrophage viability, a characteristic function of these cells was measured following exposure to radiation in the absence and presence of the putative protective agents. Phagocytic function as assessed by the rate of ingestion of killed yeast particles was measured before and after exposure of a population of pulmonary macrophages to 2850 rad. This dose of radiation caused a 75% loss of phagocytic function in the irradiated cells. DETAPAC when present during irradiation of the pulmonary macrophages provided nearly complete protection against loss of function. Pulmonary macrophages incubated under specific conditions with superoxide dismutase and catalase retained 50% of the activity of nonirradiated cells. These results are consistent with the hypothesis that hydroxyl radicals generated from superoxide anions, hydrogen peroxide, and iron are the agents of oxygen-induced cell damage caused by ionizing radiation

  4. P53 Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    International Nuclear Information System (INIS)

    Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis) after deoxyribonucleic acid (DNA) damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. P53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pair changes ( point mutations), which result in amino acid substitutions or truncated forms of the p53 protein, and are widely distributed throughout the evolutionary conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular carcinogens and

  5. Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice

    OpenAIRE

    Choi, Yu-Jin; Choi, Yun-Sik

    2015-01-01

    Objectives Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Methods Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spat...

  6. Radiation-induced cancer from low doses of ionizing radiation: risk analysis using the cell dose concept

    International Nuclear Information System (INIS)

    High doses of ionizing radiations are known to bear the risk of cancer to the exposed individual. In order to appreciate potential carcinogenesis from low doses also, the action of ionizing radiation in the human body has to be considered in holistic approach: energy depositions to individual cells trigger effects within a hierachical structure of interacting levels of biological systems, consisting consecutively of atoms, molecules, cells and organ tissue. The present paper describes the cell dose concept which is an essential factor in assessing the risk due to the ionizing radiation to the cells and tissues. Low dose of ionizing radiation induces adaptive response in individual cells which could be linked to the action of molecular radicals. Enzyme activities in bone marrow cells and bilayer lipid membranes and radicals are directly related to radiation effects. Temporary improvements of the detoxification of molecular radicals also improve the cellular defence. The risk analysis calls for more attention as it is important for radiation protection and other beneficial effects due to low doses of irradiation. (author). 18 refs

  7. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  8. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Full text: Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125I in a plasmid bound by a 125I-labeled triplex forming oligonucleotide (125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 I target base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the

  9. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125I in a plasmid bound by a 125I-labeled triplex forming oligonucleotide ( 125I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence of

  10. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    Science.gov (United States)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  11. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    To track epitope-specific CD4+ T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVAII, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4+ T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4+ T cells were recruited to the infected lung both in the presence and absence of the OVA323-339 epitope. These data show that, when primed, CD4+ T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  12. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas.

    OpenAIRE

    Moll, R.; Wu, X. R.; Lin, J.H.; Sun, T. T.

    1995-01-01

    Uroplakins (UPs) Ia, Ib, II, and III, transmembrane proteins constituting the asymmetrical unit membrane of urothelial umbrella cells, are the first specific urothelial differentiation markers described. We investigated the presence and localization patterns of UPs in various human carcinomas by applying immunohistochemistry (avidin-biotin-peroxidase complex method), using rabbit antibodies against UPs II and III, to paraffin sections. Positive reactions for UP III (sometimes very focal) were...

  13. The effect of X-ray and heavy ions radiations on chemotherapy refractory tumor cells

    Directory of Open Access Journals (Sweden)

    Zhan eYu

    2016-03-01

    Full Text Available Purpose: To link both numeric and structural chromosomal aberrations to the effectiveness of radiotherapy in chemotherapy refractory tumor cells.Materials and methods: Neuroblastoma (LAN-1 and 79HF6 glioblastoma cells derived from patients and their chemoresistant sublines were artificially cultured as neurospheres and irradiated by x-rays and heavy ions sources. All the cell lines were irradiated by Carbon-SIS with LET of 100 keV/µm. 79HF6 cells were also irradiated by Carbon-UNILAC with LET of 168 keV/µm, while LAN-1 cells were irradiated by Nickel ions with LET of 174 keV/µm. The effect of radiation on the survival and proliferation of cells was addressed by standards clonogenic assays. In order to analyze cell karyotype standard giemsa-staining, multicolor fluorescence in situ hybridization technique and multicolor banding technique were applied.Results: Relative biological effectiveness (RBE values of heavy ions beam relative to X-rays at the D10-values were found between 2.3-2.6 with Carbon-SIS and Nickel for LAN-1, while that were 2.5-3.4 with Carbon-SIS and Carbon-UNILAC for 79HF6 cells. Chemorefractory LAN-1RETO cells were found more radioresistant than untreated LAN-1WT cells. 79HF6RETO glioblastoma cells were found more radiosensitive than cytostatic sensitive cells 79HF6WT. Sphere formation assay showed LAN-1RETO cells were able to form spheres in serum-free culture whereas 79HF6 cells could not. Most of 79HF6WT cells revealed to content 71-90 chromosomes while 79HF6RETO revealed a numeric of 52-83 chromosomes. The majority of LAN-1WT cells revealed a number of 40-44 chromosomes. mFISH analysis showed some stable aberrations especially on chromosome 10 with as judged by the impossibility to label this region with specific probes. This was corroborated using mBAND analysis.Conclusions: Heavy ion irradiation were more effective than X-ray in both cytostatic naive cancer and chemoresistant cell lines. LAN-1RETO chemoresistant

  14. Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells

    Directory of Open Access Journals (Sweden)

    Ruley H Earl

    2004-10-01

    Full Text Available Abstract Background Cell-permeant Cre DNA site-specific recombinases provide an easily controlled means to regulate gene structure and function in living cells. Since recombination provides a stable and unambiguous record of protein uptake, the enzyme may also be used for quantitative studies of cis- and trans-acting factors that influence the delivery of proteins into cells. Results In the present study, 11 recombinant fusion proteins were analyzed to characterize sequences and conditions that affect protein uptake and/or activity and to develop more active cell-permeant enzymes. We report that the native enzyme has a low, but intrinsic ability to enter cells. The most active Cre proteins tested contained either an N-terminal 6xHis tag and a nuclear localization sequence from SV40 large T antigen (HNC or the HIV Tat transduction sequence and a C-terminal 6xHis tag (TCH6. The NLS and 6xHis elements separately enhanced the delivery of the HNC protein into cells; moreover, transduction sequences from fibroblast growth factor 4, HIV Tat or consisting of the (KFF3K sequence were not required for efficient protein transduction and adversely affected enzyme solubility. Transduction of the HNC protein required 10 to 15 min for half-maximum uptake, was greatly decreased at 4°C and was inhibited by serum. Efficient recombination was observed in all cell types tested (a T-cell line, NIH3T3, Cos7, murine ES cells, and primary splenocytes, and did not require localization of the enzyme to the nucleus. Conclusions The effects of different sequences on the delivery and/or activity of Cre in cultured cells could not be predicted in advance. Consequently, the process of developing more active cell-permeant recombinases was largely empirical. The HNC protein, with an excellent combination of activity, solubility and yield, will enhance the use of cell-permeant Cre proteins to regulate gene structure and function in living cells.

  15. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Li, Dan; Qiu, Xiaodi; Yang, Jin; Liu, Tianjin; Luo, Yi; Lu, Yi

    2016-12-01

    Cataractogenesis begins from the dynamic lens epithelial cells (LECs) and adjacent fiber cells. LECs derived from cell lines cannot maintain the crystalline expression as the primary LECs. The current study aimed to efficiently generate large numbers of human LECs from patient-specific induced pluripotent stem cells (iPSCs). Anterior lens capsules were collected from cataract surgery and were used to culture primary hLECs. iPSCs were induced from these primary hLECs by lentiviral transduction of Oct4, Sox2, Klf4, and c-Myc. Then, the generated iPSCs were re-differentiated into hLECs by the 3-step addition of defined factor combinations (Noggin, BMP4/7, bFGF, and EGF) modified from an established method. During the re-differentiation process, colonies of interest were isolated using a glass picking tool and cloning cylinders based on the colony morphology. After two steps of isolation, populations of LEC-like cells (LLCs) were generated and identified by the expression of lens marker genes by qPCR, western blot and immunofluorescence staining. The study introduced a modified protocol to isolate LLCs from iPSCs by defined factors in a short time frame. This technique could be useful for mechanistic studies of lens-related diseases. J. Cell. Physiol. 231: 2555-2562, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991066

  16. Technical support for the Ukrainian State Committee for Nuclear Radiation Safety on specific waste issues

    International Nuclear Information System (INIS)

    The government of Ukraine, a now-independent former member of the Soviet Union, has asked the United States to assist its State Committee for Nuclear and Radiation Safety (SCNRS) in improving its regulatory control in technical fields for which it has responsibility. The US Nuclear Regulatory Commission (NRC) is providing this assistance in several areas, including management of radioactive waste and spent fuel. Radioactive wastes resulting from nuclear power plant operation, maintenance, and decommissioning must be stored and ultimately disposed of appropriately. In addition, radioactive residue from radioisotopes used in various industrial and medical applications must be managed. The objective of this program is to provide the Ukrainian SCNRS with the information it needs to establish regulatory control over uranium mining and milling activities in the Zheltye Vody (Yellow Waters) area and radioactive waste disposal in the Pripyat (Chernobyl) area among others. The author of this report, head of the Environmental Technology Section, Health Sciences Research Division of Oak Ridge National Laboratory, accompanied NRC staff to Ukraine to meet with SCNRS staff and visit sites in question. The report highlights problems at the sites visited and recommends license conditions that SCNRS can require to enhance safety of handling mining and milling wastes. The author's responsibility was specifically for the visit to Zheltye Vody and the mining and milling waste sites associated with that facility. An itinerary for the Zheltye Vody portion of the trip is included as Appendix A

  17. Energy-Specific Solar Radiation Data from MSG: Current Status of the HELIOSAT-3 Project

    Science.gov (United States)

    Schroedter-Homscheidt, Marion; Betcke, Jethro; Gesell, Gerhard; Heinemann, Detlev; Holzer-Popp, Thomas

    2004-11-01

    HELIOSAT-3 aims at the operational quantification of surface solar irradiance in cloud free and cloudy situations and additional energy-specific parameters as direct normal irradiance, angular distribution of diffuse irradiance, illuminance, and photosynthetically active radiation (PAR) taking actual distributions of atmospheric absorbers and scatterers into account. The new method relies on input information on physical cloud properties (e.g. optical depth), aerosol optical depth and type, water vapour concentration and ozone distribution which are derived from MSG or ERS- 2/ENVISAT measurements. First MSG-based results for the clear sky case will be shown. MSG-SEVIRI based cloud and water vapour level 2 and level 3 products are given as examples. Additionally, ERS-2 and ENVISAT data is used to derive aerosol optical depth and type as well as ozone concentration. Recent improvements of the aerosol retrieval method SYNAER and a 5 degree climatology data set for the MSG field of view based on 1997/1998 ERS-2 data are presented.

  18. Studies on the mechanism of the self restriction of T cell responses in radiation chimeras

    International Nuclear Information System (INIS)

    Recent experiments with murine radiation chimeras have shown that F1 T cells that mature in an H-2 homozygous thymus, as is the case in [F1 → Parent 1] chimeras, are restricted to recognizing foreign antigen in the context of Parent 1 H-2 antigens. Conflicting results on the stringency of self H-2 restriction of T cells from normal mice have suggested that the thymic restriction in chimeras may be due to active suppression of parent 2-restricted T cell clones. We have therefore conducted 3 sets of experiments to test for suppression of maturing T cells that could mediate thymic tutoring of H-2-restriction specificity in chimeras. In 2 sets of experiments, we found no evidence that suppressor cells could be exported from 1 thymus and act either intrathymically on thymocytes in a 2nd thymus or extrathymically on recent thymic emigrants. We believe current data support a role for the thymus in positive as well as negative selection of maturing thymocytes on the basis of self recognition, in the absence of any suppression. Our results do not support the concept that suppression is responsible for the difference in the degree of self preference in the T cells of chimeric mice relative to cell populations obtained from neonatally tolerant mice or from normal mice after acute negative selection

  19. Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells.

    Science.gov (United States)

    Lowe, S L; Rubinchik, S; Honda, T; McDonnell, T J; Dong, J Y; Norris, J S

    2001-09-01

    In prostate carcinoma, overexpression of the anti-apoptotic gene Bcl-2 has been found to be associated with resistance to therapies including radiation and androgen ablation. Restoring the balance of Bcl-2 family members may result in the induction of apoptosis in prostate cancer cells previously resistant to treatment. To accomplish this, a strategy involving overexpression of the pro-apoptotic gene Bax was executed. The use of cytotoxic genes such as Bax require selective expression of the gene. In this study, we examined the ability of selective expression of Bax protein directed by a prostate-specific promoter to induce apoptosis in human prostate carcinoma. A second-generation adenoviral vector was constructed with the modified prostate-specific probasin promoter, ARR2PB, directing expression of an HA-tagged Bax gene and a green fluorescent protein reporter translated from an internal ribosome entry site (ARR2PB.Bax.GFP). ARR2PB promoter activity is tightly regulated and highly prostate specific and is responsive to androgens and glucocorticoids. The prostate-specific promoter-Bax-GFP transgene cassette was inserted into a cloning site near the right inverted terminal repeat of the adenoviral vector to retain specificity of the promoter. LNCaP cells infected with Ad/ARR(2)PB.Bax.GFP showed high levels of Bax expression 48 h after infection resulting in an 85% reduction in cell viability. Importantly, LNCaP cells stably transfected to overexpress Bcl-2 showed similar patterns of cell death when infected with Ad/ARR(2)PB.Bax.GFP, an 82% reduction in cell viability seen 48 h after infection. Apoptosis was confirmed by measuring caspase activation and using the TUNEL assay. Tissue specificity was evaluated using A549 cells (lung adenocarcinoma), SK-Hep-1 (liver cancer) cells, and Hela (cervical cancer) cells which did not show detectable expression of virally delivered Bax protein or any increase in cell death. Systemic administration of Ad/ARR2PB. Bax.GFP in nude

  20. HLA-DP specific responses in allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Rutten, Caroline Elisabeth

    2013-01-01

    Clinical studies demonstrated that HLA-DPB1 mismatched stem cell transplantation (SCT) is associated with a decreased risk of disease relapse and an increased risk of graft versus host disease (GVHD) compared to HLA-DPB1 matched SCT. In T-cell depleted SCT, mismatching of HLA-DPB1 was not associated

  1. Combination of aloe-emodin with radiation enhances radiation effects and improves differentiation in human cervical cancer cells.

    Science.gov (United States)

    Luo, Jinghua; Yuan, Yong; Chang, Pengyu; Li, Dawei; Liu, Zhiqiang; Qu, Yaqin

    2014-08-01

    The aim of the present study was to investigate the effects of aloe-emodin (AE) on the radiosensitivity and differentiation of HeLa human cervical cancer cells. Cell proliferation was assessed in the HeLa cervical cancer cell line by a methylthiazolyldiphenyl-tetrazolium bromide assay. Radiosensitivity was determined by a colony‑forming assay. Flow cytometry was used for analysis of cell cycle distribution and apoptosis. The expression of γ-H2AX and cyclin B was assessed by western blotting. Alkaline phosphatase (ALP) activity was measured by an ALP activity kit. It was demonstrated that AE inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner, induced G2/M and S phase cell cycle arrest and enhanced the radiosensitivity of HeLa cells. The combination of AE and radiation induced apoptosis, upregulated cyclin B and γ-H2AX expression and further improved ALP activity compared with treatment with AE or radiation alone. AE enhanced the radiosensitivity of HeLa human cervical cancer cells in vitro, inhibited the proliferation of HeLa cells, induced G2/M phase cell cycle arrest and, in combination with radiation, induced the apoptosis and improved the differentiation of HeLa cells. PMID:24920336

  2. Radiation-induced recovery processes in cultured marsupial cells

    International Nuclear Information System (INIS)

    The ultraviolet sensitivity of Potorous tridactylus male kidney (PtK-2) cells is markedly increased by post irradiation treatment for 24 h with 5 μM emetine of with 5 μM cycloheximide or with the RNA polymerase II inhibitor 5,6-dichloro-1-β-ribofuranosylbenzimidazole at 50 μM. All 3 treatments give the same sensitivity, while unirradiated cells are little affected. Shortening the time of treatment, of delaying application of the drugs decreases their effects on the same time schedule. Preiiradiation of cells, with no drug treatment in the following 8 h, diminishes the sensitivity to a subsequent irradiation with protein synthesis blocked afterwards. Photoreactivation immediately following such preiiradiation eliminated its desensitizing effect. Inhibiting protein synthesis after irradiation also markedly reduces the frequency of UV-induced mutants in the surviving population. These facts suggest that gene expression in the period following iradiation facilitates recovery from radiation damage, with an increased probability of mutation, reminiscent of the 'SOS response' in Escherichia coli. (author). 29 refs.; 5 figs.; 3 tabs

  3. Imaging and radiation effects of gold nanoparticles in tumour cells

    Science.gov (United States)

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.

  4. Effect of ionizing radiation on invasiveness of pulmonary adenocarcinoma cells A549 and its mechanism

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of ionizing radiation on the invasion of the pulmonary adenocarcinoma cell line A549. Methods: The invasiveness of A549 cells irradiated with 2 and 4 Gy doses of γ-rays was detected by using transwell invasion assay. The expression levels of matrix metalloproteinase (MMP)-2 mRNA and protein and phosphorylated signal transducers and activators of transcription 3 (STAT3) protein were detected by reverse transcription PCR and Western blot. Results: After irradiation with 2 or 4 Gy, the invasiveness of A549 cells increased by 200.0% (F=111.7, P<0.01) and 390.9% (F=593.7, P<0.01), respectively, compared with that in untreated A549 cells.Furthermore, the transcription and protein expression of MMP-2 24 h after irradiation and the phosphorylation of STAT3 12 h after irradiation were promoted. The irradiation-induced elevation of MMP-2 protein expression was suppressed using STAT3 phosphorylation specific inhibitor (AG490). Moreover, compared with 4 Gy of irradiation alone, treatment with 4 Gy of irradiation plus AG490 decreased the number of invasive cells by 76.1% (F=555.9, P<0.01), and the number of invasive cells in 4 Gy of irradiation plus AG490 group made up only 117.8% of that in untreated group (F=3.6, P>0.05). Conclusions: Ionizing radiation could activate STAT3, which triggers the transcription of MMP-2, and then promote the invasiveness of A549 cells. (authors)

  5. Radiation Survival in Synchronous and Asynchronous Chinese Hamster Cells In Vitro

    International Nuclear Information System (INIS)

    Synchronized mammalian cells enable radiation responses to be examined as a function of the position of the cell within its generation cycle. However, synchrony techniques are limited by the random distribution of generation rates in cell populations and, because of the techniques employed, stages such as G2 and mitosis are difficult to examine. Superposing on the mitotic selection technique high-specific- activity tritiated thymidine to inactivate resistant S cells enables the average sensitivity of G2 and mitotic cells to be established. The changes in sensitivity during the cell cycle for Chinese hamster cells are considerable, at least as great as the effect of the presence or absence of oxygen. G2 and mitosis are the most sensitive cells, followed by G1, early S and finally late S cells as the most resistant. With this data the response of an asynchronous population can be estimated and compared with experimental data. Calculation and experiment agree well. The selection + tritiated thymidine technique is still limited in resolution to a one-hour period. Experiments varying the interval between irradiation and selection indicate that there is, very probably, a brief phase more sensitive than the average in the selected mitotic population which should be examined further. Experiments with Janus (fission) neutrons indicate that the changes in response during the cell cycle are smaller than for X-rays and the shapes of the survival curves are different. The RBE of these neutrons is shown to vary with both dose level and position in the cell cycle. (author)

  6. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  7. Radiation

    International Nuclear Information System (INIS)

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  8. Kinetics of serum prostate-specific antigen after external beam radiation for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Background and purpose: To determine the kinetics of serum prostate-specific antigen (PSA) after radiation therapy of localized prostate cancer and to evaluate whether such kinetics provide prognostic information. Materials and methods: Eight hundred forty-one men with serial PSA determinations who underwent external beam radiation without androgen ablation were analyzed to determine postradiation PSA kinetic parameters (half-life and doubling time) and to correlate these parameters with disease outcome. Non-linear regression techniques were used to determine half-lives and doubling times. Results: The postradiation serum PSA data fitted well to first order kinetic models. The median PSA half-life was 1.6 months (range 0.5-9.2 months). There was no correlation between half-life and T-stage or Gleason grade. A significant but quantitatively weak correlation was present between the pretreatment PSA level and half-life; lower pretreatment levels were associated with longer half-lives. Half-life did not correlate with disease outcome whether the endpoint was local recurrence, distant metastasis or rising PSA. In 263 men with a rising postradiation PSA profile the median PSA doubling time was 12.2 months (range 0.8-80.2 months). Faster doubling times were significantly associated with higher T-stage, higher Gleason grade and higher pretreatment PSA levels. Thus, patients with initially adverse disease developed faster rising PSA values after treatment than patients with less adverse disease. The most striking correlation was between rapid doubling time and the likelihood of metastatic relapse. Patients who developed metastases had a median PSA doubling time of 4.2 months compared to a median doubling time of 11.7 months in patients who developed local recurrence. Overall, patients with a PSA doubling time of less than 8 months had a 7-year actuarial metastatic rate of 54%, while patients with a PSA doubling time exceeding 8 months had only a 7% metastatic rate

  9. Association Between White Blood Cell Count Following Radiation Therapy With Radiation Pneumonitis in Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: Radiation pneumonitis (RP) is an inflammatory response to radiation therapy (RT). We assessed the association between RP and white blood cell (WBC) count, an established metric of systemic inflammation, after RT for non-small cell lung cancer. Methods and Materials: We retrospectively analyzed 366 patients with non-small cell lung cancer who received ≥60 Gy as definitive therapy. The primary endpoint was whether WBC count after RT (defined as 2 weeks through 3 months after RT completion) was associated with grade ≥3 or grade ≥2 RP. Median lung volume receiving ≥20 Gy (V20) was 31%, and post-RT WBC counts ranged from 1.7 to 21.2 × 103 WBCs/μL. Odds ratios (ORs) associating clinical variables and post-RT WBC counts with RP were calculated via logistic regression. A recursive-partitioning algorithm was used to define optimal post-RT WBC count cut points. Results: Post-RT WBC counts were significantly higher in patients with grade ≥3 RP than without (P3/μL for grade ≥3 and ≥2 RP, respectively. Univariate analysis revealed significant associations between post-RT WBC count and grade ≥3 (n=46, OR=2.6, 95% confidence interval [CI] 1.4‒4.9, P=.003) and grade ≥2 RP (n=164, OR=2.0, 95% CI 1.2‒3.4, P=.01). This association held in a stepwise multivariate regression. Of note, V20 was found to be significantly associated with grade ≥2 RP (OR=2.2, 95% CI 1.2‒3.4, P=.01) and trended toward significance for grade ≥3 RP (OR=1.9, 95% CI 1.0-3.5, P=.06). Conclusions: Post-RT WBC counts were significantly and independently associated with RP and have potential utility as a diagnostic or predictive marker for this toxicity

  10. The specificity of albumin denaturation on physiological preparations under thermal and gamma-radiation effects (actions)

    International Nuclear Information System (INIS)

    Comparative investigation is performed of the alteration in thin structure of absorption spectra of albumin solutions under thermal and radiation effect resulting in protein denaturation. Gamma radiation effect of 57Co on the preparations of bull and man serum albumins was studied as well as a number of serum preparations. Analysis of the results obtained permits to conclude that different qualitative and quantitative mechanisms of denaturation alterations under the temperature and gamma radiation effects on albumin solutions takes place

  11. GaAs quantum dot solar cell under concentrated radiation

    International Nuclear Information System (INIS)

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are