WorldWideScience

Sample records for cell specific adapter

  1. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B.

    Science.gov (United States)

    Lapinski, Philip E; Oliver, Jennifer A; Bodie, Jennifer N; Marti, Francesc; King, Philip D

    2009-11-01

    Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.

  2. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Scott R.; Chen, Zhenjun; Archbold, Julia K.; Tynan, Fleur E.; Beddoe, Travis; Kjer-Nielsen, Lars; Miles, John J.; Khanna, Rajiv; Moss, Denis J.; Liu, Yu Chih; Gras, Stephanie; Kostenko, Lyudmila; Brennan, Rebekah M.; Clements, Craig S.; Brooks, Andrew G.; Purcell, Anthony W.; McCluskey, James; Rossjohn, Jamie (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2010-07-07

    {alpha}{beta} T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

  3. Social-psychological specific of individual adaptation

    OpenAIRE

    Ovsyanik, Olga

    2012-01-01

    There is analyzing of specific of social-psychological adaptation person by model of adaptation. Structure model of adaptation of women of our age group, which was named “adaptation complex” was made by theoretic analyzes of problem of adaptation adult.

  4. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells

    Directory of Open Access Journals (Sweden)

    Kristin eSurmann

    2014-08-01

    Full Text Available Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549, and human embryonic kidney cells (HEK 293. Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen´s proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2x106 bacteria, roughly 1,450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreases in levels of ribosomal proteins and metabolic enzymes or increases in amounts of proteins involved in arginine and lysine biosynthesis, coding for terminal oxidases and stress responsive genes or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and

  5. CD11c-positive cells from brain, spleen, lung, and liver exhibit site-specific immune phenotypes and plastically adapt to new environments.

    Science.gov (United States)

    Immig, Kerstin; Gericke, Martin; Menzel, Franziska; Merz, Felicitas; Krueger, Martin; Schiefenhövel, Fridtjof; Lösche, Andreas; Jäger, Kathrin; Hanisch, Uwe-Karsten; Biber, Knut; Bechmann, Ingo

    2015-04-01

    The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry. We identified unique, site-specific expression patterns of F4/80, CD80, CD86, CX3CR1, CCR2, FLT3, CD103, and MHC-II. Furthermore, we observed the two known CD45-positive populations (CD45(high) and CD45(int) ) in the brain, whereas liver, lung, and spleen exhibited a homogeneous CD45(high) population. CD11c-positive microglia lacked MHC-II expression and CD45(high) /CD11c-positive cells from the brain have a lower percentage of MHC-II-positive cells. To test whether phenotypical differences are fixed by origin or specifically develop due to environmental factors, we transplanted brain and spleen mononuclear cells on organotypic slice cultures from brain (OHSC) and spleen (OSSC). We demonstrate that adaption and ramification of MHC-II-positive splenocytes is paralleled by down-regulation of MHC-II, whereas brain-derived mononuclear cells neither ramified nor up-regulated MHC-II in OSSCs. Thus, brain-derived mononuclear cells maintain their MHC-II-negative phenotype within the environment of an immune organ. Intraparenchymal CD11c-positive cells share immunophenotypical characteristics of DCs from other organs but remain unique for their low MHC-II expression. © 2014 Wiley Periodicals, Inc.

  6. Repeated Exposure of Epithelial Cells to Apoptotic Cells Induces the Specific Selection of an Adaptive Phenotype: Implications for Tumorigenesis.

    Science.gov (United States)

    Feng, Lanfei; Vujicic, Snezana; Dietrich, Michael E; Litbarg, Natalia; Setty, Suman; Antoni, Angelika; Rauch, Joyce; Levine, Jerrold S

    2018-05-16

    The consequences of apoptosis extend beyond mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPT SEL ) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPT SEL responders fully resistant to apoptotic target-induced death (~85% survival versus exposure in selected versus non-selected responders indicated that the acquired resistance of BU.MPT SEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  8. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy.

    Directory of Open Access Journals (Sweden)

    Harshavardhan Nilakantan

    Full Text Available NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx. We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs. We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new

  9. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  10. Specificity, cross-talk and adaptation in Interferon signaling

    Science.gov (United States)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  11. Design Specifications for Adaptive Real-Time Systems

    Science.gov (United States)

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  12. Cancer cell adaptation to chemotherapy

    International Nuclear Information System (INIS)

    Di Nicolantonio, Federica; Johnson, Penny; Somers, Shaw S; Toh, Simon; Higgins, Bernie; Lamont, Alan; Gulliford, Tim; Hurren, Jeremy; Yiangou, Constantinos; Cree, Ian A; Mercer, Stuart J; Knight, Louise A; Gabriel, Francis G; Whitehouse, Pauline A; Sharma, Sanjay; Fernando, Augusta; Glaysher, Sharon; Di Palma, Silvana

    2005-01-01

    Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of response to the same drugs. Adaptation

  13. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cross cultural adaptation of the menopause specific questionnaire ...

    African Journals Online (AJOL)

    Cross cultural adaptation of the menopause specific questionnaire into the Persian language. ... Annals of Medical and Health Sciences Research ... good internal consistency in vasomotor, physical and psychosocial domains, but not sexual.

  15. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....

  16. Gender specific pattern of left ventricular cardiac adaptation to ...

    African Journals Online (AJOL)

    Background: Cardiac adaptation to hypertension and obesity may be related to many factors such as race, gender and haemodynamic status. Some gender specific associations with left ventricular structure and function have been described among Caucasians. Objectives: To describe the sex specific pattern of left ...

  17. Gender specific pattern of left ventricular cardiac adaptation to ...

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Some gender specific associations with left ventricular structure and function have been described ... used for analysis. ... risk due to LVH and that cardiac adaptation to ... had history taking, physical examination and ..... between the gender specific differences in cardiac ... A metaanalysis of individual.

  18. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  19. In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2018-01-01

    player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA

  20. In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2018-01-01

    activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in

  1. Cross Cultural Adaptation of the Menopause Specific Questionnaire ...

    African Journals Online (AJOL)

    Cross Cultural Adaptation of the Menopause Specific. Questionnaire into the Persian Language. Ghazanfarpour M, Kaviani M1, Rezaiee M2, Ghaderi E3, Zandvakili F2. Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, 1Nursing and Midwifery College, Shiraz ...

  2. Report on Adaptive Force, a specific neuromuscular function

    Directory of Open Access Journals (Sweden)

    Marko Hoff

    2015-08-01

    Full Text Available In real life motions, as well as in sports, the adaptation of the neuromuscular systems to externally applied forces plays an important role. The term Adaptive Force (AF shall characterize the ability of the nerve-muscle-system to adapt to impacting external forces during isometric and eccentric muscle action. The focus in this paper is on the concept of this neuromuscular action, which is not yet described in this way. A measuring system was constructed and evaluated for this specific neuromuscular function, but only the main information of the evaluation of the measuring system and the preliminary reference values are mentioned here, while an article with detailed description will be published separately. This paper concentrates on the three following points: 1 What is the peculiarity of this neuromuscular function, introduced as AF? 2 Is the measuring system able to capture its specific characteristics and which phases of measurement occur? 3 It seems reasonable to discuss if AF can be distinguished and classified among the known force concepts. The article describes the measuring system and how it is able to capture special features of real life motions like submaximal intensities and the subjects’ option to react adequately on external varying forces. Furthermore, within one measurement the system records three different force qualities: the isometric submaximal Adaptive Force (AFiso, the maximal isometric Adaptive Force (AFisomax and the maximal eccentric Adaptive Force (AFeccmax. Each of these phases provide different and unique information on the nerve-muscle-system that are discussed in detail. Important, in terms of the Adaptive Force, seems to be the combination of conditional and coordinative abilities.

  3. Determining T-cell specificity to understand and treat disease

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Newell, Evan W.

    2017-01-01

    Adaptive immune responses and immunopathogeneses are based on the ability of T cells to respond to specific antigens. Consequently, understanding T-cell recognition patterns in health and disease involves studying the complexity and genetic heterogeneity of the antigen recognition pathway, which...

  4. Solar adaptive optics: specificities, lessons learned, and open alternatives

    Science.gov (United States)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  5. Adaptive grid generation in a patient-specific cerebral aneurysm

    Science.gov (United States)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce

  6. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  7. Tendon Adaptation to Sport-specific Loading in Adolescent Athletes.

    Science.gov (United States)

    Cassel, M; Carlsohn, A; Fröhlich, K; John, M; Riegels, N; Mayer, F

    2016-02-01

    Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete's risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:sports/cyclists and lowest in controls (p≤0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Cell-cycle phase specificity of chloroethylnitrosoureas

    International Nuclear Information System (INIS)

    Linfoot, P.A.

    1986-01-01

    Although the cancer chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is considered a non-cell cycle phase specific drug, it has been shown to produce differential cell killing in G 1 , S, and G 2 /M phase cells, with S phase cells appearing relatively resistant. Studies of cell cycle phase specific cell killing produced by nitrosoureas with different chemical reactivities, clearly indicated that the ability of compounds to cross-link DNA was important in determining their phase specificity. Cells that lacked guanine O 6 -alkytransferase activity showed similar patterns of BCNU phase specificity regardless of their intrinsic sensitivity to BCNU. DNA inter-strand cross-linking, as measured by alkaline elution, was similar in cells exposed to BCNU in G 1 or S phase. 3 H [1-chloroethyl-1nitrosourea] binding to DNA was the same in G 1 , S and G 2 /M phase cells indicating that phase-specific differences in drug uptake and intracellular drug dose were not responsible for phase specific cell kill. These studies suggest that cross-link lesions, other than DNA inter-strand cross-links, and/or effects on DNA repair, other than guanine O 6 -alkyltransferase, are additional important determinants of BCNU phase specific cell killing

  9. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  10. Microdosimetric constraints on specific adaptation mechanisms to reduce DNA damage caused by ionising radiation

    International Nuclear Information System (INIS)

    Burkart, W.; Heusser, P.; Vijayalaxmi

    1990-01-01

    The protective effect of pre-exposure of lymphocytes to ionising radiation indicates the presence of 'adaptive repair' in mammalian cells. Microdosimetric considerations, however, raise some doubts on the advantage of such a cellular mechanism for specifically reducing the radiation damage caused by environmental exposures. Contrary to most chemicals which endanger the integrity of the mammalian genome, the local dose and dose rate from ionising radiation at the cellular level remain quite high, even at lowest exposures. A single electron or alpha particle passing through a cell nucleus already yields nuclear doses of up to about 3 mGy and 400 mGy, respectively. Macroscopic doses below these nuclear doses from a single event will only reduce the fraction of cell nuclei encountering the passage of a particle but not the dose or dose rate in the affected volume. At environmental doses in the range of 1 to 5 mGy per annum, the time between two consecutive hits in a specific cell nucleus is in the range of months to years. Very low concentrations of bleomycin, a drug with high affinity to DNA, also triggers an adaptive response. This points to a more general stress response mechanism which may benefit the cell even at environmental levels of radioactivity, e.g. by protecting the integrity of DNA from attacks by chemicals, by endogenous radicals, by acids from anoxia, etc. (author)

  11. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    Science.gov (United States)

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  13. Specification and Generation of Adapters for System Integration

    NARCIS (Netherlands)

    Mooij, A.J.; Voorhoeve, M.

    2013-01-01

    Large systems-of-systems are developed by integrating several smaller systems that have been developed independently. System integration often requires adaptation mechanisms for bridging any technical incompatibilities between the systems. In order to develop adapters in a faster way, we study ways

  14. Cooperative adaptive cruise control : tradeoffs between control and network specifications

    NARCIS (Netherlands)

    Oncu, S.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    In this study, we consider a Cooperative Adaptive Cruise Control (CACC) system which regulates inter-vehicle distances in a vehicle string. Improved performance can be achieved by utilizing information exchange between vehicles through wireless communication besides local sensor measurements.

  15. Phenomenon of adaptive response of cells in radiobiology

    International Nuclear Information System (INIS)

    Fillipovich, I.V.

    1991-01-01

    Consideration is given to various adaptive reactions to low-level radiation, their association with an absorbed dose, dose rate, radiation quality and time-interval between exposures, as well as with a cell cycle phase. Possible mechanisms of the adaptive response and the character and role of DNA damages, that can induce gene expression of the adaptive response, are discussed. The data on the influence of a preliminary long-term exposure to low-level radiation on the radiosensitivity of biological objects are analyzed with due regard for the adaptive cell response. It is concluded that the adaptive response of cells to ionizing radiation is a particular case of the phenomenon of cell adaptation of the effect of genotoxic factors of the environment

  16. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  17. Mechano-adaptation of the stem cell nucleus.

    Science.gov (United States)

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  18. Changing T cell specificity by retroviral T cell receptor display

    NARCIS (Netherlands)

    Kessels, H. W.; van den Boom, M. D.; Spits, H.; Hooijberg, E.; Schumacher, T. N.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T

  19. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  20. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  1. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    OpenAIRE

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induce...

  2. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  3. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  4. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Directory of Open Access Journals (Sweden)

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  5. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Science.gov (United States)

    Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez

    2012-01-01

    The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet

  6. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    Directory of Open Access Journals (Sweden)

    Spyros I. Papamichos

    2015-01-01

    Full Text Available The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF, a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential.

  7. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  8. The geography of sex-specific selection, local adaptation, and sexual dimorphism.

    Science.gov (United States)

    Connallon, Tim

    2015-09-01

    Local adaptation and sexual dimorphism are iconic evolutionary scenarios of intraspecific adaptive differentiation in the face of gene flow. Although theory has traditionally considered local adaptation and sexual dimorphism as conceptually distinct processes, emerging data suggest that they often act concurrently during evolutionary diversification. Here, I merge theories of local adaptation in space and sex-specific adaptation over time, and show that their confluence yields several new predictions about the roles of context-specific selection, migration, and genetic correlations, in adaptive diversification. I specifically revisit two influential predictions from classical studies of clinal adaptation and sexual dimorphism: (1) that local adaptation should decrease with distance from the species' range center and (2) that opposing directional selection between the sexes (sexual antagonism) should inevitably accompany the evolution of sexual dimorphism. I show that both predictions can break down under clinally varying selection. First, the geography of local adaptation can be sexually dimorphic, with locations of relatively high local adaptation differing profoundly between the sexes. Second, the intensity of sexual antagonism varies across the species' range, with subpopulations near the range center representing hotspots for antagonistic selection. The results highlight the context-dependent roles of migration versus sexual conflict as primary constraints to adaptive diversification. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  9. Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

    Science.gov (United States)

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.

    2015-01-01

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263

  10. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  11. Lymphogammagraphy. An adaptive technique to specific clinical problems

    International Nuclear Information System (INIS)

    Rojas, Juan Carlos; Llamas, Augusto E; De los Reyes, Amelia; Martinez, Maria Cristina

    2000-01-01

    Lymphoscintigraphy (LS) is an accurate and safe procedure for the evaluation of lymph nodes, many of which remain occult to other imaging techniques. Not only lymphatic pathways, but also the functional condition of the lymphatic channels and the localization of lymphatic basins can be assessed with LS. We will illustrate the utility of the technique in different clinical settings, concerning two patients recently studied at the National Cancer Institute. In the first case a patient previously diagnosed with a testicular teratocarcinoma that presented with ascites. The LS showed a chyloperitoneum, leading the clinicians to with old further treatment given the lymphatic nature of the ascites as opposed to a malignant origin. In the second patient the LS illustrated the adaptability of the lymphatic system to a chronic insult (suture of Pecquet's cistem) by lymphatic flows diversion through paralumbar channels. In this patient LS was combined with a peritoneal scintigraphy to demonstrate permeability through a peritoneovenous bypass; incidentally, a peritoneopleural shunt was diagnosed. LS permit the visualization of lymphatic channels and their functional derangements in an easy, minimally invasive way, not routinely achievable by other imaging techniques |

  12. Studies on adaptive responses in Chinese hamster cells

    International Nuclear Information System (INIS)

    Michelin, S.C.; Perez, M.R. Del; Dubner, D.; Gisone, P.A.

    1997-01-01

    For many years the possibility has been considered of low doses of radiation inducing adaptive responses in cells and organisms against the mutagenic effects of radiation. Currently, a number of experimental data appraise the existence of an adaptive response that is characterized by a decrease of radiation induced genetic damages. The understanding of the molecular mechanism involved in this phenomenon permits to estimate the effects and risks of low dose exposure. In this work, preliminary results of studies on the induction of adaptive response in cells subjected to different doses of ionizing radiation are presented

  13. Adapting a reactor safety assessment system for specific plants

    International Nuclear Information System (INIS)

    Ballard, T.L.; Cordes, G.A.

    1991-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system being developed by the Idaho National Engineering Laboratory, the University of Maryland (UofM) and US Nuclear Regulatory Commission (NRC) for use in the NRC Operations center. RSAS is designed to help the Reactor Safety Team monitor and project core status during an emergency at a licensed nuclear power plant. Analysis uses a hierarchical plant model based on equipment availability and automatically input parametric plant information. There are 3 families of designs of pressurized water reactors and 75 plants using modified versions of the basic design. In order to make an RSAS model for each power plant, a generic model for a given plant type is used with differences being specified by plant specific files. Graphical displays of this knowledge are flexible enough to handle any plant configuration. A variety of tools have been implemented to make it easy to modify a design to fit a given plant while minimizing chance for error. 3 refs., 4 figs

  14. Adaptation of cell renewal systems under continuous irradiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1987-01-01

    There are adaptive changes in the proliferative characteristics of renewal tissues under the stress of continuous low-dose-rate irradiation which indicate that cell and tissue kinetics will have a considerable effect on the radiation response. Factors that determine the adaptation response involve cellular radiosensitivity, i.e. cell cycle effects, which determine the rate of cell sterilization and death, and compensatory cell proliferation and the capacity for regeneration, i.e. changes in the patterns of cell population kinetics, which determine the rate of cell birth. In rapidly dividing cell renewal systems, there is an effective elimination of damaged cells, with almost complete repair of cellular nonlethal damage. In slowly dividing renewal tissues, there is some repair or elimination of cellular radiation damage and the pattern of cell proliferation during regeneration is relatively little disturbed by prior continuous irradiation. Experimental data on intestinal epithelium, immunohematopoietic tissues, seminiferous epithelium and regenerating liver are presented. Discussion includes differences in adaptation to continuous low-dose-rate irradiation involving intracellular and extracellular control mechanisms which regulate cellular proliferation and differentiation and, thereby, control cell population levels and physiological function. 29 references

  15. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Daniil M Prigozhin

    Full Text Available Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.

  16. Interplay between cytoskeletal stresses and cell adaptation under chronic flow.

    Directory of Open Access Journals (Sweden)

    Deepika Verma

    Full Text Available Using stress sensitive FRET sensors we have measured cytoskeletal stresses in α-actinin and the associated reorganization of the actin cytoskeleton in cells subjected to chronic shear stress. We show that long-term shear stress reduces the average actinin stress and this effect is reversible with removal of flow. The flow-induced changes in cytoskeletal stresses are found to be dynamic, involving a transient decrease in stress (phase-I, a short-term increase (3-6 min (Phase-II, followed by a longer-term decrease that reaches a minimum in ~20 min (Phase-III, before saturating. These changes are accompanied by reorganization of the actin cytoskeleton from parallel F-actin bundles to peripheral bundles. Blocking mechanosensitive ion channels (MSCs with Gd(3+ and GsMTx4 (a specific inhibitor eliminated the changes in cytoskeletal stress and the corresponding actin reorganization, indicating that Ca(2+ permeable MSCs participate in the signaling cascades. This study shows that shear stress induced cell adaptation is mediated via MSCs.

  17. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.

    Science.gov (United States)

    Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn

    2010-11-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Virus-Specific T Cells: Broadening Applicability.

    Science.gov (United States)

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-01-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. All rights reserved.

  19. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  20. Optimal Multitrial Prediction Combination and Subject-Specific Adaptation for Minimal Training Brain Switch Designs

    NARCIS (Netherlands)

    Spyrou, L.; Blokland, Y.M.; Farquhar, J.D.R.; Bruhn, J.

    2016-01-01

    Brain-Computer Interface (BCI) systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system.

  1. Optimal multitrial prediction combination and subject-specific adaptation for minimal training brain switch designs

    NARCIS (Netherlands)

    Spyrou, L.; Blokland, Y.M.; Farquhar, J.D.R.; Bruhn, J.

    2016-01-01

    Brain-Computer Interface systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system. A

  2. β-Cell Adaptability during Pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Horn, Signe; Kirkegaard, Jeanette S.

    2016-01-01

    Pregnancy is a physiological condition associated with β-cell mass expansion occurring in response to increased insulin demand. If the insulin resistance is not compensated by proper augmented insulin production gestational diabetes will occur. As reviewed herein, pregnancy induced hormonal changes...... have occupied scientists since the beginning of the last century where important discoveries of the hormonal regulation of metabolism during pregnancy have been accomplished. Of the multiple hormonal and metabolic changes the somatolactogenic hormones, placental lactogens (PL) and placental growth...... and function during pregnancy have been elucidated. This has identified contributions of a number of known peptide hormones and growth factors (EGF, NGF, HGF, IGFs, GLP-1) and steroid hormones (progesterone, estrogens, glucocorticoids). In addition, glucokinase has been found to be essential for the both...

  3. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  4. Relation between radio-adaptive response and cell to cell communication

    International Nuclear Information System (INIS)

    Keiichiro Ishii

    1996-01-01

    Ionizing radiation has been considered to cause severe damages to DNA and do harm to cells in proportion to the dose, however low it might be. In 1984, Wolff et al. showed that human peripheral lymphocytes adapted to the low-dose radiation from 3 H-TdR added in culture medium and became resistant to the subsequent irradiation with high-doses of X-rays. This response, which is called radio-adaptive response, is also induced by X-rays and gamma-rays in human lymphocytes and Chinese hamster V79 cells. However, the mechanisms of and conditions for adaptive responses to radiation have not been clarified. With an objective of clarifying the conditions for adaptive responses of cells to radiation, we examined how the cell to cell communication is involved in the adaptive responses. We irradiated normal human embryo-derived (HE) cells and cancer cells (HeLa) in culture at high density with low-dose X-ray and examined their radio-adaptive responses by measuring the changes in sensitivity to subsequent high-dose X-ray irradiation using the Trypan Blue dye-exclusion test method. We also conducted experiments to examine the effects of Ca 2+ ions and Phorbol 12-Myristate 13-Acetate (TPA) which are supposed to be involved in cell to cell communication. (author)

  5. Effects of practice schedule and task specificity on the adaptive process of motor learning.

    Science.gov (United States)

    Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar

    2017-10-01

    This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  7. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells

    OpenAIRE

    Tompkins, Joshua D.; Hall, Christine; Chen, Vincent Chang-yi; Li, Arthur Xuejun; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2012-01-01

    The stability of human embryonic stem cells (hESCs) is of critical importance for both experimental and clinical applications. We find that as an initial response to altered culture conditions, hESCs change their transcription profile for hundreds of genes and their DNA methylation profiles for several genes outside the core pluripotency network. After adaption to conditions of feeder-free defined and/or xeno-free culture systems, expression and DNA methylation profiles are quite stable for a...

  8. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    Science.gov (United States)

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  9. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  10. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    Science.gov (United States)

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  11. Cancer-specific self-efficacy and psychosocial and functional adaptation to early stage breast cancer.

    Science.gov (United States)

    Manne, Sharon L; Ostroff, Jamie S; Norton, Tina R; Fox, Kevin; Grana, Generosa; Goldstein, Lori

    2006-04-01

    Although self-efficacy is considered a key psychological resource in adapting to chronic physical illness, this construct has received less attention among individuals coping with cancer. To examine changes in cancer self-efficacy over time among women with early stage breast cancer and associations between task-specific domains of self-efficacy and specific psychological, relationship, and functional outcomes. Ninety-five women diagnosed with early stage breast cancer completed surveys postsurgery and 1 year later. Cancer-related self-efficacy was relatively stable over 1 year, with only 2 domains of efficacy-(a) Activity Management and (b) Self-Satisfaction-evidencing significant increases over the 1-year time period. Cross-sectional findings were relatively consistent with predictions and suggested that specific domains of self-efficacy were more strongly related to relevant domains of adaptation. Longitudinal findings were not as consistent with the domain-specificity hypothesis but did suggest several predictive associations between self-efficacy and outcomes. Personal Management self-efficacy was associated with higher relationship satisfaction, higher Communication Self-Efficacy was associated with less functional impairment, and higher Affective Management self-efficacy was associated with higher self-esteem 1 year later. Specific domains of cancer-related self-efficacy are most closely related to relevant areas of adaptation when considered cross-sectionally, but further study is needed to clarify the nature of these relationships over time.

  12. Human Milk Oligosaccharide 2′-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2018-03-01

    Full Text Available BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d. challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH. Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05 enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27 expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were

  13. Brain-specific enhancers for cell-based therapy

    Science.gov (United States)

    Visel, Axel; Rubenstein, John L.R.; Chen, Ying-Jiun; Pennacchio, Len A.; Vogt, Daniel; Nicholas, Cory; Kriegstein, Arnold

    2018-04-24

    Herein are described a set of novel specific human enhancers for specific forebrain cell types used to study and select for human neural progenitor cells. This approach enables the ability to generate interneurons from human ES, iPS and iN cells, making them available for human transplantation and for molecular/cellular analyzes. These approaches are also directly applicable to generating other neuronal cell types, such as cortical and striatal projection neurons, which have implications for many human diseases.

  14. Shielding analysis of the IEM cell offset adapter plate

    International Nuclear Information System (INIS)

    Simons, R.L.

    1995-01-01

    The adapter plate for the Interim Examination and Maintenance (IEM) cell ten foot ceiling valve was modified so that the penetration through the valve is offset to the north side of the steel plate. The modifications required that the shielding effectiveness be evaluated for several operating conditions. The highest gamma ray dose rate (51 mrem/hr) occurs when a Core Component Container (CCC) with six high burn-up driver fuel assemblies is transferred into or out of Solid Waste Cask (SWC). The neutron dose rate at the same source location is 2.5 mrem/hr. The total dose rate during the transfer is less than the 200 mrem/hr limit. If the ten foot ceiling valve is closed, the dose rate with twelve DFA in the cell will be less than 0.1 mrem/hr. However, with the ceiling valve open the dose rate will be as high as 12 mrem/hr. The latter condition will require controlled access to the area around the offset adapter plate when the ceiling valve is open. It was found that gaps in the shield block around the SWC floor valve will allow contact dose rates as high as 350 mrem/hr during the transfer of a fully loaded CCC. Although this situation does not pertain to the offset adapter plate, it will require controlled access around the SWC valve during the transfer of a fully loaded CCC

  15. The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development.

    Science.gov (United States)

    Miyazaki, Masaki; Miyazaki, Kazuko; Chen, Kenian; Jin, Yi; Turner, Jacob; Moore, Amanda J; Saito, Rintaro; Yoshida, Kenichi; Ogawa, Seishi; Rodewald, Hans-Reimer; Lin, Yin C; Kawamoto, Hiroshi; Murre, Cornelis

    2017-05-16

    Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation

    Directory of Open Access Journals (Sweden)

    Nicholas Jones

    2017-11-01

    Full Text Available Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR and peptides presented by human leukocyte antigens (pHLA. The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.

  17. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  18. The role of stimulus-specific adaptation in songbird syntax generation

    Science.gov (United States)

    Wittenbach, Jason D.

    Sequential behaviors are an important part of the behavioral repertoire of many animals and understanding how neural circuits encode and generate such sequences is a long-standing question in neuroscience. The Bengalese finch is a useful model system for studying variable action sequences. The songs of these birds consist of well-defined vocal elements (syllables) that are strung together to form sequences. The ordering of the syllables within the sequence is variable but not random - it shows complex statistical patterns (syntax). While often thought to be first-order, the syntax of the Bengalese finch song shows a distinct form of history dependence where the probability of repeating a syllable decreases as a function of the number of repetitions that have already occurred. Current models of the Bengalese finch song control circuitry offer no explanation for this repetition adaptation. The Bengalese finch also uses real-time auditory feedback to control the song syntax. Considering these facts, we hypothesize that repetition adaptation in the Bengalese finch syntax may be caused by stimulus-specific adaptation - a wide-spread phenomenon where neural responses to a specific stimulus become weaker with repeated presentations of the same stimulus. We begin by proposing a computational model for the song-control circuit where an auditory feedback signal that undergoes stimulus-specific adaptation helps drive repeated syllables. We show that this model does indeed capture the repetition adaptation observed in Bengalese finch syntax; along the way, we derive a new probabilistic model for repetition adaptation. Key predictions of our model are analyzed in light of experiments performed by collaborators. Next we extend the model in order to predict how the syntax will change as a function of brain temperature. These predictions are compared to experimental results from collaborators where portions of the Bengalese finch song circuit are cooled in awake and behaving birds

  19. Neuromuscular adaptations associated with knee joint angle-specific force change.

    Science.gov (United States)

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  20. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    Semwal, Girish; Rastogi, Vipul

    2014-01-01

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  1. Spatial consequences of bleaching adaptation in cat retinal ganglion cells.

    Science.gov (United States)

    Bonds, A B; Enroth-Cugell, C

    1981-01-01

    1. Experiments were conducted to study the effects of localized bleaching on the centre responses of rod-driven cat retinal ganglion cells. 2. Stimulation as far as 2 degrees from the bleaching site yielded responses which were reduced nearly as much as those generated at the bleaching site. Bleaching in the receptive field middle reduced responsiveness at a site 1 degrees peripheral more than bleaching at that peripheral site itself. 3. The effectiveness of a bleach in reducing centre responsiveness is related to the sensitivity of the region in which the bleach is applied. 4. Response reduction after a 0.2 degree bleach followed the same temporal pattern for concentric test spots of from 0.2 to 1.8 degrees in diameter, implying a substantially uniform spread of adaptation within these bounds. 5. A linear trade-off between fraction of rhodopsin and area bleached over a range of 8:1 yields the same pattern of response reduction, implying that the non-linear nature of bleaching adaptation is a property of the adaptation pool rather than independent photoreceptors. PMID:7320894

  2. Mucorales-Specific T Cells in Patients with Hematologic Malignancies

    OpenAIRE

    Potenza, L; Vallerini, D; Barozzi, P; Riva, G; Gilioli, A; Forghieri, F; Candoni, A; Cesaro, S; Quadrelli, C; Maertens, J; Rossi, G; Morselli, M; Codeluppi, M; Mussini, C; Colaci, E

    2016-01-01

    Background Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. Method...

  3. Cell Type-Specific Contributions to the TSC Neuropathology

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0415 TITLE: Cell Type-Specific Contributions to the TSC Neuropathology PRINCIPAL INVESTIGATOR: Gabriella D’Arcangelo...AND SUBTITLE Cell Type-Specific Contributions to the TSC Neuropathology 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0415 5c. PROGRAM...how heterozygous and homozygous Tsc2 mutations affect the development of mutant excitatory neurons as well as other surrounding brain cells , in vivo

  4. The diagnostic adaptive behavior scale: evaluating its diagnostic sensitivity and specificity.

    Science.gov (United States)

    Balboni, Giulia; Tassé, Marc J; Schalock, Robert L; Borthwick-Duffy, Sharon A; Spreat, Scott; Thissen, David; Widaman, Keith F; Zhang, Dalun; Navas, Patricia

    2014-11-01

    The Diagnostic Adaptive Behavior Scale (DABS) was constructed with items across three domains--conceptual, social, and practical adaptive skills--and normed on a representative sample of American individuals from 4 to 21 years of age. The DABS was developed to focus its assessment around the decision point for determining the presence or absence of significant limitations of adaptive behavior for the diagnosis of Intellectual Disability (ID). The purpose of this study, which was composed of 125 individuals with and 933 without an ID-related diagnosis, was to determine the ability of the DABS to correctly identify the individuals with and without ID (i.e., sensitivity and specificity). The results indicate that the DABS sensitivity coefficients ranged from 81% to 98%, specificity coefficients ranged from 89% to 91%, and that the Area Under the Receiver Operating Characteristic Curve were excellent or good. These results indicate that the DABS has very good levels of diagnostic efficiency. Copyright © 2014. Published by Elsevier Ltd.

  5. Nck adapter proteins: functional versatility in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2009-02-01

    Full Text Available Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.

  6. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  7. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Science.gov (United States)

    Potenza, Leonardo; Vallerini, Daniela; Barozzi, Patrizia; Riva, Giovanni; Gilioli, Andrea; Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Lewis, Russell E; Luppi, Mario

    2016-01-01

    Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  8. Mucorales-Specific T Cells in Patients with Hematologic Malignancies.

    Directory of Open Access Journals (Sweden)

    Leonardo Potenza

    Full Text Available Invasive mucormycosis (IM is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients.By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3% of 204 patients, accounting for 32 (5.3% of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD, showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD: 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD.Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.

  9. Induction of specific suppressor T cells in vitro

    International Nuclear Information System (INIS)

    Eardley, D.D.; Gershon, R.K.

    1976-01-01

    We describe conditions for generating sheep red blood cell-specific suppressor T cells in Mishell-Dutton cultures. The production of specific suppressor cells is favored by increasing antigen dose in the initial culture but can be produced by transferring more cells when lower doses of antigen are used. Transfer of small numbers of cells cultured with low doses of antigen leads to a specific helper effect. Transfer of large numbers of educated cells leads to nonspecific suppression. Suppression can be effected by the effluent cells from nylon wool columns which do not make detectable PFC. A fraction of these cells become resistant to treatment with anti-T cell sera and complement after culture. The suppressor cells are radiation sensitive and must be able to synthesize protein to suppress. They take 2 to 3 days of education to reach maximum suppressive efficiency and will not suppress cultures if added 2 to 3 days after culture initiation. Their production is favored by the absence of mercaptoethanol, suggesting that the observed suppression is not ''too much help.'' The ability to generate specific suppressor cells in vitro should be of great benefit in determining the factors that regulate their appearance in vivo

  10. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell.

    Directory of Open Access Journals (Sweden)

    Ryan Chong

    Full Text Available Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin

  11. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  12. Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Ortega, Alicia; Hoover, Elizabeth A.; Grove, Daniel M.; Holmes, Edward C.; Parrish, Colin R.

    2014-01-01

    Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184

  13. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species.

    Directory of Open Access Journals (Sweden)

    Andrew B Allison

    2014-11-01

    Full Text Available Canine parvovirus (CPV emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV, a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR, the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.

  14. Angiocrine functions of organ-specific endothelial cells

    Science.gov (United States)

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  15. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  16. Responses of crayfish photoreceptor cells following intense light adaptation.

    Science.gov (United States)

    Cummins, D R; Goldsmith, T H

    1986-01-01

    After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10-15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: The voltage responses are more phasic than those of control photoreceptors. The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/l EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Computer modeling describes gravity-related adaptation in cell cultures.

    Science.gov (United States)

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  18. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  19. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  20. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  1. Osteocalcin and bone-specific alkaline phosphatase in Sickle cell ...

    African Journals Online (AJOL)

    specific alkaline phosphatase (b-AP) total protein levels were evaluated as indicators of bone turnover in twenty patients with sickle cell haemoglobinopathies and in twenty normal healthy individuals. The serum bonespecific alkaline phosphatase ...

  2. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  3. Haunted Bodies: Cell Switching, Getting Lost and Adaptive Geographies

    Directory of Open Access Journals (Sweden)

    Jane Grant

    2017-11-01

    Full Text Available This article proposes the ideas of stochastic resonance and noise as devices with which to think of the body or self as plural and porous. Boundaries and surfaces are proposed as indefinite; cell switching and narratives of the self are discussed in relation to external forces, via Arendt’s inter-subjectivity and La Celca’s colonization as infection. The sonic artwork Ghost, which uses models of spiking neurons to materialize endogenous and exogenous composition in relation to noise and sonic memory is presented as an exploration of the boundary or limit of the notion of self. This paper, which serves as a cogitatum (a force rather than cognitio (the result, articulates the human body as a complex and open system that steers towards chaos by adapting and accepting further complexity as, and within, constantly adaptive networks of creativity. We suggest that by focusing on the porosity of boundaries and the mechanisms that underlie their permeability, problems around identity and subjectivity might be seen in a new light.

  4. Birthdating studies reshape models for pituitary gland cell specification.

    Science.gov (United States)

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  6. Reversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Lina; Abou-Antoun, Thamara; Vukmanovic, Stanislav; Sandler, Anthony D., E-mail: asandler@childrensnational.org [The Joseph E. Robert Center for Surgical Care, Children’s National Medical Center, Washington, DC (United States); The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC (United States)

    2012-08-02

    We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity, and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin, and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic, and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  7. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  8. Validation of a Cross-cultural Adaptation of the Hair Specific Skindex-29 Scale to Spanish.

    Science.gov (United States)

    Guerra-Tapia, A; Buendía-Eisman, A; Ferrando, J

    2018-06-01

    Female androgenetic alopecia (FAA) has considerable impact on quality of life. Our analysis of the clinical scales available in the literature to measure the impact of FAA led us to choose the Hair Specific Skindex 29 (HSS29) as the most appropriate for adaptation to Spanish as a tool for following patients in treatment for FAA. This tool assesses disease impact on quality of life over time so that treatments can be tailored to patients' needs. The HSS29 score reflects impact in 3 domains (emotions, symptoms, and functioning) on a scale of 0 (no effect) to 100 (maximum effect). The scale is useful in routine clinical practice, and patients can respond to all items in 5minutes. We followed recommended procedures to produce a cross-cultural adaptation of the scale. The process involved forward translation of the questionnaire to Spanish followed by back translation by 2 native speakers of the original language (English) and revision as needed after discussion and consensus by a committee of 3 expert dermatologists. The comprehensibility of the resulting translation was assessed in a test-retest step. Next, the psychometric properties, reliability, and construct validity were assessed. Sensitivity and specificity were evaluated with the area under the receiver operating characteristic (ROC) curve, reliability with Cronbach's α, and construct validity by factor analysis using a Varimax rotation. Face validity was also assessed during the process. The intraclass correlation coefficient (ICC) was calculated in the test-retest step. A total of 170 women with FAA and 30 control subjects completed the cross-culturally adapted Spanish questionnaire. A subgroup of 15 subjects responded a second time between 1 and 2 days after their first session (test-retest). Sensitivity and specificity were excellent according to the area under the ROC curve (0.98; 95% CI, 0.97-0.99), and high reliability was reflected by a Cronbach's α of 0.96. Factor analysis showed that the items were

  9. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-as...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  10. Surviving colorectal cancer: long-term, persistent ostomy-specific concerns and adaptations.

    Science.gov (United States)

    Sun, Virginia; Grant, Marcia; McMullen, Carmit K; Altschuler, Andrea; Mohler, M Jane; Hornbrook, Mark C; Herrinton, Lisa J; Baldwin, Carol M; Krouse, Robert S

    2013-01-01

    The purpose of this article was to describe persistent ostomy-specific concerns and adaptations in long-term (>5 years) colorectal cancer survivors with ostomies. Thirty-three colorectal cancer survivors who participated in 8 gender- and health-related quality of life stratified focus groups and 130 colorectal cancer survivors who provided written comments to 2 open-ended questions on ostomy location and pouch problems participated in the study. Data were collected on health maintenance organization members in Oregon, southwestern Washington, and northern California. Qualitative data were analyzed for the 8 focus groups and written comments from 2 open-ended survey questions. Discussions from the focu s groups were recorded, transcribed, and analyzed using content analysis. Written content from the open-ended questions was derived from a mailed questionnaire on health-related quality of life in survivors with ostomies and analyzed using content analysis. Discussions related to persistent ostomy-related issues more than 5 years after formation were common. Persistent ostomy-related issues were focused on clothing restrictions and adaptations, dietary concerns, issues related to ostomy equipment and self-care, and the constant need to find solutions to adjust and readjust to living with an ostomy. Ostomy-specific concerns persist 5 years and more for long-term colorectal cancer survivors after initial ostomy formation. Adaptations tend to be individualized and based on trial and error. Findings underscore the need to develop long-term support mechanisms that survivors can access to promote better coping and adjustment to living with an ostomy.

  11. [Specification of cell destiny in early Caenorhabditis elegans embryo].

    Science.gov (United States)

    Schierenberg, E

    1997-02-01

    Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.

  12. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  13. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  14. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  15. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    Science.gov (United States)

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  16. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  17. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  18. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    Science.gov (United States)

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  19. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  20. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  1. Managing inter-cell interference with advanced receivers and rank adaptation in 5G small cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    -cell interference management. In this paper, we evaluate whether it is possible to rely on such advanced receivers as the main tool to deal with the inter-cell interference problem. We present a system-level performance evaluation in three different dense indoor small cell scenarios using a receiver model...... that includes both interference rejection combining (IRC) and successive interference cancellation (SIC) principles, as well as different rank adaptation strategies. Our results confirm that interference suppression receivers with a supportive system design can indeed represent a valid alternative to frequency...

  2. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset event-related potentials.

    Science.gov (United States)

    Grzeschik, Ramona; Lewald, Jörg; Verhey, Jesko L; Hoffmann, Michael B; Getzmann, Stephan

    2016-01-01

    Adaptation to visual or auditory motion affects within-modality motion processing as reflected by visual or auditory free-field motion-onset evoked potentials (VEPs, AEPs). Here, a visual-auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion-onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion-onset VEPs, i.e. the intra-modal adaptation conditions, direction-specific adaptation was observed--the change-N2 (cN2) and change-P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion-onset AEPs, i.e. the cross-modal adaptation condition, there was an effect of motion history only in the change-P1 (cP1), and this effect was not direction-specific--cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion-onset AEPs. While the VEP results provided clear evidence for the existence of a direction-specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion-related, but not a direction-specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Adaptability and specificity of inhibition processes in distractor-induced blindness.

    Science.gov (United States)

    Winther, Gesche N; Niedeggen, Michael

    2017-12-01

    In a rapid serial visual presentation task, inhibition processes cumulatively impair processing of a target possessing distractor properties. This phenomenon-known as distractor-induced blindness-has thus far only been elicited using dynamic visual features, such as motion and orientation changes. In three ERP experiments, we used a visual object feature-color-to test for the adaptability and specificity of the effect. In Experiment I, participants responded to a color change (target) in the periphery whose onset was signaled by a central cue. Presentation of irrelevant color changes prior to the cue (distractors) led to reduced target detection, accompanied by a frontal ERP negativity that increased with increasing number of distractors, similar to the effects previously found for dynamic targets. This suggests that distractor-induced blindness is adaptable to color features. In Experiment II, the target consisted of coherent motion contrasting the color distractors. Correlates of distractor-induced blindness were found neither in the behavioral nor in the ERP data, indicating a feature specificity of the process. Experiment III confirmed the strict distinction between congruent and incongruent distractors: A single color distractor was embedded in a stream of motion distractors with the target consisting of a coherent motion. While behavioral performance was affected by the distractors, the color distractor did not elicit a frontal negativity. The experiments show that distractor-induced blindness is also triggered by visual stimuli predominantly processed in the ventral stream. The strict specificity of the central inhibition process also applies to these stimulus features. © 2017 Society for Psychophysiological Research.

  4. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma.

    Science.gov (United States)

    Orlando, Domenico; Miele, Evelina; De Angelis, Biagio; Guercio, Marika; Boffa, Iolanda; Sinibaldi, Matilde; Po, Agnese; Caruana, Ignazio; Abballe, Luana; Carai, Andrea; Caruso, Simona; Camera, Antonio; Moseley, Annemarie; Hagedoorn, Renate S; Heemskerk, Mirjam H M; Giangaspero, Felice; Mastronuzzi, Angela; Ferretti, Elisabetta; Locatelli, Franco; Quintarelli, Concetta

    2018-04-03

    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 medulloblastoma patients. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T cell-related toxicity,an inducible caspase 9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically-modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating HLA-A*02+ medulloblastoma patients. Copyright ©2018, American Association for Cancer Research.

  5. Effect of antigen on localization of immunologically specific B cells

    International Nuclear Information System (INIS)

    Ponzio, N.M.; Chapman, J.M.; Thorbecke, G.J.

    1976-01-01

    Studies were conducted to demonstrate homing of memory B cells to sites of antigen localization in lymph nodes, using functional criteria to detect local presence of memory cells at varying intervals after intravenous injection. Cell suspensions were prepared from spleens of donor mice injected with complete Freund's adjuvant. Recipient mice were injected with Escherichia coli endotoxin and immune or normal spleen cells and were gamma-irradiated. Results indicated that passively transferred unilateral B cell memory was established. The development over a period of several days of this difference between left and right lymph nodes suggests that recirculating memory B cells are being progressively selected by antigen in the lymph node, rather than that this difference is due to a specific exit of cells from the circulation towards the antigen

  6. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  7. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling. © 2014 Wiley Periodicals, Inc.

  8. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    Science.gov (United States)

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  9. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE.

    Science.gov (United States)

    Esen, Nilufer; Katyshev, Vladimir; Serkin, Zakhar; Katysheva, Svetlana; Dore-Duffy, Paula

    2016-01-19

    In the brain, chronic inflammatory activity may lead to compromised delivery of oxygen and glucose suggesting that therapeutic approaches aimed at restoring metabolic balance may be useful. In vivo exposure to chronic mild normobaric hypoxia (10 % oxygen) leads to a number of endogenous adaptations that includes vascular remodeling (angioplasticity). Angioplasticity promotes tissue survival. We have previously shown that induction of adaptive angioplasticity modulates the disease pattern in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). In the present study, we define mechanisms by which adaptation to low oxygen functionally ameliorates the signs and symptoms of EAE and for the first time show that tissue hypoxia may fundamentally alter neurodegenerative disease. C57BL/6 mice were immunized with MOG, and some of them were kept in the hypoxia chambers (day 0) and exposed to 10 % oxygen for 3 weeks, while the others were kept at normoxic environment. Sham-immunized controls were included in both hypoxic and normoxic groups. Animals were sacrificed at pre-clinical and peak disease periods for tissue collection and analysis. Exposure to mild hypoxia decreased histological evidence of inflammation. Decreased numbers of cluster of differentiation (CD)4+ T cells were found in the hypoxic spinal cords associated with a delayed Th17-specific cytokine response. Hypoxia-induced changes did not alter the sensitization of peripheral T cells to the MOG peptide. Exposure to mild hypoxia induced significant increases in anti-inflammatory IL-10 levels and an increase in the number of spinal cord CD25+FoxP3+ T-regulatory cells. Acclimatization to mild hypoxia incites a number of endogenous adaptations that induces an anti-inflammatory milieu. Further understanding of these mechanisms system may pinpoint possible new therapeutic targets to treat neurodegenerative disease.

  10. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.

  11. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways.

    Science.gov (United States)

    Yang, Zhi-Kai; Luo, Hao; Zhang, Yanming; Wang, Baijing; Gao, Feng

    2018-05-03

    The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S. cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational DSBs-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders (NDs). By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. fgao@tju.edu.cn. Supplementary data are available at Bioinformatics online.

  12. CLAss-Specific Subspace Kernel Representations and Adaptive Margin Slack Minimization for Large Scale Classification.

    Science.gov (United States)

    Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan

    2018-02-01

    In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.

  13. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  14. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  15. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  16. Design principle of TVO's final repository and preliminary adaptation to site specific conditions

    International Nuclear Information System (INIS)

    Salo, J-P.; Reikkola, R.

    1995-01-01

    Teollisuuden Voima Oy (TVO) is responsible for the management of spent fuel produced by the Olkiluoto power plant. TVO's current programme of spent fuel management is based on the guidelines and time schedule set by the Finnish Government. TVO has studied a final disposal concept in which the spent fuel bundles are encapsulated in copper canisters and emplaced in Finnish bedrock. According to the plan the final repository for spent fuel will be in operation by 2020. TVO's updated technical plans for the disposal of spent fuel together with a performance analysis (TVO-92) were submitted to the authorities in 1992. The paper describes the design principle of TVO's final repository and preliminary adaptation of the repository to site specific conditions. (author). 10 refs., 5 figs

  17. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type...... II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells...

  18. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  20. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  1. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Science.gov (United States)

    Ganot, Philippe; Moya, Aurélie; Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-07-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  2. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Directory of Open Access Journals (Sweden)

    Philippe Ganot

    2011-07-01

    Full Text Available Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion, which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones or aposymbiotic (also called bleached A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm. A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both

  3. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  4. Engineering Specificity and Function of Therapeutic Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Jenny L. McGovern

    2017-11-01

    Full Text Available Adoptive therapy with polyclonal regulatory T cells (Tregs has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.

  5. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats.

    Science.gov (United States)

    Kraemer, William J; Flanagan, Shawn D; Volek, Jeff S; Nindl, Bradley C; Vingren, Jakob L; Dunn-Lewis, Courtenay; Comstock, Brett A; Hooper, David R; Szivak, Tunde K; Looney, David P; Maresh, Carl M; Hymer, Wesley C

    2013-12-01

    The anterior pituitary gland (AP) increases growth hormone (GH) secretion in response to resistance exercise (RE), but the nature of AP adaptations to RE is unknown. To that end, we examined the effects of RE on regional AP somatotroph GH release, structure, and relative quantity. Thirty-six Sprague-Dawley rats were assigned to one of four groups: 1) no training or acute exercise (NT-NEX); 2) no training with acute exercise (NT-EX); 3) resistance training without acute exercise (RT-NEX); 4) resistance training with acute exercise (RT-EX). RE incorporated 10, 1 m-weighted ladder climbs at an 85° angle. RT groups trained 3 days/wk for 7 wk, progressively. After death, trunk blood was collected, and each AP was divided into quadrants (ventral-dorsal and left-right). We measured: 1) trunk plasma GH; 2) somatotroph GH release; 3) somatotroph size; 4) somatotroph secretory content; and 5) percent of AP cells identified as somatotrophs. Trunk GH differed by group (NT-NEX, 8.9 ± 2.4 μg/l; RT-NEX, 9.2 ± 3.5 μg/l; NT-EX, 15.6 ± 3.4 μg/l; RT-EX, 23.4 ± 4.6 μg/l). RT-EX demonstrated greater somatotroph GH release than all other groups, predominantly in ventral regions (P pituitary gland. RE training appears to induce dynamic adaptations in somatotroph structure and function.

  6. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  7. Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes

    Directory of Open Access Journals (Sweden)

    Rhea Matthew R.

    2016-03-01

    Full Text Available Purpose. The purpose of this study was to examine the influence of training at different ranges of motion during the squat exercise on joint-angle specific strength adaptations. Methods. Twenty eight men were randomly assigned to one of three training groups, differing only in the depth of squats (quarter squat, half squat, and full squat performed in 16-week training intervention. Strength measures were conducted in the back squat pre-, mid-, and post-training at all three depths. Vertical jump and 40-yard sprint time were also measured. Results. Individuals in the quarter and full squat training groups improved significantly more at the specific depth at which they trained when compared to the other two groups (p < 0.05. Jump height and sprint speed improved in all groups (p < 0.05; however, the quarter squat had the greatest transfer to both outcomes. Conclusions. Consistently including quarter squats in workouts aimed at maximizing speed and jumping power can result in greater improvements.

  8. A user-specific human-machine interaction strategy for a prosthetic shank adapter

    Directory of Open Access Journals (Sweden)

    Stuhlenmiller Florian

    2017-09-01

    Full Text Available For people with lower limb amputation, a user-specific human-machine interaction with their prostheses is required to ensure safe and comfortable assistance. Especially during dynamic turning manoeuvres, users experience high loads at the stump, which decreases comfort and may lead to long-term tissue damage. Preliminary experiments with users wearing a configurable, passive torsional adaptor indicate increased comfort and safety achieved by adaptation of torsional stiffness and foot alignment. Moreover, the results show that the individual preference regarding both parameters depend on gait situation and individual preference. Hence, measured loads in the structure of the prosthesis and subjective feedback regarding comfort and safety during different turning motions are considered in a user-specific human-machine interaction strategy for a prosthetic shank adaptor. Therefore, the interrelations of gait parameters with optimal configuration are stored in an individual preference-setting matrix. Stiffness and foot alignment are actively adjusted to the optimal parameters by a parallel elastic actuator. Two subjects reported that they experienced appropriate variation of stiffness and foot alignment, a noticeable reduction of load at the stump and that they could turn with less effort.

  9. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  10. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  11. Specific Cell (Re-)Programming: Approaches and Perspectives.

    Science.gov (United States)

    Hausburg, Frauke; Jung, Julia Jeannine; David, Robert

    2018-01-01

    Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.

  12. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  13. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  14. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  15. Specification of primordial germ cells in medaka (Oryzias latipes

    Directory of Open Access Journals (Sweden)

    Raz Erez

    2007-01-01

    Full Text Available Abstract Background Primordial germ cells (PGCs give rise to gametes that are responsible for the development of a new organism in the next generation. Two modes of germ line specification have been described: the inheritance of asymmetrically-localized maternally provided cytoplasmic determinants and the induction of the PGC fate by other cell types. PGCs specification in zebrafish appears to depend on inheritance of germ plasm in which several RNA molecules such as vasa and nanos reside. Whether the specification mode of PGCs found in zebrafish is general for other fish species was brought into question upon analysis of olvas expression – the vasa homologue in another teleost, medaka (Oryzias latipes. Here, in contrast to the findings in zebrafish, the PGCs are found in a predictable position relative to a somatic structure, the embryonic shield. This finding, coupled with the fact that vasa mRNA, which is localized to the germ plasm of zebrafish but does not label a similar structure in medaka opened the possibility of fundamentally different mechanisms governing PGC specification in these two fish species. Results In this study we addressed the question concerning the mode of PGC specification in medaka using embryological experiments, analysis of RNA stability in the PGCs and electron microscopy observations. Dramatic alterations in the somatic environment, i.e. induction of a secondary axis or mesoderm formation alteration, did not affect the PGC number. Furthermore, the PGCs of medaka are capable of protecting specific RNA molecules from degradation and could therefore exhibit a specific mRNA expression pattern controlled by posttrancriptional mechanisms. Subsequent analysis of 4-cell stage medaka embryos using electron microscopy revealed germ plasm-like structures located at a region corresponding to that of zebrafish germ plasm. Conclusion Taken together, these results are consistent with the idea that in medaka the inheritance of

  16. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  17. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  18. Host-specific adaptation of HIV-1 subtype B in the Japanese population.

    Science.gov (United States)

    Chikata, Takayuki; Carlson, Jonathan M; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L; Takiguchi, Masafumi

    2014-05-01

    The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele distributions differ among

  19. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    -based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  20. Cross-Cultural Adaptation and Initial Validation of the Stroke-Specific Quality of Life Scale into the Yoruba Language

    Science.gov (United States)

    Akinpelu, Aderonke O.; Odetunde, Marufat O.; Odole, Adesola C.

    2012-01-01

    Stroke-Specific Quality of Life 2.0 (SS-QoL 2.0) scale is used widely and has been cross-culturally adapted to many languages. This study aimed at the cross-cultural adaptation of SS-QoL 2.0 to Yoruba, the indigenous language of south-western Nigeria, and to carry out an initial investigation on its validity. English SS-QoL 2.0 was first adapted…

  1. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    Science.gov (United States)

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. A Methodological Report: Adapting the 505 Change-of-Direction Speed Test Specific to American Football.

    Science.gov (United States)

    Lockie, Robert G; Farzad, Jalilvand; Orjalo, Ashley J; Giuliano, Dominic V; Moreno, Matthew R; Wright, Glenn A

    2017-02-01

    Lockie, RG, Jalilvand, F, Orjalo, AJ, Giuliano, DV, Moreno, MR, and Wright, GA. A methodological report: Adapting the 505 change-of-direction speed test specific to American football. J Strength Cond Res 31(2): 539-547, 2017-The 505 involves a 10-m sprint past a timing gate, followed by a 180° change-of-direction (COD) performed over 5 m. This methodological report investigated an adapted 505 (A505) designed to be football-specific by changing the distances to 10 and 5 yd. Twenty-five high school football players (6 linemen [LM]; 8 quarterbacks, running backs, and linebackers [QB/RB/LB]; 11 receivers and defensive backs [R/DB]) completed the A505 and 40-yd sprint. The difference between A505 and 0 to 10-yd time determined the COD deficit for each leg. In a follow-up session, 10 subjects completed the A505 again and 10 subjects completed the 505. Reliability was analyzed by t-tests to determine between-session differences, typical error (TE), and coefficient of variation. Test usefulness was examined via TE and smallest worthwhile change (SWC) differences. Pearson's correlations calculated relationships between the A505 and 505, and A505 and COD deficit with the 40-yd sprint. A 1-way analysis of variance (p ≤ 0.05) derived between-position differences in the A505 and COD deficit. There were no between-session differences for the A505 (p = 0.45-0.76; intraclass correlation coefficient = 0.84-0.95; TE = 2.03-4.13%). Additionally, the A505 was capable of detecting moderate performance changes (SWC0.5 > TE). The A505 correlated with the 505 and 40-yard sprint (r = 0.58-0.92), suggesting the modified version assessed similar qualities. Receivers and defensive backs were faster than LM in the A505 for both legs, and right-leg COD deficit. Quarterbacks, running backs, and linebackers were faster than LM in the right-leg A505. The A505 is reliable, can detect moderate performance changes, and can discriminate between football position groups.

  3. Cytogenetic adaptive response of cultured fish cells to low doses of X-rays

    International Nuclear Information System (INIS)

    Kurihara, Yasuyuki; Etoh, Hisami; Rienkjkarn, M.

    1992-01-01

    The adaptive response was examining chromosomal aberrations and micronucleus in cultured fish cells, ULF-23 (mudminnow) and CAF-31 (gold fish). When cultured fish cells were first irradiated with small doses of X-rays, they became less sensitive to subsequent exposures to high doses. The effective adaptive dose was 4.8 cGy-9.5 cGy. Adaptive doses given cells in the G1 phase were more effective than when given in the S phase. The adaptive response was maximal at 5 hours and disappeared at 10 hours after the adaptive dose. The expression of the response was inhibited by treatment with 3-aminobenzamide, as reported for mammalian cells, and with arabinofuranoside cytosine, an inhibitor of DNA polymerase alpha. Caffeine, an inhibitor of post-replicational repair, had no effect on the response. (author)

  4. Cytogenetic adaptive response of cultured fish cells to low doses of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Yasuyuki; Etoh, Hisami (National Inst. of Radiological Sciences, Chiba (Japan)); Rienkjkarn, M.

    1992-12-01

    The adaptive response was examining chromosomal aberrations and micronucleus in cultured fish cells, ULF-23 (mudminnow) and CAF-31 (gold fish). When cultured fish cells were first irradiated with small doses of X-rays, they became less sensitive to subsequent exposures to high doses. The effective adaptive dose was 4.8 cGy-9.5 cGy. Adaptive doses given cells in the G1 phase were more effective than when given in the S phase. The adaptive response was maximal at 5 hours and disappeared at 10 hours after the adaptive dose. The expression of the response was inhibited by treatment with 3-aminobenzamide, as reported for mammalian cells, and with arabinofuranoside cytosine, an inhibitor of DNA polymerase alpha. Caffeine, an inhibitor of post-replicational repair, had no effect on the response. (author).

  5. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon. In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  6. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    Science.gov (United States)

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Electron microbeam specifications for use in cell irradiation experiments

    International Nuclear Information System (INIS)

    Kim, E.-H.; Choi, M.-C.; Lee, D.-H.; Chang, M.; Kang, C.-S.

    2003-01-01

    The microbeam irradiation system was devised originally to identify the hit and unhit cells by confining the beam within the target cell. The major achievement through the microbeam experiment studies has turned out to be the discovery of the 'bystander effect'. Microbeam experiments have been performed with alpha and proton beams in major and with soft x-rays in minor. The study with electron microbeam has been deferred mainly due to the difficulty in confining the electron tracks within a single target cell. In this paper, the electron microbeam irradiation system under development in Korea is introduced in terms of the beam specifications. The KIRAMS electron microbeam irradiation system consists of an electron gun, a vacuum chamber for beam collimation into 5 μm in diameter and a biology stage. The beam characteristics in terms of current and energy spectrum of the electrons entering a target cell and its neighbor cells were investigated by Monte Carlo simulation for the electron source energies of 25, 50, 75 and 100 keV. Energy depositions in the target cell and the neighbor cells were also calculated. The beam attenuation in current and energy occurs while electrons pass through the 2 μm-thick Mylar vacuum window, 100 μm-thick air gap and the 2 μm-thick Mylar bottom of cell dish. With 25 keV electron source, 80 % of decrease in current and 30 % of decrease in average energy were estimated before entering the target cell. With 75 keV electron source, on the other hand, 55 % of decrease in current and less than 1 % of decrease in average energy were estimated. Average dose per single collimated electron emission was 0.067 cGy to the target cell nucleus of 5 μm in diameter and 0.030 cGy to the cytoplasm of 2.5 μm in thickness with 25 keV electron source while they were 0.15 cGy and 0.019 cGy, respectively, with 75 keV electron source. The multiple scattering of electrons resulted in energy deposition in the neighbor cells as well. Dose to the first

  8. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    Science.gov (United States)

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  9. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  10. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  11. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates.

    Directory of Open Access Journals (Sweden)

    Sana Syed

    Full Text Available Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP dishes, which are flat, 2-dimensional (2D and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa and stiff (103 kPa gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration.

  12. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    International Nuclear Information System (INIS)

    Serck-Hanssen, G.; Soevik, O.

    1987-01-01

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125 I-insulin was carried out at 15 0 C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table

  13. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  14. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    Science.gov (United States)

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  15. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    Science.gov (United States)

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  16. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    the effect of contraction mode specific resistance training and protein supplementation on whole muscle and tendon hypertrophy. Quadriceps muscle and patellar tendon cross-sectional area (CSA) was quantified using magnetic resonance imaging pre and post 12 weeks of eccentric (Ecc) or concentric (Conc...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...... recovery from eccentric exercise In paper I, we evaluated the effect of a single bout of unaccustomed eccentric exercise on fiber type specific SC content by immunohistochemistry. Subjects received either hydrolysed whey protein (Whey) or iso-caloric carbohydrate (Placebo) in the days post eccentric...

  18. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  19. Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana).

    Science.gov (United States)

    Riesch, Rüdiger; Reznick, David N; Plath, Martin; Schlupp, Ingo

    2016-03-10

    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation.

  20. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  1. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2009-01-01

    This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  2. Quantitative measurement of pathogen specific human memory T cell repertoire diversity using a CDR3β-specific microarray

    Directory of Open Access Journals (Sweden)

    Gorski Jack

    2007-09-01

    Full Text Available Abstract Background Providing quantitative microarray data that is sensitive to very small differences in target sequence would be a useful tool in any number of venues where a sample can consist of a multiple related sequences present in various abundances. Examples of such applications would include measurement of pseudo species in viral infections and the measurement of species of antibodies or T cell receptors that constitute immune repertoires. Difficulties that must be overcome in such a method would be to account for cross-hybridization and for differences in hybridization efficiencies between the arrayed probes and their corresponding targets. We have used the memory T cell repertoire to an influenza-derived peptide as a test case for developing such a method. Results The arrayed probes were corresponded to a 17 nucleotide TCR-specific region that distinguished sequences differing by as little as a single nucleotide. Hybridization efficiency between highly related Cy5-labeled subject sequences was normalized by including an equimolar mixture of Cy3-labeled synthetic targets representing all 108 arrayed probes. The same synthetic targets were used to measure the degree of cross hybridization between probes. Reconstitution studies found the system sensitive to input ratios as low as 0.5% and accurate in measuring known input percentages (R2 = 0.81, R = 0.90, p 0.05. Conclusion This novel strategy appears to be robust and can be adapted to any situation where complex mixtures of highly similar sequences need to be quantitatively resolved.

  3. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Science.gov (United States)

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  4. Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

    Science.gov (United States)

    Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis

    2015-04-05

    We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.

  5. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  6. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  7. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  8. Spaceflight adaptation requires organ specific alterations in the proteomes of Arabidopsis

    Data.gov (United States)

    National Aeronautics and Space Administration — Life in spaceflight demonstrates remarkable adaptive processes within the specialized environments of space vehicles which are subject to the myriad of attending and...

  9. Cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng

    1993-01-01

    The cytogenetic adaptive response induced by pre-exposure in human lymphocytes and marrow cells of mice were studied. The results of this study showed that human lymphocytes in vitro and mouse marrow cells in vivo can become adapted to low-level irradiation from 3 H-TdR or exposure to a low dose of X-or γ-irradiation, so that they become less sensitive to the chromosomal damage effects of subsequent exposures. (4 tabs.)

  10. Adaptation effects to attractiveness of face photographs and art portraits are domain-specific

    Science.gov (United States)

    Hayn-Leichsenring, Gregor U.; Kloth, Nadine; Schweinberger, Stefan R.; Redies, Christoph

    2013-01-01

    We studied the neural coding of facial attractiveness by investigating effects of adaptation to attractive and unattractive human faces on the perceived attractiveness of veridical human face pictures (Experiment 1) and art portraits (Experiment 2). Experiment 1 revealed a clear pattern of contrastive aftereffects. Relative to a pre-adaptation baseline, the perceived attractiveness of faces was increased after adaptation to unattractive faces, and was decreased after adaptation to attractive faces. Experiment 2 revealed similar aftereffects when art portraits rather than face photographs were used as adaptors and test stimuli, suggesting that effects of adaptation to attractiveness are not restricted to facial photographs. Additionally, we found similar aftereffects in art portraits for beauty, another aesthetic feature that, unlike attractiveness, relates to the properties of the image (rather than to the face displayed). Importantly, Experiment 3 showed that aftereffects were abolished when adaptors were art portraits and face photographs were test stimuli. These results suggest that adaptation to facial attractiveness elicits aftereffects in the perception of subsequently presented faces, for both face photographs and art portraits, and that these effects do not cross image domains. PMID:24349690

  11. Adaptation Effects to Attractiveness of Face Photographs and Art Portraits are Domain-Specific

    Directory of Open Access Journals (Sweden)

    Gregor U. Hayn-Leichsenring

    2013-08-01

    Full Text Available We studied the neural coding of facial attractiveness by investigating effects of adaptation to attractive and unattractive human faces on the perceived attractiveness of veridical human face pictures (Experiment 1 and art portraits (Experiment 2. Experiment 1 revealed a clear pattern of contrastive aftereffects. Relative to a pre-adaptation baseline, the perceived attractiveness of faces was increased after adaptation to unattractive faces, and was decreased after adaptation to attractive faces. Experiment 2 revealed similar aftereffects when art portraits rather than face photographs were used as adaptors and test stimuli, suggesting that effects of adaptation to attractiveness are not restricted to facial photographs. Additionally, we found similar aftereffects in art portraits for beauty, another aesthetic feature that, unlike attractiveness, relates to the properties of the image (rather than to the face displayed. Importantly, Experiment 3 showed that aftereffects were abolished when adaptors were art portraits and face photographs were test stimuli. These results suggest that adaptation to facial attractiveness elicits aftereffects in the perception of subsequently presented faces, for both face photographs and art portraits, and that these effects do not cross image domains.

  12. Investigation of the response of low-dose irradiated cells. Pt. 2. Radio-adaptive response of human embryonic cells is related to cell-to-cell communication

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Watanabe, Masami.

    1994-01-01

    To clarify the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells and HeLa cells with low-dose X-ray and examined the changes in sensitivity to subsequent high-dose X-irradiation. The results obtained were as follows; (1) When HE cells were irradiated by a high-dose of 200 cGy, the growth ratio of the living cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a preliminary irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the relative growth ratios increased significantly to 45-53%. (2) This preliminary irradiation effect was not observed in HeLa cells, being cancer cells. (3) When the HE cells suspended in a Ca 2+ iron-free medium or TPA added medium while receiving the preliminary irradiation of 13 cGy, the effect of the preliminary irradiation in increasing the relative growth ratio of living cells was not observed. (4) This indicates that normal cells shows an adaptive response to low-dose radiation and become more radioresistant. This phenomenon is considered to involve cell-to-cell communication maintained in normal cells and intracellular signal transduction in which Ca 2+ ion plays a role. (author)

  13. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Seonmi Park

    2017-04-01

    Full Text Available Summary: Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs from patients of different ethnicities, β-globin gene (HBB haplotypes, and fetal hemoglobin (HbF levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS mutation. : In this resource article, Mostoslavsky, Murphy, and colleagues of the NextGen consortium describe a diverse, comprehensive, and characterized library of sickle cell disease-specific induced pluripotent stem cells (iPSCs from patients of different ethnicities, β-globin gene (HBB haplotypes and fetal hemoglobin (HbF levels. This bank is readily available and accessible to all investigators. Keywords: induced pluripotent stem cells, iPSCs, sickle cell disease, disease modeling, directed differentiation, gene correction

  14. CELLISA: reporter cell-based immunization and screening of hybridomas specific for cell surface antigens.

    Science.gov (United States)

    Chen, Peter; Mesci, Aruz; Carlyle, James R

    2011-01-01

    Monoclonal antibodies (mAbs) specific for cell surface antigens are an invaluable tool to study immune receptor expression and function. Here, we outline a generalized reporter cell-based approach to the generation and high-throughput screening of mAbs specific for cell surface antigens. Termed CELLISA, this technology hinges upon the capture of hybridoma supernatants in mAb arrays that facilitate ligation of an antigen of interest displayed on BWZ reporter cells in the form of a CD3ζ-fusion chimeric antigen receptor (zCAR); in turn, specific mAb-mediated cross-linking of zCAR on BWZ cells results in the production of β-galactosidase enzyme (β-gal), which can be assayed colorimetrically. Importantly, the BWZ reporter cells bearing the zCAR of interest may be used for immunization as well as screening. In addition, serial immunizations employing additional zCAR- or native antigen-bearing cell lines can be used to increase the frequency of the desired antigen-specific hybridomas. Finally, the use of a cohort of epitope-tagged zCAR (e.g., zCAR(FLAG)) variants allows visualization of the cell surface antigen prior to immunization, and coimmunization using these variants can be used to enhance the immunogenicity of the target antigen. Employing the CELLISA strategy, we herein describe the generation of mAb directed against an uncharacterized natural killer cell receptor protein.

  15. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  16. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  17. Adaptive response to ionizing radiation induced by low doses of gamma rays in human cell lines

    International Nuclear Information System (INIS)

    Seong, Jinsil; Chang, Ok Suh; Gwi, Eon Kim

    1995-01-01

    Purpose: The aim of this study was to investigate whether the adaptive response could be induced in human lymphoblastoid cell lines and human tumor cell lines. The time necessary for the expression of the adaptive response was also investigated. Materials and Methods: Three lymphoblastoid cell lines from ataxia telangiectasia (AT) homozygote (GM 1526), AT heterozygote (GM 3382), and normal individual (3402p) and two hepatoma cell lines, Hep G2 and Hep 3B, were used in this study. Experiments were carried out by delivering 0.01 Gy followed by 0.5 Gy of gamma radiation to the exponentially growing cells. The time necessary for the expression of the adaptive response was determined by varying the time interval between the two doses from 1 to 72 h. In some experiments, 3-aminobenzamide, a potent inhibitor of poly (ADP-ribose) polymerase, was added immediately after the 0.5 Gy exposure. The cultures were fixed 30 min (for the G 2 chromatid) and 6 h (for the S chromatid) after the 0.5 Gy exposure. Metaphase chromosome assay was carried out to score chromatid breaks as an end point. Results: A prior exposure to 0.01 Gy of gamma rays significantly reduced the number of chromatid breaks induced by subsequent higher doses (0.5 Gy) in all the tested cell lines. The magnitude of the adaptive response was similar among the cell lines despite their different radiosensitivities. In the G 2 chromatids, the adaptive response was observed both at short-time intervals, as early as 1 h, and at long-time intervals. In the S chromatids, however, the adaptive response was shown only at long-time intervals. When 3-aminobenzamide was added after the 0.5 Gy, the adaptive responses were abolished in all the experimental groups. Conclusion: The adaptive response was observed in human lymphoblastoid cell lines and hepatoma cell lines. The magnitude of the adaptive response did not seem to be related to the radiosensitivity of the cells. The elimination of the adaptive response with 3

  18. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Science.gov (United States)

    Hannemann, Sebastian; Galán, Jorge E

    2017-07-01

    Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  19. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    2017-07-01

    Full Text Available Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  20. Gene-specific cell labeling using MiMIC transposons.

    Science.gov (United States)

    Gnerer, Joshua P; Venken, Koen J T; Dierick, Herman A

    2015-04-30

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    Science.gov (United States)

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  2. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    Science.gov (United States)

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the

  3. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  4. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  5. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    Science.gov (United States)

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  7. Reprint of: Virus-Specific T Cells: Broadening Applicability.

    Science.gov (United States)

    Barrett, A John; Prockop, Susan; Bollard, Catherine M

    2018-03-01

    Virus infection remains an appreciable cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Although pharmacotherapy and/or antibody therapy may help prevent or treat viral disease, these drugs are expensive, toxic, and often ineffective due to primary or secondary resistance. Further, effective treatments are limited for many infections (eg, adenovirus, BK virus), which are increasingly detected after alternative donor transplants. These deficiencies in conventional therapeutics have increased interest in an immunotherapeutic approach to viral disorders, leading to adoptive transfer of virus-specific cytotoxic T lymphocytes (VSTs), which can rapidly reconstitute antiviral immunity post-transplantation without causing graft-versus-host disease. This review will explore how the VST field has improved outcomes for many patients with life-threatening viral infections after HSCT, and how to broaden applicability beyond the "patient-specific" products, as well as extending to other viral diseases even outside the context of HSCT. Copyright © 2018. Published by Elsevier Inc.

  8. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  9. Cell-type-specific gene delivery into neuronal cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Parveen, Zahida; Mukhtar, Muhammad; Rafi, Mohammed; Wenger, David A.; Siddiqui, Khwaja M.; Siler, Catherine A.; Dietzschold, Bernhard; Pomerantz, Roger J.; Schnell, Matthias J.; Dornburg, Ralph

    2003-01-01

    The avian retroviruses reticuloendotheliosis virus strain A (REV-A) and spleen necrosis virus (SNV) are not naturally infectious in human cells. However, REV-A-derived viral vectors efficiently infect human cells when they are pseudotyped with envelope proteins displaying targeting ligands specific for human cell-surface receptors. Here we report that vectors containing the gag region of REV-A and pol of SNV can be pseudotyped with the envelope protein of vesicular stomatitis virus (VSV) and the glycoproteins of different rabies virus (RV) strains. Vectors pseudotyped with the envelope protein of the highly neurotropic RV strain CVS-N2c facilitated cell type-specific gene delivery into mouse and human neurons, but did not infect other human cell types. Moreover, when such vector particles were injected into the brain of newborn mice, only neuronal cells were infected in vivo. Cell-type-specific gene delivery into neurons may present quite specific gene therapy approaches for many degenerative diseases of the brain

  10. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  11. Cell-Type-Specific Splicing of Piezo2 Regulates Mechanotransduction

    Directory of Open Access Journals (Sweden)

    Marcin Szczot

    2017-12-01

    Full Text Available Summary: Piezo2 is a mechanically activated ion channel required for touch discrimination, vibration detection, and proprioception. Here, we discovered that Piezo2 is extensively spliced, producing different Piezo2 isoforms with distinct properties. Sensory neurons from both mice and humans express a large repertoire of Piezo2 variants, whereas non-neuronal tissues express predominantly a single isoform. Notably, even within sensory ganglia, we demonstrate the splicing of Piezo2 to be cell type specific. Biophysical characterization revealed substantial differences in ion permeability, sensitivity to calcium modulation, and inactivation kinetics among Piezo2 splice variants. Together, our results describe, at the molecular level, a potential mechanism by which transduction is tuned, permitting the detection of a variety of mechanosensory stimuli. : Szczot et al. find that the mechanoreceptor Piezo2 is extensively alternatively spliced, generating multiple distinct isoforms. Their findings indicate that these splice products have specific tissue and cell type expression patterns and exhibit differences in receptor properties. Keywords: Piezo, touch, sensation, ion-channel, splicing

  12. Functional adaptation of the human β-cells after frequent exposure to noradrenaline

    DEFF Research Database (Denmark)

    Dela, Flemming

    2015-01-01

    KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown that this me......KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown...... that this memory is introduced by 10 daily intravenous infusions of noradrenaline, mimicking the increases that occur during a 10 day training programme. Thus, after the infusion period, the subjects produced less insulin in response to the same stimulus. It is concluded that exercise-induced increases...... in noradrenaline is most likely the stimulus that introduces a memory in the insulin-producing cells. ABSTRACT: Physical training decreases glucose- and arginine-stimulated insulin secretion. The mechanism by which the pancreatic β-cells adapt to the training status of the individual is not known. We hypothesized...

  13. A Distributed Taxation Based Rank Adaptation Scheme for 5G Small Cells

    DEFF Research Database (Denmark)

    Catania, Davide; Cattoni, Andrea Fabio; Mahmood, Nurul Huda

    2015-01-01

    The further densification of small cells impose high and undesirable levels of inter-cell interference. Multiple Input Multiple Output (MIMO) systems along with advanced receiver techniques provide us with extra degrees of freedom to combat such a problem. With such tools, rank adaptation...

  14. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  15. Priming anticancer active specific immunotherapy with dendritic cells.

    Science.gov (United States)

    Mocellin, Simone

    2005-06-01

    Dendritic cells (DCs) probably represent the most powerful naturally occurring immunological adjuvant for anticancer vaccines. However, the initial enthusiasm for DC-based vaccines is being tempered by clinical results not meeting expectations. The partial failure of current vaccine formulations is explained by the extraordinary complexity of the immune system, which makes the task of exploiting the potential of such a biotherapeutic approach highly challenging. Clinical findings obtained in humans so far indicate that the immune system can be actively polarized against malignant cells by means of DC-based active specific immunotherapy, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally 'dormant' immune effectors can actually be employed as endogenous weapons against malignant cells. Only the thorough understanding of DC biology and tumor-host immune system interactions will allow researchers to reproduce, in a larger set of patients, the cellular/molecular conditions leading to an effective immune-mediated eradication of cancer.

  16. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    International Nuclear Information System (INIS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-01-01

    Terbium layered hydroxide nanoparticles (Tb_2(OH)_5NO_3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb_2(OH)_5NO_3 resulted in the preparation of two optimized nanoparticles. In particular, Tb_2(OH)_5NO_3:Eu and Tb_2(OH)_5NO_3-FA were prepared when Tb_2(OH)_5NO_3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb_2(OH)_5NO_3, could render these nanoparticles appropriate for biomedical applications.

  17. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@uoc.gr [University of Crete, Department of Chemistry (Greece)

    2016-07-15

    Terbium layered hydroxide nanoparticles (Tb{sub 2}(OH){sub 5}NO{sub 3}) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb{sub 2}(OH){sub 5}NO{sub 3} resulted in the preparation of two optimized nanoparticles. In particular, Tb{sub 2}(OH){sub 5}NO{sub 3}:Eu and Tb{sub 2}(OH){sub 5}NO{sub 3}-FA were prepared when Tb{sub 2}(OH){sub 5}NO{sub 3} was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb{sub 2}(OH){sub 5}NO{sub 3}, could render these nanoparticles appropriate for biomedical applications.

  18. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kirstin B. Langer

    2018-04-01

    Full Text Available Summary: Retinal ganglion cells (RGCs are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs. : In this article, Langer and colleagues present extensive characterization of RGC subtypes derived from human pluripotent stem cells, with multiple subtypes identified by subtype-specific molecular markers. Their results present a more detailed analysis of RGC diversity in human cells and yield the use of different markers to identify RGC subtypes. Keywords: iPSC, retina, retinal ganglion cell, RGC subtype, stem cell, ipRGC, alpha RGC, direction selective RGC, RNA-seq

  19. Virus-Specific T Cells for the Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Amy Houghtelin

    2017-10-01

    Full Text Available While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST, which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.

  20. Virus-Specific T Cells for the Immunocompromised Patient.

    Science.gov (United States)

    Houghtelin, Amy; Bollard, Catherine M

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo .

  1. Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions.

    Science.gov (United States)

    Medina, M I; Botella, M A; Quesada, M A; Valpuesta, V

    1997-05-05

    A tomato peroxidase gene, TPX2, that is only weakly expressed in the roots of young tomato seedlings is highly expressed in tomato suspension cells adapted to high external NaCl concentration. The protein encoded by this gene, with an isolectric point value of approximately 9.6, is found in the culture medium of the growing cells. Our data suggest that the expression of TPX2 in the salt-adapted cells is not the result of the elicitation imposed by the in vitro culture or the presence of high NaCl concentration in the medium.

  2. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might ...

  3. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  4. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  5. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  6. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    Science.gov (United States)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  7. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    Isabella Quinti

    2017-06-01

    Full Text Available Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.

  8. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte

    2014-01-01

    is able to stimulate proliferation of rat beta cells. We have identified several circulating factors that may contribute to beta cell adaptation to pregnancy. Further studies are needed to elucidate their possible role in glucose homeostasis in the mother and her offspring.......OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...

  9. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  10. Dynamically adapted context-specific hyper-articulation: Feedback from interlocutors affects speakers’ subsequent pronunciations

    Science.gov (United States)

    Buz, Esteban; Tanenhaus, Michael K.; Jaeger, T. Florian

    2016-01-01

    We ask whether speakers can adapt their productions when feedback from their interlocutors suggests that previous productions were perceptually confusable. To address this question, we use a novel web-based task-oriented paradigm for speech recording, in which participants produce instructions towards a (simulated) partner with naturalistic response times. We manipulate (1) whether a target word with a voiceless plosive (e.g., pill) occurs in the presence of a voiced competitor (bill) or an unrelated word (food) and (2) whether or not the simulated partner occasionally misunderstands the target word. Speakers hyper-articulated the target word when a voiced competitor was present. Moreover, the size of the hyper-articulation effect was nearly doubled when partners occasionally misunderstood the instruction. A novel type of distributional analysis further suggests that hyper-articulation did not change the target of production, but rather reduced the probability of perceptually ambiguous or confusable productions. These results were obtained in the absence of explicit clarification requests, and persisted across words and over trials. Our findings suggest that speakers adapt their pronunciations based on the perceived communicative success of their previous productions in the current environment. We discuss why speakers make adaptive changes to their speech and what mechanisms might underlie speakers’ ability to do so. PMID:27375344

  11. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  12. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  13. Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors.

    Science.gov (United States)

    Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal

    2018-01-01

    Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Pyrethroids (specifically type 2) such as fenvalerate (-5.534 kcal/mol: CD8), fluvalinate (-4.644 and - 4.431 kcal/mol: CD4 and CD45), and cypermethrin (-3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1.

  14. Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms

    Directory of Open Access Journals (Sweden)

    Elena Calzolari

    2017-11-01

    Full Text Available Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs, as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1. Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2, is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24 to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3. Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These

  15. Antigen-Specific Polyclonal Cytotoxic T Lymphocytes Induced by Fusions of Dendritic Cells and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2010-01-01

    Full Text Available The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs that can reduce the tumor mass. Dendritic cells (DCs are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.

  16. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria

    2005-01-01

    dephosphorylation of linker for activation of T cells and ERK upon activation. Normal TCR levels and cytokine production were restored by culturing cells in the absence of TCR/spMHC interaction, demonstrating dynamic tuning of peripheral T cell responses. The effect of avidity for self-ligand(s) on this sensory...... ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage....

  17. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    Science.gov (United States)

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  18. B-1 cell immunoglobulin directed against oxidation-specific epitopes

    Directory of Open Access Journals (Sweden)

    Dimitrios eTsiantoulas

    2013-01-01

    Full Text Available Natural antibodies (NAbs are pre-existing antibodies with germline origin that arise in the absence of previous exposure to foreign antigens. NAbs are produced by B-1 lymphocytes and are primarily of the IgM isotype. There is accumulating evidence that - in addition to their role in antimicrobial host defense - NAbs exhibit important housekeeping functions by facilitating the non-immunogenic clearance of apoptotic cells as well as the removal of (neo-self antigens. These properties are largely mediated by the ability of NAbs to recognize highly conserved and endogenously generated structures, which are exemplified by so-called oxidation-specific epitopes (OSEs that are products of lipid peroxidation. The generation of OSEs as well as their interaction with the immune system have been studied extensively in the context of atherosclerosis, a chronic inflammatory disease of the vascular wall that is characterized by the accumulation of cellular debris and oxidized low-density lipoproteins (OxLDL. Both apoptotic cells as well as OxLDL carry OSEs that are targeted by NAbs. Therefore, OSEs represent stress-induced neo-self structures that mediate recognition of metabolic waste (e.g. cellular debris by NAbs, allowing its safe disposal, which has fundamental implications in health and disease.

  19. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  20. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    Science.gov (United States)

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  1. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  2. Child and parental adaptation to pediatric stem cell transplantation

    NARCIS (Netherlands)

    Vrijmoet-Wiersma, C. M. Jantien; Kolk, Annemarie M.; Grootenhuis, Martha A.; Spek, Emmelien M.; van Klink, Jeanine M. M.; Egeler, R. Maarten; Bredius, Robbert G. M.; Koopman, Hendrik M.

    2009-01-01

    Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting stress

  3. Child and parental adaptation to pediatric stem cell transplantation

    NARCIS (Netherlands)

    Vrijmoet-Wiersma, C.M.J.; Kolk, A.M.; Grootenhuis, M.A.; Spek, E.M.; van Klink, J.M.M.; Egeler, R.M.; Bredius, R.G.M.; Koopman, H.M.

    2009-01-01

    Goals of work: Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting

  4. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Highsmith, R.F.; Gallaher, M.J.

    1986-01-01

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125 I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  5. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Highsmith, R.F.; Gallaher, M.J.

    1986-03-05

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive /sup 125/I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface.

  6. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  7. Sex-specific functional adaptation of the femoral diaphysis to body composition.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Santos, Frédéric; Dupej, Ján; Velemínská, Jana; Brůžek, Jaroslav

    2018-03-24

    The human femoral diaphysis is often used to reconstruct loading histories (mobility, activity, body mass). The proximal femur is known to be differentially affected by changes in total fat-mass (FM), fat-free mass (FFM), and body fat percentage (BF%), but the adaptation of the entire diaphysis to body composition has not been thoroughly characterized to date. Understanding how the femoral diaphysis adapts to body components would benefit biomechanical interpretations of the femoral variation and nutrition-related studies. Combining various methods from clinical nutrition, biological anthropology, and geometric morphometrics, we evaluated the correlation of measures taken on the entire femoral diaphysis with estimated FM, FFM, and BF% from 61 CT scans (17 females, 44 males). The sample was predominantly composed of people with obesity. Cortical area of the cross-sections and local cortical thickness showed high correlation with BF% in particular, in females only. The curvature significantly decreased with FM and BF% in both sexes. The lowest correlations are found with FFM. The observed sexual dimorphism is consistent with differing aging processes; cortical bone decreases in females through endosteal resorption while it remains almost constant in males who compensate for endosteal resorption by periosteal apposition on the diaphyseal surface. The functional adaptation to compressive forces indicates a systemic endosteal apposition of bone material with increased BF% and FM in females only. FM and BF% are linked to a straighter femur in both sexes, suggesting an optimization of the resistance to compressive loads by distributing them more linearly along the entire diaphysis. © 2018 Wiley Periodicals, Inc.

  8. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    Science.gov (United States)

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  9. Adaptability and variability of the cell functions to the environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tadatoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1995-02-01

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author).

  10. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion.

    Science.gov (United States)

    Kolter, Julia; Feuerstein, Reinhild; Spoeri, Evelyne; Gharun, Kourosh; Elling, Roland; Trieu-Cuot, Patrick; Goldmann, Tobias; Waskow, Claudia; Chen, Zhijian J; Kirschning, Carsten J; Deshmukh, Sachin D; Henneke, Philipp

    2016-03-15

    Streptococci are common human colonizers with a species-specific mucocutaneous distribution. At the same time, they are among the most important and most virulent invasive bacterial pathogens. Thus, site-specific cellular innate immunity, which is predominantly executed by resident and invading myeloid cells, has to be adapted with respect to streptococcal sensing, handling, and response. In this article, we show that TLR13 is the critical mouse macrophage (MΦ) receptor in the response to group B Streptococcus, both in bone marrow-derived MΦs and in mature tissue MΦs, such as those residing in the lamina propria of the colon and the dermis, as well as in microglia. In contrast, TLR13 and its chaperone UNC-93B are dispensable for a potent cytokine response of blood monocytes to group B Streptococcus, although monocytes serve as the key progenitors of intestinal and dermal MΦs. Furthermore, a specific role for TLR13 with respect to MΦ function is supported by the response to staphylococci, where TLR13 and UNC-93B limit the cytokine response in bone marrow-derived MΦs and microglia, but not in dermal MΦs. In summary, TLR13 is a critical and site-specific receptor in the single MΦ response to β-hemolytic streptococci. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Refining VHDL Specifications Through Conformance Testing: Case Study of an Adaptive Computing Architecture

    National Research Council Canada - National Science Library

    Duale, Ali

    1999-01-01

    .... Such an integration will allow for the removal of costly mistakes from a specification at an early stage of the development process before they propagate into different implementations, possibly...

  13. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  14. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    2010-08-01

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  15. Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude

    Directory of Open Access Journals (Sweden)

    Reza Nadafi

    2018-02-01

    Full Text Available For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs, presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs that encountered antigens (Ags is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge. Consequently, the initiation of the cellular and humoral immune response was diminished. Ag-specific CD8+ and CD4+ T cells as well as Ag-specific germinal center B cells and serum immunoglobulin levels were significantly decreased. Hence, we postulate that alterations to the production of extracellular matrix, as seen in various connective tissue disorders, may in the end affect the qualitative outcome of adaptive immunity.

  16. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential

    Science.gov (United States)

    Wolfart, Jakob; Laker, Debora

    2015-01-01

    Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies. PMID:26124723

  17. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Park, Seonmi; Gianotti-Sommer, Andreia; Molina-Estevez, Francisco Javier; Vanuytsel, Kim; Skvir, Nick; Leung, Amy; Rozelle, Sarah S; Shaikho, Elmutaz Mohammed; Weir, Isabelle; Jiang, Zhihua; Luo, Hong-Yuan; Chui, David H K; Figueiredo, Maria Stella; Alsultan, Abdulraham; Al-Ali, Amein; Sebastiani, Paola; Steinberg, Martin H; Mostoslavsky, Gustavo; Murphy, George J

    2017-04-11

    Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities, β-globin gene (HBB) haplotypes, and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Specific adaptations of neuromuscular control and knee joint stiffness following sensorimotor training.

    Science.gov (United States)

    Gruber, M; Bruhn, S; Gollhofer, A

    2006-08-01

    The aim of this study was to examine how fixations of the ankle joint during sensorimotor training (SMT) influence adaptations in mechanical stiffness and neuromuscular control of the knee joint. Sixty-three healthy subjects were randomly assigned to three training groups that differed in their degree of ankle joint fixation, which was either barefooted, with an ankle brace or with a ski boot. Mechanical knee joint stiffness and reflex control of m. vastus medialis, m. vastus lateralis, m. biceps femoris, and m. semitendinosus were tested during force controlled anterior tibial displacements. This force was applied as both a fast and a slow stimulus. After the training period the group that trained barefooted showed an increase in mechanical stiffness of the knee joint from 79 +/- 21 (Mean +/- SD) N/mm to 110 +/- 38 N/mm (p boots was able to improve knee joint stiffness from 67 +/- 26 N/mm to 96 +/- 47 N/mm (p knee joint injuries.

  19. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  20. Training-specific muscle architecture adaptation after 5-wk training in athletes.

    Science.gov (United States)

    Blazevich, Anthony J; Gill, Nicholas D; Bronks, Roger; Newton, Robert U

    2003-12-01

    This study examined changes in the muscle size, muscle architecture, strength, and sprint/jump performances of concurrently training athletes during 5 wk of "altered" resistance training (RT). Eight female and 15 male athletes performed 4 wk of sprint, jump, and resistance training in addition to their sports training (standardization) before adopting one of three different programs for 5 wk: 1) squat lift training (SQ, N = 8) with sprint/jump training; 2) forward hack squat training (FHS, N = 7) with sprint/jump training; or 3) sprint/jump training only (SJ, N = 8). Muscle size, fascicle angle, and fascicle length of the vastus lateralis (VL) and rectus femoris (RF) muscles (using ultrasound procedures) as well as 20-m sprint run, vertical jump, and strength performance changes were examined. A small increase in VL fascicle angle in SQ and FHS was statistically different to the decrease in SJ subjects (P < 0.05 at distal, P < 0.1 at proximal). VL fascicle length increased for SJ only (P < 0.05 at distal, P < 0.1 at proximal) and increased in RF in SQ subjects (P < 0.05). Muscle thickness of VL and RF increased in all training groups (P < 0.05) but only at proximal sites. There were no between-group differences in squat, forward hack squat, or isokinetic strength performances, or in sprint or jump performances, despite improvements in some of the tests across the groups. Significant muscle size and architectural adaptations can occur in concurrently training athletes in response to a 5-wk training program. These adaptations were possibly associated with the force and velocity characteristics of the training exercises but not the movement patterns. Factors other than, or in addition to, muscle architecture must mediate changes in strength, sprint, and jump performance.

  1. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H 2 O 2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H 2 O 2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Directory of Open Access Journals (Sweden)

    Sylvie Lachmann

    Full Text Available The mammalian protein kinase N (PKN family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  3. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Science.gov (United States)

    Lachmann, Sylvie; Jevons, Amy; De Rycker, Manu; Casamassima, Adele; Radtke, Simone; Collazos, Alejandra; Parker, Peter J

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  4. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  5. Adaptation of red cell enzymes and intermediates in metabolic disorders.

    Science.gov (United States)

    Goebel, K M; Goebel, F D; Neitzert, A; Hausmann, L; Schneider, J

    1975-01-01

    The metabolic activity of the red cell glycolytic pathway hexose monophosphate shunt (HMP) with dependent glutathione system was studied in patients with hyperthyroidism (n = 10), hyperlipoproteinemia (n = 16), hypoglycemia (n = 25) and hyperglycemia (n = 23). In uncontrolled diabetics and patients with hyperthyroidism the mean value of glucose phosphate isomerase (GPI), glucose-6-phosphate dehydrogenase (G-6-PD), glutathione reductase (GR) was increased, whereas these enzyme activities were reduced in patients with hypoglycemia. Apart from a few values of hexokinase (HK) which were lower than normal the results in hyperlipoproteinemia patients remained essentially unchanged, including the intermediates such as 2,3-diphosphoglycerate (2,3-DPG), adenosine triphosphate (ATP) and reduced glutathione (GSH). While increased rates of 2,3-DPG and ATP in hypoglycemia patients were obtained, these substrates were markedly reduced in diabetics.

  6. Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope

    International Nuclear Information System (INIS)

    Ciernik, Ilja F.; Romero, Pedro; Berzofsky, Jay A.; Carbone, David P.

    1999-01-01

    Background: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. Methods: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. Results: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. Conclusions: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines

  7. Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors.

    OpenAIRE

    Oreffo, R O; Francis, J A; Triffitt, J T

    1985-01-01

    Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.

  8. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  9. Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanyu [Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Liu, Luying [Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou (China); Sharma, Sherven [David Geffen School of Medicine at UCLA, and the Department of Veterans Affairs, Los Angeles, CA (United States); Liu, Hai; Yang, Weifang; Sun, Xiaonan [Department of Radiotherapy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Dong, Qinghua, E-mail: dongqinghua@zju.edu.cn [Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Adaptive radioresistant KYSE-150R cells expressed high level of Bmi-1. Black-Right-Pointing-Pointer Bmi-1 depletion sensitized KYSE-150R cells to RT. Black-Right-Pointing-Pointer Bmi-1 depletion increased the generation of ROS in KYSE-150R cells exposed to radiation. Black-Right-Pointing-Pointer Bmi-1 depletion impaired DNA repair capacities in KYSE-150R cells exposed to radiation. -- Abstract: Radiotherapy (RT) is a major modality of cancer treatment. However, tumors often acquire radioresistance, which causes RT to fail. The exact mechanisms by which tumor cells subjected to fractionated irradiation (FIR) develop an adaptive radioresistance are largely unknown. Using the radioresistant KYSE-150R esophageal squamous cell carcinoma (ESCC) model, which was derived from KYSE-150 parental cells using FIR, the role of Bmi-1 in mediating the radioadaptive response of ESCC cells to RT was investigated. The results showed that the level of Bmi-1 expression was significantly higher in KYSE-150R cells than in the KYSE-150 parental cells. Bmi-1 depletion sensitized the KYSE-150R cells to RT mainly through the induction of apoptosis, partly through the induction of senescence. A clonogenic cell survival assay showed that Bmi-1 depletion significantly decreased the radiation survival fraction in KYSE-150R cells. Furthermore, Bmi-1 depletion increased the generation of reactive oxygen species (ROS) and the expression of oxidase genes (Lpo, Noxo1 and Alox15) in KYSE-150R cells exposed to irradiation. DNA repair capacities assessed by {gamma}-H2AX foci formation were also impaired in the Bmi-1 down-regulated KYSE-150R cells. These results suggest that Bmi-1 plays an important role in tumor radioadaptive resistance under FIR and may be a potent molecular target for enhancing the efficacy of fractionated RT.

  10. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P; Bergthaler, Andreas; Baliga, Nitin S; Urdahl, Kevin B; Aderem, Alan

    2016-10-11

    The regulation of host-pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155-induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.

  11. Lipidomic Adaptations in White and Brown Adipose Tissue in Response to Exercise Demonstrate Molecular Species-Specific Remodeling

    Directory of Open Access Journals (Sweden)

    Francis J. May

    2017-02-01

    Full Text Available Exercise improves whole-body metabolic health through adaptations to various tissues, including adipose tissue, but the effects of exercise training on the lipidome of white adipose tissue (WAT and brown adipose tissue (BAT are unknown. Here, we utilize MS/MSALL shotgun lipidomics to determine the molecular signatures of exercise-induced adaptations to subcutaneous WAT (scWAT and BAT. Three weeks of exercise training decrease specific molecular species of phosphatidic acid (PA, phosphatidylcholines (PC, phosphatidylethanolamines (PE, and phosphatidylserines (PS in scWAT and increase specific molecular species of PC and PE in BAT. Exercise also decreases most triacylglycerols (TAGs in scWAT and BAT. In summary, exercise-induced changes to the scWAT and BAT lipidome are highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflect selective remodeling in scWAT and BAT of both phospholipids and glycerol lipids in response to exercise training, thus providing a comprehensive resource for future studies of lipid metabolism pathways.

  12. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  13. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress

    Directory of Open Access Journals (Sweden)

    Paulina Kucharzewska

    2013-03-01

    Full Text Available Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.

  14. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  15. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia.

    NARCIS (Netherlands)

    Wust, R.C.; Jaspers, R.T.; Heyst, A.F.J. van; Hopman, M.T.E.; Hoofd, L.J.C.; Laarse, W.J. van der; Degens, H.

    2009-01-01

    Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same

  16. Assessing Disease Class-Specific Diagnostic Ability: A Practical Adaptive Test Approach.

    Science.gov (United States)

    Papa, Frank J.; Schumacker, Randall E.

    Measures of the robustness of disease class-specific diagnostic concepts could play a central role in training programs designed to assure the development of diagnostic competence. In the pilot study, the authors used disease/sign-symptom conditional probability estimates, Monte Carlo procedures, and artificial intelligence (AI) tools to create…

  17. Adaptive remodeling of the biliary tree: the essence of liver progenitor cell expansion.

    Science.gov (United States)

    Kok, Cindy Yuet-Yin; Miyajima, Atsushi; Itoh, Tohru

    2015-07-01

    The liver progenitor cell population has long been thought to exist within the liver. However, there are no standardized criteria for defining the liver progenitor cells, and there has been intense debate about the origin of these cells in the adult liver. The characteristics of such cells vary depending on the disease model used and also on the method of analysis. Visualization of three-dimensional biliary structures has revealed that the emergence of liver progenitor cells essentially reflects the adaptive remodeling of the hepatic biliary network in response to liver injury. We propose that the progenitor cell exists as a subpopulation in the biliary tree and show that the appearance of liver progenitor cells in injured parenchyma is reflective of extensive remodeling of the biliary structure. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  18. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    Science.gov (United States)

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  19. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.

    2013-01-01

    Recent genetic analyses of candidate genes and gene expression in marine fishes have provided evidence of local adaptation in response to environmental differences, despite the lack of strong signals of population structure from conventional neutral genetic markers. In this study expression...... in flounder. In gill tissue a plastic response to salinity treatments was observed with general up-regulation of these genes concomitant with higher salinity. For liver tissue a population specific expression differences was observed with lower expression at simulated non-native compared to native salinities...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  20. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Science.gov (United States)

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  1. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E

    2014-01-01

    of differentiation on HIV-1-specific CD8+ T-cell populations(n = 128) spanning 11 different epitope targets. RESULTS: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR...

  2. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  3. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  4. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    Science.gov (United States)

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  5. ERE environment- and cell type-specific transcriptional effects of estrogen in normal endometrial cells.

    Science.gov (United States)

    Lascombe, I; Sallot, M; Vuillermoz, C; Weisz, A; Adessi, G L; Jouvenot, M

    1998-04-30

    Our previous results have suggested a repression of E2 (17beta-estradiol) effect on the c-fos gene of cultured guinea-pig endometrial cells. To investigate this repression, the expression of three human c-fos gene recombinants, pFC1-BL (-2250/+41), pFC2-BL (-1400/+41) and pFC2E (-1300/-1050 and -230/+41), known to be E2-responsive in Hela cells, was studied in stromal (SC) and glandular epithelial cells (GEC). In both cellular types, pFC1-BL was not induced by E2, even in the presence of growth factors or co-transfected estrogen receptor. The pattern of pFC2-BL and pFC2E expression was strikingly different and depended on the cellular type: pFC2-BL and pFC2E induction was restricted to the glandular epithelial cells and did not occur in the SCs. We argue for a repression of E2 action which is dependent on the estrogen-responsive cis-acting element (ERE) environment and also cell type-specific involving DNA/protein and/or protein/protein interactions with cellular type-specific factors.

  6. Cancer: brain-regulated biphasic stress response induces cell growth or cell death to adapt to psychological stressors.

    Science.gov (United States)

    Thomas, Charles; Bhatia, Shruti

    2014-01-01

    According to Indian Vedic philosophy, a human being contains 3 major bodies: (1) the matter body--brain, organs, and senses; (2) the mental body--mind, individual consciousness, intellect, and ego; and (3) the soul or causal body--universal consciousness. The third, which is located in the heart according to all spiritual traditions and recent scientific literature, can be seen as the information body that contains all memories. The mental body, which can interface with the matter and information bodies, can be seen as a field of immaterial energy that can carry, regulate, and strengthen all information (eg, thoughts or emotions) both positively and negatively. This body of information may store ancestral and/or autobiographical memories: unconscious memories from inner traumas--inner information (Ii) or samskaras in Vedic philosophy--and conscious memories from outer traumas--outer information (Io). These conscious and unconscious memories can be seen as potential psychological stressors. Resonance between Ii and Io may induce active conflicts if resistance occurs in the mental body; this conflict may cause specific metabolic activity in the brain and a stress response in the physical body, which permits adjustment to psychological stressors. The brainregulated stress response may be biphasic: cell death or growth induced by adrenergic molecular pathways during the conflict's unresolved phase and reversion to cell growth or death induced by cholinergic molecular pathways during the conflict's resolved phase. Case studies and data mining from PubMed suggest that this concept complies with the principles of holistic medicine and the scientific literature supporting its benefits. We suggest that the evolution of cancer can be seen as a biphasic stress response regulated by the brain to adapt to psychological stressors, which produce imbalance among the physical, mental, and information bodies.

  7. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E.; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  8. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  9. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  11. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  12. Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts.

    Science.gov (United States)

    Kanie, Kei; Kato, Ryuji; Zhao, Yingzi; Narita, Yuji; Okochi, Mina; Honda, Hiroyuki

    2011-06-01

    Effective surface modification with biocompatible molecules is known to be effective in reducing the life-threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell-attracting properties on material surfaces, there have been few peptides that could control cell-specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell-specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular-related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell-specific preference was found for amino acids (longer than 5-mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  13. Parameter extraction of different fuel cell models with transferred adaptive differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Yan, Xuesong; Liu, Xiaobo; Cai, Zhihua

    2015-01-01

    To improve the design and control of FC (fuel cell) models, it is important to extract their unknown parameters. Generally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred adaptive DE (differential evolution) framework, in which the successful parameters of the adaptive DE solving previous problems are properly transferred to solve new optimization problems in the similar problem-domains. Based on this framework, an improved adaptive DE method (TRADE, in short) is presented as an illustration. To verify the performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models, i.e., PEMFC (proton exchange membrane fuel cell) and SOFC (solid oxide fuel cell). The results of TRADE are also compared with those of other state-of-the-art EAs (evolutionary algorithms). Even though the modification is very simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and fast. Moreover, the V–I characteristics obtained by TRADE agree well with the simulated and experimental data in all cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to provide better results compared with other EAs. - Highlights: • A framework of transferred adaptive differential evolution is proposed. • Based on the framework, an improved differential evolution (TRADE) is presented. • TRADE obtains very promising results to extract the parameters of PEMFC and SOFC models

  14. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment

    Directory of Open Access Journals (Sweden)

    Rui V. Simões

    2015-08-01

    Full Text Available Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells, leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1 provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2 lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.

  15. Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy

    Directory of Open Access Journals (Sweden)

    Parisa Lotfinegad

    2014-03-01

    Full Text Available Immunosuppressive ability of mesenchymal stem cells (MSCs, their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance.

  16. Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy

    Science.gov (United States)

    Lotfinegad, Parisa; Shamsasenjan, karim; Movassaghpour, Aliakbar; Majidi, Jafar; Baradaran, Behzad

    2014-01-01

    Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance. PMID:24409403

  17. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  18. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    Science.gov (United States)

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  19. Vineland-II adaptive behavior profile of children with attention-deficit/hyperactivity disorder or specific learning disorders.

    Science.gov (United States)

    Balboni, Giulia; Incognito, Oriana; Belacchi, Carmen; Bonichini, Sabrina; Cubelli, Roberto

    2017-02-01

    The evaluation of adaptive behavior is informative in children with attention-deficit/hyperactivity disorder (ADHD) or specific learning disorders (SLD). However, the few investigations available have focused only on the gross level of domains of adaptive behavior. To investigate which item subsets of the Vineland-II can discriminate children with ADHD or SLD from peers with typical development. Student's t-tests, ROC analysis, logistic regression, and linear discriminant function analysis were used to compare 24 children with ADHD, 61 elementary students with SLD, and controls matched on age, sex, school level attended, and both parents' education level. Several item subsets that address not only ADHD core symptoms, but also understanding in social context and development of interpersonal relationships, allowed discrimination of children with ADHD from controls. The combination of four item subsets (Listening and attending, Expressing complex ideas, Social communication, and Following instructions) classified children with ADHD with both sensitivity and specificity of 87.5%. Only Reading skills, Writing skills, and Time and dates discriminated children with SLD from controls. Evaluation of Vineland-II scores at the level of item content categories is a useful procedure for an efficient clinical description. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    International Nuclear Information System (INIS)

    Narayanan, R; Suri, J S; Werahera, P N; Barqawi, A; Crawford, E D; Shinohara, K; Simoneau, A R

    2008-01-01

    when TRUS guided biopsies are assisted by the 3D prostate cancer atlas compared to the current standard of care. The fast registration algorithm we have developed can easily be adapted for clinical applications for the improved diagnosis of prostate cancer. (note)

  1. The Specific Nature of Plant Cell Wall Polysaccharides 1

    Science.gov (United States)

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  2. Adaptive memory: the survival scenario enhances item-specific processing relative to a moving scenario.

    Science.gov (United States)

    Burns, Daniel J; Hart, Joshua; Griffith, Samantha E; Burns, Amy D

    2013-01-01

    Nairne, Thompson, and Pandeirada (2007) found that retention of words rated for their relevance to survival is superior to that of words encoded under numerous other deep processing conditions. They suggested that our memory systems might have evolved to confer an advantage for survival-relevant information. Burns, Burns, and Hwang (2011) suggested a two-process explanation of the proximate mechanisms responsible for the survival advantage. Whereas most control tasks encourage only one type of processing, the survival task encourages both item-specific and relational processing. They found that when control tasks encouraged both types of processing, the survival processing advantage was eliminated. However, none of their control conditions included non-survival scenarios (e.g., moving, vacation, etc.), so it is not clear how this two-process explanation would explain the survival advantage when scenarios are used as control conditions. The present experiments replicated the finding that the survival scenario improves recall relative to a moving scenario in both a between-lists and within-list design and also provided evidence that this difference was accompanied by an item-specific processing difference, not a difference in relational processing. The implications of these results for several existing accounts of the survival processing effect are discussed.

  3. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    Science.gov (United States)

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cytogenetic adaptive response of mouse bone marrow cells to low level HTO

    International Nuclear Information System (INIS)

    Chen Deqing; Zhang Zhaoyang; Zhou Xiangyan

    1993-01-01

    Mice were abdominally injected with a adaptive dose of 3.7 x 10 2 -3.7 x 10 5 Bq/gbw HTO, and then exposed to a challenge dose of 1.5 Gy of 6 '0Co γ-rays. In bone marrow cells that received both the adaptive and challenge doses, the chromatid breaks are lower than expected on the basis of additivity of the effects of the individual treatment. The adaptive response induced with 3.7 x 10 3 Bq/gbw HTO is the most remarkable, but at 3.7 x 10 5 Bq/gbw the adaptive response seems to disappear. The adaptive response can be observed by exposing to 1.5 Gy γ-rays from 1 to 5 days after injection of 3.7 x 10 3 Bq/gbw HTO, which is the most obvious one to reduce chromatid breaks to 50% of expected at the 5th day, but at the 7th day to equate to expected. The frequency of chromatid breaks is gradually reduced with time after challenge dose, the maximum index number of adaptive response is 0.50 and appears at 24 hr after challenge dose

  5. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    Full Text Available Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28 that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC in the presence of interleukin (IL-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT. We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.

  6. Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy

    OpenAIRE

    Lotfinegad, Parisa; Shamsasenjan, karim; Movassaghpour, Aliakbar; Majidi, Jafar; Baradaran, Behzad

    2013-01-01

    Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs ...

  7. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Science.gov (United States)

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  8. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...... the expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...

  9. Mechanical Adaptability of the MMP-Responsive Film Improves the Functionality of Endothelial Cell Monolayer.

    Science.gov (United States)

    Hu, Mi; Chang, Hao; Zhang, He; Wang, Jing; Lei, Wen-Xi; Li, Bo-Chao; Ren, Ke-Feng; Ji, Jian

    2017-07-01

    Extracellular matrix and cells are inherent in coordinating and adapting to each other during all physiological and pathological processes. Synthetic materials, however, show rarely reciprocal and spatiotemporal responses to cells, and lacking self-adapting properties as well. Here, a mechanical adaptability based on the matrix metalloproteinase (MMPs) sensitive polyelectrolyte film is reported. Poly-lysine (PLL) and methacrylated hyaluronic acid (HA-MA) nanolayers are employed to build the thin film through the layer-by-layer assembly, and it is further crosslinked using MMP sensitive peptides, which endows the films with changeable mechanical properties in response to MMPs. It is demonstrated that stiffness of the (PLL/HA-MA) films increases with the crosslinking, and then decreases in response to a treatment of enzyme. Consequently, the crosslinked (PLL/HA-MA) films reveal effective growth of endothelial cells (ECs), leading to fast formation of EC monolayer. Importantly, significantly improved endothelial function of the EC monolayer, which is characterized by integrity, biomolecules release, expression of function related gene, and antithrombotic properties, is achieved along with the decrosslinking of the film because of EC-secreted MMPs. These results suggest that mechanical adaptability of substrate in Young's modulus plays a significant role in endothelial progression, which shows great application potential in tissue engineering, regenerative medicine, and organ-on-a-chip. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cell specificity of the cytoplasmic Ca2+ response to tolbutamide is impaired in beta-cells from hyperglycemic mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Larsson-Nyrén, Gerd; Lindström, Per

    2006-01-01

    We recently reported that the timing and magnitude of the nutrient-induced Ca(2+) response are specific and reproducible for each isolated beta-cell. We have now used tolbutamide and arginine to test if the cell specificity exists also for the response to non-nutrient stimulation of beta-cells an...

  11. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate.

    Science.gov (United States)

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-07-26

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.

  12. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress

    DEFF Research Database (Denmark)

    Shabala, Lana; Zhang, Jingyi; Pottosin, Igor

    2016-01-01

    While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms confe...

  13. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    International Nuclear Information System (INIS)

    Morgunova, Ekaterina; Gray, Fiona C.; MacNeill, Stuart A.; Ladenstein, Rudolf

    2009-01-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs. The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from the halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R free = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells

  14. Preferential activation of HIF-2α adaptive signalling in neuronal-like cells in response to acute hypoxia.

    Directory of Open Access Journals (Sweden)

    Miguel A S Martín-Aragón Baudel

    Full Text Available Stroke causes severe neuronal damage as disrupted cerebral blood flow starves neurons of oxygen and glucose. The hypoxia inducible factors (HIF-1α and HIF-2α orchestrate oxygen homeostasis and regulate specific aspects of hypoxic adaptation. Here we show the importance of HIF-2α dependant signalling in neuronal adaptation to hypoxic insult. PC12 and NT2 cells were differentiated into neuronal-like cells using NGF and retinoic acid, and exposed to acute hypoxia (1% O2. Gene and protein expression was analysed by qPCR and immunoblotting and the neuronal-like phenotype was examined. PC12 and NT2 differentiation promoted neurite extension and expression of neuronal markers, NSE and KCC2. Induction of HIF-1α mRNA or protein was not detected in hypoxic neuronal-like cells, however marked induction of HIF-2α mRNA and protein expression was observed. Induction of HIF-1α target genes was also not detected in response to acute hypoxia, however significant induction of HIF-2α transcriptional targets was clearly evident. Furthermore, hypoxic insult dramatically reduced both neurite number and length, and attenuated expression of neuronal markers, NSE and KCC2. This correlated with an increase in expression of the neural progenitor and stem cell-like markers, CD44 and vimentin, suggesting HIF-2α molecular mechanisms could potentially promote regression of neuronal-like cells to a stem-like state and trigger neuronal recovery following ischaemic insult. Our findings suggest the HIF-2α pathway predominates over HIF-1α signalling in neuronal-like cells following acute hypoxia.

  15. Cross-cultural adaptation and initial validation of the Stroke-Specific Quality of Life Scale into the Yoruba language.

    Science.gov (United States)

    Akinpelu, Aderonke O; Odetunde, Marufat O; Odole, Adesola C

    2012-12-01

    Stroke-Specific Quality of Life 2.0 (SS-QoL 2.0) scale is used widely and has been cross-culturally adapted to many languages. This study aimed at the cross-cultural adaptation of SS-QoL 2.0 to Yoruba, the indigenous language of south-western Nigeria, and to carry out an initial investigation on its validity. English SS-QoL 2.0 was first adapted to Yoruba language by including Yoruba culture-specific examples in items SC4, UE2 and UE6. The adapted English version (AEV) was independently translated into Yoruba by two language experts who later agreed on a consensus translation, which was then back translated, subjected to an expert committee review and pretested; a cognitive debriefing interview was also carried out to generate the Yoruba translated version (YTV). Thirty-five stroke survivors completed the AEV and Yoruba version (YV) in English and Yoruba. The order of administration was randomized. Data were analysed using Spearman's rank order correlation and Wilcoxon's signed-rank test at a P value less than 0.05. The mean age of the participants (23 men, 12 women) was 58.5±11.3 years. The domain scores of the participants on AEV and YV did not differ significantly, except in the work/productivity domain. In both versions, the mean domain score of the participants was the highest in the language domain [22.6±3.8 (AEV) and 22.7±3.4 (YV)] and the lowest in the work domain [9.0±3.7 (AEV) and 8.0±3.3 (YTV)]. Domain scores on both versions correlated significantly (P<0.05). Participants' ratings of their current state and prestroke state correlated significantly (P<0.01) in all the general areas, except energy and mood. The YTV of SS-QoL 2.0 fulfilled the initial criteria for validity.

  16. Programmed Death-1 expression on Epstein Barr virus specific CD8+ T cells varies by stage of infection, epitope specificity, and T-cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Thomas C Greenough

    Full Text Available BACKGROUND: Programmed Death-1 (PD-1 is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM and convalescence. METHODOLOGY/PRINCIPAL FINDINGS: Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage. CONCLUSIONS/SIGNIFICANCE: These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.

  17. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    Science.gov (United States)

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  18. High specific energy Lithium Sulfur cell for space application

    Directory of Open Access Journals (Sweden)

    Samaniego Bruno

    2017-01-01

    Airbus DS has been testing and characterizing prototype Li-S cells manufactured by OXIS Energy Ltd. since 2014, demonstrating the potential and fast evolution of the cells performance. This paper presents the last test results on a set of different batches provided by OXIS and performed at Airbus DS premises in the frame of an ESA Innovation Triangle Initiative (ITI.

  19. Dissection and manipulation of antigen-specific T cell responses

    NARCIS (Netherlands)

    Schepers, Koen

    2006-01-01

    T cells recognize pathogen-derived antigens and are crucial for fighting pathogens such as viruses and bacteria. In addition, T cells are able to recognize and attack certain types of tumors, in particular virally induced tumors. In this thesis we aimed 1) to obtain more insight into

  20. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    Science.gov (United States)

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J.

    2005-01-01

    To track epitope-specific CD4 + T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA 323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA II , replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4 + T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4 + T cells were recruited to the infected lung both in the presence and absence of the OVA 323-339 epitope. These data show that, when primed, CD4 + T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  3. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  4. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    Full Text Available Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor] with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity – a 16 kD band strongly correlated between assays. N-terminal sequencing – EPLAVVDL – identified a large gene (424 AA, extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS. U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD. Outside the cell, a small band (28 kD was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags by changing salt concentrations and ultrafiltering – releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the

  5. Live Cell Genomics: RNA Exon-Specific RNA-Binding Protein Isolation.

    Science.gov (United States)

    Bell, Thomas J; Eberwine, James

    2015-01-01

    RNA-binding proteins (RBPs) are essential regulatory proteins that control all modes of RNA processing and regulation. New experimental approaches to isolate these indispensable proteins under in vivo conditions are needed to advance the field of RBP biology. Historically, in vitro biochemical approaches to isolate RBP complexes have been useful and productive, but biological relevance of the identified RBP complexes can be imprecise or erroneous. Here we review an inventive experimental to isolate RBPs under the in vivo conditions. The method is called peptide nucleic acid (PNA)-assisted identification of RBP (PAIR) technology and it uses cell-penetrating peptides (CPPs) to deliver photo-activatible RBP-capture molecule to the cytoplasm of the live cells. The PAIR methodology provides two significant advantages over the most commonly used approaches: (1) it overcomes the in vitro limitation of standard biochemical approaches and (2) the PAIR RBP-capture molecule is highly selective and adaptable which allows investigators to isolate exon-specific RBP complexes. Most importantly, the in vivo capture conditions and selectivity of the RBP-capture molecule yield biologically accurate and relevant RBP data.

  6. Spatially adapted augmentation of age-specific atlas-based segmentation using patch-based priors

    Science.gov (United States)

    Liu, Mengyuan; Seshamani, Sharmishtaa; Harrylock, Lisa; Kitsch, Averi; Miller, Steven; Chau, Van; Poskitt, Kenneth; Rousseau, Francois; Studholme, Colin

    2014-03-01

    One of the most common approaches to MRI brain tissue segmentation is to employ an atlas prior to initialize an Expectation- Maximization (EM) image labeling scheme using a statistical model of MRI intensities. This prior is commonly derived from a set of manually segmented training data from the population of interest. However, in cases where subject anatomy varies significantly from the prior anatomical average model (for example in the case where extreme developmental abnormalities or brain injuries occur), the prior tissue map does not provide adequate information about the observed MRI intensities to ensure the EM algorithm converges to an anatomically accurate labeling of the MRI. In this paper, we present a novel approach for automatic segmentation of such cases. This approach augments the atlas-based EM segmentation by exploring methods to build a hybrid tissue segmentation scheme that seeks to learn where an atlas prior fails (due to inadequate representation of anatomical variation in the statistical atlas) and utilize an alternative prior derived from a patch driven search of the atlas data. We describe a framework for incorporating this patch-based augmentation of EM (PBAEM) into a 4D age-specific atlas-based segmentation of developing brain anatomy. The proposed approach was evaluated on a set of MRI brain scans of premature neonates with ages ranging from 27.29 to 46.43 gestational weeks (GWs). Results indicated superior performance compared to the conventional atlas-based segmentation method, providing improved segmentation accuracy for gray matter, white matter, ventricles and sulcal CSF regions.

  7. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells

    NARCIS (Netherlands)

    Avalos, Ana M.; Bilate, Angelina M.; Witte, Martin D.; Tai, Albert K.; He, Jiang; Frushicheva, Maria P.; Thill, Peter D.; Meyer-Wentrup, Friederike; Theile, Christopher S.; Chakraborty, Arup K.; Zhuang, Xiaowei; Ploegh, Hidde L.

    2014-01-01

    Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR.

  8. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    OpenAIRE

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR.

  9. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  10. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    Science.gov (United States)

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  11. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.

    Science.gov (United States)

    Hals, Ingrid K; Bruerberg, Simon Gustafson; Ma, Zuheng; Scholz, Hanne; Björklund, Anneli; Grill, Valdemar

    2015-01-01

    To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia. Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20-22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion. Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion. Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets

  12. Adaptive changes in NAD+ metabolism in ultraviolet light-irradiated murine lymphoma cells

    International Nuclear Information System (INIS)

    Kleczkowska, H.E.; Szumiel, I.; Althaus, F.R.

    1990-01-01

    We have determined the ability of UV254nm-irradiated murine lymphoma cells to adapt their NAD+ metabolism to the increased NAD+ consumption for the poly ADP-ribosylation of chromatin proteins. Two murine lymphoma sublines with differential UV-sensitivity and poly(ADP-ribose) turnover were used as a model system. The first subline, designated LY-R is UV254nm-sensitive and tumorigenic in DBA/2 mice. The second subline, LY-S is UV254nm-resistant and nontumorigenic. Following treatment of these cells with 2 mM benzamide, an inhibitor of the NAD(+)-utilizing enzyme poly(ADP-ribose) polymerase, NAD+ levels slowly increased up to about 160% of control levels after 3 hours. When benzamide was added to these cultures 20 min after UV254nm irradiation, a dramatic transient increase of NAD+ levels was observed within 4 min in LY-R cells and more moderately in LY-S cells. At later times after UV254nm irradiation, the NAD+ levels increased in both sublines reaching up to 200% of the concentrations prior to benzamide treatment. These results demonstrate an adaptative response of NAD+ metabolism to UV254nm irradiation. In parallel, we observed a differential repartitioning of ADP-ribosyl residues between the NAD+ and poly(ADP-ribose) pools of LY-R and LY-S cells that correlates with the differential UV sensitivity of these cells

  13. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate.

    Directory of Open Access Journals (Sweden)

    Karen G Dowell

    Full Text Available Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.

  14. The specificity of neural responses to music and their relation to voice processing: an fMRI-adaptation study.

    Science.gov (United States)

    Armony, Jorge L; Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis

    2015-04-23

    Several studies have identified, using functional magnetic resonance imaging (fMRI), a region within the superior temporal gyrus that preferentially responds to musical stimuli. However, in most cases, significant responses to other complex stimuli, particularly human voice, were also observed. Thus, it remains unknown if the same neurons respond to both stimulus types, albeit with different strengths, or whether the responses observed with fMRI are generated by distinct, overlapping neural populations. To address this question, we conducted an fMRI experiment in which short music excerpts and human vocalizations were presented in a pseudo-random order. Critically, we performed an adaptation-based analysis in which responses to the stimuli were analyzed taking into account the category of the preceding stimulus. Our results confirm the presence of a region in the anterior STG that responds more strongly to music than voice. Moreover, we found a music-specific adaptation effect in this area, consistent with the existence of music-preferred neurons. Lack of differences between musicians and non-musicians argues against an expertise effect. These findings provide further support for neural separability between music and speech within the temporal lobe. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. Adaptive mutations enhance assembly and cell-to-cell transmission of a high-titer hepatitis C virus genotype 5a Core-NS2 JFH1-based recombinant

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Prentoe, Jannick; Meredith, Luke W

    2015-01-01

    UNLABELLED: Recombinant hepatitis C virus (HCV) clones propagated in human hepatoma cell cultures yield relatively low infectivity titers. Here, we adapted the JFH1-based Core-NS2 recombinant SA13/JFH1C3405G,A3696G (termed SA13/JFH1orig), of the poorly characterized genotype 5a, to Huh7.5 cells......-titer production of diverse HCV strains would be advantageous. Our study offers important functional data on how cell culture-adaptive mutations identified in genotype 5a JFH1-based HCVcc permit high-titer culture by affecting HCV genesis through increasing virus assembly and HCV fitness by enhancing the virus...... specific infectivity and cell-to-cell transmission ability, without influencing the biophysical particle properties. High-titer HCVcc like the one described in this study may be pivotal in future vaccine-related studies where large quantities of infectious HCV particles are necessary....

  17. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  18. Automated Cell Enrichment of Cytomegalovirus-specific T cells for Clinical Applications using the Cytokine-capture System.

    Science.gov (United States)

    Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N

    2015-10-05

    The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced

  19. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  20. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  1. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    2010-10-01

    Full Text Available A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  2. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    Wagner, D.K.; York-Jolley, J.; Malek, T.R.; Berzofsky, J.A.; Nelson, D.L.

    1986-01-01

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [ 3 H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  3. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  4. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells.

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F; Tutt, Andrew N J; Nestle, Frank O; Karagiannis, Panagiotis; Lacy, Katie E; Karagiannis, Sophia N

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  5. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Directory of Open Access Journals (Sweden)

    Isabel Correa

    2018-03-01

    Full Text Available Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1 specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  6. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M.; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F.; Tutt, Andrew N. J.; Nestle, Frank O.; Karagiannis, Panagiotis; Lacy, Katie E.; Karagiannis, Sophia N.

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires. PMID:29628923

  7. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  9. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  10. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  11. Experimental Evaluation of Interference Suppression Receivers and Rank Adaptation in 5G Small Cells

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Catania, Davide

    2015-01-01

    Advanced receivers are a key component of the 5th Generation (5G) ultra-dense small cells concept given their capability of efficiently dealing with the ever-increasing problem of inter-cell interference. In this paper, we evaluate the potential of interference suppression receivers in real network...... the Interference Rejection Combining (IRC) and Successive Interference Cancellation (SIC) receivers and different rank adaptation approaches. Each node in our software defined radio (SDR) testbed features a 22 MIMO transceiver built with the USRP N200 hardware by Ettus Research. Our experimental results confirm...

  12. Virus specific antigens in mammalian cells infected with herpes simplex virus

    Science.gov (United States)

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  13. Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections.

    Science.gov (United States)

    O'Bryan, Joel M; Woda, Marcia; Co, Mary; Mathew, Anuja; Rothman, Alan L

    2013-08-26

    Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory.

  14. Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells

    Directory of Open Access Journals (Sweden)

    Yuxi Sun

    2017-08-01

    Full Text Available Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min, subjects cells to high levels of stress (>350 g and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g for shorter durations of time (<3 min. To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3 and high-density silicon dioxide beads (2.2 g/cm3 with Ficoll–Paque (1.06 g/cm3 show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.

  15. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Directory of Open Access Journals (Sweden)

    Dai Fei Elmer Ker

    Full Text Available Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and

  16. Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality

    Directory of Open Access Journals (Sweden)

    Y Zhang

    2016-01-01

    Full Text Available In vivo cartilage is in a state of constant mechanical stimulation. It is therefore reasonable to deduce that mechanical forces play an important role in cartilage formation. Mechanical forces, such as compression, tension, and shear force, have been widely applied for cartilage engineering; however, relatively few review papers have summarized the influence of biomechanical signals on stem cell-based neo-cartilage formation and cartilage engineering in both molecular adaption and tissue functionality. In this review, we will discuss recent progress related to the influences of substrate elasticity on stem cell chondrogenic differentiation and elucidate the potential underlying mechanisms. Aside from active sensing and responding to the extracellular environment, stem cells also could respond to various external mechanical forces, which also influence their chondrogenic capacity; this topic will be updated along with associated signaling pathways. We expect that these different regimens of biomechanical signals can be utilized to boost stem cell-based cartilage engineering and regeneration.

  17. Use of the photovoltaic cells as fission fragment sensors and study of a preamplifier adapted to the cells

    International Nuclear Information System (INIS)

    Jin Yimeng.

    1989-04-01

    In the detection of heavy ions and fission fragments, the photovoltaic cells can take the place of traditional silicon surface barrier detectors, if we need a great number of detectors as in the case of 4π multidetector, and do not expect excellent energy and time resolutions at the same time. Made for the purpose of converting the solar energy to the electrical energy, the photovoltaic cells have the similar structure as silicon surface barrier detectors, except for their much thinner pn junctions and, as a result much larger junction capacities, which is a major disadvantage for photovoltaic cells as fission fragment detectors. In order to get an acceptable energy resolution and a time resolution as good as possible, it is necessary to design a preamplifier specially adapted to cells, which plays a very important role in the utilization of photovoltaic cells as detectors. In the present work we analyze the electrical signal from a cell when hit by a fission fragment, and propose a new type cell oriented preamplifier of voltage, with which we can use a cell up to 10 cm 2 , and obtain a time resolution better than 16 ns [fr

  18. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  19. Targeting inflammation with autoantigen-specific T cells

    NARCIS (Netherlands)

    Guichelaar, T.

    2008-01-01

    Chronic autoimmune diseases are driven by cells that respond to tissue components of the body. Inflammation in diseases like rheumatoid arthritis, diabetes or multiple sclerosis, can be suppressed by drug therapy. However, the broad range of immunosuppressive action of these drugs often does not

  20. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  1. Control of sporulation-specific cell division in Streptomyces coelicolor

    NARCIS (Netherlands)

    Noens, Elke

    2007-01-01

    During developmental cell division in sporulation-committed aerial hyphae of streptomycetes, up to a hundred septa are simultaneously produced, in close harmony with synchromous chromosome condensation and segregation. Several unique protein families are involved in the control of this process,

  2. Frequency and specificity of red blood cell alloantibodies among ...

    African Journals Online (AJOL)

    Background: Blood transfusion usually results in production of alloantibody against one or more foreign red blood cell antigens which may complicate subsequent transfusions. The probability of alloimmunization depends on number and frequency of transfusion, antigen immunogenicity, recipient immune response and ...

  3. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  4. HLA-DR-specific suppressor cells after repeated allogeneic sensitizations of human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Sasportes, M.; Fradelizi, D.; Dausset, J.

    1978-01-01

    In conclusion, DR-specific suppressor cells can be induced by repeated in vitro sensitizations. They were able to decrease a secondary proliferation, to suppress consistently, in a primary proliferative assay, when added as third cells (primed twice against a DR antigen [PLT II] and γ-irradiated), the response of unprimed cells towards stimulating cells, which share a DR specificity with the priming cell of the PLT II. The suppression follows the D part of the recombinant haplotype within an HLA-B/D recombinant family and is specific for the DR antigen used twice as stimulator for production of the PLT II

  5. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium.

    Science.gov (United States)

    Liu, Chieh-Lun; Watson, Aaron M; Place, Allen R; Jagus, Rosemary

    2017-05-25

    Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity.

  7. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis.

    Science.gov (United States)

    Honda, Arata; Choijookhuu, Narantsog; Izu, Haruna; Kawano, Yoshihiro; Inokuchi, Mizuho; Honsho, Kimiko; Lee, Ah-Reum; Nabekura, Hiroki; Ohta, Hiroshi; Tsukiyama, Tomoyuki; Ohinata, Yasuhide; Kuroiwa, Asato; Hishikawa, Yoshitaka; Saitou, Mitinori; Jogahara, Takamichi; Koshimoto, Chihiro

    2017-05-01

    In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis , has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis , it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called "true naïve" state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study.

  8. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    Science.gov (United States)

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  9. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    International Nuclear Information System (INIS)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe

    2005-01-01

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, ∼2500 genes are upregulated >3-fold, of which ∼900 are also expressed in Jurkat cells. Concomitantly, ∼1500 genes are downregulated or repressed, of which ∼500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages (∼80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells

  10. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    Science.gov (United States)

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  11. Target-specific activation of mast cells by immunoglobulin E reactive with a renal cell carcinoma-associated antigen

    NARCIS (Netherlands)

    Luiten, R. M.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    Immunoglobulin E (IgE) that specifically binds to antigens present on carcinoma cells may represent a useful tool to combat carcinomas. Induction of an inflammatory response at the tumor site by tumor-specific IgE may result in reduced tumor growth and tumor regression. Local mast cells may be

  12. Adaptation of WHOQOL as health-related quality of life instrument to develop a vision-specific instrument.

    Directory of Open Access Journals (Sweden)

    Dandona Lalit

    2000-01-01

    Full Text Available The WHOQOL instrument was adapted as a health-related QOL instrument for a population-based epidemiologic study of eye diseases in southern India, the Andhra Pradesh Eye Disease Study (APEDS. A follow-up question was added to each item in WHOQOL to determine whether the decrease in QOL was due to any health reasons including eye-related reasons. Modifications in WHOQOL and translation in local language were done through the use of the focus groups including health professionals and people not related to health care. The modified instrument has 28 items across 6 domains of the WHOQOL and was translated into the local language, Telugu, using the pragmatic approach. It takes 10-20 minutes to be administered by a trained interviewer. Reliability was within acceptable range. This health-related QOL instrument is being used in the population-based study APEDS to develop a vision-specific QOL instrument which could potentially be used to assess the impact of visual impairment on QOL across different cultures and for use in evaluating eye-care interventions. This health-related QOL instrument could also be used to develop other disease-specific instruments as it allows assessment of the extent to which various aspects of QOL are affected by a variety of health problems.

  13. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...

  14. Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products.

    Science.gov (United States)

    Tulina, M A; Pyatigorskaya, N V

    2018-03-01

    The article describes special aspects of Good Manufacturing Practice (GMP) for biomedical cell products (BMCP) that imply high standards of aseptics throughout the entire productio process, strict requirements to donors and to the procedure of biomaterial isolation, guaranty of tracing BMCP products, defining processing procedures which allow to identify BMCP as minimally manipulated; continuous quality control and automation of the control process at all stages of manufacturing, which will ensure product release simultaneously with completion of technological operations.

  15. Salmonella serovar-specific interaction with jejunal epithelial cells.

    Science.gov (United States)

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    OpenAIRE

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  17. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Liao, Y.P.; Wang, C.-C.; McBride, W.H.

    2003-01-01

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  18. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    Science.gov (United States)

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  19. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  20. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical, Hematompoietic Progenitor-Cell Transplant

    Science.gov (United States)

    2011-05-01

    cells exhibited redirected specific lysis of a genetically modified EL4 target expressing 92% human CD19 (Figure 6a). T cells not genetically modified...but propagated by crosslinking CD3 using g-irradiated aAPC loaded with OKT3 did not appreciably lyse CD19 EL4 cells (Figure 6b). DISCUSSION We and...by genetically modified T cells. Lysis by chromium release assay of CD19+ EL4 tumor cells compared with CD19 parental EL4 cells by (a) T cells

  1. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    Science.gov (United States)

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are

  2. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Joshua Hakimian

    Full Text Available Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA, could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2-enriched indirect pathway but not of genes found in dopamine receptor 1(D1-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and

  3. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

    Directory of Open Access Journals (Sweden)

    Ezekiel K. Bore

    2017-05-01

    Full Text Available Although biogeochemical models designed to simulate carbon (C and nitrogen (N dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control, -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

  4. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  5. Robust adaptive control for a hybrid solid oxide fuel cell system

    Science.gov (United States)

    Snyder, Steven

    2011-12-01

    Solid oxide fuel cells (SOFCs) are electrochemical energy conversion devices. They offer a number of advantages beyond those of most other fuel cells due to their high operating temperature (800-1000°C), such as internal reforming, heat as a byproduct, and faster reaction kinetics without precious metal catalysts. Mitigating fuel starvation and improving load-following capabilities of SOFC systems are conflicting control objectives. However, this can be resolved by the hybridization of the system with an energy storage device, such as an ultra-capacitor. In this thesis, a steady-state property of the SOFC is combined with an input-shaping method in order to address the issue of fuel starvation. Simultaneously, an overall adaptive system control strategy is employed to manage the energy sharing between the elements as well as to maintain the state-of-charge of the energy storage device. The adaptive control method is robust to errors in the fuel cell's fuel supply system and guarantees that the fuel cell current and ultra-capacitor state-of-charge approach their target values and remain uniformly, ultimately bounded about these target values. Parameter saturation is employed to guarantee boundedness of the parameters. The controller is validated through hardware-in-the-loop experiments as well as computer simulations.

  6. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  7. Using Merkel cell polyomavirus specific TCR gene therapy for treatment of Merkel cellcarcinoma

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Pedersen, Natasja Wulff; Linnemann, C.

    2016-01-01

    T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with Mer......T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated...... with Merkel cell polyomavirus (MCPyV). Due to the clear viral correlation CD8+ T cells specific for viral epitopes could potentially form cancer-specific targets in MCC patients. We have identified MCPyV specific T cells using a high-throughput platform for T-cell enrichment and combinatorial encoding...

  8. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  9. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  10. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  11. MHC-based detection of antigen-specific CD8(+) T cell responses

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Schumacher, Nana Maria Pii

    2010-01-01

    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different...

  12. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  13. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  14. Natural history of β-cell adaptation and failure in type 2 diabetes

    Science.gov (United States)

    Alejandro, Emilyn U.; Gregg, Brigid; Blandino-Rosano, Manuel; Cras-Méneur, Corentin; Bernal-Mizrachi, Ernesto

    2014-01-01

    Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure. PMID:25542976

  15. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M; Rosebrock, Adam P; Futcher, Bruce; Cross, Frederick R

    2009-10-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  18. Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.

    2009-01-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732

  19. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  20. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    Science.gov (United States)

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  1. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    Science.gov (United States)

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  2. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    Science.gov (United States)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially

  3. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline

    2015-01-01

    has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  4. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  5. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    Science.gov (United States)

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  6. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  7. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  8. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  9. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    International Nuclear Information System (INIS)

    Hara, H.; Seon, B.K.

    1987-01-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment

  10. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    NARCIS (Netherlands)

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the

  11. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells

    NARCIS (Netherlands)

    van Leeuwen, Ester M.; Gamadia, Laila E.; Baars, Paul A.; Remmerswaal, Ester B.; ten Berge, Ineke J.; van Lier, René A.

    2002-01-01

    Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector

  12. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming.

    Science.gov (United States)

    Fisicaro, Paola; Boni, Carolina; Barili, Valeria; Laccabue, Diletta; Ferrari, Carlo

    2018-01-29

    HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter.

    Directory of Open Access Journals (Sweden)

    Taruna Anand

    Full Text Available Curative approaches for eye cataracts and other eye abnormalities, such as myopia and hyperopia currently suffer from a lack of appropriate models. Here, we present a new approach for in vitro growth of lentoid bodies from induced pluripotent stem (iPS cells as a tool for ophthalmological research. We generated a transgenic mouse line with lens-specific expression of a fluorescent reporter driven by the alphaA crystallin promoter. Fetal fibroblasts were isolated from transgenic fetuses, reprogrammed to iPS cells, and differentiated to lentoid bodies exploiting the specific fluorescence of the lens cell-specific reporter. The employment of cell type-specific reporters for establishing and optimizing differentiation in vitro seems to be an efficient and generally applicable approach for developing differentiation protocols for desired cell populations.

  14. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  15. Brazilian cross-cultural translation and adaptation of the "Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items"

    Directory of Open Access Journals (Sweden)

    Aline Mansueto Mourao

    2013-12-01

    Full Text Available Objective To translate and to perform the cross-cultural adaptation of the “Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items” (MG-QOL15. Method The original English version of the questionnaire was translated into Portuguese. This version was revised and translated back into English. Later, both English versions were compared and the divergences were corrected in the Portuguese text. At a second stage, ten patients with MG followed at the Neuromuscular Diseases Clinic from the University Hospital, Universidade Federal de Minas Gerais answered the questionnaire. The authors analyzed the difficulties and misunderstandings in the application of the questionnaire. Results The questions 8, 13 and 15 were considered difficult to understand and were modified in the final Portuguese version. Most patients (70% had a total score above 25, and the statements 3, 8 and 9 showed the highest scores. Conclusion The Brazilian version of the questionnaire MG-QOL15 seems to be a promising tool for the assessment of Brazilian patients with MG.

  16. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Science.gov (United States)

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P

    2016-12-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  17. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  18. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-12-01

    Full Text Available Malaria parasites (Plasmodium spp. encounter markedly different (nutritional environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  19. Adaptation of Fusarium oxysporum and Fusarium dimerum to the specific aquatic environment provided by the water systems of hospitals.

    Science.gov (United States)

    Steinberg, Christian; Laurent, Julie; Edel-Hermann, Véronique; Barbezant, Marie; Sixt, Nathalie; Dalle, Frédéric; Aho, Serge; Bonnin, Alain; Hartemann, Philippe; Sautour, Marc

    2015-06-01

    Members of the Fusarium group were recently detected in water distribution systems of several hospitals in the world. An epidemiological investigation was conducted over 2 years in hospital buildings in Dijon and Nancy (France) and in non-hospital buildings in Dijon. The fungi were detected only within the water distribution systems of the hospital buildings and also, but at very low concentrations, in the urban water network of Nancy. All fungi were identified as Fusarium oxysporum species complex (FOSC) and Fusarium dimerum species complex (FDSC) by sequencing part of the translation elongation factor 1-alpha (TEF-1α) gene. Very low diversity was found in each complex, suggesting the existence of a clonal population for each. Density and heterogeneous distributions according to buildings and variability over time were explained by episodic detachments of parts of the colony from biofilms in the pipes. Isolates of these waterborne populations as well as soilborne isolates were tested for their ability to grow in liquid medium in the presence of increasing concentrations of sodium hypochlorite, copper sulfate, anti-corrosion pipe coating, at various temperatures (4°-42 °C) and on agar medium with amphotericin B and voriconazole. The waterborne isolates tolerated higher sodium hypochlorite and copper sulfate concentrations and temperatures than did soilborne isolates but did not show any specific resistance to fungicides. In addition, unlike waterborne isolates, soilborne isolates did not survive in water even supplemented with glucose, while the former developed in the soil as well as soilborne isolates. We concluded the existence of homogeneous populations of FOSC and FDSC common to all contaminated hospital sites. These populations are present at very low densities in natural waters, making them difficult to detect, but they are adapted to the specific conditions offered by the complex water systems of public hospitals in Dijon and Nancy and probably other

  20. Vaccination Expands Antigen-Specific CD4+ Memory T Cells and Mobilizes Bystander Central Memory T Cells

    Science.gov (United States)

    Li Causi, Eleonora; Parikh, Suraj C.; Chudley, Lindsey; Layfield, David M.; Ottensmeier, Christian H.; Stevenson, Freda K.; Di Genova, Gianfranco

    2015-01-01

    CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. PMID:26332995

  1. Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells

    International Nuclear Information System (INIS)

    Rojas, Olga Lucia; Gonzalez, Ana Maria; Gonzalez, Rosabel; Perez-Schael, Irene; Greenberg, Harry B.; Franco, Manuel A.; Angel, Juana

    2003-01-01

    Using an intracellular cytokine assay, we recently showed that the frequencies of rotavirus (RV)-specific CD4 + and CD8 + T cells secreting INFγ, circulating in RV infected and healthy adults, are very low compared to the frequencies of circulating cytomegalovirus (CMV) reactive T cells in comparable individuals. In children with acute RV infection, these T cells were barely or not detectable. In the present study, an ELISPOT assay enabled detection of circulating RV-specific INFγ-secreting cells in children with RV diarrhea but not in children with non-RV diarrhea without evidence of a previous RV infection. Using microbead-enriched CD4 + and CD8 + T cell subsets, IFNγ-secreting RV-specific CD8 + but not CD4 + T cells were detected in recently infected children. Using the same approach, both CD4 + and CD8 + RV-specific T cells were detected in healthy adults. Furthermore, stimulation of purified subsets of PBMC that express lymphocyte homing receptors demonstrated that RV-specific INFγ-secreting CD4 + T cells from adult volunteers preferentially express the intestinal homing receptor α4β7, but not the peripheral lymph node homing receptor L-selectin. In contrast, CMV-specific INFγ-secreting CD4 + T cells preferentially express L-selectin but not α4β7. These results suggest that the expression of homing receptors on virus-specific T cells depends on the organ where these cells were originally stimulated and that their capacity to secrete INFγ is independent of the expression of these homing receptors

  2. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  3. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells.

    Science.gov (United States)

    Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja

    2015-12-02

    Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1

  5. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  6. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    International Nuclear Information System (INIS)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-01-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the [ 3 H]thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced [ 3 H]thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% [SD]) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition

  7. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    1994-01-01

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  8. Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

    Directory of Open Access Journals (Sweden)

    Julia Brasch

    2018-05-01

    Full Text Available Summary: Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity. : Type II cadherins are a family of vertebrate cell adhesion proteins expressed primarily in the CNS. Brasch et al. measure binding between adhesive fragments, revealing homophilic and extensive selective heterophilic binding with specificities that define groups of similar cadherins. Structures reveal common adhesive dimers, with residues governing cell-adhesive specificity. Keywords: cell adhesion, crystal structure, hemophilic specificity, heterophilic specificity, neural patterning, synaptic targeting, cadherin

  9. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  10. Mycobacterium tuberculosis specific CD8(+ T cells rapidly decline with antituberculosis treatment.

    Directory of Open Access Journals (Sweden)

    Melissa R Nyendak

    Full Text Available Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb specific CD8(+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment.We sought to determine the relationship of Mtb specific CD4(+ T cells and CD8(+ T cells with duration of antituberculosis treatment.We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50 with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+ and CD8(+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24.There was a significant difference in the Mtb specific CD8(+ T response, but not the CD4(+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001, with an early difference observed at 8 weeks of therapy (p = 0.023. At 24 weeks, the estimated Mtb specific CD8(+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+ T cell during the treatment. The Mtb specific CD4(+ T cell response, but not the CD8(+ response, was negatively impacted by the body mass index.Our data provide evidence that the Mtb specific CD8(+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+ T cell response can detect early treatment failure, relapse, or to predict disease progression.

  11. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Hannah K Bayes

    Full Text Available We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis.Peripheral blood human memory CD4(+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines.Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4(+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6(+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood.Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions.

  12. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  13. Adaptive Regulation of Osteopontin Production by Dendritic Cells Through the Bidirectional Interaction With Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Sara Scutera

    2018-06-01

    Full Text Available Mesenchymal stromal cells (MSCs exert immunosuppressive effects on immune cells including dendritic cells (DCs. However, many details of the bidirectional interaction of MSCs with DCs are still unsolved and information on key molecules by which DCs can modulate MSC functions is limited. Here, we report that osteopontin (OPN, a cytokine involved in homeostatic and pathophysiologic responses, is constitutively expressed by DCs and regulated in the DC/MSC cocultures depending on the activation state of MSCs. Resting MSCs promoted OPN production, whereas the production of OPN was suppressed when MSCs were activated by proinflammatory cytokines (i.e., TNF-α, IL-6, and IL-1β. OPN induction required cell-to-cell contact, mediated at least in part, by β1 integrin (CD29. Conversely, activated MSCs inhibited the release of OPN via the production of soluble factors with a major role played by Prostaglandin E2 (PGE2. Accordingly, pretreatment with indomethacin significantly abrogated the MSC-mediated suppression of OPN while the direct addition of exogenous PGE2 inhibited OPN production by DCs. Furthermore, DC-conditioned medium promoted osteogenic differentiation of MSCs with a concomitant inhibition of adipogenesis. These effects were paralleled by the repression of the adipogenic markers PPARγ, adiponectin, and FABP4, and induction of the osteogenic markers alkaline phosphatase, RUNX2, and of the bone-anabolic chemokine CCL5. Notably, blocking OPN activity with RGD peptides or with an antibody against CD29, one of the OPN receptors, prevented the effects of DC-conditioned medium on MSC differentiation and CCL5 induction. Because MSCs have a key role in maintenance of bone marrow (BM hematopoietic stem cell niche through reciprocal regulation with immune cells, we investigated the possible MSC/DC interaction in human BM by immunohistochemistry. Although DCs (CD1c+ are a small percentage of BM cells, we demonstrated colocalization of CD271+ MSCs with

  14. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour.

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    Full Text Available The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph angiogenesis and test pro- and anti-(lymph angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.

  15. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders

    2014-01-01

    of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR......, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  16. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis.

    Science.gov (United States)

    Nandi, Sayan; Alviña, Karina; Lituma, Pablo J; Castillo, Pablo E; Hébert, Jean M

    2018-01-15

    Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  18. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  19. HIV-1 Infection Is Associated with Depletion and Functional Impairment of Mycobacterium tuberculosis-Specific CD4 T Cells in Individuals with Latent Tuberculosis Infection.

    Science.gov (United States)

    Day, Cheryl L; Abrahams, Deborah A; Harris, Levelle D; van Rooyen, Michele; Stone, Lynnett; de Kock, Marwou; Hanekom, Willem A

    2017-09-15

    Coinfection with HIV is the single greatest risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease. HIV-associated dysregulation of adaptive immunity by depletion of CD4 Th cells most likely contributes to loss of immune control of LTBI in HIV-infected individuals, although the precise mechanisms whereby HIV infection impedes successful T cell-mediated control of M. tuberculosis have not been well defined. To further delineate mechanisms whereby HIV impairs protective immunity to M. tuberculosis , we evaluated the frequency, phenotype, and functional capacity of M. tuberculosis -specific CD4 T cells in HIV-infected and HIV-uninfected adults with LTBI. HIV infection was associated with a lower total frequency of cytokine-producing M. tuberculosis -specific CD4 T cells, and preferential depletion of a discrete subset of M. tuberculosis -specific IFN-γ + IL-2 - TNF-α + CD4 T cells. M. tuberculosis -specific CD4 T cells in HIV-infected individuals expressed significantly higher levels of Ki67, compared with HIV-uninfected individuals, thus indicating recent activation and turnover of these cells in vivo. The ex vivo proliferative capacity of M. tuberculosis -specific CD4 T cells was markedly impaired in HIV-infected individuals, compared with HIV-uninfected individuals. Moreover, HIV infection was associated with increased M. tuberculosis Ag-induced CD4 T cell death ex vivo, indicating a possible mechanism contributing to impaired proliferative capacity of M. tuberculosis -specific CD4 T cells in HIV-infected individuals. These data provide new insights into the parameters of M. tuberculosis -specific CD4 T cell immunity that are impaired in HIV-infected individuals with LTBI, which may contribute to their increased risk of developing active tuberculosis disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Functional, Antigen-Specific Stem Cell Memory (TSCM CD4+ T Cells Are Induced by Human Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Cheleka A. M. Mpande

    2018-03-01

    Full Text Available BackgroundMaintenance of long-lasting immunity is thought to depend on stem cell memory T cells (TSCM, which have superior self-renewing capacity, longevity and proliferative potential compared with central memory (TCM or effector (TEFF T cells. Our knowledge of TSCM derives primarily from studies of virus-specific CD8+ TSCM. We aimed to determine if infection with Mycobacterium tuberculosis (M. tb, the etiological agent of tuberculosis, generates antigen-specific CD4+ TSCM and to characterize their functional ontology.MethodsWe studied T cell responses to natural M. tb infection in a longitudinal adolescent cohort of recent QuantiFERON-TB Gold (QFT converters and three cross-sectional QFT+ adult cohorts; and to bacillus Calmette–Guerin (BCG vaccination in infants. M. tb and/or BCG-specific CD4 T cells were detected by flow cytometry using major histocompatibility complex class II tetramers bearing Ag85, CFP-10, or ESAT-6 peptides, or by intracellular cytokine staining. Transcriptomic analyses of M. tb-specific tetramer+ CD4+ TSCM (CD45RA+ CCR7+ CD27+ were performed by microfluidic qRT-PCR, and functional and phenotypic characteristics were confirmed by measuring expression of chemokine receptors, cytotoxic molecules and cytokines using flow cytometry.ResultsM. tb-specific TSCM were not detected in QFT-negative persons. After QFT conversion frequencies of TSCM increased to measurable levels and remained detectable thereafter, suggesting that primary M. tb infection induces TSCM cells. Gene expression (GE profiling of tetramer+ TSCM showed that these cells were distinct from bulk CD4+ naïve T cells (TN and shared features of bulk TSCM and M. tb-specific tetramer+ TCM and TEFF cells. These TSCM were predominantly CD95+ and CXCR3+, markers typical of CD8+ TSCM. Tetramer+ TSCM expressed significantly higher protein levels of CCR5, CCR6, CXCR3, granzyme A, granzyme K, and granulysin than bulk TN and TSCM cells. M. tb-specific TSCM were also

  1. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  2. Successful generation of primary virus-specific and anti-tumor T-cell responses from the naive donor T-cell repertoire is determined by the balance between antigen-specific precursor T cells and regulatory T cells.

    NARCIS (Netherlands)

    Jedema, I.; Meent, M. van de; Pots, J.M.; Kester, M.G.; Beek, M.T. van der; Falkenburg, J.H.F.

    2011-01-01

    BACKGROUND: One of the major challenges in allogeneic stem cell transplantation is to find a balance between the harmful induction of graft-versus-host disease and the beneficial graft-versus-leukemia and pathogen-specific immune responses. Adoptive transfer of in-vitro generated donor T cells with

  3. Assessment of the pathogenicity of cell-culture-adapted Newcastle disease virus strain Komarov.

    Science.gov (United States)

    Visnuvinayagam, Sivam; Thangavel, K; Lalitha, N; Malmarugan, S; Sukumar, Kuppannan

    2015-01-01

    Newcastle disease vaccines hitherto in vogue are produced from embryonated chicken eggs. Egg-adapted mesogenic vaccines possess several drawbacks such as paralysis and mortality in 2-week-old chicks and reduced egg production in the egg-laying flock. Owing to these possible drawbacks, we attempted to reduce the vaccine virulence for safe vaccination by adapting the virus in a chicken embryo fibroblast cell culture (CEFCC) system. Eighteen passages were carried out by CEFCC, and the pathogenicity was assessed on the basis of the mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index, at equal passage intervals. Although the reduction in virulence demonstrated with increasing passage levels in CEFCC was encouraging, 20% of the 2-week-old birds showed paralytic symptoms with the virus vaccine from the 18(th)(final) passage. Thus, a tissue-culture-adapted vaccine would demand a few more passages by CEFCC in order to achieve a complete reduction in virulence for use as a safe and effective vaccine, especially among younger chicks. Moreover, it can be safely administered even to unprimed 8-week-old birds.

  4. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  5. Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes

    International Nuclear Information System (INIS)

    Welsh, K.I.; Turner, M.J.

    1976-01-01

    Three rabbit antisera are described which are specific without absorption (titer 1:100) for separated human B cells, as measured by complement and non-complement fixing assays. The method of production of these sera involved injections of rabbits with precipitin lines formed between 10μ1 of three separate detergent solubilized membrane preparations and 4μ1 aliquots of rabbit antisera to human B cells. In addition to being B cell specific, the three sera block the MLC reaction, inhibit aggregated IgG binding to B cells, and show differential degrees of B cell lysis when tested on a panel of separated B and T cells. These and other properties suggest that the target specificities of the antibodies are the human equivalent of the murine Ia antigens. (author)

  6. Prolonged activation of virus-specific CD8+T cells after acute B19 infection

    DEFF Research Database (Denmark)

    Isa, Adiba; Kasprowicz, Victoria; Norbeck, Oscar

    2005-01-01

    BACKGROUND: Human parvovirus B19 (B19) is a ubiquitous and clinically significant pathogen, causing erythema infectiosum, arthropathy, transient aplastic crisis, and intrauterine fetal death. The phenotype of CD8+ T cells in acute B19 infection has not been studied previously. METHODS AND FINDINGS......: The number and phenotype of B19-specific CD8+ T cell responses during and after acute adult infection was studied using HLA-peptide multimeric complexes. Surprisingly, these responses increased in magnitude over the first year post-infection despite resolution of clinical symptoms and control of viraemia......, with T cell populations specific for individual epitopes comprising up to 4% of CD8+ T cells. B19-specific T cells developed and maintained an activated CD38+ phenotype, with strong expression of perforin and CD57 and downregulation of CD28 and CD27. These cells possessed strong effector function...

  7. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  8. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  9. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  10. The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity.

    Science.gov (United States)

    Hua, Jing; Liang, Shuwen; Ma, Xiong; Webb, Tonya J; Potter, James P; Li, Zhiping

    2011-01-01

    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.

  11. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO2 Chromatography.

    Science.gov (United States)

    Ibáñez-Vea, María; Huang, Honggang; Martínez de Morentin, Xabier; Pérez, Estela; Gato, Maria; Zuazo, Miren; Arasanz, Hugo; Fernández-Irigoyen, Joaquin; Santamaría, Enrique; Fernandez-Hinojal, Gonzalo; Larsen, Martin R; Escors, David; Kochan, Grazyna

    2018-03-02

    Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile. To overcome this drawback, most methods induce S-nitrosylation chemically in proteins using nitrosylating compounds before analysis, with the risk of introducing nonphysiological S-nitrosylation. Here we present a novel method to efficiently identify endogenous S-nitrosopeptides in the macrophage total proteome. Our approach is based on the labeling of S-nitrosopeptides reduced by ascorbate with a cysteine specific phosphonate adaptable tag (CysPAT), followed by titanium dioxide (TiO 2 ) chromatography enrichment prior to nLC-MS/MS analysis. To test our procedure, we performed a large-scale analysis of this low-abundant modification in a murine macrophage cell line. We identified 569 endogeneous S-nitrosylated proteins compared with 795 following exogenous chemically induced S-nitrosylation. Importantly, we discovered 579 novel S-nitrosylation sites. The large number of identified endogenous S-nitrosylated peptides allowed the definition of two S-nitrosylation consensus sites, highlighting protein translation and redox processes as key S-nitrosylation targets in macrophages.

  12. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts

    NARCIS (Netherlands)

    van Duijn, Trynette J.; Anthony, Eloise C.; Hensbergen, Paul J.; Deelder, André M.; Hordijk, Peter L.

    2010-01-01

    Rac1 is a member of the Rho family of small GTPases, which regulate cell adhesion and migration through their control of the actin cytoskeleton. Rho-GTPases are structurally very similar, with the exception of a hypervariable domain in the C terminus. Using peptide-based pulldown assays in

  13. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.

    Science.gov (United States)

    Reid, John A; Mollica, Peter A; Johnson, Garett D; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2016-06-07

    The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, 'luer-lock' syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an

  14. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  15. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    Science.gov (United States)

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  16. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  17. T cell clones which share T cell receptor epitopes differ in phenotype, function and specificity

    NARCIS (Netherlands)

    Yssel, H.; Blanchard, D.; Boylston, A.; de Vries, J. E.; Spits, H.

    1986-01-01

    Recently, we described a monoclonal antibody (3D6) that reacts with the T cell receptor (Ti) of the T leukemic cell line HPB-ALL and that cross-reacts with 2-10% of the T cells of normal healthy individuals. In this study we report the establishment of T cell clones that are 3D6+ but that differ in

  18. Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators

    International Nuclear Information System (INIS)

    McDaid, A J; Aw, K C; Haemmerle, E; Xie, S Q; Shahinpoor, M

    2011-01-01

    Rapid advancement in medicine and bioscience is causing demand for faster, more accurate and dexterous as well as safer and more reliable micro-manipulators capable of handling biological cells. Current micro-manipulation techniques commonly damage cell walls and membranes due to their stiffness and rigidity. Ionic polymer-metal composite (IPMC) actuators have inherent compliance and with their ability to operate well in fluid and cellular environments they present a unique solution for safe cell manipulation. The reason for the downfall of IPMCs is that their complex behaviour makes them hard to control precisely in unknown environments and in the presence of sizeable external disturbances. This paper presents a novel scheme for adaptively tuning IPMC actuators for precise and robust micro-manipulation of biological cells. A two-degree-of-freedom (2DOF) controller is developed to allow optimal performance for both disturbance rejection (DR) and set point (SP) tracking. These criteria are optimized using a proposed IFT algorithm which adaptively updates the controller parameters, with no model or prior knowledge of the operating conditions, to achieve a compliant manipulation system which can precisely track targets in the presence of large external disturbances, as will be encountered in real biological environments. Experiments are presented showing the performance optimization of an IPMC actuator in the presence of external mechanical disturbances as well as the optimization of the SP tracking. The IFT algorithm successfully tunes the DR and SP to an 85% and 69% improvement, respectively. Results are also presented for a one-degree-of-freedom (1DOF) controller tuned first for DR and then for SP, for a comparison with the 2DOF controller. Validation has been undertaken to verify that the 2DOF controller does indeed outperform both 1DOF controllers over a variety of operating conditions.

  19. In-Depth Analysis of Citrulline Specific CD4 T-Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2017-01-01

    AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T - Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...2016 4. TITLE AND SUBTITLE In-Depth Analysis of Citrulline-Specific CD4 T Cells in Rheumatoid Arthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...NOTES 14. ABSTRACT The goal of this project is to test the hypothesis that cit-specific CD4 T cells present in rheumatoid arthritis (RA) patients

  20. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial p