WorldWideScience

Sample records for cell specific adapter

  1. Adaptive Assessments Using Open Specifications

    Science.gov (United States)

    Leon, Hector Barbosa; Garcia-Penalvo, Francisco J.; Rodriguez-Conde, Maria Jose; Morales, Erla M.; de Pablos, Patricia Ordonez

    2012-01-01

    Evaluation is a key element in formal education processes; it must be constructed in a way that the item questions within help students understand by adapting them to the learning style as well. The focus of the present research work specifically in the convenience to adapt an associated multimedia material in each single question besides the…

  2. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells.

    Science.gov (United States)

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N(8)-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  3. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells

    Science.gov (United States)

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N8-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  4. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Scott R.; Chen, Zhenjun; Archbold, Julia K.; Tynan, Fleur E.; Beddoe, Travis; Kjer-Nielsen, Lars; Miles, John J.; Khanna, Rajiv; Moss, Denis J.; Liu, Yu Chih; Gras, Stephanie; Kostenko, Lyudmila; Brennan, Rebekah M.; Clements, Craig S.; Brooks, Andrew G.; Purcell, Anthony W.; McCluskey, James; Rossjohn, Jamie (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2010-07-07

    {alpha}{beta} T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

  5. Allele-specific adaptation of poliovirus VP1 B-C loop variants to mutant cell receptors.

    OpenAIRE

    Liao, S.; Racaniello, V

    1997-01-01

    Previous work has shown that three different mutations in domain 1 of the poliovirus receptor (Pvr), two in the predicted C'-C" ridge and one in the D-E loop, abolish binding of the P1/Mahoney strain. All three receptor defects could be suppressed by a mutation in the VP1 B-C loop of the viral capsid that was present in all 16 P1/Mahoney isolates adapted to the mutant receptors. To identify allele-specific mutations that enable poliovirus to utilize mutant receptors, and to understand the rol...

  6. Development of the Specific Adaptation Mobility Cane.

    Science.gov (United States)

    Arrington, S.

    1995-01-01

    A travel cane was adapted for use by a 10-year-old boy with cortical blindness, severe mental retardation and cerebral palsy affecting his left arm and leg. The Specific Adaptation Mobility Cane utilizes the affected arm to hold the cane while leaving the other hand free for trailing walls, opening doors, carrying objects, and holding handrails.…

  7. Stimulus-specific adaptation at the synapse level in vitro

    OpenAIRE

    Haitao Wang; Yi-Fan Han; Ying-Shing Chan; Jufang He

    2014-01-01

    Stimulus-specific adaptation (SSA) is observed in many brain regions in humans and animals. SSA of cortical neurons has been proposed to accumulate through relays in ascending pathways. Here, we examined SSA at the synapse level using whole-cell patch-clamp recordings of primary cultured cortical neurons of the rat. First, we found that cultured neurons had high firing capability with 100-Hz current injection. However, neuron firing started to adapt to repeated electrically activated synaptic...

  8. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy.

    Directory of Open Access Journals (Sweden)

    Harshavardhan Nilakantan

    Full Text Available NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx. We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs. We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new

  9. Specificity, cross-talk and adaptation in Interferon signaling

    Science.gov (United States)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  10. Evolution of speech-specific cognitive adaptations

    Directory of Open Access Journals (Sweden)

    Bart ede Boer

    2015-09-01

    Full Text Available This paper briefly reviews theoretical results that shed light on what kind of cognitive adaptations we can expect to have evolved for (combinatorial speech and then reviews concrete empirical work investigating adaptations for combinatorial speech. The paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to speech and language. This is because properties of language are determined through complex interaction between biologically evolved cognitive mechanisms (possibly adapted to language and cultural (evolutionary processes. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech in general or combinatorial structure in particular, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally.

  11. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten; Andersen, Mads Hald

    2016-01-01

    Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1......-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune...

  12. Cell-specific precursor processing

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bundgaard, Jens R

    2010-01-01

    The singular gene for a peptide hormone is expressed not only in a specific endocrine cell type but also in other endocrine cells as well as in entirely different cells such as neurons, adipocytes, myocytes, immune cells, and cells of the sex-glands. The cellular expression pattern for each gene...... varies with development, time and species. Endocrine regulation is, however, based on the release of a given hormone from an endocrine cell to the general circulation from whose cappilaries the hormone reaches the specific target cell elsewhere in the body. The widespread expression of hormone genes in...... different cells and tissues therefore requires control of biogenesis and secretion in order to avoid interference with the function of a specific hormonal peptide from a particular endocrine cell. Several mechanisms are involved in such control, one of them being cell-specific processing of prohormones. The...

  13. Stimulus-specific adaptation at the synapse level in vitro.

    Directory of Open Access Journals (Sweden)

    Haitao Wang

    Full Text Available Stimulus-specific adaptation (SSA is observed in many brain regions in humans and animals. SSA of cortical neurons has been proposed to accumulate through relays in ascending pathways. Here, we examined SSA at the synapse level using whole-cell patch-clamp recordings of primary cultured cortical neurons of the rat. First, we found that cultured neurons had high firing capability with 100-Hz current injection. However, neuron firing started to adapt to repeated electrically activated synaptic inputs at 10 Hz. Next, to activate different dendritic inputs, electrical stimulations were spatially separated. Cultured neurons showed similar SSA properties in the oddball stimulation paradigm compared to those reported in vivo. Single neurons responded preferentially to a deviant stimulus over repeated, standard stimuli considering both synapse-driven spikes and excitatory postsynaptic currents (EPSCs. Compared with two closely placed stimulating electrodes that activated highly overlapping dendritic fields, two separately placed electrodes that activated less overlapping dendritic fields elicited greater SSA. Finally, we used glutamate puffing to directly activate postsynaptic glutamate receptors. Neurons showed SSA to two separately placed puffs repeated at 10 Hz. Compared with EPSCs, GABAa receptor-mediated inhibitory postsynaptic currents showed weaker SSA. Heterogeneity of the synaptic inputs was critical for producing SSA, with glutamate receptor desensitization participating in the process. Our findings suggest that postsynaptic fatigue contributes largely to SSA at low frequencies.

  14. Non-specific Adaptive Reactions of Athletes: Evaluation and Correction

    Directory of Open Access Journals (Sweden)

    K. N. Naumova

    2015-12-01

    Full Text Available This work studies changes in non-specific adaptive reactions (NSAR of athletes who practice Wushu and Qigong and take Kladorod, a biological product made from plant material. The results of our study demonstrate the effectiveness of Kladorod as a remedy to enhance adaptive capacity with the possibility of application for training of athletes without any restrictions within the criteria of doping control.

  15. Adaptive Multi-Dimensional Particle In Cell

    OpenAIRE

    Lapenta, Giovanni

    2008-01-01

    Kinetic Particle In Cell (PIC) methods can extend greatly their range of applicability if implicit time differencing and spatial adaption are used to address the wide range of time and length scales typical of plasmas. For implicit differencing, we refer the reader to our recent summary of the implicit moment PIC method implemented in our CELESTE3D code [G. Lapenta, Phys. Plasmas, 13, 055904 (2006)]. Instead, the present document deals with the issue of PIC spatial adaptation. Adapting a kine...

  16. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure.......Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  17. Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Yvonne; Guschin, Dmitrii A.; Eckhard, Kathrin; Schuhmann, Wolfgang [Analytische Chemie - Elektroanalytik and Sensorik, Ruhr-Universitaet Bochum, Universitaetsstr. 150, D-44780 Bochum (Germany); Shleev, Sergey [Biomedical Laboratory Science, Faculty of Health and Society, Malmoe University, Soedra Foerstadsgatan 101, SE-20506 Malmoe (Sweden)

    2010-05-15

    The design of the coordination shell of an Os-complex and its integration within an electrodeposition polymer enables fast electron transfer between an electrode and a polymer entrapped high-potential laccase from the basidiomycete Trametes hirsuta. The redox potential of the Os{sup 3+/2+}-centre tethered to the polymer backbone (+ 720 mV vs. NHE) is perfectly matching the potential of the enzyme (+ 780 mV vs. NHE at pH 6.5). The laccase and the Os-complex modified anodic electrodeposition polymer were simultaneously precipitated on the surface of a glassy carbon electrode by means of a pH-shift to 2.5. The modified electrode was investigated with respect to biocatalytic O{sub 2} reduction to H{sub 2}O. The proposed modified electrode has potential applications as biofuel cell cathode. (author)

  18. Regulated cell death and adaptive stress responses.

    Science.gov (United States)

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  19. Rapid perceptual adaptation to high gravitoinertial force levels Evidence for context-specific adaptation

    Science.gov (United States)

    Lackner, J. R.; Graybiel, A.

    1982-01-01

    Subjects exposed to periodic variations in gravitoinertial force (2-G peak) in parabolic flight maneuvers quickly come to perceive the peak force level as having decreased in intensity. By the end of a 40-parabola flight, the decrease in apparent force is approximately 40%. On successive flight days, the apparent intensity of the force loads seems to decrease as well, indicating a cumulative adaptive effect. None of the subjects reported feeling abnormally 'light' for more than a minute or two after return to 1-G background force levels. The pattern of findings suggests a context-specific adaptation to high-force levels.

  20. Adaptive Multi-Dimensional Particle In Cell

    CERN Document Server

    Lapenta, Giovanni

    2008-01-01

    Kinetic Particle In Cell (PIC) methods can extend greatly their range of applicability if implicit time differencing and spatial adaption are used to address the wide range of time and length scales typical of plasmas. For implicit differencing, we refer the reader to our recent summary of the implicit moment PIC method implemented in our CELESTE3D code [G. Lapenta, Phys. Plasmas, 13, 055904 (2006)]. Instead, the present document deals with the issue of PIC spatial adaptation. Adapting a kinetic PIC code requires two tasks: adapting the grid description of the fields and moments and adapting the particle description of the distribution function. Below we address both issues. First, we describe how grid adaptation can be guided by appropriate measures of the local accuracy of the solution. Based on such information, grid adaptation can be obtained by moving grid points from regions of lesser interest to regions of higher interest or by adding and removing points. We discuss both strategies. Second, we describe...

  1. Characterization of bortezomib-adapted I-45 mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Peddaboina Chander

    2010-05-01

    Full Text Available Abstract Background Bortezomib, a proteasome-specific inhibitor, has emerged as a promising cancer therapeutic agent. However, development of resistance to bortezomib may pose a challenge to effective anticancer therapy. Therefore, characterization of cellular mechanisms involved in bortezomib resistance and development of effective strategies to overcome this resistance represent important steps in the advancement of bortezomib-mediated cancer therapy. Results The present study reports the development of I-45-BTZ-R, a bortezomib-resistant cell line, from the bortezomib-sensitive mesothelioma cell line I-45. I-45-BTZ-R cells showed no cross-resistance to the chemotherapeutic drugs cisplatin, 5-fluorouracil, and doxorubicin. Moreover, the bortezomib-adapted I-45-BTZ-R cells had decreased growth kinemics and did not over express proteasome subunit β5 (PSMB5 as compared to parental I-45 cells. I-45-BTZ-R cells and parental I-45 cells showed similar inhibition of proteasome activity, but I-45-BTZ-R cells exhibited much less accumulation of ubiquitinated proteins following exposure to 40 nm bortezomib. Further studies revealed that relatively low doses of bortezomib did not induce an unfolded protein response (UPR in the bortezomib-adapted cells, while higher doses induced UPR with concomitant cell death, as evidenced by higher expression of the mitochondrial chaperone protein Bip and the endoplasmic reticulum (ER stress-related pro-apoptotic protein CHOP. In addition, bortezomib exposure did not induce the accumulation of the pro-apoptotic proteins p53, Mcl-1S, and noxa in the bortezomib-adapted cells. Conclusion These results suggest that UPR evasion, together with reduced pro-apoptotic gene induction, accounts for bortezomib resistance in the bortezomib-adapted mesothelioma cell line I-45-BTZ-R.

  2. Recognition using information-optimal adaptive feature-specific imaging.

    Science.gov (United States)

    Baheti, Pawan K; Neifeld, Mark A

    2009-04-01

    We present an information-theoretic adaptive feature-specific imaging (AFSI) system for a M-class recognition task. The proposed system utilizes the recently developed task-specific information (TSI) framework to incorporate the knowledge from previous measurements and adapt the projection matrix at each step. The decision-making framework is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of misclassification (P(e)), and we compare the performances of three approaches: the new TSI-based AFSI system, a previously reported statistical AFSI system, and static FSI (SFSI). The TSI-based AFSI system exhibits significant improvement compared with SFSI and statistical AFSI at low signal-to-noise ratio (SNR). It is shown that for M=4 hypotheses, SNR=-20 dB and desired P(e)=10(-2), TSI-based AFSI requires 3 times fewer measurements than statistical AFSI, and 16 times fewer measurements than SFSI. We also describe an extension of the proposed method that is suitable for recognition in the presence of nuisance parameters such as illumination conditions and target orientations. PMID:19340282

  3. Allergen-Specific CD4(+) T Cells in Human Asthma.

    Science.gov (United States)

    Ling, Morris F; Luster, Andrew D

    2016-03-01

    In allergic asthma, aeroallergen exposure of sensitized individuals mobilizes robust innate and adaptive airway immune responses, stimulating eosinophilic airway inflammation and the activation and infiltration of allergen-specific CD4(+) T cells into the airways. Allergen-specific CD4(+) T cells are thought to be central players in the asthmatic response as they specifically recognize the allergen and initiate and orchestrate the asthmatic inflammatory response. In this article, we briefly review the role of allergen-specific CD4(+) T cells in the pathogenesis of human allergic airway inflammation in allergic individuals, discuss the use of allergen-major histocompatibility complex class II tetramers to characterize allergen-specific CD4(+) T cells, and highlight current gaps in knowledge and directions for future research pertaining to the role of allergen-specific CD4(+) T cells in human asthma. PMID:27027948

  4. Brine Organisms and the Question of Habitat Specific Adaptation

    Science.gov (United States)

    Siegel, B. Z.; Siegel, S. M.; Speitel, Thomas; Waber, Jack; Stoecker, Roy

    1984-12-01

    Among the well-known ultrasaline terrestrial habitats, the Dead Sea in the Jordan Rift Valley and Don Juan Pond in the Upper Wright Valley represent two of the most extreme. The former is a saturated sodium chloride-magnesium sulfate brine in a hot desert, the latter a saturated calcium chloride brine in an Antarctic desert. Both Dead Sea and Don Juan water bodies themselves are limited in microflora, but the saline Don Juan algal mat and muds contain abundant nutrients and a rich and varied microbiota, including Oscillatoria, Gleocapsa, Chlorella, diatoms, Penicillium and bacteria. In such environments, the existence of an array of specific adaptations is a common, and highly reasonable, presumption, at least with respect to habitat-obligate forms. Nevertheless, many years of ongoing study in our laboratory have demonstrated that lichens (e.g. Cladonia), algae (e.g. Nostoc) and fungi (e.g. Penicillium, Aspergillus) from the humid tropics can sustain metabolism down to -40°C and growth down to -10°C in simulated Dead Sea or Don Juan (or similar) media without benefit of selection or gradual acclimation. Non-selection is suggested in fungi by higher growth rates from vegetative inocula than spores. The importance of nutrient parameters was also evident in responses to potassium and reduced nitrogen compounds. In view of the saline performance of tropical Nostoc, and its presence in the Antarctic dry valley soils, its complete absence in our Don Juan mat samples was and remains a puzzle. We suggest that adaptive capability is already resident in many terrestrial life forms not currently in extreme habitats, a possible reflection of evolutionary selection for wide spectrum environmental adaptability.

  5. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  6. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  7. Traffic-adaptive, flow-specific medium access for wireless networks

    OpenAIRE

    Walker, T. Owens; Tummala, Murali; McEachen, John

    2009-01-01

    In this report, we formally introduce the novel concept of traffic-adaptive, flow-specific medium access control and show that it outperforms contention, non-contention and hybrid medium access schemes. A traffic-adaptive, flow-specific mechanism is proposed that utilizes flow-specific queue size statistics to select between medium access modes. A general model for traffic adaptive, flow-specific medium access control is developed and it is shown that hybrid medium access as well as traditio...

  8. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe;

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled...... later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and...

  9. Isolating specific embryonic cells of the sea urchin by FACS.

    Science.gov (United States)

    Juliano, Celina; Swartz, S Zachary; Wessel, Gary

    2014-01-01

    Isolating cells based on specific gene expression enables a focused biochemical and molecular analysis. While cultured cells and hematopoietic cells, for example, are routinely isolated by fluorescence activated cell sorting (FACS), early embryonic cells are a relatively untapped source for FACS applications often because the embryos of many animals are quite limiting. Furthermore, many applications require genetic model organisms in which cells can be labeled by fluorescent transgenes, or antibodies against cell surface antigens. Here we define conditions in the sea urchin embryo for isolation of embryonic cells based on expression of specific proteins. We use the sea urchin embryo for which a nearly unlimited supply of embryonic cells is available and demonstrate the conditions for separation of the embryo into single cells, fixation of the cells for antibody penetration into the cells, and conditions for FACS of a rare cell type in the embryo. This protocol may be adapted for analysis of mRNA, chromatin, protein, or carbohydrates and depends only on the probe availability for the cell of interest. We anticipate that this protocol will be broadly applicable to embryos of other species. PMID:24567215

  10. Adaptation and dynamics of cat retinal ganglion cells.

    Science.gov (United States)

    Enroth-Cugell, C; Shapley, R M

    1973-09-01

    1. The impulse/quantum (I/Q) ratio was measured as a function of background illumination for rod-dominated, pure central, linear square-wave responses of retinal ganglion cells in the cat.2. The I/Q ratio was constant at low backgrounds (dark adapted state) and inversely proportional to the 0.9 power of the background at high backgrounds (the light adapted state). There was an abrupt transition from the dark-adapted state to the light-adapted state.3. It was possible to define the adaptation level at a particular background as the ratio (I/Q ratio at that background)/(dark adapted I/Q ratio).4. The time course of the square-wave response was correlated with the adaptation level. The response was sustained in the dark-adapted state, partially transient at the transition level, and progressively more transient the lower the impulse/quantum ratio of the ganglion cell became. This was true both for on-centre and off-centre cells.5. The frequency response of the central response mechanism at different adaptation levels was measured. It was a low-pass characteristic in the dark-adapted state and became progressively more of a bandpass characteristic as the cell became more light-adapted.6. The rapidity of onset of adaptation was measured with a time-varying adapting light. The impulse/quantum ratio is reset within 100 msec of the onset of the conditioning light, and is kept at the new value throughout the time the conditioning light is on.7. These results can be explained by a nonlinear feedback model. In the model, it is postulated that the exponential function of the horizontal cell potential controls transmission from rods to bipolars. This model has an abrupt transition from dark- to light-adapted states, and its response dynamics are correlated with adaptation level. PMID:4747229

  11. Regulation of the adaptive immune system by innate lymphoid cells

    OpenAIRE

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  12. The geography of sex-specific selection, local adaptation, and sexual dimorphism.

    Science.gov (United States)

    Connallon, Tim

    2015-09-01

    Local adaptation and sexual dimorphism are iconic evolutionary scenarios of intraspecific adaptive differentiation in the face of gene flow. Although theory has traditionally considered local adaptation and sexual dimorphism as conceptually distinct processes, emerging data suggest that they often act concurrently during evolutionary diversification. Here, I merge theories of local adaptation in space and sex-specific adaptation over time, and show that their confluence yields several new predictions about the roles of context-specific selection, migration, and genetic correlations, in adaptive diversification. I specifically revisit two influential predictions from classical studies of clinal adaptation and sexual dimorphism: (1) that local adaptation should decrease with distance from the species' range center and (2) that opposing directional selection between the sexes (sexual antagonism) should inevitably accompany the evolution of sexual dimorphism. I show that both predictions can break down under clinally varying selection. First, the geography of local adaptation can be sexually dimorphic, with locations of relatively high local adaptation differing profoundly between the sexes. Second, the intensity of sexual antagonism varies across the species' range, with subpopulations near the range center representing hotspots for antagonistic selection. The results highlight the context-dependent roles of migration versus sexual conflict as primary constraints to adaptive diversification. PMID:26194274

  13. Apoptin: specific killer of tumor cells?

    Science.gov (United States)

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  14. Apoptin: Specific killer of tumor cells?

    OpenAIRE

    Tavassoli, M; Guelen, L.; Luxon, B. A.; Gäken, J

    2005-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apo...

  15. Cell-Specific Aptamers as Emerging Therapeutics

    OpenAIRE

    Cindy Meyer; Ulrich Hahn; Andrea Rentmeister

    2011-01-01

    Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment). Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have...

  16. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  17. Zinc finger recombinases with adaptable DNA sequence specificity.

    Directory of Open Access Journals (Sweden)

    Chris Proudfoot

    Full Text Available Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene, mediated by zinc finger recombinases (ZFRs, chimaeric enzymes with linked zinc finger (DNA recognition and recombinase (catalytic domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.

  18. Adaptation in E-Learning Content Specifications with Dynamic Sharable Objects

    OpenAIRE

    Ignacio Gutiérrez; Víctor Álvarez; M. Puerto Paule; Juan Ramón Pérez-Pérez; Sara de Freitas

    2016-01-01

    Dynamic sophisticated real-time adaptation is not possible with current e-learning technologies. Our proposal is based on changing the approach for the development of e-learning systems using dynamic languages and including them in both platforms and learning content specifications thereby making them adaptive. We propose a Sharable Auto-Adaptive Learning Object (SALO), defined as an object that includes learning content and describes its own behaviour supported by dynamic languages. We descr...

  19. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  20. Micro-magnet arrays for specific single bacterial cell positioning

    International Nuclear Information System (INIS)

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology

  1. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene.

    Science.gov (United States)

    Papamichos, Spyros I; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  2. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    Directory of Open Access Journals (Sweden)

    Spyros I. Papamichos

    2015-01-01

    Full Text Available The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF, a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential.

  3. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    Science.gov (United States)

    Papamichos, Spyros I.; Margaritis, Dimitrios; Kotsianidis, Ioannis

    2015-01-01

    The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF), a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential. PMID:26568894

  4. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses.

    Science.gov (United States)

    Lian, Jeffrey; Luster, Andrew D

    2015-10-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  5. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  6. Studies on adaptive responses in Chinese hamster cells

    International Nuclear Information System (INIS)

    For many years the possibility has been considered of low doses of radiation inducing adaptive responses in cells and organisms against the mutagenic effects of radiation. Currently, a number of experimental data appraise the existence of an adaptive response that is characterized by a decrease of radiation induced genetic damages. The understanding of the molecular mechanism involved in this phenomenon permits to estimate the effects and risks of low dose exposure. In this work, preliminary results of studies on the induction of adaptive response in cells subjected to different doses of ionizing radiation are presented

  7. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour.

    Science.gov (United States)

    Frechin, Mathieu; Stoeger, Thomas; Daetwyler, Stephan; Gehin, Charlotte; Battich, Nico; Damm, Eva-Maria; Stergiou, Lilli; Riezman, Howard; Pelkmans, Lucas

    2015-07-01

    Cells sense the context in which they grow to adapt their phenotype and allow multicellular patterning by mechanisms of autocrine and paracrine signalling. However, patterns also form in cell populations exposed to the same signalling molecules and substratum, which often correlate with specific features of the population context of single cells, such as local cell crowding. Here we reveal a cell-intrinsic molecular mechanism that allows multicellular patterning without requiring specific communication between cells. It acts by sensing the local crowding of a single cell through its ability to spread and activate focal adhesion kinase (FAK, also known as PTK2), resulting in adaptation of genes controlling membrane homeostasis. In cells experiencing low crowding, FAK suppresses transcription of the ABC transporter A1 (ABCA1) by inhibiting FOXO3 and TAL1. Agent-based computational modelling and experimental confirmation identified membrane-based signalling and feedback control as crucial for the emergence of population patterns of ABCA1 expression, which adapts membrane lipid composition to cell crowding and affects multiple signalling activities, including the suppression of ABCA1 expression itself. The simple design of this cell-intrinsic system and its broad impact on the signalling state of mammalian single cells suggests a fundamental role for a tunable membrane lipid composition in collective cell behaviour. PMID:26009010

  8. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  9. Adaptation to optimal cell growth through self-organized criticality.

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells. PMID:23003193

  10. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Daniil M Prigozhin

    Full Text Available Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.

  11. Load Cell Response Correction Using Analog Adaptive Techniques

    OpenAIRE

    Jafaripanah, Mehdi; Al-Hashimi, Bashir; White, Neil M.

    2003-01-01

    Load cell response correction can be used to speed up the process of measurement. This paper investigates the application of analog adaptive techniques in load cell response correction. The load cell is a sensor with an oscillatory output in which the measurand contributes to response parameters. Thus, a compensation filter needs to track variation in measurand whereas a simple, fixed filter is only valid at one load value. To facilitate this investigation, computer models for the load cell a...

  12. p53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    International Nuclear Information System (INIS)

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  13. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis

    OpenAIRE

    Shafiani, Shahin; Tucker-Heard, Glady’s; Kariyone, Ai; Takatsu, Kiyoshi; Urdahl, Kevin B.

    2010-01-01

    The ability of the adaptive immune system to restrict Mycobacterium tuberculosis (Mtb) is impeded by activated Foxp3+ regulatory T (T reg) cells. The importance of pathogen-specific T reg cells in this process has not been addressed. We show that T reg cell expansion after aerosol Mtb infection does not occur until Mtb is transported to the pulmonary lymph node (pLN), and Mtb-specific T reg cells have an increased propensity to proliferate. Even small numbers of Mtb-specific T reg cells are c...

  14. Specification of failure-handling requirements as policy rules on self-adaptive systems

    OpenAIRE

    Pimentel, João Henrique; Castro, Jaelson; Franch Gutiérrez, Javier

    2012-01-01

    Most adaptive systems have compensation mechanisms for recovering from or preventing failures. However, sometimes a compensation is not essential. Hence, diagnosing and compensating each and every one of their failures may be ineffective. Rather than polluting a requirements specification with fine grained definition of failure-handling conditions, this work aims to increase the flexibility of failure handling in self-adaptive systems using tolerance policies. We allow the expression...

  15. DCB-adapted plant cells possess unique wall structure

    Energy Technology Data Exchange (ETDEWEB)

    Shedletzky, E.; Shmuel, M. (Hebrew Univ., Jerusalem (Israel)); Delmer, D. (Hebrew Univ., Jerusalem (Israel) Michigan State Univ., East Lansing (USA)); Lamport, D. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) haven been adapted to growth on high concentrations of 2,6-dichloro-benzonitrile (DCB), an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of thee cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on DCB also differ from non-adapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonon and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-esters and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in thee unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.

  16. The role of virus-specific human T cells in influenza A virus infection

    OpenAIRE

    Guan, Jing; 管静

    2011-01-01

    Influenza A virus infection is a major cause of human morbidity and mortality. T cell immunity is believed to play critical roles for host defenses against influenza A infection. Once intracellular influenza A infection is established, viral clearance is mainly dependent on virus-specific CD8+ T cells. CD4+ T cells are important for adaptive immunity to natural influenza A infection or vaccination by providing help to B cells for antibody production and also providing help...

  17. Cross-adaptation to odor stimulation of olfactory receptor cells in the box turtle, Terrapene carolina.

    Science.gov (United States)

    Tonosaki, K

    1993-01-01

    Electrical recording from small twigs of olfactory nerve and electro-olfactogram (EOG) from olfactory epithelium in a turtle shows that olfactory receptors in the nose are responsive to various odors. I have used the effects of cross-adaptation to odor stimulation on the olfactory receptors to investigate the stimulus-specific components of these responses and to provide information about the responsiveness of cells. The results of the cross-adaptation experiments strongly support the hypothesis that different categories of receptor cells exist in the olfactory epithelium. PMID:8386588

  18. Specification for dispersed fuel-cell generator

    Science.gov (United States)

    Handley, L. M.; Cohen, R.

    1981-11-01

    A general description and performance definition for a standard 11-mw fuel cell power plant designed for electric utility dispersed-generation applications are provided. Additional features available at the option of the purchaser are also described. The power plant can operate singly or grouped with other power plants to produce larger mutli-megawatt power stations. A 33-mw station is discussed as representative of multiple power plant installations. The power plant specification defines power rating, heat rate, fuels, operating modes, siting characteristics, and available options. A general description included in the attachments covers equipment, typical site arrangement, auxiliary subsystems, maintenance, fuel flexibility, and general fluid and electrical schematics.

  19. Contrast Adaptation Decreases Complexity in Retinal Ganglion Cell Spike Train

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-Li; HUANG Shi-Yong; ZHANG Ying-Ying; LIANG Pei-Ji

    2007-01-01

    @@ The difference in temporal structures of retinal ganglion cell spike trains between spontaneous activity and firing activity after contrast adaptation is investigated. The Lempel-Ziv complexity analysis reveals that the complexity of the neural spike train decreases after contrast adaptation. This implies that the behaviour of the neuron becomes ordered, which may carry relevant information about the external stimulus. Thus, during the neuron activity after contrast adaptation, external information could be encoded in forms of some certain patterns in the temporal structure of spike train that is significantly different, compared to that of the spike train during spontaneous activity, although the firing rates in spontaneous activity and firing activity after contrast adaptation are sometime similar.

  20. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  1. Adaptive Web-Assisted Learning System for Students with Specific Learning Disabilities: A Needs Analysis Study

    Science.gov (United States)

    Polat, Elif; Adiguzel, Tufan; Akgun, Ozcan Erkan

    2012-01-01

    Because there is, currently, no education system for primary school students in grades 1-3 who have specific learning disabilities in Turkey and because such students do not receive sufficient support from face-to-face counseling, a needs analysis was conducted in order to prepare an adaptive, web-assisted learning system according to variables…

  2. Modality-specific facilitation and adaptation to painful tonic stimulation in humans.

    Science.gov (United States)

    Polianskis, Romanas; Graven-Nielsen, Thomas; Arendt-Nielsen, Lars

    2002-01-01

    " session. The overshoot magnitude was lowest during "VAS 6" session. Adapting and non-adapting/facilitating responses to cold and to pressure during "VAS 6" session were not correlated, suggesting that pain course and therefore stimulus tolerance during tonic stimulation are modality-specific. The results of the study suggest that tolerance of tonic painful pressure and cold stimulations is specific to stimulus modality and may represent separate nociceptive mechanisms. PMID:12413436

  3. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  4. Design and Implementation of Ranking Adaptation Algorithm for Domain Specific Search

    Directory of Open Access Journals (Sweden)

    B.Maheswari 1 , K. Chandra Shekhar Reddy2 , Prof.S.V.Achutha Rao

    2013-08-01

    Full Text Available In the market, various domain-specific search engines emerged, which are restricted to specific topicalities or document formats, and vertical to the broad-based search. Simply applying the ranking model trained for the broad-based search to the verticals cannot achieve a sound performance due to the domain differences, while building different ranking models for each domain is both laborious for labelling sufficient training samples and time-consuming or the training process. In this paper, to address the above difficulties, we investigate two problems: (1 whether we can adapt the ranking model learned for existing Web page search or verticals, to the new domain, so that the amount of labelled data and the training cost is reduced, while the performance requirement is still satisfied; and (2 how to adapt the ranking model from auxiliary domains to a new target domain. We address the second problem from the regularization framework and an algorithm called ranking adaptation SVM is proposed. The results demonstrate the applicability’s of the proposed ranking model adaptation algorithm and the ranking adaptability measurement.

  5. Monocyte-derived dendritic cells in innate and adaptive immunity.

    Science.gov (United States)

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  6. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses.

    Science.gov (United States)

    Dellabona, Paolo; Abrignani, Sergio; Casorati, Giulia

    2014-08-01

    T-cell help to B lymphocytes is one of the most important events in adaptive immune responses in health and disease. It is generally delivered by cognate CD4(+) T follicular helper (T(FH)) cells via both cell-to-cell contacts and soluble mediators, and it is essential for both the clonal expansion of antibody (Ab)-secreting B cells and memory B-cell formation. CD1d-restricted invariant natural killer T (iNKT) cells are a subset of innate-like T lymphocytes that rapidly respond to stimulation with specific lipid antigens (Ags) that are derived from infectious pathogens or stressed host cells. Activated iNKT cells produce a wide range of cytokines and upregulate costimulatory molecules that can promote activation of dendritic cells (DCs), natural killer (NK) cells, and T cells. A decade ago, we discovered that iNKT cells can help B cells to proliferate and to produce IgG Abs in vitro and in vivo. This adjuvant-like function of Ag-activated iNKT cells provides a flexible set of helper mechanisms that expand the current paradigm of T-cell-B-cell interaction and highlights the potential of iNKT-cell targeting vaccine formulations. PMID:24782127

  7. Relation between radio-adaptive response and cell to cell communication

    International Nuclear Information System (INIS)

    Ionizing radiation has been considered to cause severe damages to DNA and do harm to cells in proportion to the dose, however low it might be. In 1984, Wolff et al. showed that human peripheral lymphocytes adapted to the low-dose radiation from 3H-TdR added in culture medium and became resistant to the subsequent irradiation with high-doses of X-rays. This response, which is called radio-adaptive response, is also induced by X-rays and gamma-rays in human lymphocytes and Chinese hamster V79 cells. However, the mechanisms of and conditions for adaptive responses to radiation have not been clarified. With an objective of clarifying the conditions for adaptive responses of cells to radiation, we examined how the cell to cell communication is involved in the adaptive responses. We irradiated normal human embryo-derived (HE) cells and cancer cells (HeLa) in culture at high density with low-dose X-ray and examined their radio-adaptive responses by measuring the changes in sensitivity to subsequent high-dose X-ray irradiation using the Trypan Blue dye-exclusion test method. We also conducted experiments to examine the effects of Ca2+ ions and Phorbol 12-Myristate 13-Acetate (TPA) which are supposed to be involved in cell to cell communication. (author)

  8. Myogenic differentiation of FSHD patient specific induced pluripotent stem cells

    OpenAIRE

    Bosnakovski, Darko

    2012-01-01

    Human induced pluripotent stem (IPS) cells overcome several disadvantages of human embryonic stem cells, including host specificity and ethical issues. Patient-specific IPS cells can be generated from every donor by using different cell types, making them a suitable tool for autologous cell therapy and tissue engineering. IPS cells generated from patients with genetic disorders capture the disease genotype in the cell, making them a good model for studying the pathology of the diseas...

  9. DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions

    Science.gov (United States)

    Lapenta, Giovanni

    2011-06-01

    A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.

  10. Induction of Specific CD8+ T Cells against Intracellular Bacteria by CD8+ T-Cell-Oriented Immunization Approaches

    Directory of Open Access Journals (Sweden)

    Toshi Nagata

    2010-01-01

    Full Text Available For protection against intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes, the cellular arm of adaptive immunity is necessary. A variety of immunization methods have been evaluated and are reported to induce specific CD8+ T cells against intracellular bacterial infection. Modified BCG vaccines have been examined to enhance CD8+ T-cell responses. Naked DNA vaccination is a promising strategy to induce CD8+ T cells. In addition to this strategy, live attenuated intracellular bacteria such as Shigella, Salmonella, and Listeria have been utilized as carriers of DNA vaccines in animal models. Vaccination with dendritic cells pulsed with antigenic peptides or the cells introduced antigen genes by virus vectors such as retroviruses is also a powerful strategy. Furthermore, vaccination with recombinant lentivirus has been attempted to induce specific CD8+ T cells. Combinations of these strategies (prime-boost immunization have been studied for the efficient induction of intracellular bacteria-specific CD8+ T cells.

  11. Can there ever be a non-specific adaptation? A response to Simon J. Hampton.

    OpenAIRE

    Dickins, Thomas E.

    2005-01-01

    Recently Hampton (2004) has argued that natural selection could have equipped the human mind with a set of adaptations for nothing in particular. In this way Hampton challenges the current orthodoxy of Evolutionary Psychology, which claims the mind is a collection of domain-specific cognitive mechanisms. This paper outlines the core of Hampton?s thesis as well as the key commitments of Evolutionary Psychology. This is followed by a discussion of the principal levers of Hampton?s argument, whi...

  12. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences.

    OpenAIRE

    Robert Mill; Martin Coath; Thomas Wennekers; Denham, Susan L.

    2011-01-01

    Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron mo...

  13. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    OpenAIRE

    Pesko, Kendra; Voigt, Emily A.; Swick, Adam; Morley, Valerie J.; Timm, Collin; Yin, John; Paul E. Turner

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3′ UTR – core protein genes – envelo...

  14. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  15. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  16. Seeing Beyond Sight: The Adaptive, Feature-Specific, Spectral Imaging Classifier

    Science.gov (United States)

    Dunlop-Gray, Matthew John

    Spectral imaging, a combination of spectroscopy and imaging, is a powerful tool for providing in situ material classification across a spatial scene. Typically spectral imaging analyses are interested in classification, though conventionally the classification is performed only after reconstruction of the spectral datacube, which can have upwards of 109 signal elements. In this dissertation, I present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator which induces spectral filtering, the AFSSI-C measures specific projections of the spectral datacube which in turn feed an adaptive Bayesian classification and feature design framework. I present my work related to the design, construction, and testing of this instrument, which ultimately demonstrated significantly improved classification accuracy compared to legacy spectral imaging systems by first showing agreement with simulation, and then comparing to expected performance of traditional systems. As a result of its open aperture and adaptive filters, the AFSSI-C achieves 250x better accuracy than pushbroom, whiskbroom, and tunable filter systems for a four-class problem at 0 dB TSNR (task signal-to-noise ratio)---a point where measurement noise is equal to the minimum separation between the library spectra. The AFSSI-C also achieves 100x better accuracy than random projections at 0 dB TSNR.

  17. Multi-omics analysis of niche specificity provides new insights into ecological adaptation in bacteria.

    Science.gov (United States)

    Zhu, Bo; Ibrahim, Muhammad; Cui, Zhouqi; Xie, Guanlin; Jin, Gulei; Kube, Michael; Li, Bin; Zhou, Xueping

    2016-08-01

    Different lifestyles, ranging from a saprophyte to a pathogen, have been reported in bacteria of one species. Here, we performed genome-wide survey of the ecological adaptation in four Burkholderia seminalis strains, distinguished by their origin as part of the saprophytic microbial community of soil or water but also including human and plant pathogens. The results indicated that each strain is separated from the others by increased fitness in medium simulating its original niche corresponding to the difference between strains in metabolic capacities. Furthermore, strain-specific metabolism and niche survival was generally linked with genomic variants and niche-dependent differential expression of the corresponding genes. In particular, the importance of iron, trehalose and d-arabitol utilization was highlighted by the involvement of DNA-methylation and horizontal gene transfer in niche-adapted regulation of the corresponding operons based on the integrated analysis of our multi-omics data. Overall, our results provided insights of niche-specific adaptation in bacteria. PMID:26859773

  18. Feature-specific imaging: Extensions to adaptive object recognition and active illumination based scene reconstruction

    Science.gov (United States)

    Baheti, Pawan K.

    Computational imaging (CI) systems are hybrid imagers in which the optical and post-processing sub-systems are jointly optimized to maximize the task-specific performance. In this dissertation we consider a form of CI system that measures the linear projections (i.e., features) of the scene optically, and it is commonly referred to as feature-specific imaging (FSI). Most of the previous work on FSI has been concerned with image reconstruction. Previous FSI techniques have also been non-adaptive and restricted to the use of ambient illumination. We consider two novel extensions of the FSI system in this work. We first present an adaptive feature-specific imaging (AFSI) system and consider its application to a face-recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. We present both statistical and information-theoretic adaptation mechanisms for the AFSI system. The sequential hypothesis testing framework is used to determine the number of measurements required for achieving a specified misclassification probability. We demonstrate that AFSI system requires significantly fewer measurements than static-FSI (SFSI) and conventional imaging at low signal-to-noise ratio (SNR). We also show a trade-off, in terms of average detection time, between measurement SNR and adaptation advantage. Experimental results validating the AFSI system are presented. Next we present a FSI system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all of the reflected light onto a single photodetector. We refer to this system as feature-specific structured imaging (FSSI). Principal component features are used to define the illumination patterns. The optimal LMMSE operator is used to generate object estimates from the measurements. We demonstrate that this new imaging approach reduces imager complexity and provides improved image

  19. Shielding analysis of the IEM cell offset adapter plate

    International Nuclear Information System (INIS)

    The adapter plate for the Interim Examination and Maintenance (IEM) cell ten foot ceiling valve was modified so that the penetration through the valve is offset to the north side of the steel plate. The modifications required that the shielding effectiveness be evaluated for several operating conditions. The highest gamma ray dose rate (51 mrem/hr) occurs when a Core Component Container (CCC) with six high burn-up driver fuel assemblies is transferred into or out of Solid Waste Cask (SWC). The neutron dose rate at the same source location is 2.5 mrem/hr. The total dose rate during the transfer is less than the 200 mrem/hr limit. If the ten foot ceiling valve is closed, the dose rate with twelve DFA in the cell will be less than 0.1 mrem/hr. However, with the ceiling valve open the dose rate will be as high as 12 mrem/hr. The latter condition will require controlled access to the area around the offset adapter plate when the ceiling valve is open. It was found that gaps in the shield block around the SWC floor valve will allow contact dose rates as high as 350 mrem/hr during the transfer of a fully loaded CCC. Although this situation does not pertain to the offset adapter plate, it will require controlled access around the SWC valve during the transfer of a fully loaded CCC

  20. Generating a Domain Specific Inspection Evaluation Method through an Adaptive Framework

    Directory of Open Access Journals (Sweden)

    Roobaea AlRoobaea

    2013-07-01

    Full Text Available The electronic information revolution and the use of computers as an essential part of everyday life are now more widespread than ever before, as the Internet is exploited for the speedy transfer of data and business. Social networking sites (SNSs, such as LinkedIn, Ecademy and Google+ are growing in use worldwide, and they present popular business channels on the Internet. However, they need to be continuously evaluated and monitored to measure their levels of efficiency, effectiveness and user satisfaction, ultimately to improve quality. Nearly all previous studies have used Heuristic Evaluation (HE and User Testing (UT methodologies, which have become the accepted methods for the usability evaluation of User Interface Design (UID; however, the former is general, and unlikely to encompass all usability attributes for all website domains. The latter is expensive, time consuming and misses consistency problems. To address this need, a new evaluation method is developed using traditional evaluations (HE and UT in novel ways. The lack of an adaptive methodological framework that can be used to generate a domain- specific evaluation method, which can then be used to improve the usability assessment process for a product in any chosen domain, represents a missing area in usability testing. This paper proposes an adaptive framework that is readily capable of adaptation to any domain, and then evaluates it by generating an evaluation method for assessing and improving the usability of products in a particular domain. The evaluation method is called Domain Specific Inspection (DSI, and it is empirically, analytically and statistically tested by applying it on three websites in the social networks domain. Our experiments show that the adaptive framework is able to build a formative and summative evaluation method that provides optimal results with regard to our newly identified set of comprehensive usability problem areas as well as relevant usability

  1. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  2. Comparative evaluation of cell culture-adapted and chicken embryo-adapted fowl pox vaccine strains.

    Science.gov (United States)

    Baxi, M K; Oberoi, M S

    1999-01-01

    Two types of vaccines, chicken embryo adapted (VacCE) and cell culture adapted (VacCC), were tested for their efficacy to elicite the immune response in birds vaccinated at 2 and 8 wk of age. The cell-mediated immune response studied by blastogenesis assay showed that birds vaccinated at the second week of age by both VacCE and VacCC vaccines had significant increase in T-lymphocyte count at 21 days postvaccination (PV) and 7 days postchallenge (PC), whereas in birds vaccinated at 8 wk of age, a significant increase was seen at 21 days PV and 7 days PC with the VacCC vaccine. The rise in passive hemagglutination titers was observed up to 21 days PV and 7 days PC in birds vaccinated at 2 wk of age. However, only the birds vaccinated with VacCC at 8 wk of age showed rise in titers at days 21 PV and 7 PC. Birds were challenged 90 days PV by scarification on the thigh region, and the birds vaccinated with VacCC showed 90% and 70% protection when vaccinated at 2 and 8 wk, respectively. The birds vaccinated with VacCE showed only 60% and 20% protection at the corresponding levels, respectively. PMID:10216755

  3. Acid stress adaptation protects saccharomyces cerevisiae from acetic acid-induced programme cell death

    OpenAIRE

    Giannattasio, Sergio; Guaragnella, Nicoletta; Côrte-Real, Manuela; Passarella, Salvatore; Marra, Ersilia

    2005-01-01

    In this work evidence is presented that acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-mediated programmed cell death. Exponential-phase yeast cells, non-adapted or adapted to acid stress by 30 min incubation in rich medium set at pH 3.0 with HCl, have been exposed to increasing concentrations of acetic acid and time course changes of cell viability have been assessed. Adapted cells, in contrast to non-adapted cells, when exposed to 80 mM acetic acid for 200 min ...

  4. Optimal Multitrial Prediction Combination and Subject-Specific Adaptation for Minimal Training Brain Switch Designs.

    Science.gov (United States)

    Spyrou, Loukianos; Blokland, Yvonne; Farquhar, Jason; Bruhn, Jorgen

    2016-06-01

    Brain-Computer Interface (BCI) systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system. A brain switch is a particular BCI system where the system is required to distinguish from two separate mental tasks corresponding to the on-off commands of a switch. Such applications require a low false positive rate (FPR) while having an acceptable response time (RT) until the switch is activated. In this work, we develop a methodology that produces optimal brain switch behavior through subject specific (SS) adaptation of: a) a multitrial prediction combination model and b) an SI classification model. We propose a statistical model of combining classifier predictions that enables optimal FPR calibration through a short calibration session. We trained an SI classifier on a training synchronous dataset and tested our method on separate holdout synchronous and asynchronous brain switch experiments. Although our SI model obtained similar performance between training and holdout datasets, 86% and 85% for the synchronous and 69% and 66% for the asynchronous the between subject FPR and TPR variability was high (up to 62%). The short calibration session was then employed to alleviate that problem and provide decision thresholds that achieve when possible a target FPR=1% with good accuracy for both datasets. PMID:26529768

  5. The influence of T cell development on pathogen specificity and autoreactivity

    CERN Document Server

    Kosmrlj, Andrej; Chakraborty, Arup K

    2012-01-01

    T cells orchestrate adaptive immune responses upon activation. T cell activation requires sufficiently strong binding of T cell receptors on their surface to short peptides derived from foreign proteins bound to protein products of the major histocompatibility (MHC) gene products, which are displayed on the surface of antigen presenting cells. T cells can also interact with peptide-MHC complexes, where the peptide is derived from host (self) proteins. A diverse repertoire of relatively self-tolerant T cell receptors is selected in the thymus. We study a model, computationally and analytically, to describe how thymic selection shapes the repertoire of T cell receptors, such that T cell receptor recognition of pathogenic peptides is both specific and degenerate. We also discuss the escape probability of autoimmune T cells from the thymus.

  6. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species.

    Science.gov (United States)

    Allison, Andrew B; Kohler, Dennis J; Ortega, Alicia; Hoover, Elizabeth A; Grove, Daniel M; Holmes, Edward C; Parrish, Colin R

    2014-11-01

    Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184

  7. Enteric glial cells have specific immunosuppressive properties.

    Science.gov (United States)

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  8. Mechanical anisotropy and adaptation of metastatic cells probed by magnetic microbeads

    Science.gov (United States)

    Zhang, Zhipeng; Shi, Yanhui; Jhiang, Sissy M.; Menq, Chia-Hsiang

    2010-02-01

    Metastatic cells have the ability to break through the basal lamina, enter the blood vessels, circulate through the vasculature, exit at distant sites, and form secondary tumors. This multi-step process, therefore, clearly indicates the inherent ability of metastatic cells to sense, process, and adapt to the mechanical forces in different surrounding environments. We describe a magnetic probing device that is useful in characterizing the mechanical properties of cells along arbitrary two-dimensional directions. Magnetic force, with the advantages of biocompatibility and specificity, was produced by magnetic poles placed in an octupole configuration and applied to fibronectin-coated magnetic microbeads attached on cell membrane. Cell deformation in response to the applied force was then recorded through the displacement of the microbeads. The motion of the beads was measured by computer processing the video images acquired by a high-speed CMOS camera. Rotating force vectors with constant magnitude while pointing to directions of all 360 degrees were applied to study the mechanical anisotropy of metastatic breast cancer cells MDA-MB-231. The temporal changes in magnitude and directionality of the cellular responses were then analyzed to investigate the cellular adaptation to force stimulation. This probing technology thus has the potential to provide us a better understanding of the mechano-signatures of cells.

  9. Adaptive Particle in Cell: Balanced Discretization and weighted Shape functions

    CERN Document Server

    Geiser, Juergen; Schneider, Ralf; Matyash, Konstantin; Tskhakaya, David; Kalentyev, O

    2011-01-01

    In this paper we present a adaptive particle in cell method to extend the application to adaptive grid transformation and accelerate the solver process. The motivation arose of simulating near and fare-field application of plasma induced drive propulsion systems, called ion thruster. Here the problems of simulating a near-field in the drive propulsion system and the fare field of the shoot of the plasma particles of the system are hard and delicate to compute, see Birdsall 1985, Birdsall 1991. Based on the large scale computation of PIC codes, that can simulate up to $10^{10}$ particles, the accuracy of the particle solvers are very important. Due to the work of Tskhakaya et. al 2007, that allows only spatial symmetry and uniform grids, we propose a novel adaptive PIC method, that allows to use also non-uniform grids. Here, we have to balance the spatial symmetry to a spatial non-symmetry scheme, without loosing the physical correctness of conservation constraints. The results are discussed with numerical exp...

  10. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  11. MUSCLE FIBER SPECIFIC ANTIOXIDATIVE SYSTEM ADAPTATION TO SWIM TRAINING IN RATS: INFLUENCE OF INTERMITTENT HYPOXIA

    Directory of Open Access Journals (Sweden)

    Olga Gonchar

    2005-06-01

    Full Text Available The aim of the present study was to examine the influence of intermittent hypoxia at rest and in combination with long-term high-intensity swimming exercise on lipid peroxidation and antioxidant defense system adaptation in skeletal muscles differing in fiber type composition. High-intensity chronic exercise was performed as swimming training with load that corresponded to ~ 75 % VO2max (30 min·day-1, 5 days·wk-1, for 4 wk. Intermittent hypoxic training (IHT consisted of repeated episodes of hypoxia (12%O2, 15 min, interrupted by equal periods of recovery (5 sessions/day, for 2 wk. Sessions of IHT were used during the first two weeks and during the last two weeks of chronic exercise. Oxidative (red gastrocnemius and soleus, mix and glycolytic (white gastrocnemius muscles were sampled. Our results indicated that high-intensity swim training in combination with sessions of IHT induced more profound antioxidative adaptations in skeletal muscles than the exercise training only. This adaptation has muscle fiber type specificity and is reflected in significantly elevated superoxide dismutase and catalase activities in highly oxidative muscle only. Training adaptation of GSH system (reduced glutathione content, activities of glutathione reductase, glutathione peroxidase, NADPH-supplying enzyme glucose-6-phosphate dehydrogenase occurred both in slow- and fast-twitch muscles. However, this process was more effective in oxidative muscles. IHT attenuated the increase in TBARS content induced by high-intensity swimming training. The test on exercise tolerance demonstrated a significant elevation of the swimming time to exhaustion after IHT at rest and after IHT in conjunction with high-intensity exercise in comparison with untrained and chronically exercised rats. These results confirmed that sessions of IHT might improve exercise tolerance and increase maximal work capacity

  12. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  13. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    Science.gov (United States)

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  14. Adaptive Evolution of cry Genes in Bacillus thuringiensis:Implications for Their Specificity Determination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cry gene family, produced during the late exponential phase of growth in Bacillus thuringiensis, is a large, still-growing family of homologous genes, in which each gene encodes a protein with strong specific activity against only one or a few insect species. Extensive studies are mostly focusing on the structural and functional relationships of Cry proteins, and have revealed several residues or domains that are important for the target recognition and receptor attachment. In this study,we have employed a maximum likelihood method to detect evidence of adaptive evolution in Cry proteins, and have identified 24 positively selected residues, which are all located in Domain Ⅱ or Ⅲ. Combined with known data from mutagenesis studies, the majority of these residues, at the molecular level, contribute much to the insect specificity determination. We postulate that the potential pressures driving the diversification of Cry proteins may be in an attempt to adapt for the "arm race" between δ-endotoxins and the targeted insects, or to enlarge their target spectra, hence result in the functional divergence. The sites identified to be under positive selection would provide targets for further structural and functional analyses on Cry proteins.

  15. Measles virus-specific murine T cell clones: characterization of fine specificity function.

    NARCIS (Netherlands)

    P. de Vries (Petra); J.P.M. Versteeg-van Oosten (José); I.K.G. Visser (Ilona); R.S. van Binnendijk (Rob); S.A. Langeveld (Sacha); A.D.M.E. Osterhaus (Ab); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractMeasles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable

  16. Adaptive Response of T and B Cells in Atherosclerosis.

    Science.gov (United States)

    Ketelhuth, Daniel F J; Hansson, Göran K

    2016-02-19

    Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease. PMID:26892965

  17. Nck adapter proteins: functional versatility in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2009-02-01

    Full Text Available Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.

  18. Functional adaptation of cortical interneurons to attenuated activity is subtype-specific

    Directory of Open Access Journals (Sweden)

    Theofanis Karayannis

    2012-09-01

    Full Text Available Functional neuronal homeostasis has been studied in a variety of model systems and contexts. Many studies have shown that there are a number of changes that can be activated within individual cells or networks in order to compensate for perturbations or changes in levels of activity. Dissociating the cell autonomous from the network-mediated events has been complicated due to the difficulty of sparsely targeting specific populations of neurons in vivo. Here, we make use of a recent in vivo approach we developed that allows for the sparse labeling and manipulation of activity within superficial CGE-derived GABAergic interneurons. Expression of the inward rectifying potassium channel Kir2.1 cell-autonomously reduced neuronal activity and lead to specific developmental changes in their intrinsic electrophysiological properties and the synaptic input they received. In contrast to previous studies on homeostatic scaling of pyramidal cells, we did not detect any of the typically observed compensatory mechanisms in these interneurons. Rather, we instead saw a specific alteration of the kinetics of excitatory synaptic events within the reelin-expressing subpopulation of interneurons. These results provide the first in vivo observations for the capacity of interneurons to cell-autonomously regulate their excitability.

  19. Functional adaptation of cortical interneurons to attenuated activity is subtype-specific.

    Science.gov (United States)

    Karayannis, Theofanis; De Marco García, Natalia V; Fishell, Gordon J

    2012-01-01

    Functional neuronal homeostasis has been studied in a variety of model systems and contexts. Many studies have shown that there are a number of changes that can be activated within individual cells or networks in order to compensate for perturbations or changes in levels of activity. Dissociating the cell autonomous from the network-mediated events has been complicated due to the difficulty of sparsely targeting specific populations of neurons in vivo. Here, we make use of a recent in vivo approach we developed that allows for the sparse labeling and manipulation of activity within superficial caudal ganglionic eminence (CGE)-derived GABAergic interneurons. Expression of the inward rectifying potassium channel Kir2.1 cell-autonomously reduced neuronal activity and lead to specific developmental changes in their intrinsic electrophysiological properties and the synaptic input they received. In contrast to previous studies on homeostatic scaling of pyramidal cells, we did not detect any of the typically observed compensatory mechanisms in these interneurons. Rather, we instead saw a specific alteration of the kinetics of excitatory synaptic events within the reelin-expressing subpopulation of interneurons. These results provide the first in vivo observations for the capacity of interneurons to cell-autonomously regulate their excitability. PMID:23015781

  20. Sleeping Beauty system to redirect T-cell specificity for human applications

    Science.gov (United States)

    Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Dawson, Margaret; Figliola, Matthew; Olivares, Simon; Rao, Pullavathi; Jue, Yi; Multani, Asha; Yang, Ge; Zhang, Ling; Kellar, Denise; Ang, Sonny; Torikai, Hiroki; Rabinovich, Brian; Lee, Dean A.; Kebriaei, Partow; Hackett, Perry; Champlin, Richard E.; Cooper, Laurence J.N.

    2013-01-01

    The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electro-transfer of CD19-specific SB DNA plasmids in PBMC and propagation on CD19+ artificial antigen presenting cells (aAPC) was used to numerically expand CD3+ T cells expressing CAR. By Day 28 of co-culture >90% of expanded CD3+ T cells expressed CAR. CAR+ T cells specifically killed CD19+ target cells and consisted of subsets expressing biomarkers consistent with central memory, ieffector memory, and effector phenotypes. CAR+ T cells contracted numerically in the absence of CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCRVα and TCRVβ repertoire. Quantitative fluorescence in situ hybridization (Q-FISH) revealed that CAR+ T cells preserved telomere length. Quantitative PCR (Q-PCR) and FISH showed CAR transposon integrated on average once per T-cell genome. CAR+ T cells in peripheral blood can be detected by Q-PCR at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the non-viral SB system for the investigational treatment of CD19+ B-cell malignancies (currently under three INDs #: 14193, 14577, and 14739). PMID:23377665

  1. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids.

    Science.gov (United States)

    Drini, Sima; Criscuolo, Alexis; Lechat, Pierre; Imamura, Hideo; Skalický, Tomáš; Rachidi, Najma; Lukeš, Julius; Dujardin, Jean-Claude; Späth, Gerald F

    2016-01-01

    All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment-genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites. PMID:27371955

  2. A microcosm test of adaptation and species specific responses to polluted sediments applicable to indigenous chironomids (Diptera)

    International Nuclear Information System (INIS)

    Chironomids may adapt to pollution stress but data are confined to species that can be reared in the laboratory. A microcosm approach was used to test for adaptation and species differences in heavy metal tolerance. In one experiment, microcosms containing different levels of contaminants were placed in polluted and reference locations. The response of Chironomus februarius to metal contaminants suggested local adaptation: relatively more flies emerged from clean sediment at the reference site and the reverse pattern occurred at the polluted site. However, maternal effects were not specifically ruled out. In another species, Kiefferulus intertinctus, there was no evidence for adaptation. In a second experiment, microcosms with different contaminant levels were placed at two polluted and two unpolluted sites. Species responded differently to contaminants, but there was no evidence for adaptation in the species where this could be tested. Adaptation to heavy metals may be uncommon and species specific, but more sensitive species need to be tested across a range of pollution levels. Factors influencing the likelihood of adaptation are briefly discussed. - A field test for adaptation applicable to indigenous chironomids suggests adaptation to metal contaminants in one species but not in other species

  3. Birthdating studies reshape models for pituitary gland cell specification.

    Science.gov (United States)

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. PMID:21262217

  4. Cell type-specific transcriptome profiling in mammalian brains.

    Science.gov (United States)

    LoVerso, Peter R; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  5. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants.

    Science.gov (United States)

    Narendra, Ajay; Reid, Samuel F; Greiner, Birgit; Peters, Richard A; Hemmi, Jan M; Ribi, Willi A; Zeil, Jochen

    2011-04-22

    Animals are active at different times of the day and their activity schedules are shaped by competition, time-limited food resources and predators. Different temporal niches provide different light conditions, which affect the quality of visual information available to animals, in particular for navigation. We analysed caste-specific differences in compound eyes and ocelli in four congeneric sympatric species of Myrmecia ants, with emphasis on within-species adaptive flexibility and daily activity rhythms. Each caste has its own lifestyle: workers are exclusively pedestrian; alate females lead a brief life on the wing before becoming pedestrian; alate males lead a life exclusively on the wing. While workers of the four species range from diurnal, diurnal-crepuscular, crepuscular-nocturnal to nocturnal, the activity times of conspecific alates do not match in all cases. Even within a single species, we found eye area, facet numbers, facet sizes, rhabdom diameters and ocelli size to be tuned to the distinct temporal niche each caste occupies. We discuss these visual adaptations in relation to ambient light levels, visual tasks and mode of locomotion. PMID:20926444

  6. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. PMID:26577840

  7. Design principle of TVO's final repository and preliminary adaptation to site specific conditions

    International Nuclear Information System (INIS)

    Teollisuuden Voima Oy (TVO) is responsible for the management of spent fuel produced by the Olkiluoto power plant. TVO's current programme of spent fuel management is based on the guidelines and time schedule set by the Finnish Government. TVO has studied a final disposal concept in which the spent fuel bundles are encapsulated in copper canisters and emplaced in Finnish bedrock. According to the plan the final repository for spent fuel will be in operation by 2020. TVO's updated technical plans for the disposal of spent fuel together with a performance analysis (TVO-92) were submitted to the authorities in 1992. The paper describes the design principle of TVO's final repository and preliminary adaptation of the repository to site specific conditions. (author). 10 refs., 5 figs

  8. Effects of a Single Escape Mutation on T Cell and HIV-1 Co-adaptation.

    Science.gov (United States)

    Sun, Xiaoming; Shi, Yi; Akahoshi, Tomohiro; Fujiwara, Mamoru; Gatanaga, Hiroyuki; Schönbach, Christian; Kuse, Nozomi; Appay, Victor; Gao, George F; Oka, Shinichi; Takiguchi, Masafumi

    2016-06-01

    The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level. PMID:27239036

  9. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  10. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences.

    Directory of Open Access Journals (Sweden)

    Robert Mill

    2011-08-01

    Full Text Available Stimulus-specific adaptation (SSA occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential, and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response.

  11. A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences.

    Science.gov (United States)

    Mill, Robert; Coath, Martin; Wennekers, Thomas; Denham, Susan L

    2011-08-01

    Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response. PMID:21876661

  12. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut.

    Science.gov (United States)

    Ramu, Vemanna S; Swetha, Thavarekere N; Sheela, Shekarappa H; Babitha, Chandrashekar K; Rohini, Sreevathsa; Reddy, Malireddy K; Tuteja, Narendra; Reddy, Chandrashekar P; Prasad, Trichi Ganesh; Udayakumar, Makarla

    2016-03-01

    Adaptation of crops to drought-prone rain-fed conditions can be achieved by improving plant traits such as efficient water mining (by superior root characters) and cellular-level tolerance mechanisms. Pyramiding these drought-adaptive traits by simultaneous expression of genes regulating drought-adaptive mechanisms has phenomenal relevance in improving stress tolerance. In this study, we provide evidence that peanut transgenic plants expressing Alfalfa zinc finger 1 (Alfin1), a root growth-associated transcription factor gene, Pennisetum glaucum heat-shock factor (PgHSF4) and Pea DNA helicase (PDH45) involved in protein turnover and protection showed improved tolerance, higher growth and productivity under drought stress conditions. Stable integration of all the transgenes was noticed in transgenic lines. The transgenic lines showed higher root growth, cooler crop canopy air temperature difference (less CCATD) and higher relative water content (RWC) under drought stress. Low proline levels in transgenic lines substantiate the maintenance of higher water status. The survival and recovery of transgenic lines was significantly higher under gradual moisture stress conditions with higher biomass. Transgenic lines also showed significant tolerance to ethrel-induced senescence and methyl viologen-induced oxidative stress. Several stress-responsive genes such as heat-shock proteins (HSPs), RING box protein-1 (RBX1), Aldose reductase, late embryogenesis abundant-5 (LEA5) and proline-rich protein-2 (PRP2), a gene involved in root growth, showed enhanced expression under stress in transgenic lines. Thus, the simultaneous expression of regulatory genes contributing for drought-adaptive traits can improve crop adaptation and productivity under water-limited conditions. PMID:26383697

  13. Neural network adapted to wound cell analysis in surgical patients.

    Science.gov (United States)

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. PMID:21362082

  14. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  15. Activated human γδ T cells as stimulators of specific CD8+ T cell responses to subdominant Epstein Barr virus (EBV) epitopes: Potential for immunotherapy of cancer

    OpenAIRE

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M.; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2009-01-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, γδ T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human γδ T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated ...

  16. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy

    OpenAIRE

    Butler, A. E.; Cao-Minh, L.; Galasso, R; Rizza, R. A.; Corradin, A.; Cobelli, C; Butler, P C

    2010-01-01

    Aims/hypothesis We sought to establish the extent and basis for adaptive changes in beta cell numbers in human pregnancy. Methods Pancreas was obtained at autopsy from women who had died while pregnant (n = 18), post-partum (n = 6) or were not pregnant at or shortly before death (controls; n = 20). Pancreases were evaluated for fractional pancreatic beta cell area, islet size and islet fraction of beta cells, beta cell replication (Ki67) and apoptosis (TUNEL), and indirect markers of beta cel...

  17. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  18. Cell Theory, Specificity, and Reproduction, 1837–1870

    OpenAIRE

    Müller-Wille, Staffan

    2010-01-01

    The cell is not only the structural, physiological, and developmental, but also the reproductive unit of life. So far, however, this aspect of the cell has received little attention by historians and philosophers of biology. I will argue that cell theory had far-reaching consequences for how biologists conceptualized the reproductive relationships between germs and adult organisms. Cell theory, as formulated by Theodor Schwann in 1839, implied that this relationship was a specific and lawful ...

  19. Glow in the Dark: Fluorescent Proteins as Cell and Tissue-Specific Markers in Plants

    Institute of Scientific and Technical Information of China (English)

    Wenzislava Ckurshumova; Adriana E. Caragea; Rochelle S. Goldstein; Thomas Berleth

    2011-01-01

    Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants,fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types,to monitor dynamic cell fate selection processes,and to obtain cell type-specific transcriptomes.Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes.The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms.In developmental studies,the use of fluorescent proteins has become critical,where morphological markers of tissues,cell types,or differentiation stages are either not known or not easily recognizable.In this review,we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.

  20. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    OpenAIRE

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  1. Adaptation effects to attractiveness of face photographs and art portraits are domain-specific

    OpenAIRE

    Hayn-Leichsenring, Gregor U.; Kloth, Nadine; Schweinberger, Stefan R.; Redies, Christoph

    2013-01-01

    We studied the neural coding of facial attractiveness by investigating effects of adaptation to attractive and unattractive human faces on the perceived attractiveness of veridical human face pictures (Experiment 1) and art portraits (Experiment 2). Experiment 1 revealed a clear pattern of contrastive aftereffects. Relative to a pre-adaptation baseline, the perceived attractiveness of faces was increased after adaptation to unattractive faces, and was decreased after adaptation to attractive ...

  2. Strategies for adaptation of mAb-producing CHO cells to serum-free medium

    OpenAIRE

    Costa A; Rodrigues M.; Henriques Mariana; Oliveira Rosário; Azeredo Joana

    2011-01-01

    Large-scale production of biopharmaceuticals commonly requires the use of serum-free medium, for safety and cost reasons. However, serum is essential to most mammalian cells growth, and its removal implies a very time-consuming process for cell adaptation. Thus, the aim of the study was to evaluate different strategies for cell adaptation to serum-free medium. Three cell types were used to assess the impact of transfection on adaptation: one common CHO-K1 cell line and two CHO-K1 cells tr...

  3. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke;

    2011-01-01

    In multiple sclerosis (MS), myelin-specific T cells are normally associated with destruction of myelin and axonal damage. However, in acute MS plaque, remyelination occurs concurrent with T-cell infiltration, which raises the question of whether T cells might stimulate myelin repair. We investiga...... calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  4. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells

    Science.gov (United States)

    Church, Sarah E; Jensen, Shawn M; Antony, Paul A; Restifo, Nicholas P; Fox, Bernard A

    2014-01-01

    Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4+ T cells enhance CD8+ T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4+ transgenic T cells-CD4+ T cells and pmel-CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor-specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4+ and CD8+ T cells for treatment of patients with cancer. PMID:24114780

  5. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Directory of Open Access Journals (Sweden)

    Philippe Ganot

    2011-07-01

    Full Text Available Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion, which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones or aposymbiotic (also called bleached A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm. A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both

  6. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    Science.gov (United States)

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  7. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  8. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish.

    Science.gov (United States)

    Gui, Lang; Zhang, Peipei; Liang, Xuemei; Su, Maoliang; Wu, Di; Zhang, Junbin

    2016-06-01

    The euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S. argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages. The cells were mostly fibroblast-like, with a normal diploid karyotype (2n=48). A low-osmolarity-adapted SK cell line (SK-la) was induced by growth in a hypotonic solution (150 mOsm). Effects of different osmotic stresses (150, 300 and 450 mOsm) on cell growth, cell morphology, cell volume changes and cell damage in SK, SK-la and CIK (a kidney-derived cell line from freshwater grass carp) cells were studied. These were compared by use of microscopic observation, flow cytometry and a Na-K-ATPase (NKA) assay. SK cells became smaller and grew rapidly in response to hypotonic stress (150 mOsm), and exhibited no visible morphological changes in response to hypertonic stress (450 mOsm). SK-la grew well by moderate hypertonicity (300 mOsm) but depressed in severe hypertonicity (450 mOsm), the number of unhealthy SK-la cells rose as osmolarity increased. In contrast, CIK cells became unhealthy with anisotonic challenge. The NKA activities of SK and CIK cells were assayed after exposure to anisotonic conditions, and rapid decreases were detected immediately except SK cells which were not affected in hypotonicity. Unlike in SK and CIK, an increase following a down-regulation of NKA activity was observed in SK-la cells upon moderate hypertonic stress. These results suggested that SK and SK-la cells had stronger osmoregulatory capacity than CIK cells, and provided new insights on the osmosensing and osmotic adaption in euryhaline fish kidney. PMID:26911257

  9. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  10. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.;

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...... that is specifically associated with a plant cell separation process that results in complete cell detachment....... is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is...... specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified...

  11. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. ...

  12. Cell-Type Specific Four-Component Hydrogel

    OpenAIRE

    Timo Aberle; Katrin Franke; Elke Rist; Karin Benz; Burkhard Schlosshauer

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appr...

  13. T-cell regulatory mechanisms in specific immunotherapy

    OpenAIRE

    Jutel, M; Akdis, C. A.

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, ...

  14. Stimulus-specific adaptation in the inferior colliculus of the mouse: anesthesia and spontaneous activity effects.

    Science.gov (United States)

    Duque, Daniel; Malmierca, Manuel S

    2015-11-01

    Rapid behavioral responses to unexpected events in the acoustic environment are critical for survival. Stimulus-specific adaptation (SSA) is the process whereby some auditory neurons respond better to rare stimuli than to repetitive stimuli. Most experiments on SSA have been performed under anesthesia, and it is unknown if SSA sensitivity is altered by the anesthetic agent. Only a direct comparison can answer this question. Here, we recorded extracellular single units in the inferior colliculus of awake and anesthetized mice under an oddball paradigm that elicits SSA. Our results demonstrate that SSA is similar, but not identical, in the awake and anesthetized preparations. The differences are mostly due to the higher spontaneous activity observed in the awake animals, which also revealed a high incidence of inhibitory receptive fields. We conclude that SSA is not an artifact of anesthesia and that spontaneous activity modulates neuronal SSA differentially, depending on the state of arousal. Our results suggest that SSA may be especially important when nervous system activity is suppressed during sleep-like states. This may be a useful survival mechanism that allows the organism to respond to danger when sleeping. PMID:25115620

  15. Stimulus-specific adaptation and deviance detection in the inferior colliculus

    Directory of Open Access Journals (Sweden)

    Manuel S. Malmierca

    2013-01-01

    Full Text Available Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA. SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003. This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the ‘mismatch negativity,’ and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009 as well as to behavioral habituation (Netser et al., 2011. Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC up to the auditory cortex (AC. In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed.

  16. Adaptive and maladaptive components of rumination? Diagnostic specificity and relation to depressive biases.

    Science.gov (United States)

    Joormann, Jutta; Dkane, Marco; Gotlib, Ian H

    2006-09-01

    The present study investigated the validity of the two-factor solution of items selected from the Rumination Scale of the Response Style Questionnaire proposed by Treynor, Gonzalez, and Nolen-Hoeksema (2003). In the first part of this study we used samples of currently depressed (MDD), formerly depressed (FD), socially anxious (SP), and healthy control participants to examine whether the brooding and reflective pondering components differentiate participants with an anxiety disorder from participants with depression. In the second part of this study we examined whether these components of rumination were differentially related to cognitive biases in depression. Overall, the MDD group exhibited higher brooding scores than did all other groups; SP and FD groups did not differ from each other but obtained higher brooding scores than did the control participants. Only the MDD and the control groups differed on the reflective pondering factor. Importantly, brooding and reflective pondering were differentially related to cognitive biases. Specifically, the correlation between brooding/reflective pondering and memory bias was not significant when depressive symptoms were partialed out. The correlation between brooding and attentional bias for sad faces, however, remained significant even when current depressive symptoms were taken into account. In sum, our results support the formulation that rumination is composed of an adaptive reflective pondering factor and a maladaptive brooding factor. PMID:16942978

  17. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    Science.gov (United States)

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  18. Motivations and domain specificity in intercultural adaptation : bloggers' experiences in their new host countries

    OpenAIRE

    Myry, Tanja

    2014-01-01

    The current qualitative study investigates immigrant’s intrinsic (internal) and extrinsic (external) motivations and how they surface in the intercultural adaption process. Additionally, it aims to answer whether immigrant’s adaptation orientations differ between private and public (life) domains by testing Boski’s (2008) IAFS model [the model of integration as functional(partial) specialization]. It is a fairly recent model of adaptation and only few prior studies have utilized it. The...

  19. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments

    Science.gov (United States)

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  20. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments.

    Science.gov (United States)

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  1. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  2. Specific uptake of serotonin by murine lymphoid cells

    International Nuclear Information System (INIS)

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated 3H-5HT(10-8 to 2.5 x 10-6M) in a saturable manner, at 370C. Specificity of uptake was indicated by competition with excess (10-5M) unlabelled 5HT and with 10-5M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of 3H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10-7M and Vmax of 501 +/- 108 pM/3 x 106 cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific 3H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated

  3. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    SUMMARY Human skeletal muscle has a remarkable capability of adapting to a change in demands. The preservation of this adaptability relies partly on a pool of resident myogenic stem cells (satellite cells, SCs). Extrinsic factors such as mechanical load (e.g. resistance exercise) and dietary...... supplementation on human skeletal muscle satellite cell content and muscle cell growth. The aim of paper III was to investigate the fiber type specific SC and myonuclei content, as well as myofiber CSA in response to the 12 weeks Ecc or Conc resistance exercise training combined with Whey or Placebo...... protein constitute key factors in regulation of human skeletal muscle mass; however, the influence of divergent resistance exercise contraction modes and protein supplementation on SC content, is not well described. The overall aim of the present thesis was to investigate whether eccentric versus...

  4. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    Science.gov (United States)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  5. Human Y-79 retinoblastoma cells exhibit specific insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Saviolakis, G.A.; Kyritsis, A.P.; Chader, G.J.

    1986-07-01

    The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of (/sup 125/I) insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.

  6. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels; Skou, Rikke Birgitte Lyngaa; Donia, Marco; Ellebæk, Eva; Svane, Inge Marie; Schumacher, Ton N; Thor Straten, Per; Hadrup, Sine Reker

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma......-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  7. NKG2C+CD57+ Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8+ T Cell Evolution towards Senescence

    Science.gov (United States)

    Heath, John; Newhook, Nicholas; Comeau, Emilie; Gallant, Maureen; Fudge, Neva

    2016-01-01

    Objective. Measuring NKG2C+CD57+ natural killer (NK) cell expansion to investigate NK responses against human cytomegalovirus (HCMV) and assessing relationships with adaptive immunity against HCMV. Methods. Expansion of NKG2C+CD57+ NK was measured in peripheral blood mononuclear cells (PBMC) from groups distinguished by HCMV and human immunodeficiency virus (HIV) infection status. Anti-HCMV antibody levels against HCMV-infected MRC-5 cell lysate were assessed by ELISA and HCMV-specific CD8+ T cell responses characterized by intracellular flow cytometry following PBMC stimulation with immunodominant HCMV peptides. Results. Median NK, antibody, and CD8+ T cell responses against HCMV were significantly greater in the HCMV/HIV coinfected group than the group infected with CMV alone. The fraction of CMV-specific CD8+ T cells expressing CD28 correlated inversely with NKG2C+CD57+ NK expansion in HIV infection. Conclusion. Our data reveal no significant direct relationships between NK and adaptive immunity against HCMV. However, stronger NK and adaptive immune responses against HCMV and an inverse correlation between NKG2C+CD57+ NK expansion and proliferative reserve of HCMV-specific CD8+ T cells, as signified by CD28 expression, indicate parallel evolution of NK and T cell responses against HCMV in HIV infection. Similar aspects of chronic HCMV infection may drive both NK and CD8+ T cell memory inflation.

  8. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  9. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  10. Secondary specific immune response in vitro to MSV tumor cells.

    Science.gov (United States)

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  11. Type-specific cell line models for type-specific ovarian cancer research.

    Directory of Open Access Journals (Sweden)

    Michael S Anglesio

    Full Text Available BACKGROUND: OVARIAN CARCINOMAS CONSIST OF AT LEAST FIVE DISTINCT DISEASES: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. METHODS: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 "ovarian cancer" cell lines has been classified into histotypes using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. RESULTS: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. CONCLUSIONS: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histotype of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic "ovarian carcinoma" cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of

  12. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Science.gov (United States)

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  13. Adaptive radiotherapy based on fiducial marker using off-line strategy to construct patient specific PTV in prostate IMRT

    International Nuclear Information System (INIS)

    The aim is to develop an off-line strategy for constructing a patient specific target PTV margin in Adaptive Radiotherapy (ART) process using image feedback based on gold seed movements to improve the efficacy and dose escalation for IMRT of prostate cancer

  14. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  15. Cell-type specific four-component hydrogel.

    Science.gov (United States)

    Aberle, Timo; Franke, Katrin; Rist, Elke; Benz, Karin; Schlosshauer, Burkhard

    2014-01-01

    In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin) to generate a blend (technical term: quattroGel), an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering. PMID:24475174

  16. Investigating Striatal Function through Cell-Type-Specific Manipulations

    OpenAIRE

    Kreitzer, Anatol C.; Berke, Joshua D.

    2011-01-01

    The striatum integrates convergent input from the cortex, thalamus, and midbrain, and has a powerful influence over motivated behavior via outputs to downstream basal ganglia nuclei. Although the anatomy and physiology of distinct classes of striatal neurons has been intensively studied, the specific functions of these cell subpopulations have been more difficult to address. Recently, application of new methodologies for perturbing activity and signaling in different cell types in vivo has be...

  17. T-cell regulatory mechanisms in specific immunotherapy.

    Science.gov (United States)

    Jutel, Marek; Akdis, Cezmi A

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, anergy and/or immune response modulation by Treg cells are essential mechanisms of peripheral T-cell tolerance. There is growing evidence that anergy, tolerance and active suppression are not entirely distinct, but rather represent linked mechanisms possibly involving the same cells and multiple suppressor mechanisms. Skewing of allergen-specific effector T cells to Treg cells appears as a crucial event in the control of healthy immune response to allergens and successful allergen-SIT. The Treg cell response is characterized by abolished allergen- induced specific T-cell proliferation and suppressed Thelper (Th)1- and Th2-type cytokine secretion. In addition, mediators of allergic inflammation that trigger cAMP-associated G-protein-coupled receptors, such as histamine receptor-2, may contribute to peripheral tolerance mechanisms. The increased levels of interleukin-10 and transforming growth factor-Beta that are produced by Treg cells potently suppress IgE production, while simultaneously increasing production of non-inflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress effector cells of allergic inflammation such as mast cells, basophils and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms. It is associated with regulation of antibody isotypes and effector cells to the direction of a healthy immune response. By the application of the recent knowledge in Treg

  18. ACTRESS: Domain-Specific Modeling of Self-Adaptive Software Architectures

    OpenAIRE

    Krikava, Filip; Collet, Philippe; France, Robert

    2014-01-01

    A common approach for engineering self-adaptive software systems is to use Feedback Control Loops (FCLs). Advances have led to more explicit and safer design of some control architectures, however, there is a need for more integrated and systematic approaches that support end-to-end integration of FCLs into software systems. In this paper, we propose a tooled approach that enables researchers and engineers to design and integrate adaptation mechanisms into software systems through FCLs. It co...

  19. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  20. Further adaptation of the European ceramic-B.I.T. blanket conceptual design to updated Demo specifications

    International Nuclear Information System (INIS)

    This paper presents the recent development studies on the adaptation of the European Ceramic Solid Breeder Inside Tube (BIT) Blanket to updated DEMO specifications. The adaptation work is in progress, since 1990, when a detailed comparison between two existing designs lead to the selection of an unique concept. The main new developments concern the separation in two parts of the inboard blanket segments at the level of the lower divertor, the consequent improvement of the blanket coverage, the simplification of maintenance operations, and finally the increased compactness of the blanket because of the inclusion of the shielding into the breeder assembly

  1. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    -based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.

  2. Specific uptake of serotonin by murine lymphoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.C.; Walker, R.F.; Brooks, W.H.; Roszman, T.L.

    1986-03-01

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated /sup 3/H-5HT(10/sup -8/ to 2.5 x 10/sup -6/M) in a saturable manner, at 37/sup 0/C. Specificity of uptake was indicated by competition with excess (10/sup -5/M) unlabelled 5HT and with 10/sup -5/M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of /sup 3/H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10/sup -7/M and Vmax of 501 +/- 108 pM/3 x 10/sup 6/ cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific /sup 3/H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated.

  3. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-01-01

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage. PMID:27041648

  4. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  5. Function projective synchronization of two-cell quantum-CNN chaotic oscillators by nonlinear adaptive controller

    International Nuclear Information System (INIS)

    In this Letter, we investigate function projective synchronization of two-cell quantum-CNN chaotic oscillators using nonlinear adaptive controller. Based on Lyapunov stability theory, the nonlinear adaptive control law is derived to make the state of two chaotic systems function projective synchronized. Two numerical simulations are presented to illustrate the effectiveness of the proposed nonlinear adaptive control scheme, which is more effective than that in previous literature.

  6. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters

    International Nuclear Information System (INIS)

    This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  7. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  8. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I; Pasculescu, Adrian; Poliakov, Alexei; Hsiung, Marilyn; Larsen, Brett; Wilkinson, David G; Linding, Rune; Pawson, Tony

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and...... revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between...

  9. CELL DETACHMENT BY PROLYL-SPECIFIC ENDOPEPTIDASE FROM WOLFIPORIA COCOS

    Directory of Open Access Journals (Sweden)

    Katharina Cierpka

    2014-01-01

    Full Text Available As requirements for Advanced Therapy Medicinal Product (ATMP production differ from other production processes (e.g., therapeutic protein production, cell detachment is often a crucial step for the process success. In most cases, cell detachment is done enzymatically. Although many peptidases are established in cell culture in R&D, e.g., Trypsin as gold standard, many of them seem to be unsuitable in ATMP production processes. Therefore, the present study investigated a novel endopeptidase used in food biotechnology for its applicability in ATMP processes where cell detachment is needed. The Prolyl-specific Peptidase (PsP is of non-mammalian origin and considered as safe for humans. PsP was purified from the supernatant of the fungus Wolfiporia cocos. The isolation and purification resulted in an enzyme solution with 0.19 U mg-1 prolyl-specific activity. By in silico analysis it was confirmed that attachment-promoting proteins can be cleaved by PsP in a similar amount than with Trypsin. Further the proteolytic activity was determined for PsP and Trypsin by using the same enzymatic assay. Detachment with both enzymes was compared for cells used in typical therapeutic production processes namely a mesenchymal stem cell line (hMSC-TERT as a model for a cell therapeutic, Vero and MA104 cells used for viral therapeutic or vaccine production. The cell detachment experiments were performed with comparable enzyme activities (1.6 U mL-1. hMSC-TERT detachment was faster with PsP than with Trypsin. For Vero cells the detachment with PsP was not only faster but also more efficient. For MA104 cells the detachment rate with PsP was similar to Trypsin. For all cell types, detachment with PsP showed less influence on cell growth and metabolism compared to standard Trypsin.Thus, three cell types used in ATMP, viral therapeutics or vaccine production can be detached efficiently and gently with PsP. Therefore, PsP shows

  10. High efficiency cell-specific targeting of cytokine activity

    Science.gov (United States)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  11. Target cell specific antibody-based photosensitizers for photodynamic therapy

    Science.gov (United States)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (SDS-PAGE).

  12. Molecular targeting of intracellular compartments specifically in cancer cells.

    Science.gov (United States)

    Pandya, Hetal; Gibo, Denise M; Debinski, Waldemar

    2010-05-01

    We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action. PMID:20740056

  13. Adipose- and muscle-derived Wnts trigger pancreatic β-cell adaptation to systemic insulin resistance.

    Science.gov (United States)

    Kozinski, Kamil; Jazurek, Magdalena; Dobrzyn, Pawel; Janikiewicz, Justyna; Kolczynska, Katarzyna; Gajda, Anna; Dobrzyn, Agnieszka

    2016-01-01

    Wnt signaling molecules are associated with obesity, hyperlipidemia, and type 2 diabetes (T2D). Here, we show that two Wnt proteins, WNT3a and WNT4, are specifically secreted by skeletal muscle and adipose tissue during the development of insulin resistance and play an important role in cross-talk between insulin-resistant tissues and pancreatic beta cells. The activation of Frizzled receptor and Wnt signaling in pancreatic islets via circulating WNT3a in blood resulted in higher insulin secretion and an increase in beta cell proliferation, thus leading to islet adaptation in a pre-diabetic state. Interestingly, in fully developed T2D, the expression profiles of Wnt3a and Wnt4 in adipose tissue and muscle cells and blood plasma levels of these proteins were opposite to the pre-diabetic state, thus favoring the downregulation of Wnt signaling in beta cells and resulting in dysfunctional pancreatic islets. These results demonstrate that alterations in the secretion profile of a canonical Wnt activator (WNT3a) and inhibitor (WNT4) from insulin-resistant tissues during the development of T2D are responsible for triggering progression from a pre-diabetic to a diabetic state. We also show here that WNT3a and WNT4 are potent myokines, and their expression and secretion are regulated in response to nutritional and metabolic changes. PMID:27527335

  14. Pre-adjustment of adult attachment style to extrinsic risk levels via early attachment style is neither specific, nor reliable, nor effective, and is thus not an adaptation

    OpenAIRE

    Honekopp, Johannes

    2009-01-01

    The mechanism proposed by Del Giudice by which adult attachment style is adapted to the extrinsic risk in the local environment via attachment style during the early years does not fulfill important criteria of an adaptation. The proposed mechanism is neither specific, nor developmentally reliable, nor effective. Therefore, it should not be considered an adaptation.

  15. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  16. A versatile method for cell-specific profiling of translated mRNAs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda Thomas

    Full Text Available In Drosophila melanogaster few methods exist to perform rapid cell-type or tissue-specific expression profiling. A translating ribosome affinity purification (TRAP method to profile actively translated mRNAs has been developed for use in a number of multicellular organisms although it has only been implemented to examine limited sets of cell- or tissue-types in these organisms. We have adapted the TRAP method for use in the versatile GAL4/UAS system of Drosophila allowing profiling of almost any tissue/cell-type with a single genetic cross. We created transgenic strains expressing a GFP-tagged ribosomal protein, RpL10A, under the control of the UAS promoter to perform cell-type specific translatome profiling. The GFP::RpL10A fusion protein incorporates efficiently into ribosomes and polysomes. Polysome affinity purification strongly enriches mRNAs from expected genes in the targeted tissues with sufficient sensitivity to analyze expression in small cell populations. This method can be used to determine the unique translatome profiles in different cell-types under varied physiological, pharmacological and pathological conditions.

  17. ADAPTIVE LAYERED CARTESIAN CUT CELL METHOD FOR THE UNSTRUCTURED HEXAHEDRAL GRIDS GENERATION

    Institute of Scientific and Technical Information of China (English)

    WU Peining; TAN Jianrong; LIU Zhenyu

    2007-01-01

    Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the unstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.

  18. A Robot-Assisted Cell Manipulation System with an Adaptive Visual Servoing Method

    OpenAIRE

    Yu Xie; Feng Zeng; Wenming Xi; Yunlei Zhou; Houde Liu; Mingliang Chen

    2016-01-01

    Robot-assisted cell manipulation is gaining attention for its ability in providing high throughput and high precision cell manipulation for the biological industry. This paper presents a visual servo microrobotic system for cell microinjection. We investigated the automatic cell autofocus method that reduced the complexity of the system. Then, we produced an adaptive visual processing algorithm to detect the location of the cell and micropipette toward the uneven illumination problem. Fourtee...

  19. Identity-Specific Face Adaptation Effects: Evidence for Abstractive Face Representations

    Science.gov (United States)

    Hole, Graham

    2011-01-01

    The effects of selective adaptation on familiar face perception were examined. After prolonged exposure to photographs of a celebrity, participants saw a series of ambiguous morphs that were varying mixtures between the face of that person and a different celebrity. Participants judged fewer of the morphs to resemble the celebrity to which they…

  20. Cell population-specific expression analysis of human cerebellum

    Directory of Open Access Journals (Sweden)

    Kuhn Alexandre

    2012-11-01

    Full Text Available Abstract Background Interpreting gene expression profiles obtained from heterogeneous samples can be difficult because bulk gene expression measures are not resolved to individual cell populations. We have recently devised Population-Specific Expression Analysis (PSEA, a statistical method that identifies individual cell types expressing genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure makes use of marker gene expression and circumvents the need for additional experimental information like tissue composition. Results To systematically assess the performance of statistical deconvolution, we applied PSEA to gene expression profiles from cerebellum tissue samples and compared with parallel, experimental separation methods. Owing to the particular histological organization of the cerebellum, we could obtain cellular expression data from in situ hybridization and laser-capture microdissection experiments and successfully validated computational predictions made with PSEA. Upon statistical deconvolution of whole tissue samples, we identified a set of transcripts showing age-related expression changes in the astrocyte population. Conclusions PSEA can predict cell-type specific expression levels from tissues homogenates on a genome-wide scale. It thus represents a computational alternative to experimental separation methods and allowed us to identify age-related expression changes in the astrocytes of the cerebellum. These molecular changes might underlie important physiological modifications previously observed in the aging brain.

  1. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  2. Targeting vault nanoparticles to specific cell surface receptors.

    Science.gov (United States)

    Kickhoefer, Valerie A; Han, Muri; Raval-Fernandes, Sujna; Poderycki, Michael J; Moniz, Raymond J; Vaccari, Dana; Silvestry, Mariena; Stewart, Phoebe L; Kelly, Kathleen A; Rome, Leonard H

    2009-01-27

    As a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 x 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins. In this study, three different tags were engineered onto the C-terminus of MVP: an 11 amino acid epitope tag, a 33 amino acid IgG-binding peptide, and the 55 amino acid epidermal growth factor (EGF). These modified vaults were produced using a baculovirus expression system. Our studies demonstrate that recombinant vaults assembled from MVPs containing C-terminal peptide extensions display these tags at the top and bottom of the vault on the outside of the particle and can be used to specifically bind the modified vaults to epithelial cancer cells (A431) via the epidermal growth factor receptor (EGFR), either directly (EGF modified vaults) or as mediated by a monoclonal antibody (anti-EGFR) bound to recombinant vaults containing the IgG-binding peptide. The ability to target vaults to specific cells represents an essential advance toward using recombinant vaults as delivery vehicles. PMID:19206245

  3. New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology

    Directory of Open Access Journals (Sweden)

    Meile Leo

    2010-07-01

    Full Text Available Abstract Background Oxidative stress can severely compromise viability of bifidobacteria. Exposure of Bifidobacterium cells to oxygen causes accumulation of reactive oxygen species, mainly hydrogen peroxide, leading to cell death. In this study, we tested the suitability of continuous culture under increasing selective pressure combined with immobilized cell technology for the selection of hydrogen peroxide adapted Bifidobacterium cells. Cells of B. longum NCC2705 were immobilized in gellan-xanthan gum gel beads and used to continuously ferment MRS medium containing increasing concentration of H2O2 from 0 to 130 ppm. Results At the beginning of the culture, high cell density of 1013 CFU per litre of reactor was tested. The continuous culture gradually adapted to increasing H2O2 concentrations. However, after increasing the H2O2 concentration to 130 ppm the OD of the culture decreased to 0. Full wash out was prevented by the immobilization of the cells in gel matrix. Hence after stopping the stress, it was possible to re-grow the cells that survived the highest lethal dose of H2O2 and to select two adapted colonies (HPR1 and HPR2 after plating of the culture effluent. In contrast to HPR1, HPR2 showed stable characteristics over at least 70 generations and exhibited also higher tolerance to O2 than non adapted wild type cells. Preliminary characterization of HPR2 was carried out by global genome expression profile analysis. Two genes coding for a protein with unknown function and possessing trans-membrane domains and an ABC-type transporter protein were overexpressed in HPR2 cells compared to wild type cells. Conclusions Our study showed that continuous culture with cell immobilization is a valid approach for selecting cells adapted to hydrogen peroxide. Elucidation of H2O2 adaptation mechanisms in HPR2 could be helpful to develop oxygen resistant bifidobacteria.

  4. High-Pass Filtering at Vestibular Frequencies by Transducer Adaptation in Mammalian Saccular Hair Cells

    Science.gov (United States)

    Songer, Jocelyn E.; Eatock, Ruth Anne

    2011-11-01

    The mammalian saccule detects head tilt and low-frequency head accelerations as well as higher-frequency bone vibrations and sounds. It has two different hair cell types, I and II, dispersed throughout two morphologically distinct regions, the striola and extrastriola. Afferents from the two zones have distinct response dynamics which may arise partly from zonal differences in hair cell properties. We find that type II hair cells in the rat saccular epithelium adapt with a time course appropriate for influencing afferent responses to head motions. Moreover, striolar type II hair cells adapted by a greater extent than extrastriolar type II hair cells and had greater phase leads in the mid-frequency range (5-50 Hz). These differences suggest that hair cell transduction may contribute to zonal differences in the adaptation of vestibular afferents to head motions.

  5. Characterization of adaptation motors in saccular hair cells by fluctuation analysis.

    OpenAIRE

    Frank, Jonathan E.; Markin, Vladislav; Jaramillo, Fernán

    2002-01-01

    The mechanical sensitivity of hair cells, the sensory receptors of the vestibular and auditory systems, is maintained by adaptation, which resets the transducer to cancel the effects of static stimuli. Adaptation motors in hair cells can be experimentally activated by externally applying a transduction channel blocker to the hair bundle, causing the hair bundle to move in the negative direction. We studied the variance in the position of the hair bundle during these displacements and found th...

  6. Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jana Verena Roedig

    Full Text Available The genome of influenza A viruses is constantly changing (genetic drift resulting in small, gradual changes in viral proteins. Alterations within antibody recognition sites of the viral membrane glycoproteins hemagglutinin (HA and neuraminidase (NA result in an antigenetic drift, which requires the seasonal update of human influenza virus vaccines. Generally, virus adaptation is necessary to obtain sufficiently high virus yields in cell culture-derived vaccine manufacturing. In this study detailed HA N-glycosylation pattern analysis was combined with in-depth pyrosequencing analysis of the virus genomic RNA. Forward and backward adaptation from Madin-Darby Canine Kidney (MDCK cells to African green monkey kidney (Vero cells was investigated for two closely related influenza A virus PR/8/34 (H1N1 strains: from the National Institute for Biological Standards and Control (NIBSC or the Robert Koch Institute (RKI. Furthermore, stability of HA N-glycosylation patterns over ten consecutive passages and different harvest time points is demonstrated. Adaptation to Vero cells finally allowed efficient influenza A virus replication in Vero cells. In contrast, during back-adaptation the virus replicated well from the very beginning. HA N-glycosylation patterns were cell line dependent and stabilized fast within one (NIBSC-derived virus or two (RKI-derived virus successive passages during adaptation processes. However, during adaptation new virus variants were detected. These variants carried "rescue" mutations on the genomic level within the HA stem region, which result in amino acid substitutions. These substitutions finally allowed sufficient virus replication in the new host system. According to adaptation pressure the composition of the virus populations varied. In Vero cells a selection for "rescue" variants was characteristic. After back-adaptation to MDCK cells some variants persisted at indifferent frequencies, others slowly diminished and even

  7. Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation.

    Science.gov (United States)

    Iyer, Radha; Caimano, Melissa J; Luthra, Amit; Axline, David; Corona, Arianna; Iacobas, Dumitru A; Radolf, Justin D; Schwartz, Ira

    2015-02-01

    Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium's ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans. PMID:25425211

  8. Redirecting T Cell Specificity Using T Cell Receptor Messenger RNA Electroporation.

    Science.gov (United States)

    Koh, Sarene; Shimasaki, Noriko; Bertoletti, Antonio

    2016-01-01

    Autologous T lymphocytes genetically modified to express T cell receptors or chimeric antigen receptors have shown great promise in the treatment of several cancers, including melanoma and leukemia. In addition to tumor-associated antigens and tumor-specific neoantigens, tumors expressing viral peptides can also be recognized by specific T cells and are attractive targets for cell therapy. Hepatocellular carcinoma cells often have hepatitis B virus DNA integration and can be targeted by hepatitis B virus-specific T cells. Here, we describe a method to engineer hepatitis B virus-specific T cell receptors in primary human T lymphocytes based on electroporation of hepatitis B virus T cell receptor messenger RNA. This method can be extended to a large scale therapeutic T cell production following current good manufacturing practice compliance and is applicable to the redirection of T lymphocytes with T cell receptors of other virus specificities such as Epstein-Barr virus, cytomegalovirus, and chimeric receptors specific for other antigens expressed on cancer cells. PMID:27236807

  9. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  10. Brazilian cross-cultural translation and adaptation of the "Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items"

    OpenAIRE

    Aline Mansueto Mourao; Caroline Martins Araujo; Luiz Sergio Mageste Barbosa; Rodrigo Santiago Gomez; Burns, Ted M.; Stela Maris Aguiar Lemos; Antonio Lucio Teixeira

    2013-01-01

    Objective To translate and to perform the cross-cultural adaptation of the “Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items” (MG-QOL15). Method The original English version of the questionnaire was translated into Portuguese. This version was revised and translated back into English. Later, both English versions were compared and the divergences were corrected in the Portuguese text. At a second stage, ten patients with MG followed at the Neuromuscular Diseases Clini...

  11. Potential cell-specific functions of CXCR4 in atherosclerosis.

    Science.gov (United States)

    Weber, Christian; Döring, Yvonne; Noels, Heidi

    2016-05-10

    The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis. PMID:25586789

  12. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    Science.gov (United States)

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  13. Targeting Vault Nanoparticles to Specific Cell Surface Receptors

    OpenAIRE

    Kickhoefer, Valerie A; Han, Muri; Raval-Fernandes, Sujna; Poderycki, Michael J.; Moniz, Raymond J.; Vaccari, Dana; Silvestry, Mariena; Stewart, Phoebe L.; Kelly, Kathleen A.; Rome, Leonard H.

    2009-01-01

    As a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 × 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins. In this study, three different tags were engineered onto the C-terminus of MVP: an 11 amino a...

  14. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain...... acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the...

  15. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  16. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.

    Science.gov (United States)

    Contador, C A; Rodríguez, V; Andrews, B A; Asenjo, J A

    2015-11-01

    The first manually curated genome-scale metabolic model for Salinispora tropica strain CNB-440 was constructed. The reconstruction enables characterization of the metabolic capabilities for understanding and modeling the cellular physiology of this actinobacterium. The iCC908 model was based on physiological and biochemical information of primary and specialised metabolism pathways. The reconstructed stoichiometric matrix consists of 1169 biochemical conversions, 204 transport reactions and 1317 metabolites. A total of 908 structural open reading frames (ORFs) were included in the reconstructed network. The number of gene functions included in the reconstructed network corresponds to 20% of all characterized ORFs in the S. tropica genome. The genome-scale metabolic model was used to study strain-specific capabilities in defined minimal media. iCC908 was used to analyze growth capabilities in 41 different minimal growth-supporting environments. These nutrient sources were evaluated experimentally to assess the accuracy of in silico growth simulations. The model predicted no auxotrophies for essential amino acids, which was corroborated experimentally. The strain is able to use 21 different carbon sources, 8 nitrogen sources and 4 sulfur sources from the nutrient sources tested. Experimental observation suggests that the cells may be able to store sulfur. False predictions provided opportunities to gain new insights into the physiology of this species, and to gap fill the missing knowledge. The incorporation of modifications led to increased accuracy in predicting the outcome of growth/no growth experiments from 76 to 93%. iCC908 can thus be used to define the metabolic capabilities of S. tropica and guide and enhance the production of specialised metabolites. PMID:26459337

  17. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  18. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  19. First adaptation of the European ceramic B.I.T. blanket design to the updated DEMO specifications

    International Nuclear Information System (INIS)

    The DEMO specifications defined so as to ensure the consistency of the various blanket conceptual design studies performed within the framework of the European Test Blanket Programme have been recently updated. A very first attempt has been made to adapt the European Ceramic Breeder Inside-Tube DEMO blanket to these new specifications. Two solutions have been investigated. The first would ensure tritium self-sufficiency of the plant with a large safety margin. The other one, which fully preserves the design simplicity and reliability of the initial design, appears to be somewhat marginal from the tritium breeding capability point of view, but to offer good improvement prospects. (orig.)

  20. Cell-specific regulation of apoptosis by designed enediynes.

    OpenAIRE

    Nicolaou, K. C.; Stabila, P; Esmaeli-Azad, B; Wrasidlo, W; Hiatt, A

    1993-01-01

    The naturally occurring enediyne antibiotics are a unique class of antitumor drugs that combine reactive enediynes with additional structural features conferring affinity for DNA. Dynemicin A, in which an enediyne core is attached to an anthraquinone group capable of DNA intercalation, readily cleaves double-stranded DNA. This activity is thought to be the basis of its potent antitumor cytotoxicity. To investigate cell-specific mechanisms of cytotoxicity in the absence of DNA affinity, we hav...

  1. Anatomy of a new B-cell-specific enhancer.

    OpenAIRE

    Koch, W; Benoist, C.; Mathis, D

    1989-01-01

    The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhanc...

  2. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  3. Innate lymphoid cell function in the context of adaptive immunity.

    Science.gov (United States)

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  4. Specific inactivation of glucose metabolism from eucaryotic cells by pentalenolactone.

    Science.gov (United States)

    Duszenko, M; Balla, H; Mecke, D

    1982-02-01

    Pentalenolactone, an antibiotic related to the class of the sesquiterpene-lactones and produced by the strain Streptomyces arenae Tü-469, inhibits specifically the glucose metabolism by inactivation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating) ED 1.2.1.1.2). The sensitivity of several eucaryotic cell-systems for pentalenolactone was shown under in vivo conditions. The glycolytic as well as the gluconeogenetic pathway of mammalian cells can be completely inhibited with low concentrations of the antibiotic. In all cases, the minimum inhibitory concentration is dependent on cell density. The inhibitory effect in vivo and in vitro does not seem to be species-specific. In erythrocytes from rats, in Ehrlich-ascites tumor cells and in Plasmodium vinckei infected erythrocytes from mice glycolysis can be inhibited with concentrations of 18--90 micrometers pentalenolactone. In hepatocytes, glycolysis as well as gluconeogenesis in prevented by the same concentrations. In contrast to these results, in yeast the inhibition depends on growth conditions. The inhibition in glucose medium is cancelled by precultivation on acetate-containing medium. PMID:7034785

  5. Germ tube-specific antigens of Candida albicans cell walls

    International Nuclear Information System (INIS)

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with 125I, or metabolically with [35S] methionine or [3H] mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen

  6. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  7. Tracker-aided adaptive multi-frame recognition of a specific target

    Science.gov (United States)

    Mahalanobis, Abhijit

    2016-05-01

    We consider the problem of recognizing a particular target of interest (i.e. the "correct" target) while rejecting other targets and background clutter. In such instances, the probability of recognizing the correct target (PCT) is a suitable metric for assessing the performance of the target recognition algorithm. We present a definition for PCT and illustrate how it differs from conventional metrics for target recognition by means of an example. It is further shown that an adaptive target recognition algorithm, which relies on track position to obtain multiple looks at the target, can significantly improve PCT while reducing the track uncertainty.

  8. MUSCLE FIBER SPECIFIC ANTIOXIDATIVE SYSTEM ADAPTATION TO SWIM TRAINING IN RATS: INFLUENCE OF INTERMITTENT HYPOXIA

    OpenAIRE

    Olga Gonchar

    2005-01-01

    The aim of the present study was to examine the influence of intermittent hypoxia at rest and in combination with long-term high-intensity swimming exercise on lipid peroxidation and antioxidant defense system adaptation in skeletal muscles differing in fiber type composition. High-intensity chronic exercise was performed as swimming training with load that corresponded to ~ 75 % VO2max (30 min·day-1, 5 days·wk-1, for 4 wk). Intermittent hypoxic training (IHT) consisted of repeated episodes o...

  9. Stress-induced adaptive islet cell identity changes.

    Science.gov (United States)

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  10. Investigation of the response of low-dose irradiated cells. Pt. 2. Radio-adaptive response of human embryonic cells is related to cell-to-cell communication

    International Nuclear Information System (INIS)

    To clarify the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells and HeLa cells with low-dose X-ray and examined the changes in sensitivity to subsequent high-dose X-irradiation. The results obtained were as follows; (1) When HE cells were irradiated by a high-dose of 200 cGy, the growth ratio of the living cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a preliminary irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the relative growth ratios increased significantly to 45-53%. (2) This preliminary irradiation effect was not observed in HeLa cells, being cancer cells. (3) When the HE cells suspended in a Ca2+ iron-free medium or TPA added medium while receiving the preliminary irradiation of 13 cGy, the effect of the preliminary irradiation in increasing the relative growth ratio of living cells was not observed. (4) This indicates that normal cells shows an adaptive response to low-dose radiation and become more radioresistant. This phenomenon is considered to involve cell-to-cell communication maintained in normal cells and intracellular signal transduction in which Ca2+ ion plays a role. (author)

  11. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    Science.gov (United States)

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  12. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  13. A Distributed Taxation Based Rank Adaptation Scheme for 5G Small Cells

    DEFF Research Database (Denmark)

    Catania, Davide; Cattoni, Andrea Fabio; Mahmood, Nurul Huda;

    2015-01-01

    The further densification of small cells impose high and undesirable levels of inter-cell interference. Multiple Input Multiple Output (MIMO) systems along with advanced receiver techniques provide us with extra degrees of freedom to combat such a problem. With such tools, rank adaptation algorit...

  14. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    Minxiu Yan

    2013-05-01

    Full Text Available Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has better control effect than conventional fuzzy sliding mode control.

  15. Functional adaptation of the human β-cells after frequent exposure to noradrenaline

    DEFF Research Database (Denmark)

    Dela, Flemming

    2015-01-01

    noradrenaline is most likely the stimulus that introduces a memory in the insulin-producing cells. ABSTRACT: Physical training decreases glucose- and arginine-stimulated insulin secretion. The mechanism by which the pancreatic β-cells adapt to the training status of the individual is not known. We hypothesized......KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown that this...... memory is introduced by 10 daily intravenous infusions of noradrenaline, mimicking the increases that occur during a 10 day training programme. Thus, after the infusion period, the subjects produced less insulin in response to the same stimulus. It is concluded that exercise-induced increases in...

  16. Restriction specificity of virus-specific cytotoxic T cells from thymectomised irradiated bone marrow chimeras reconstituted with thymus grafts

    International Nuclear Information System (INIS)

    Adult-thymectomised lethally irradiated mice A that were reconstituted with T-cell-depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of (B X C)F1 origin generated virus-specific T cells restricted to B alone; adult-thymectomised and lethally irradiated (A X B)F1 mice that were reconstituted with T-cell depleted bone marrow cells of (A X B)F1 origin plus fetal thymus grafts of A and of B origin generated virus-specific T cells restricted to A or to B. These results do not reveal obvious suppressive influences of host or stem-cell origin that might have explained results obtained with various irradiated bone marrow or thymus chimeras, they indicate that the thymus' influence on maturing T cells is one of the limiting steps in the selection of T cells' restriction specificities. (Auth.)

  17. An antigen-specific, four-color, B-cell FluoroSpot assay utilizing tagged antigens for detection.

    Science.gov (United States)

    Jahnmatz, Peter; Bengtsson, Theresa; Zuber, Bartek; Färnert, Anna; Ahlborg, Niklas

    2016-06-01

    The FluoroSpot assay, a variant of ELISpot utilizing fluorescent detection, has so far been used primarily for assessment of T cells, where simultaneous detection of several cytokines has allowed a more qualitative analysis of functionally distinct T cells. The potential to measure multiple analytes also presents several advantages when analyzing B cells. Our aim was to develop a B-cell FluoroSpot assay adaptable to studies of a variety of antigens. The assay utilizes anti-IgG antibodies immobilized in 96-well filter membrane plates. During cell culture, IgG antibodies secreted by antibody-secreting cells (ASCs) are captured in the vicinity of each of these cells and the specificity of single ASCs is defined using antigens for detection. The antigens were labeled with biotin or peptide tags enabling secondary detection with fluorophore-conjugated streptavidin or tag-specific antibodies. The assay, utilizing up to four different tag systems and fluorophores simultaneously, was evaluated using hybridomas and immunized splenocytes as ASCs. Assay variants were developed that could: i) identify multiple ASCs with different antigen specificities; ii) detect ASCs showing cross-reactivity with different but related antigens; and iii) define the antigen-specificity and, by including anti-IgG subclass detection reagents, simultaneously determine the IgG subclass of antibodies secreted by ASCs. As demonstrated here, the B-cell FluoroSpot assay using tag-based detection systems provides a versatile and powerful tool to investigate antibody responses by individual cells that can be readily adapted to studies of a variety of antigen-specific ASCs. PMID:26930550

  18. A Robot-Assisted Cell Manipulation System with an Adaptive Visual Servoing Method

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2016-06-01

    Full Text Available Robot-assisted cell manipulation is gaining attention for its ability in providing high throughput and high precision cell manipulation for the biological industry. This paper presents a visual servo microrobotic system for cell microinjection. We investigated the automatic cell autofocus method that reduced the complexity of the system. Then, we produced an adaptive visual processing algorithm to detect the location of the cell and micropipette toward the uneven illumination problem. Fourteen microinjection experiments were conducted with zebrafish embryos. A 100% success rate was achieved either in autofocus or embryo detection, which verified the robustness of the proposed automatic cell manipulation system.

  19. Cross Cultural Adaptation of the Menopause Specific Questionnaire into the Persian Language

    OpenAIRE

    Ghazanfarpour, M; Kaviani, M; Rezaiee, M; Ghaderi, E; Zandvakili, F

    2014-01-01

    Background: The menopause-specific quality-of-life (MENQOL) was developed as a specific tool to measure the health-related quality-of-life in menopausal women. Recently, it has been translated into about 15 languages. Aim: This study was performed to develop the Persian version of the MENQOL questionnaire from the original English language version. Subjects and Methods: This was a cross-sectional study that evaluated 300 menopausal women attending five primary health-care centers in Shiraz. T...

  20. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  1. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  2. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  3. The determination of mother cell-specific mating type of switching in yeast by a specific regulator of HO transcription

    OpenAIRE

    Nasmyth, Kim

    1987-01-01

    In haploid homothallic budding yeast, cell division gives rise to a mother cell which proceeds to switch its mating type and a daughter cell (the bud) which does not. Switching is initiated by a specific double strand cleavage of mating type DNA by an endonuclease encoded by the HO gene. Previous data suggest that the pattern of HO transcription is responsible for the mother cell specificity of switching. HO is transcribed transiently, at START, during the cell cycle of mother cells but not a...

  4. [Adaptation of coimmobilized Rhodococcus cells to oil hydrocarbons in a column bioreactor].

    Science.gov (United States)

    Serebrennikova, M K; Kuiukina, M S; Krivoruchko, A V; Ivshina, I B

    2014-01-01

    The possible adaptation of the association of Rhodococcus ruber and Rhodococcus opacus strains immobilized on modified sawdust to oil hydrocarbons in a column bioreactor was investigated. In the bioreactor, the bacterial population showed higher hydrocarbon and antibiotic resistance accompanied by the changes in cell surface properties (hydrophobicity, electrokinetic potential) and in the content of cellular lipids and biosurfactants. The possibility of using adapted Rhodococcus strains for the purification of oil-polluted water in the bioreactor was demonstrated. PMID:25757338

  5. Autonomous Image Segmentation using Density-Adaptive Dendritic Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Vishwambhar Pathak

    2013-08-01

    Full Text Available Contemporary image processing based applications like medical diagnosis automation and analysis of satellite imagery include autonomous image segmentation as inevitable facility. The research done shows the efficiency of an adaptive evolutionary algorithm based on immune system dynamics for the task of autonomous image segmentation. The recognition dynamics of immune-kernels modeled with infinite Gaussian mixture models exhibit the capability to automatically determine appropriate number of segments in presence of noise. In addition, the model using representative density-kernel-parameters processes the information with much reduced space requirements. Experiments conducted with synthetic images as well as real images recorded assured convergence and optimal autonomous model estimation. The segmentation results tested in terms of PBM-index values have been found comparable to those of the Fuzzy C-Means (FCM for the same number of segments as generated by our algorithm.

  6. Sex-specific adaptation drives early sex chromosome evolution in Drosophila.

    Science.gov (United States)

    Zhou, Qi; Bachtrog, Doris

    2012-07-20

    Most species' sex chromosomes are derived from ancient autosomes and show few signatures of their origins. We studied the sex chromosomes of Drosophila miranda, where a neo-Y chromosome originated only approximately 1 million years ago. Whole-genome and transcriptome analysis reveals massive degeneration of the neo-Y, that male-beneficial genes on the neo-Y are more likely to undergo accelerated protein evolution, and that neo-Y genes evolve biased expression toward male-specific tissues--the shrinking gene content of the neo-Y becomes masculinized. In contrast, although older X chromosomes show a paucity of genes expressed in male tissues, neo-X genes highly expressed in male-specific tissues undergo increased rates of protein evolution if haploid in males. Thus, the response to sex-specific selection can shift at different stages of X differentiation, resulting in masculinization or demasculinization of the X-chromosomal gene content. PMID:22822149

  7. Adapting Cell-Based Assays to the High Throughput Screening Platform: Problems Encountered and Lessons Learned

    OpenAIRE

    Maddox, Clinton B; Rasmussen, Lynn; White, E. Lucile

    2008-01-01

    In recent years, cell-based phenotypic assays have emerged as an effective and robust addition to the array of assay technologies available for drug discovery in the high throughput screening arena. Previously, biochemical target-based assays have been the technology of choice. With the emergence of stem cells as a basis for a new screening technology, it is important to keep in mind the lessons that have been learned from the adaptation of existing stable cell lines onto the high throughput ...

  8. Reversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance

    OpenAIRE

    AnthonyDSandler

    2012-01-01

    We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nest...

  9. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    Science.gov (United States)

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  10. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response.

    Science.gov (United States)

    Zeng, Xun; Wei, Yu-Ling; Huang, Jun; Newell, Evan W; Yu, Hongxiang; Kidd, Brian A; Kuhns, Michael S; Waters, Ray W; Davis, Mark M; Weaver, Casey T; Chien, Yueh-hsiu

    2012-09-21

    γδ T cells contribute uniquely to immune competence. Nevertheless, how they function remains an enigma. It is unclear what most γδ T cells recognize, what is required for them to mount an immune response, and how the γδ T cell response is integrated into host immune defense. Here, we report that a noted B cell antigen, the algae protein phycoerythrin (PE), is a murine and human γδ T cell antigen. Employing this specificity, we demonstrated that antigen recognition activated naive γδ T cells to make interleukin-17 and respond to cytokine signals that perpetuate the response. High frequencies of antigen-specific γδ T cells in naive animals and their ability to mount effector response without extensive clonal expansion allow γδ T cells to initiate a swift, substantial response. These results underscore the adaptability of lymphocyte antigen receptors and suggest an antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  11. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles.

    Science.gov (United States)

    Gan, Pamela; Narusaka, Mari; Kumakura, Naoyoshi; Tsushima, Ayako; Takano, Yoshitaka; Narusaka, Yoshihiro; Shirasu, Ken

    2016-01-01

    Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches. PMID:27189990

  12. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  14. Glucose starvation induces mutation and lineage-dependent adaptive responses in a large collection of cancer cell lines.

    Science.gov (United States)

    He, Ningning; Kim, Nayoung; Jeong, Euna; Lu, Yiling; Mills, Gordon B; Yoon, Sukjoon

    2016-01-01

    Tolerance of glucose deprivation is an important factor for cancer proliferation, survival, migration and progression. To systematically understand adaptive responses under glucose starvation in cancers, we analyzed reverse phase protein array (RPPA) data of 115 protein antibodies across a panel of approximately 170 heterogeneous cancer cell lines, cultured under normal and low glucose conditions. In general, glucose starvation broadly altered levels of many of the proteins and phosphoproteins assessed across the cell lines. Many mTOR pathway components were selectively sensitive to glucose stress, although the change in their levels still varied greatly across the cell line set. Furthermore, lineage- and genotype-based classification of cancer cell lines revealed mutation-specific variation of protein expression and phosphorylation in response to glucose starvation. Decreased AKT phosphorylation (S473) was significantly associated with PTEN mutation under glucose starvation conditions in lung cancer cell lines. The present study (see TCPAportal.org for data resource) provides insight into adaptive responses to glucose deprivation under diverse cellular contexts. PMID:26573869

  15. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E; Fugger, L; Engberg, J; Buus, S

    1996-01-01

    lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined......Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might...

  16. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Science.gov (United States)

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  17. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  18. Age-Related, Sport-Specific Adaptions of the Shoulder Girdle in Elite Adolescent Tennis Players

    Science.gov (United States)

    Cools, Ann M.; Palmans, Tanneke; Johansson, Fredrik R.

    2014-01-01

    Context: Tennis requires repetitive overhead movements that can lead to upper extremity injury. The scapula and the shoulder play a vital role in injury-free playing. Scapular dysfunction and glenohumeral changes in strength and range of motion (ROM) have been associated with shoulder injury in the overhead athlete. Objective: To compare scapular position and strength and shoulder ROM and strength between Swedish elite tennis players of 3 age categories (16 years). Design: Cross-sectional study. Setting: Tennis training sports facilities. Patients or Other Participants: Fifty-nine adolescent Swedish elite tennis players (ages 10–20 years) selected based on their national ranking. Main Outcome Measure(s): We used a clinical screening protocol with a digital inclinometer and a handheld dynamometer to measure scapular upward rotation at several angles of arm elevation, isometric scapular muscle strength, glenohumeral ROM, and isometric rotator cuff strength. Results: Players older than 16 years showed less scapular upward rotation on the dominant side at 90° and 180° (P tennis players. Future authors should examine the association of these adaptations with performance data and injury incidence. PMID:25098662

  19. Cell-specific modulation of surfactant proteins by ambroxol treatment

    International Nuclear Information System (INIS)

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression

  20. A specific Fc gamma receptor on cultured rat mesangial cells

    International Nuclear Information System (INIS)

    Mesangial cells represent specialized pericytes in the renal glomerulus that contribute to the regulation of a variety of glomerular functions. Recently we and others have shown that cultured mesangial cells bind and take up immune complexes in an Fc-dependent manner leading in turn to generation of PGE2, reactive oxygen, and platelet-activating factor. The present studies were designed to further characterize potential Fc-gamma R on mesangial cells. Binding assays with either monomeric or heat aggregated (HA) [125I] labeled rat subclass-specific IgG were performed at 4 degrees C for 2 h on subcultured rat mesangial cells. Monomeric rat IgG2a, IgG2b, IgG1 and HA IgG2a bound only nonspecifically. Saturable Fc-dependent binding occurred for HA IgG2b and HA IgG1 though maximal binding and affinity were much higher for IgG2b. The presence of an Fc-gamma R was confirmed by surface protein iodination of mesangial cells (MC) and immunoprecipitation with either a polyclonal or mAb 2.4G2 prepared against murine Fc-gamma R. Both antibodies precipitated a 45-kDa iodinated protein band from cultured rat MC that comigrated with that from murine macrophage J774 cells on SDS-PAGE. This protein band also reacted with the polyclonal anti Fc-gamma R antibody on immunoblots. In contrast rat renal papillary epithelial cells were negative. The 45-kDa protein recognized by the rat anti-Fc-gamma R antibody 2.4G2 probably represents the binding site for HA IgG2b, as the 2.4G2 antibody also blocked binding of HA IgG2b. By immunofluorescence microscopy all MC stained positively with the polyclonal anti-Fc-gamma R antibody. A cDNA probe for the Fc-gamma RII-alpha on murine macrophages hybridized to mRNA from cultured rat MC which was of the same size (though less abundant) as that from J774 macrophages

  1. A specific Fc gamma receptor on cultured rat mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, A.; Satriano, J.; DeCandido, S.; Holthofer, H.; Schreiber, R.; Unkeless, J.; Schlondorff, D. (Albert Einstein College of Medicine, NY (USA))

    1989-10-15

    Mesangial cells represent specialized pericytes in the renal glomerulus that contribute to the regulation of a variety of glomerular functions. Recently we and others have shown that cultured mesangial cells bind and take up immune complexes in an Fc-dependent manner leading in turn to generation of PGE2, reactive oxygen, and platelet-activating factor. The present studies were designed to further characterize potential Fc-gamma R on mesangial cells. Binding assays with either monomeric or heat aggregated (HA) (125I) labeled rat subclass-specific IgG were performed at 4 degrees C for 2 h on subcultured rat mesangial cells. Monomeric rat IgG2a, IgG2b, IgG1 and HA IgG2a bound only nonspecifically. Saturable Fc-dependent binding occurred for HA IgG2b and HA IgG1 though maximal binding and affinity were much higher for IgG2b. The presence of an Fc-gamma R was confirmed by surface protein iodination of mesangial cells (MC) and immunoprecipitation with either a polyclonal or mAb 2.4G2 prepared against murine Fc-gamma R. Both antibodies precipitated a 45-kDa iodinated protein band from cultured rat MC that comigrated with that from murine macrophage J774 cells on SDS-PAGE. This protein band also reacted with the polyclonal anti Fc-gamma R antibody on immunoblots. In contrast rat renal papillary epithelial cells were negative. The 45-kDa protein recognized by the rat anti-Fc-gamma R antibody 2.4G2 probably represents the binding site for HA IgG2b, as the 2.4G2 antibody also blocked binding of HA IgG2b. By immunofluorescence microscopy all MC stained positively with the polyclonal anti-Fc-gamma R antibody. A cDNA probe for the Fc-gamma RII-alpha on murine macrophages hybridized to mRNA from cultured rat MC which was of the same size (though less abundant) as that from J774 macrophages.

  2. Child and parental adaptation to pediatric stem cell transplantation

    NARCIS (Netherlands)

    C.M.J. Vrijmoet-Wiersma; A.M. Kolk; M.A. Grootenhuis; E.M. Spek; J.M.M. van Klink; R.M. Egeler; R.G.M. Bredius; H.M. Koopman

    2009-01-01

    Goals of work: Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting

  3. An Adaptive Updating Topic Specific Web Search System Using T-Graph

    OpenAIRE

    Ahmed Patel

    2010-01-01

    Problem statement: The main goal of a Web crawler is to collect documents that are relevant to a given topic in which the search engine specializes. These topic specific search systems typically take the whole document's content in predicting the importance of an unvisited link. But current research had proven that the document's content pointed to by an unvisited link is mainly dependent on the anchor text, which is more accurate than predicting it on the contents of the whole page. Approach...

  4. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations

    OpenAIRE

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer’s disease, depression, and Parkinson’s disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important ...

  5. Adaptability and variability of the cell functions to the environmental factors

    International Nuclear Information System (INIS)

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author)

  6. Adaptability and variability of the cell functions to the environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tadatoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1995-02-01

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author).

  7. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  8. Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer.

    Science.gov (United States)

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2009-04-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, gammadelta T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human gammadelta T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated human peripheral blood-derived gammadelta T cells (Vgamma2+Vdelta2+) acquired a dual phenotype characteristic for both APCs and effector memory T cells. Coincubation of activated gammadelta T cells pulsed with human leukocyte antigen-restricted epitopes of either the highly stimulatory EBV lytic cycle antigen Bam H1 Z fragment leftward open reading frame or the tumor-associated latent EBV antigen latent membrane protein 2a (LMP2a) with autologous peripheral blood lymphocytes induced selective expansion of peptide-specific, fully functional CD3CD8 cytolytic effector memory T cells. Furthermore, gammadelta T APCs efficiently processed and presented endogenous antigen, as demonstrated by the capacity of LMP2a gene-transduced gammadelta T cells to induce expansion of T cells with broad specificity for various LMP2a peptides. The capacity of autologous gammadelta T cells to induce LMP2a-specific autologous cytotoxic T lymphocytes was confirmed in 2 patients with Hodgkin lymphoma. In summary, bisphosphonate-activated human gammadelta T cells stimulate expansion of cytotoxic effector T cells specific for both subdominant and dominant viral epitopes and thus show promise as a novel source of efficient APCs for immunotherapy of viral and malignant disease. PMID:19242369

  9. Activated human γδ T cells as stimulators of specific CD8+ T cell responses to subdominant Epstein Barr virus (EBV) epitopes: Potential for immunotherapy of cancer

    Science.gov (United States)

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M.; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2011-01-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, γδ T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human γδ T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+) acquired a dual phenotype characteristic for both APCs and effector memory T cells. Coincubation of activated γδ T cells pulsed with HLA-restricted epitopes of either the highly stimulatory EBV lytic cycle antigen BZLF-1 or the tumor-associated latent EBV antigen LMP2a with autologous peripheral blood lymphocytes induced selective expansion of peptide-specific, fully functional CD3+CD8+ cytolytic effector memory T cells. Furthermore, γδ T-APCs efficiently processed and presented endogenous antigen, as demonstrated by the capacity of LMP2a gene-transduced γδ T cells to induce expansion of T cells with broad specificity for various LMP2a peptides. The capacity of autologous γδ T cells to induce LMP2a-specific autologous CTLs was confirmed in two patients with Hodgkin lymphoma. In summary, bisphosphonate-activated human γδ T cells stimulate expansion of cytotoxic effector T cells specific for both subdominant and dominant viral epitopes and thus show promise as a novel source of efficient APCs for immunotherapy of viral and malignant disease. PMID:19242369

  10. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  11. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  12. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45highCD11b+) and CD8+ T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8+ T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  13. Adapted solar cells technology for silicon foils (Sifol II). Final report; Angepasste Solarzellentechnologie fuer Silicium-Folien (Sifol II). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W.; Lautenschlager, H.; Peters, S.; Schaeffer, E.; Schetter, C.; Schuele, C.; Warta, W.

    2000-03-01

    At present only a small fraction of silicon solar cells is made from ribbon material. These ribbons are produced at very low growth speed. The solar cell processes are specifically adapted to the very ribbon material. In the project reported solar cell processes are developped mainly for the RGS ribbon which is pulled at very high speed. According to the cooling condition after crystallisation different solar cell process conditions are necessary in order to achieve decent solar cell results. It is shown that rapid thermal processing is of advantage for material grown at some specific conditions. Solar cell efficiencies in the 10% range have been achieved. (orig.) [German] Gegenwaertig wird nur ein geringer Teil von Siliziumsolarzellen aufs Folienmaterial hergestellt. Diese Folien werden mit relativ langsamer Ziehgeschwindigkeit hergestellt. Die Solarzellenprozesse sind auf das jeweilige Folienmaterial abgestimmt. Im vorliegenden Projekt werden Solarzellenprozesse besonders fuer das RGS Folienmaterial entwickelt, welches sehr schnell gezogen wird. Entsprechend den Abkuehlbedingungen nach dem Kristallziehen sind verschiedene Solarzellenprozessvarianten erforderlich, um ordentliche Wirkungsgrade bei den Solarzellen zu erreichen. Es zeigt sich, dass fuer eine bestimmte Materialvariante rasches thermisches Prozessieren (RTP) von Vorteil ist. Wirkungsgrade von 10% wurden realisiert. (orig.)

  14. Adaptation to alkalosis induces cell cycle delay and apoptosis in cortical collecting duct cells: role of Aquaporin-2.

    Science.gov (United States)

    Rivarola, Valeria; Flamenco, Pilar; Melamud, Luciana; Galizia, Luciano; Ford, Paula; Capurro, Claudia

    2010-08-01

    Collecting ducts (CD) not only constitute the final site for regulating urine concentration by increasing apical membrane Aquaporin-2 (AQP2) expression, but are also essential for the control of acid-base status. The aim of this work was to examine, in renal cells, the effects of chronic alkalosis on cell growth/death as well as to define whether AQP2 expression plays any role during this adaptation. Two CD cell lines were used: WT- (not expressing AQPs) and AQP2-RCCD(1) (expressing apical AQP2). Our results showed that AQP2 expression per se accelerates cell proliferation by an increase in cell cycle progression. Chronic alkalosis induced, in both cells lines, a time-dependent reduction in cell growth. Even more, cell cycle movement, assessed by 5-bromodeoxyuridine pulse-chase and propidium iodide analyses, revealed a G2/M phase cell accumulation associated with longer S- and G2/M-transit times. This G2/M arrest is paralleled with changes consistent with apoptosis. All these effects appeared 24 h before and were always more pronounced in cells expressing AQP2. Moreover, in AQP2-expressing cells, part of the observed alkalosis cell growth decrease is explained by AQP2 protein down-regulation. We conclude that in CD cells alkalosis causes a reduction in cell growth by cell cycle delay that triggers apoptosis as an adaptive reaction to this environment stress. Since cell volume changes are prerequisite for the initiation of cell proliferation or apoptosis, we propose that AQP2 expression facilitates cell swelling or shrinkage leading to the activation of channels necessary to the control of these processes. PMID:20432437

  15. Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    International Nuclear Information System (INIS)

    when TRUS guided biopsies are assisted by the 3D prostate cancer atlas compared to the current standard of care. The fast registration algorithm we have developed can easily be adapted for clinical applications for the improved diagnosis of prostate cancer. (note)

  16. Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R; Suri, J S [Eigen Inc, Grass Valley, CA (United States); Werahera, P N; Barqawi, A; Crawford, E D [University of Colorado, Denver, CO (United States); Shinohara, K [University of California, San Francisco, CA (United States); Simoneau, A R [University of California, Irvine, CA (United States)], E-mail: jas.suri@eigen.com

    2008-10-21

    detection rates when TRUS guided biopsies are assisted by the 3D prostate cancer atlas compared to the current standard of care. The fast registration algorithm we have developed can easily be adapted for clinical applications for the improved diagnosis of prostate cancer. (note)

  17. Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception.

    Science.gov (United States)

    Trude, Alison M; Duff, Melissa C; Brown-Schmidt, Sarah

    2014-05-01

    A hallmark of human speech perception is the ability to comprehend speech quickly and effortlessly despite enormous variability across talkers. However, current theories of speech perception do not make specific claims about the memory mechanisms involved in this process. To examine whether declarative memory is necessary for talker-specific learning, we tested the ability of amnesic patients with severe declarative memory deficits to learn and distinguish the accents of two unfamiliar talkers by monitoring their eye-gaze as they followed spoken instructions. Analyses of the time-course of eye fixations showed that amnesic patients rapidly learned to distinguish these accents and tailored perceptual processes to the voice of each talker. These results demonstrate that declarative memory is not necessary for this ability and points to the involvement of non-declarative memory mechanisms. These results are consistent with findings that other social and accommodative behaviors are preserved in amnesia and contribute to our understanding of the interactions of multiple memory systems in the use and understanding of spoken language. PMID:24657480

  18. An Adaptive Updating Topic Specific Web Search System Using T-Graph

    Directory of Open Access Journals (Sweden)

    Ahmed Patel

    2010-01-01

    Full Text Available Problem statement: The main goal of a Web crawler is to collect documents that are relevant to a given topic in which the search engine specializes. These topic specific search systems typically take the whole document's content in predicting the importance of an unvisited link. But current research had proven that the document's content pointed to by an unvisited link is mainly dependent on the anchor text, which is more accurate than predicting it on the contents of the whole page. Approach: Between these two extremes, it was proposed that Treasure Graph, called T-Graph is a more effective way to guide the Web crawler to fetch topic specific documents predicted by identifying the topic boundary around the unvisited link and comparing that text with all the nodes of the T-Graph to obtain the matching node(s and calculating the distance in the form of documents to be downloaded to reach the target documents. Results: Web search systems based on this strategy allowed crawlers and robots to update their experiences more rapidly and intelligently that can also offer speed of access and presentation advantages. Conclusion/Recommendations: The consequences of visiting a link to update a robot's experiences based on the principles and usage of T-Graph can be deployed as intelligent-knowledge Web crawlers as shown by the proposed novel Web search system architecture.

  19. Effects of pattern shape on adaptation of dLGN cell

    Institute of Scientific and Technical Information of China (English)

    JIN Jianzhong; XU Pengjing; LI Xiangrui; ZHOU Yifeng

    2003-01-01

    Pattern adaptation is one of the fundamental sensory processes in the visual system. In this study, we compared pattern adaptation induced by two types of sinusoidal drifting grating in dLGN cells of cat. The two types ofgrating have the same parameters (e.g. spatial frequency, temporal frequency and contrast) except their pattern shapes, one of which is normal grating and the other annular grating. The results suggested that the annular grating elicited stronger response and stronger pattern adaptation than the normal grating. This is consistent with the adaptation and aftereffect to the two types of drifting gratings seen in psychology and may reflect the subcortical neural mechanism underlying these psychological phenomena.

  20. Effects of Copper-phenanthroline on Pentschlorophenol-induced Adaptation and Cell Death of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    XUE-WEN ZHANG; RONG-GUI LI; XIN WANG; SHUAN-HU ZHOU

    2007-01-01

    Objective To evaluate the effects of copper-phenanthroline (CuOP) on pentachlorophenol (PCP)-induced adaptation and cell death of Escherichia coli. Methods Bacterial growth and adaptation to PCP were monitored spectrophotometrically at 600 nm. Inactivation of bacterial cells was determined from colony count on agar dishes. Cellular ATP content and accumulation of PCP were assessed by chemiluminescence and HPLC analysis respectively. The formation of PCP-Cu-OP complex was shown by UV-visible spectra. Results Escherichia coli (E. coli) could adapt to PCP, a wood preservative and insecticide used in agriculture. The adaptation of E. coli to PCP prevented its death to the synergistic cytotoxicity of CuOP plus PCP and declined cellular accumulation and uncoupling of oxidative phosphorylafion of PCP. Furthermore, CuOP and PCP neither produced reactive oxygen species (ROS) nor had a synergistic effect on uncoupling of oxidative phosphorylation in E.coli. The synergistic cytotoxicity of CuOP and PCP in E. coli might be due to the formation of lipophillc PCP-Cu-OP complex.Conclsion Our data suggested that adaptation of E. coli to PCP decreased the synergistic effects of CuOP and PCP on prokaryotic cell death due to the formation of lipophilic PCP-Cu-OP complex, but it had no effect on the uncoupling of oxidative phosphorylation and production of reactive oxygen species in E. coli.

  1. Influence of MIGI-K preparation on adaptive response of the steam cells from murine bone-marrow

    International Nuclear Information System (INIS)

    Radioprotective action of MIGI-K hydrolizate on adaptive response of the steam cells from murine bone-marrow was studied. It was shown that this preparation protecting animals under lethal and sub-lethal doses of irradiation can also modify adaptive response. It was supposed that adaptive response model can be applied for studying possibilities of radioprotectors use under low doses irradiation

  2. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline;

    2015-01-01

    Heart muscle cells produce peptide hormones such as natriuretic peptides. Developing hearts also express the gene for the classic intestinal hormone cholecystokinin (CCK) in amounts similar to those in the intestine and brain. However, cardiac expression of peptides other than natriuretic peptides...... has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  3. Virtual stenting workflow with vessel-specific initialization and adaptive expansion for neurovascular stents and flow diverters.

    Science.gov (United States)

    Paliwal, Nikhil; Yu, Hongyu; Xu, Jinhui; Xiang, Jianping; Siddiqui, Adnan H; Yang, Xinjian; Li, Haiyun; Meng, Hui

    2016-10-01

    Endovascular intervention using traditional neurovascular stents and densely braided flow diverters (FDs) have become the preferred treatment strategies for traditionally challenging intracranial aneurysms. Modeling stent and FD deployment in patient-specific aneurysms and its flow modification results prior to the actual intervention can potentially predict the patient outcome and treatment optimization. We present a clinically focused, streamlined virtual stenting workflow that efficiently simulates stent and FD treatment in patient-specific aneurysms based on expanding a simplex mesh structure. The simplex mesh is generated using an innovative vessel-specific initialization technique, which uses the patient's parent artery diameter to identify the initial position of the simplex mesh inside the artery. A novel adaptive expansion algorithm enables the acceleration of deployment process by adjusting the expansion forces based on the distance of the simplex mesh from the parent vessel. The virtual stenting workflow was tested by modeling the treatment of two patient-specific aneurysms using the Enterprise stent and the Pipeline Embolization Device (commercial FD). Both devices were deployed in the aneurysm models in a few seconds. Computational fluid dynamics analyses of pre- and post-treatment aneurysmal hemodynamics show flow reduction in the aneurysmal sac in treated aneurysms, with the FD diverting more flow than the Enterprise stent. The test results show that this workflow can rapidly simulate clinical deployment of stents and FDs, hence paving the way for its future clinical implementation. PMID:26899135

  4. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  5. Common and cell type-specific responses of human cells to mitochondrial dysfunction

    International Nuclear Information System (INIS)

    In yeast, mitochondrial dysfunction activates a specific pathway, termed retrograde regulation, which alters the expression of specific nuclear genes and results in increased replicative life span. In mammalian cells, the specific nuclear genes induced in response to loss of mitochondrial function are less well defined. This study characterizes responses in nuclear gene expression to loss of mitochondrial DNA sequences in three different human cell types: T143B, an osteosarcoma-derived cell line; ARPE19, a retinal pigment epithelium cell line; and GMO6225, a fibroblast cell population from an individual with Kearns-Sayre syndrome (KSS). Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure gene expression of a selection of glycolysis, TCA cycle, mitochondrial, peroxisomal, extracellular matrix, stress response, and regulatory genes. Gene expression changes that were common to all three cell types included up-regulation of GCK (glucokinase), CS (citrate synthase), HOX1 (heme oxygenase 1), CKMT2 (mitochondrial creatine kinase 2), MYC (v-myc myelocytomatosis viral oncogene homolog), and WRN (Werner syndrome helicase), and down-regulation of FBP1 (fructose-1, 6-bisphosphatase 1) and COL4A1 (collagen, type IV, alpha 1). RNA interference experiments show that induction of MYC is important in ρ0 cells for the up-regulation of glycolysis. In addition, a variety of cell type-specific gene changes was detected and most likely depended upon the differentiated functions of the individual cell types. These expression changes may help explain the response of different tissues to the loss of mitochondrial function due to aging or disease

  6. Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2013-01-01

    This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts...... for the boost converter large-signal dynamics as well as for the fuel-cell nonlinear characteristics. The adaptive nonlinear controller involves online estimation of the DC bus impedance ‘seen’ by the converter. The control objective is threefold: (i) asymptotic stability of the closed loop system......, (ii) output voltage regulation under bus impedance uncertainties and (iii) equal current sharing between modules. It is formally shown, using theoretical analysis and simulations, that the developed adaptive controller actually meets its control objectives....

  7. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  8. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  9. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress

    Directory of Open Access Journals (Sweden)

    Paulina Kucharzewska

    2013-03-01

    Full Text Available Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.

  10. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  11. Comparison of adaptive response to γ-radiation and nickel sulfate treatment in human cells

    International Nuclear Information System (INIS)

    The comparison of the adaptive response to the impact of the γ-irradiation and nickel sulfate treatment in human cells, as the adaptive factors relative to these mutagens in the challenging doses by the cells survival criterium, is carried out. The pretreatment of human fibroblasts (the rhabdomyosarcoma line) with the low dose γ-radiation (10-14 cGy) formed increased viability of human cells to the nickel sulfate high concentrations (10-5-10-3 M). The adaptive response observed was similar to the radioadaptive response in human fibroblasts pretreated with low doses of γ-radiation with subsequent impact of high dose radiation. The pretreatment of human cells with the nickel sulfate low concentrations induced the DNA increased stability by impact of challenging doses of the γ-radiation and stimulated the DNA reparative synthesis by impact of both NiSO4 and 4-nitroquinoline-1-oxide. These data confirm the existence of the cross-sectional adaptive response in the experiments with the nickel sulfate

  12. [An immunofluorescent analysis of bovine rotavirus during its isolation and adaptation to cell cultures].

    Science.gov (United States)

    Skybyts'kyĭ, V H; Nosach, L M; Martynenko, D L; Onufriiev, V P

    1993-01-01

    The results from comparative studies in the reactions of immunofluorescence, complement binding, diffusion precipitation, hemagglutination, solid-phase immunoenzyme analysis, histochemical variant of immunoenzyme analysis as tests for detection of cattle rotavirus in the process of its isolation from pathological material and adaptation to cell cultures are presented. The immunofluorescence reaction is shown to have an advantage over the other reactions. PMID:8388533

  13. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  14. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  15. RECIST 1.1 - Standardisation and disease-specific adaptations: Perspectives from the RECIST Working Group.

    Science.gov (United States)

    Schwartz, Lawrence H; Seymour, Lesley; Litière, Saskia; Ford, Robert; Gwyther, Stephen; Mandrekar, Sumithra; Shankar, Lalitha; Bogaerts, Jan; Chen, Alice; Dancey, Janet; Hayes, Wendy; Hodi, F Stephen; Hoekstra, Otto S; Huang, Erich P; Lin, Nancy; Liu, Yan; Therasse, Patrick; Wolchok, Jedd D; de Vries, Elisabeth

    2016-07-01

    Radiologic imaging of disease sites plays a pivotal role in the management of patients with cancer. Response Evaluation Criteria in Solid Tumours (RECIST), introduced in 2000, and modified in 2009, has become the de facto standard for assessment of response in solid tumours in patients on clinical trials. The RECIST Working Group considers the ability of the global oncology community to implement and adopt updates to RECIST in a timely manner to be critical. Updates to RECIST must be tested, validated and implemented in a standardised, methodical manner in response to therapeutic and imaging technology advances as well as experience gained by users. This was the case with the development of RECIST 1.1, where an expanded data warehouse was developed to test and validate modifications. Similar initiatives are ongoing, testing RECIST in the evaluation of response to non-cytotoxic agents, immunotherapies, as well as in specific diseases. The RECIST Working Group has previously outlined the level of evidence considered necessary to formally and fully validate new imaging markers as an appropriate end-point for clinical trials. Achieving the optimal level of evidence desired is a difficult feat for phase III trials; this involves a meta-analysis of multiple prospective, randomised multicentre clinical trials. The rationale for modifications should also be considered; the modifications may be proposed to improve surrogacy, to provide a more mechanistic imaging technique, or be designed to improve reproducibility of the imaging biomarker. Here, we present the commonly described modifications of RECIST, each of which is associated with different levels of evidence and validation. PMID:27237360

  16. Regulatory T cells control immune responses through their nonredundant tissue specific features

    OpenAIRE

    Sari eLehtimäki; Riitta eLahesmaa

    2013-01-01

    Regulatory T cells (Treg) are needed to control immune responses and to maintain immune homeostasis. Most potent regulators are Foxp3 expressing CD4+ T cells which can be roughly divided in to two main groups, natural Treg cells (nTreg) developing in the thymus and induced or adaptive Treg cells (iTreg) developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, nonredundant roles in the immune system, with nTreg cells mainly maintaining...

  17. Parameter extraction of different fuel cell models with transferred adaptive differential evolution

    International Nuclear Information System (INIS)

    To improve the design and control of FC (fuel cell) models, it is important to extract their unknown parameters. Generally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred adaptive DE (differential evolution) framework, in which the successful parameters of the adaptive DE solving previous problems are properly transferred to solve new optimization problems in the similar problem-domains. Based on this framework, an improved adaptive DE method (TRADE, in short) is presented as an illustration. To verify the performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models, i.e., PEMFC (proton exchange membrane fuel cell) and SOFC (solid oxide fuel cell). The results of TRADE are also compared with those of other state-of-the-art EAs (evolutionary algorithms). Even though the modification is very simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and fast. Moreover, the V–I characteristics obtained by TRADE agree well with the simulated and experimental data in all cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to provide better results compared with other EAs. - Highlights: • A framework of transferred adaptive differential evolution is proposed. • Based on the framework, an improved differential evolution (TRADE) is presented. • TRADE obtains very promising results to extract the parameters of PEMFC and SOFC models

  18. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals. PMID:22586936

  19. BRCA1 185delAG MUTATION CAN BE EASILY DETECTED BY AN ADAPTED ALLELE-SPECIFIC PCR

    Directory of Open Access Journals (Sweden)

    Anca Negura

    2012-03-01

    Full Text Available BRCA1 gene accounts for a majority of hereditary breast and ovarian cancers. Germinal deleteriousmutations within this gene are directly responsible for the disease, with a lifetime risk of cancer for mutations carriers ofabout 80%. While outbred and western populations usually show a heterogeneous profile of unique and familialmutations, in isolated and eastern European populations some recurrent mutations can be afforded the most responsibilityfor familial hereditary cases. In Ashkenazi Jewish and most Slavic eastern population, the BRCA1 185delAG is one of themost frequent mutations. Therefore, rapid screening by PCR-based methods can be useful in oncogenetic diagnosis. Herewe present implementation of an adapted allele-specific PCR for the detection of 185delAG, with wide applications indiagnosis and genotyping for large population groups.

  20. Characterization of efferent T suppressor cells induced by Paracoccidioides brasiliensis-specific afferent T suppressor cells.

    OpenAIRE

    Jimenez-Finkel, B E; Murphy, J W

    1988-01-01

    Previously, we reported that Paracoccidioides brasiliensis culture filtrate antigen (Pb.Ag) when injected i.v. into mice induces antigen-specific suppressor cells which down-regulate the anti-P. brasiliensis delayed-type hypersensitivity (DTH) response. The suppressor cells are present in both spleens and lymph nodes of Pb.Ag-treated animals and suppress the afferent limb but not the efferent limb of the DTH response to P. brasiliensis. The suppressor cells induced by Pb.Ag are L3T4+ Lyt-1+2-...

  1. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  2. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus.

    Directory of Open Access Journals (Sweden)

    Ravi Kant

    Full Text Available Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient

  3. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    Science.gov (United States)

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  4. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma.

    Science.gov (United States)

    Quan, Hongzhi; Fang, Liangjuan; Pan, Hao; Deng, Zhiyuan; Gao, Shan; Liu, Ousheng; Wang, Yuehong; Hu, Yanjia; Fang, Xiaodan; Yao, Zhigang; Guo, Feng; Lu, Ruohuang; Xia, Kun; Tang, Zhangui

    2016-06-15

    Lymphocyte infiltrates have been observed in the microenvironment of oral cancer; however, little is known about whether the immune response of the lymphocyte infiltrate affects tumor biology. For a deeper understanding of the role of the infiltrating-lymphocytes in oral squamous cell carcinoma (OSCC), we characterized the lymphocyte infiltrate repertoires and defined their features. Immunohistochemistry revealed considerable T and B cell infiltrates and lymphoid follicles with germinal center-like structures within the tumor microenvironment. Flow cytometry demonstrated that populations of antigen-experienced CD4+ and CD8+ cells were present, as well as an enrichment of regulatory T cells; and T cells expressing programmed death-1 (PD-1) and T cell Ig and mucin protein-3 (Tim-3), indicative of exhaustion, within the tumor microenvironment. Characterization of tumor-infiltrating B cells revealed clear evidence of antigen exposure, in that the cardinal features of an antigen-driven B cell response were present, including somatic mutation, clonal expansion, intraclonal variation and isotype switching. Collectively, our results point to an adaptive immune response occurring within the OSCC microenvironment, which may be sustained by the expression of specific antigens in the tumor. PMID:26815146

  5. Recombinant scorpion insectotoxin AaIT kills specifically insect cells but not human cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was confirmed by N-terminal peptide sequencing. Two groups of bioassays, artificial diet incorporation assay and contact insecticidal effect assay, were carried out separately to verify the toxicity of this recombinant toxin. At the end of a 24 h experimental period, more than 60% of the testing diamondback moth (Plutella xylostella) larvae were killed in both groups with LCs0 value of 18.4 uM and 0.70 μM respectively. Cytotoxicity assay using cultured Sf9 insect cells and MCF-7 human cells demonstrated that the toxin AaIT had specific toxicity against insect cells but not human cells. Only 0.13 μM recombinant toxin was needed to kill 50% of cultured insect cells while as much as 1.3μM toxin had absolutely no effect on human cells. Insect cells produced obvious intrusions from their plasma membrane before broken up. We infer that toxin AaIT bind to a putative sodium channel in these insect cells and open the channel persistently, which would result in Na+ influx and finally cause destruction of insect cells.

  6. Effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Wen-Jian; ZHENG Rong-Liang

    2005-01-01

    The heavy ions with high linear energy transfer and high relative biological effectiveness are much more deleterious on the male germ cells, ones of the most radiosensitive cells of the body, than low-LET ionizing radiation such as X-ray or gamma-ray. The effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics and the possible mechanism of this adaptation are summarized in our laboratory. Our results showed that the heavy ion irradiation significantly increased the frequencies of chromosomal aberrations in spermatogonia and spermatocytes of mice, the low dose heavy ion irradiation could induce significant adaptative response on mouse testes and human sperm, and pre-exposure of mouse testes with low-dose heavy ion can markedly alleviate damage effects induced by subsequent high-dose irradiation. The increase of SOD activity and decrease of lipid peroxidation levels induced by low-dose ionizing radiation may be involved in this adaptative response mechanism. These studies may provide useful theoretical and clinical bases for radioprotection of reproductive potential and assessment of genetic risks for human exposed to heavy ions in radiotherapy and in outer space environment.

  7. GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice

    NARCIS (Netherlands)

    M.E. García (Marcos); R.G.J. Klein Wolterink (Roel); F. Lemâitre (Fabrice); C. Le Goff (Carine); M. Hasan (Milena); R.W. Hendriks (Rudi); A. Cumano (Ana); J.P. di Santo (James)

    2013-01-01

    textabstractTranscription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly unde

  8. Adaptive model predictive control of the hybrid dynamics of a fuel cell system

    OpenAIRE

    Fiacchini, Mirko; Alamo, Teodoro; Albea-Sanchez, Carolina; Fernandez Camacho, Eduardo

    2007-01-01

    International audience In this paper, an adaptive control scheme for the safe operation of a fuel cell system is presented. The aim of the control design is to guarantee that the oxygen ratio do not reach dangerous values. A first level of control is given by a feedforward control. An improved behavior is obtained using an adaptive predictive controller to determine the voltage to be applied to the air compressor. An admissible robust control invariant set for the PWA model of the system i...

  9. Fine tuning of the threshold of T cell selection by the Nck adapters.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-12-15

    Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire. PMID:21078909

  10. Two adaptation processes in auditory hair cells together can provide an active amplifier

    CERN Document Server

    Vilfan, A; Vilfan, Andrej; Duke, Thomas

    2003-01-01

    The hair cells of the vertebrate inner ear convert mechanical stimuli to electrical signals. Two adaptation mechanisms are known to modify the ionic current flowing through the transduction channels of the hair bundles: a rapid process involves calcium ions binding to the channels; and a slower adaptation is associated with the movement of myosin motors. We present a mathematical model of the hair cell which demonstrates that the combination of these two mechanisms can produce `self-tuned critical oscillations', i.e. maintain the hair bundle at the threshold of an oscillatory instability. The characteristic frequency depends on the geometry of the bundle and on the calcium dynamics, but is independent of channel kinetics. Poised on the verge of vibrating, the hair bundle acts as an active amplifier. However, if the hair cell is sufficiently perturbed, other dynamical regimes can occur. These include slow relaxation oscillations which resemble the hair bundle motion observed in some experimental preparations.

  11. Evidence for an adaptive response to radiation damage in plant cells conditioned with X-rays or incorporated tritium

    International Nuclear Information System (INIS)

    Allium cepa root-tips were first exposed to low 'conditioning' doses of ionizing radiation: to X-rays (0.06 or 0.26 Gy) or incorporated tritium (1.8 x 104 or 7.2 x 104 Bq/ml; specific activity: 740.0 GBq/mmol) and subsequently given a 'challenge' dose of 1.5 Gy of X-rays. Reduction in X-ray-induced chromosomal damage was brought about by prior exposure to 0.26 Gy of X-rays, while cells receiving the lower conditioning dose (0.06 Gy of X-rays) did not show significant reduction. In cells grown in the presence of [3H]TdR, the adaptive response was evident after both doses given. Results are essentially in agreement with those published by Wolff's group for human lymphocytes in showing that plant cells in vivo can become 'adapted' by exposure to low-level irradiation so that they become more resistant to the clastogenic effects of X-rays delivered subsequently. (author)

  12. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment

    Directory of Open Access Journals (Sweden)

    Rui V. Simões

    2015-08-01

    Full Text Available Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells, leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1 provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2 lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.

  13. Tissue-specific stem cells: friend or foe?

    Institute of Scientific and Technical Information of China (English)

    Joerg Huelsken

    2009-01-01

    @@ In the face of a hostile environ-ment, the integrity of many tissues in the adult organism is maintained by a constant replacement of cells. This involves a hierarchical organization of the tissue with rare multi-potent stem cells giving rise to proliferating cells of limited proliferative capacity which in turn produce differentiating cells.

  14. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  15. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  16. Context and location dependence of adaptive Foxp3+ regulatory T cell formation during immunopathological conditions

    OpenAIRE

    Heiber, Joshua F.; Geiger, Terrence L.

    2012-01-01

    Circulating Foxp3+ regulatory T cells (Treg) may arise in the thymus (natural Treg, nTreg) or through the adaptive upregulation of Foxp3 after T cell activation (induced Treg, iTreg). In this brief review, we explore evidence for the formation and function of iTreg during pathologic conditions. Determining the ontogeny and function of Treg populations has relied on the use of manipulated systems in which either iTreg or nTreg are absent, or lineage tracing of T cell clones through repertoire ...

  17. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria; Freitas, A.A.; Acuto, O.; Di Bartolo, V.

    2005-01-01

    Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8...... thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster......-YEEI suggested that signal tuning occurred during thymic maturation. Importantly, although P14 ﰌ ZAP-YEEI peripheral CD8 T cells were reduced in number and showed lower Ag-induced cytokine production and limited lymphopenia-driven proliferation, the peripheral survival/ expansion and Ag responsiveness of HY ﰌ...

  18. Regulatory T Cells Control Immune Responses through Their Non-Redundant Tissue Specific Features

    OpenAIRE

    Lehtimäki, Sari; Lahesmaa, Riitta

    2013-01-01

    Regulatory T cells (Treg) are needed in the control of immune responses and to maintain immune homeostasis. Of this subtype of regulatory lymphocytes, the most potent are Foxp3 expressing CD4+ T cells, which can be roughly divided into two main groups; natural Treg cells (nTreg), developing in the thymus, and induced or adaptive Treg cells (iTreg), developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, non-redundant roles in the immune s...

  19. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models.

    Science.gov (United States)

    Haggarty, Stephen J; Silva, M Catarina; Cross, Alan; Brandon, Nicholas J; Perlis, Roy H

    2016-06-01

    Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent

  20. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  1. Species-specific transformation of T cells by HVMNE

    International Nuclear Information System (INIS)

    HVMNE is an Epstein-Barr virus (EBV)-like lymphocryptovirus (LCV) originally isolated from a Macaca nemestrina with CD8+ T cell mycosis fungoides/cutaneous T cell lymphoma (Blood 98 (2001), 2193). HVMNE transforms rabbit T cells in vitro and causes T cell lymphoma in New Zealand white rabbits. Here we demonstrate that HVMNE also immortalizes T cells from mustached tamarins but not those from owl monkeys, common marmosets, squirrel monkeys, black-capped capuchins, and humans. Cytogenetic and FACS analysis revealed the true origin and T cell lineage of the transformed tamarin T cell lines. Tamarin T cells contained HVMNE DNA sequence and displayed a decreased requirement for the IL-2 cytokine for growth. Thus, this EBV-like virus from M. nemestrina differs from the other EBV-like viruses found in nonhuman primates inasmuch as it appears to preferentially transform T cells

  2. Effect of low-dose X-ray radiation on adaptive response in gastric cancer cell

    Institute of Scientific and Technical Information of China (English)

    Shukai Wang; Gang Jiang; Hongsheng Yu; Xiangping Liu; Chang Xu

    2013-01-01

    Objective: We aimed to study the effect and mechanism of low-dose radiation (LDR) on adaptive response of gastric cancer cell. Methods: SGC7901 cells were cultured in vitro, and divided into 4 groups: control group (D0 group), low-dose radiation group (D1 group, 75 mGy), high-dose radiation group (D2 group, 2 Gy), low-dose plus high-dose radiation group (D1 + D2 group, 75 mGy + 2 Gy, the interval of low and high-dose radiation being 8 h). Cell inhibition rate was detected by cytometry and CCK8 method; the proportion of cell cycle at different times after irradiation was determined by using a flow cytometry. The ATM mRNA levels were detected by using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Results: There was no significant different between groups D0 and D1, groups D2 and D1 + D2 cell inhibition rate (P > 0.05). There was a significant increase G2/M arrest in groups D2 and D1 + D2 than groups D0 and D1 after 6 h of radiation and did not recover at 48 h (P 0.05). Conclusion: LDR cannot induce adaptive response in SGC7901 cells in vitro, which may be associated the regulation of cell cycle, and its ATM mRNA expression cannot be affected by 75 mGy X-ray radiation.

  3. ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae

    OpenAIRE

    Laabs, Tracy L.; Markwardt, David D.; Slattery, Matthew G.; Newcomb, Laura L.; Stillman, David J.; Heideman, Warren

    2003-01-01

    Saccharomyces cerevisiae cells reproduce by budding to yield a mother cell and a smaller daughter cell. Although both mother and daughter begin G1 simultaneously, the mother cell progresses through G1 more rapidly. Daughter cell G1 delay has long been thought to be due to a requirement for attaining a certain critical cell size before passing the commitment point in the cell cycle known as START. We present an alternative model in which the daughter cell-specific Ace2 ...

  4. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  5. Specific differentiation of mesenchymal stem cells by small molecules

    OpenAIRE

    Song, Heesang; Chang, Woochul; Song, Byeong-Wook; Hwang, Ki-Chul

    2011-01-01

    Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells harboring multi-lineage differentiation potential and immunosuppressive properties that make them an attractive candidate for biological cell-based regenerative medicine. In addition to its undoubted clinical interest, controlling the fate and behaviors of MSCs is a crucial prerequisite for their therapeutic applications in regenerative medicine. Stem cell differentiation and modulation of functional activities are generally c...

  6. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiesc

  7. Specifications

    International Nuclear Information System (INIS)

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The specifications for the elements with U3O8-Al fuel are presented here as an illustration only. Specifications for the elements with U3Si2-Al fuel were very similar. In this example, materials, material numbers, documents numbers, and drawing numbers specific to a single fabricator have been deleted. (author)

  8. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria

    Directory of Open Access Journals (Sweden)

    Ying eZhang

    2014-03-01

    Full Text Available The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional variations occurring among different lineages. Using the class Epsilonproteobacteria as a case study, we investigated the composition, flexibility, and function of its pan-genomes. Models were constructed to extrapolate the expansion of pan-genomes at three different taxonomic levels. The results show that, for Epsilonproteobacteria the seemingly large genome variations among strains of the same species are less noticeable when compared with groups at higher taxonomic ranks, indicating that genome stability is imposed by the potential existence of taxonomic boundaries. The analyses of pan-genomes has also defined a set of universally conserved core genes, based on which a phylogenetic tree was constructed to confirm that thermophilic species from deep-sea hydrothermal vents represent the most ancient lineages of Epsilonproteobacteria. Moreover, by comparing the flexible genome of a chemoautotrophic deep-sea vent species to 1 genomes of species belonging to the same genus, but inhabiting different environments, and 2 genomes of other vent species, but belonging to different genera, we were able to delineate the relative importance of lineage-specific versus niche-specific genes. This result not only emphasizes the overall importance of phylogenetic proximity in shaping the variable part of the genome, but also highlights the adaptive functions of niche-specific genes. Overall, by modeling the expansion of pan-genomes and analyzing core and flexible genes, this study provides snapshots on how the complex processes of gene acquisition, conservation, and removal affect the evolution of different species, and contribute to the metabolic diversity and versatility of Epsilonproteobacteria.

  9. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    Science.gov (United States)

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells. PMID:25773945

  10. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte;

    2014-01-01

    proliferation of rat beta cells was studied using [3H]thymidine incorporation and 5-ethynyl-2'-deoxyuridine proliferation assays. In addition, serum from pregnant and nonpregnant women was fractionated by gel filtration and high performance liquid chromatography. The fractionated serum was screened for......OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women on the...

  11. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  12. Adaptive Cell Segmentation and Tracking for Volumetric Confocal Microscopy Images of a Developing Plant Meristem

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Anirban Chakraborty; Damanpreet Singh; Ram Kishor Yadav; Gopi Meenakshisundaram; G. Venugopala Reddy; Amit Roy-Chowdhury

    2011-01-01

    Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis.Here,we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM).The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue,the shoot apical meristem (SAM),through the use of a close-loop,adaptive segmentation,and tracking approach.The tracking output acts as an indicator of the quality of segmentation and,in turn,the segmentation can be improved to obtain better tracking results.We construct an optimization function that minimizes the segmentation error,which is,in turn,estimated from the tracking results.This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.

  13. Study on the adaptive response of mammalian cells induced by low dose radiation of carbon ions

    International Nuclear Information System (INIS)

    The effect of high LET carbon ions irradiation with low dose on V79 Chinese hamster cells and B16 melanoma cells were investigated. The cells were treated with inducing doses of 0.02 Gy and 0.05 Gy first, and then with challenge dose of 1 Gy after-additional culture of 4h. The adaptive responses including survival fraction and micronucleus frequency were studied. Authors' results showed that when the inducing dose was chosen as 0.02 Gy, there were marked increase of surviving fraction and decrease of micronucleus frequency in both cell lines. On the contrary, when the inducing dose was chosen as 0.05 Gy, there was no statistical change of surviving fraction, furthermore, the micronucleus frequency increased a little. This meant that high LET radiation of 0.02 Gy could induce the adaptive response of cultured cells while 0.05 Gy can not. Meanwhile, there was a good linear relationship between micronucleus frequency and surviving fraction, cells pre-exposed to low dose such as 0.02 Gy had low micronucleus frequency and high surviving fraction

  14. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  15. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    OpenAIRE

    Daniel Zeve; Millay, Douglas P.; Jin Seo; Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicat...

  16. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    To track epitope-specific CD4+ T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVAII, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4+ T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4+ T cells were recruited to the infected lung both in the presence and absence of the OVA323-339 epitope. These data show that, when primed, CD4+ T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  17. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas.

    OpenAIRE

    Moll, R.; Wu, X. R.; Lin, J.H.; Sun, T. T.

    1995-01-01

    Uroplakins (UPs) Ia, Ib, II, and III, transmembrane proteins constituting the asymmetrical unit membrane of urothelial umbrella cells, are the first specific urothelial differentiation markers described. We investigated the presence and localization patterns of UPs in various human carcinomas by applying immunohistochemistry (avidin-biotin-peroxidase complex method), using rabbit antibodies against UPs II and III, to paraffin sections. Positive reactions for UP III (sometimes very focal) were...

  18. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Directory of Open Access Journals (Sweden)

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  19. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells.

    Science.gov (United States)

    Altvater, Bianca; Landmeier, Silke; Pscherer, Sibylle; Temme, Jaane; Juergens, Heribert; Pule, Martin; Rossig, Claudia

    2009-12-01

    Regulatory NK cell receptors can contribute to antigen-specific adaptive immune responses by modulating T cell receptor (TCR)-induced T cell activation. We investigated the potential of the NK cell receptor 2B4 (CD244) to enhance tumor antigen-induced activation of human T cells. 2B4 is a member of the CD2 receptor subfamily with both activating and inhibitory functions in NK cells. In T cells, its expression is positively associated with the acquisition of a cytolytic effector memory phenotype. Recombinant chimeric receptors that link extracellular single-chain Fv fragments specific for the tumor-associated surface antigens CD19 and G(D2) to the signaling domains of human 2B4 and/or TCRzeta were expressed in non-specifically activated peripheral blood T cells by retroviral gene transfer. While 2B4 signaling alone failed to induce T cell effector functions or proliferation, it significantly augmented the antigen-specific activation responses induced by TCRzeta. 2B4 costimulation did not affect the predominant effector memory phenotype of expanding T cells, nor did it increase the proportion of T cells with regulatory phenotype (CD4+CD25(hi)FoxP3+). These data support a costimulatory role for 2B4 in human T cell subpopulations. As an amplifier of TCR-mediated signals, 2B4 may provide a powerful new tool for immunotherapy of cancer, promoting sustained activation and proliferation of gene-modified antitumor T cells. PMID:19360406

  20. Enhanced cell-permeant Cre protein for site-specific recombination in cultured cells

    Directory of Open Access Journals (Sweden)

    Ruley H Earl

    2004-10-01

    Full Text Available Abstract Background Cell-permeant Cre DNA site-specific recombinases provide an easily controlled means to regulate gene structure and function in living cells. Since recombination provides a stable and unambiguous record of protein uptake, the enzyme may also be used for quantitative studies of cis- and trans-acting factors that influence the delivery of proteins into cells. Results In the present study, 11 recombinant fusion proteins were analyzed to characterize sequences and conditions that affect protein uptake and/or activity and to develop more active cell-permeant enzymes. We report that the native enzyme has a low, but intrinsic ability to enter cells. The most active Cre proteins tested contained either an N-terminal 6xHis tag and a nuclear localization sequence from SV40 large T antigen (HNC or the HIV Tat transduction sequence and a C-terminal 6xHis tag (TCH6. The NLS and 6xHis elements separately enhanced the delivery of the HNC protein into cells; moreover, transduction sequences from fibroblast growth factor 4, HIV Tat or consisting of the (KFF3K sequence were not required for efficient protein transduction and adversely affected enzyme solubility. Transduction of the HNC protein required 10 to 15 min for half-maximum uptake, was greatly decreased at 4°C and was inhibited by serum. Efficient recombination was observed in all cell types tested (a T-cell line, NIH3T3, Cos7, murine ES cells, and primary splenocytes, and did not require localization of the enzyme to the nucleus. Conclusions The effects of different sequences on the delivery and/or activity of Cre in cultured cells could not be predicted in advance. Consequently, the process of developing more active cell-permeant recombinases was largely empirical. The HNC protein, with an excellent combination of activity, solubility and yield, will enhance the use of cell-permeant Cre proteins to regulate gene structure and function in living cells.

  1. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Li, Dan; Qiu, Xiaodi; Yang, Jin; Liu, Tianjin; Luo, Yi; Lu, Yi

    2016-12-01

    Cataractogenesis begins from the dynamic lens epithelial cells (LECs) and adjacent fiber cells. LECs derived from cell lines cannot maintain the crystalline expression as the primary LECs. The current study aimed to efficiently generate large numbers of human LECs from patient-specific induced pluripotent stem cells (iPSCs). Anterior lens capsules were collected from cataract surgery and were used to culture primary hLECs. iPSCs were induced from these primary hLECs by lentiviral transduction of Oct4, Sox2, Klf4, and c-Myc. Then, the generated iPSCs were re-differentiated into hLECs by the 3-step addition of defined factor combinations (Noggin, BMP4/7, bFGF, and EGF) modified from an established method. During the re-differentiation process, colonies of interest were isolated using a glass picking tool and cloning cylinders based on the colony morphology. After two steps of isolation, populations of LEC-like cells (LLCs) were generated and identified by the expression of lens marker genes by qPCR, western blot and immunofluorescence staining. The study introduced a modified protocol to isolate LLCs from iPSCs by defined factors in a short time frame. This technique could be useful for mechanistic studies of lens-related diseases. J. Cell. Physiol. 231: 2555-2562, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991066

  2. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling.

    Science.gov (United States)

    Boeldt, D S; Yi, F X; Bird, I M

    2011-09-01

    In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca(2+)](i) concentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca(2+)](i) signaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca(2+)](i) signaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase 'capacitative entry' [Ca(2+)](i) response, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca(2+)](i) signaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension. PMID:21555345

  3. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts.

    Science.gov (United States)

    Anderson, Jonathan P; Hane, James K; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J; Singh, Karam B

    2016-04-01

    Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  4. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts*

    Science.gov (United States)

    Anderson, Jonathan P.; Hane, James K.; Stoll, Thomas; Pain, Nicholas; Hastie, Marcus L.; Kaur, Parwinder; Hoogland, Christine; Gorman, Jeffrey J.; Singh, Karam B.

    2016-01-01

    Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806. PMID:26811357

  5. Serine Hydroxymethyltransferase from the Cold Adapted Microorganism Psychromonas ingrahamii: A Low Temperature Active Enzyme with Broad Substrate Specificity

    Directory of Open Access Journals (Sweden)

    Stefano Pascarella

    2012-01-01

    Full Text Available Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications.

  6. Brazilian cross-cultural translation and adaptation of the "Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items"

    Directory of Open Access Journals (Sweden)

    Aline Mansueto Mourao

    2013-12-01

    Full Text Available Objective To translate and to perform the cross-cultural adaptation of the “Questionnaire of Life Quality Specific for Myasthenia Gravis - 15 items” (MG-QOL15. Method The original English version of the questionnaire was translated into Portuguese. This version was revised and translated back into English. Later, both English versions were compared and the divergences were corrected in the Portuguese text. At a second stage, ten patients with MG followed at the Neuromuscular Diseases Clinic from the University Hospital, Universidade Federal de Minas Gerais answered the questionnaire. The authors analyzed the difficulties and misunderstandings in the application of the questionnaire. Results The questions 8, 13 and 15 were considered difficult to understand and were modified in the final Portuguese version. Most patients (70% had a total score above 25, and the statements 3, 8 and 9 showed the highest scores. Conclusion The Brazilian version of the questionnaire MG-QOL15 seems to be a promising tool for the assessment of Brazilian patients with MG.

  7. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans.

    Science.gov (United States)

    Gergondey, R; Garcia, C; Serre, V; Camadro, J M; Auchère, F

    2016-07-01

    Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to the systemic disease candidiasis. Its ability to adopt various morphological forms, such as unicellular yeasts, filamentous pseudohyphae and hyphae, contributes to its ability to survive within the host. It has been suggested that the antioxidant glutathione is involved in the filamentation process. We investigated S-glutathionylation, the reversible binding of glutathione to proteins, and the functional consequences on C. albicans metabolic remodeling during the yeast-to-hyphae transition. Our work provided evidence for the specific glutathionylation of mitochondrial proteins involved in bioenergetics pathways in filamentous forms and a regulation of the main enzyme of the glyoxylate cycle, isocitrate lyase, by glutathionylation. Isocitrate lyase inactivation in the hyphal forms was reversed by glutaredoxin treatment, in agreement with a glutathionylation process, which was confirmed by proteomic data showing the binding of one glutathione molecule to the enzyme (data are available via ProteomeXchange with identifier PXD003685). We also assessed the effect of alternative carbon sources on glutathione levels and isocitrate lyase activity. Changes in nutrient availability led to morphological flexibility and were related to perturbations in glutathione levels and isocitrate lyase activity, confirming the key role of the maintenance of intracellular redox status in the adaptive metabolic strategy of the pathogen. PMID:27083931

  8. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    Science.gov (United States)

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning. PMID:26664676

  9. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses

    Directory of Open Access Journals (Sweden)

    Alexey Dudnik

    2014-01-01

    Full Text Available The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae. Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed.

  10. Adaptation of Fusarium oxysporum and Fusarium dimerum to the specific aquatic environment provided by the water systems of hospitals.

    Science.gov (United States)

    Steinberg, Christian; Laurent, Julie; Edel-Hermann, Véronique; Barbezant, Marie; Sixt, Nathalie; Dalle, Frédéric; Aho, Serge; Bonnin, Alain; Hartemann, Philippe; Sautour, Marc

    2015-06-01

    Members of the Fusarium group were recently detected in water distribution systems of several hospitals in the world. An epidemiological investigation was conducted over 2 years in hospital buildings in Dijon and Nancy (France) and in non-hospital buildings in Dijon. The fungi were detected only within the water distribution systems of the hospital buildings and also, but at very low concentrations, in the urban water network of Nancy. All fungi were identified as Fusarium oxysporum species complex (FOSC) and Fusarium dimerum species complex (FDSC) by sequencing part of the translation elongation factor 1-alpha (TEF-1α) gene. Very low diversity was found in each complex, suggesting the existence of a clonal population for each. Density and heterogeneous distributions according to buildings and variability over time were explained by episodic detachments of parts of the colony from biofilms in the pipes. Isolates of these waterborne populations as well as soilborne isolates were tested for their ability to grow in liquid medium in the presence of increasing concentrations of sodium hypochlorite, copper sulfate, anti-corrosion pipe coating, at various temperatures (4°-42 °C) and on agar medium with amphotericin B and voriconazole. The waterborne isolates tolerated higher sodium hypochlorite and copper sulfate concentrations and temperatures than did soilborne isolates but did not show any specific resistance to fungicides. In addition, unlike waterborne isolates, soilborne isolates did not survive in water even supplemented with glucose, while the former developed in the soil as well as soilborne isolates. We concluded the existence of homogeneous populations of FOSC and FDSC common to all contaminated hospital sites. These populations are present at very low densities in natural waters, making them difficult to detect, but they are adapted to the specific conditions offered by the complex water systems of public hospitals in Dijon and Nancy and probably other

  11. HLA-DP specific responses in allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Rutten, Caroline Elisabeth

    2013-01-01

    Clinical studies demonstrated that HLA-DPB1 mismatched stem cell transplantation (SCT) is associated with a decreased risk of disease relapse and an increased risk of graft versus host disease (GVHD) compared to HLA-DPB1 matched SCT. In T-cell depleted SCT, mismatching of HLA-DPB1 was not associated

  12. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans the...... expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...... between performance and fast model evaluation. This model has a mean absolute error of 0.70%. It is concluded that the developed ANFIS model is suitable for optimization of fuel cell systems and as the steady state component in larger dynamic system models....

  13. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    Science.gov (United States)

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  14. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  15. Isolation and adaptation of bovine herpes virus Type 1 in embryonated chicken eggs and in Madin–Darby bovine kidney cell line

    Directory of Open Access Journals (Sweden)

    Devprabha Samrath

    2016-02-01

    Full Text Available Aim: Objective of the present study was to isolate bovine herpes virus Type 1 (BHV-1 from semen of infected bull and to adapt it onto embryonated eggs and Madin–Darby bovine kidney (MDBK cell line. Further, the virus was identified by agar gel immunodiffusion (AGID test. Materials and Methods: Semen samples were collected from five BHV-1 positive bulls previously confirmed for the presence of antibodies against BHV-1 using avidin-biotin enzyme linked immunosorbent assay test. The virus from semen samples was adapted in chorioallantoic membrane (CAM of 11-day-old embryonated chickens eggs and in MDBK cell line. The presence of BHV-1 in infected CAM and cell culture fluid was confirmed by AGID test. Results: Virus infected CAM showed edema, congestion and thickening at first passage level. Small foci ranged from 1 to 2 mm in diameter, scattered all over the membrane were observed at first passage. More severe changes were observed in CAM after serial passaging. The large pock lesions, round in shape with opaque raised edge and depressed gray central area of necrosis ranged from 3 to 5 mm in diameter were developed at fourth passage. Blind passages in MDBK cell culture were made. The MDBK cell line at second passage level showed characteristic cytopathic effect viz. rounding of cells with shrinkage, followed by aggregation or clumping of cells which progressed rapidly and appeared as “bunch of grapes” at 72 h post inoculation. Few cells become elongated when compared with uninfected controls. A homogenate of CAM with distinct pock lesions and infected cell culture fluid developed precipitation line within 48 h against specific anti-BHV-1 immune serum by AGID test. Conclusion: BHV-1 was easily adapted in CAM of chicken embryos and in MDBK cell line. Virus infected CAM and cell culture fluid showed precipitin band by AGID test.

  16. Isolation and adaptation of bovine herpes virus Type 1 in embryonated chicken eggs and in Madin–Darby bovine kidney cell line

    Science.gov (United States)

    Samrath, Devprabha; Shakya, Sanjay; Rawat, Nidhi; Gilhare, Varsha Rani; Singh, Fateh

    2016-01-01

    Aim: Objective of the present study was to isolate bovine herpes virus Type 1 (BHV-1) from semen of infected bull and to adapt it onto embryonated eggs and Madin–Darby bovine kidney (MDBK) cell line. Further, the virus was identified by agar gel immunodiffusion (AGID) test. Materials and Methods: Semen samples were collected from five BHV-1 positive bulls previously confirmed for the presence of antibodies against BHV-1 using avidin-biotin enzyme linked immunosorbent assay test. The virus from semen samples was adapted in chorioallantoic membrane (CAM) of 11-day-old embryonated chickens eggs and in MDBK cell line. The presence of BHV-1 in infected CAM and cell culture fluid was confirmed by AGID test. Results: Virus infected CAM showed edema, congestion and thickening at first passage level. Small foci ranged from 1 to 2 mm in diameter, scattered all over the membrane were observed at first passage. More severe changes were observed in CAM after serial passaging. The large pock lesions, round in shape with opaque raised edge and depressed gray central area of necrosis ranged from 3 to 5 mm in diameter were developed at fourth passage. Blind passages in MDBK cell culture were made. The MDBK cell line at second passage level showed characteristic cytopathic effect viz. rounding of cells with shrinkage, followed by aggregation or clumping of cells which progressed rapidly and appeared as “bunch of grapes” at 72 h post inoculation. Few cells become elongated when compared with uninfected controls. A homogenate of CAM with distinct pock lesions and infected cell culture fluid developed precipitation line within 48 h against specific anti-BHV-1 immune serum by AGID test. Conclusion: BHV-1 was easily adapted in CAM of chicken embryos and in MDBK cell line. Virus infected CAM and cell culture fluid showed precipitin band by AGID test. PMID:27051213

  17. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    Full Text Available Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor] with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity – a 16 kD band strongly correlated between assays. N-terminal sequencing – EPLAVVDL – identified a large gene (424 AA, extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS. U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD. Outside the cell, a small band (28 kD was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags by changing salt concentrations and ultrafiltering – releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the

  18. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [3H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  19. Kidney Specific Protein-Positive Cells Derived from Embryonic Stem Cells Reproduce Tubular Structures In Vitro and Differentiate into Renal Tubular Cells

    OpenAIRE

    Ryuji Morizane; Toshiaki Monkawa; Shizuka Fujii; Shintaro Yamaguchi; Koichiro Homma; Yumi Matsuzaki; Hideyuki Okano; Hiroshi Itoh

    2013-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be...

  20. Enhancing Collaborative Learning through Dynamic Forms of Support: The Impact of an Adaptive Domain-Specific Support Strategy

    Science.gov (United States)

    Karakostas, A.; Demetriadis, S.

    2011-01-01

    Research on computer-supported collaborative learning (CSCL) has strongly emphasized the value of providing student support of either fixed (e.g. collaboration scripts) or dynamic form (e.g. adaptive supportive interventions). Currently, however, there is not sufficient evidence corroborating the potential of adaptive support methods to improve…

  1. Branch-specific heterosynaptic facilitation in Aplysia siphon sensory cells

    OpenAIRE

    Clark, Gregory A.; Kandel, Eric R.

    1984-01-01

    Aplysia siphon sensory cells exhibit heterosynaptic facilitation of transmitter release during both sensitization and classical conditioning of the siphon withdrawal response. In the present study, we asked whether facilitation must invariably enhance transmission at all terminals of a neuron or whether facilitation can instead occur at one set of terminals without also occurring at other terminals of the same cell. To examine this question, we compared effects of local application of seroton...

  2. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  3. Specifications and schedule of a fuel cell test railway vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, T.; Ogawa, K.; Furuya, T.; Kondo, K.; Yamamoto, T. [Railway Technical Research Inst., Tokyo (Japan)

    2006-07-01

    This paper described a fuel cell test railway vehicle designed at a research institute in Japan. A proton exchange membrane fuel cell (PEMFC) was used as the on-board power source of the railway vehicle traction system. Use of the fuel cell was expected to reduce carbon dioxide (CO{sub 2}) emissions as well as overall energy consumption when combined with the use of a regenerative brake. During the experiment, 100 kW class fuel cells were constructed, and pure hydrogen was supplied from a hydrogen cylinder. A composite cylinder made from an aluminum liner wrapped in carbon fiber was selected as a hydrogen storage tank. An existing rapid service train body was modified to test the new system. The train was comprised of a motive bogie with 2 motors, and a trailing bogie without motors. The fuel cells and the traction inverter were installed inside the car, while hydrogen cylinders were installed under the floor to avoid leaks. The motor was operated at the limit of the fuel cell's power of 120 kW. Train performance curves of the test track were measured. A high-speed test drive of the system will be conducted in the near future. Details of the test schedule were provided. 1 ref., 4 tabs., 10 figs.

  4. A Population Dynamics Analysis of the Interaction between Adaptive Regulatory T Cells and Antigen Presenting Cells

    OpenAIRE

    Fouchet, David; Regoes, Roland

    2008-01-01

    Background Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks t...

  5. Multiple Effector Functions Mediated by Human Immunodeficiency Virus-Specific CD4+ T-Cell Clones

    OpenAIRE

    Norris, Philip J.; Sumaroka, Marina; Brander, Christian; Moffett, Howell F.; Boswell, Steven L.; Nguyen, Tam; Sykulev, Yuri; Walker, Bruce D; Rosenberg, Eric S.

    2001-01-01

    Mounting evidence suggests that human immunodeficiency virus type 1 (HIV-1) Gag-specific T helper cells contribute to effective antiviral control, but their functional characteristics and the precise epitopes targeted by this response remain to be defined. In this study, we generated CD4+ T-cell clones specific for Gag from HIV-1-infected persons with vigorous Gag-specific responses detectable in peripheral blood mononuclear cells. Multiple peptides containing T helper epitopes were identifie...

  6. Defining cell-type specificity at the transcriptional level in human disease

    OpenAIRE

    Ju, Wenjun; Greene, Casey S; Eichinger, Felix; Nair, Viji; Hodgin, Jeffrey B.; Bitzer, Markus; Lee, Young-Suk; Zhu, Qian; Kehata, Masami; Li, Min; Jiang, Song; Rastaldi, Maria Pia; Cohen, Clemens D; Troyanskaya, Olga G.; Kretzler, Matthias

    2013-01-01

    Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approa...

  7. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Directory of Open Access Journals (Sweden)

    Dai Fei Elmer Ker

    Full Text Available Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and

  8. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    Science.gov (United States)

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d. PMID:27490632

  9. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  10. Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity

    DEFF Research Database (Denmark)

    Topham, D J; Cardin, R C; Christensen, Jan Pravsgaard;

    2001-01-01

    The immune system uses both virus-specific T cells and B cells to control the acute and latent phases of respiratory infection with the murine gammaherpesvirus 68 (gammaHV-68). We sought to further define the important effector mechanisms for CD8(+) T cells. First, depletion of the CD4(+) T cells...

  11. Stage-Specific Global Alterations in the Transcriptomes of Lyme Disease Spirochetes During Tick Feeding and Following Mammalian Host-Adaptation

    Science.gov (United States)

    Iyer, Radha; Caimano, Melissa J.; Luthra, Amit; Axline, David; Corona, Arianna; Iacobas, Dumitru A.; Radolf, Justin D.; Schwartz, Ira

    2015-01-01

    Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium’s ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro-grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans. PMID:25425211

  12. Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology

    Institute of Scientific and Technical Information of China (English)

    Qi Zhidong; Zhu Xinjian; Cao Guangyi

    2006-01-01

    Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.

  13. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  14. Towards an understanding of cell-specific functions of signal-dependent transcription factors

    OpenAIRE

    Zhang, Dawn X.; Glass, Christopher K.

    2013-01-01

    The ability to regulate gene expression in a cell-specific manner is a feature of many broadly expressed signal-dependent transcription factors, including nuclear hormone receptors and transcription factors that are activated by cell surface receptors for extracellular signals. As the most plastic cells of the hematopoietic system, macrophages are responsive to a wide spectrum of regulatory molecules and provide a robust model system for investigation of the basis for cell-specific transcript...

  15. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells

    OpenAIRE

    Liu, Yu; Asakura, Masanori; Inoue, Hironori; Nakamura, Teruya; Sano, Motoaki; Niu, Zhiyv; Chen, Michelle; Schwartz, Robert J.; Schneider, Michael D.

    2007-01-01

    Early steps for cardiac specification are problematic for the study of mammalian embryos, which has favored using pluripotent cells that recapitulate cardiac myogenesis. Furthermore, circuits governing cardiac specification have relevance to the application of ES cells and other cells for heart repair. In mouse teratocarcinoma cells, canonical Wnts that inhibit heart formation in avian or amphibian embryos and explants activate cardiogenesis, paradoxically. Here, we show that the Wnt/β-cateni...

  16. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Directory of Open Access Journals (Sweden)

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  17. IDENTIFICATION OF SPECIFIC PEPTIDE LIGANDS FOR B-LYMPHOMA CELL AND ITS EFFECT ON TYROSINE PHOSPHORYLATION AND CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    宋良文; 马宪梅; 崔雪梅; 李扬; 王晓民

    2004-01-01

    Objective To search novel method for diagnosis and therapy of B-lymphoma, specific small molecular peptide ligands against binding site of tumor cells were screened and its effects on signal transduction and cell apoptosis were tested. Methods Specific peptide ligands were screened by binding with site of human B lymphoma cell (OC1LY8) using peptide-bead libraries. The identified peptides were characterized with responsible cells by rebinding test. The role of tyrosine phosphorylation of peptide ligand was tested by Western blot;and its apoptosispromoting role was observed by confocal fluorescent microscope. Results Specific peptide ligand was able to bind specifically to site on cell surface and enter into cytoplasm. Tetrameric peptide ligand was able to strongly trigger signal transduction resulting in tyrosine phosphorylation and cellular apoptosis in OC1LY8 cell line.Conclusion Screened peptide ligand can effectively bind with OC1LY8 cell, stimulate cellular tyrosine phosphorylation and induce cellular apoptosis.

  18. ER stress in pancreatic beta cells: the thin red line between adaptation and failure.

    Science.gov (United States)

    Eizirik, Decio L; Cnop, Miriam

    2010-01-01

    Secretory cells, such as pancreatic beta cells, face the challenge of increasing protein synthesis severalfold during acute or chronic stimulation. This poses a burden on the endoplasmic reticulum (ER), the organelle where proinsulin synthesis and folding takes place. Thus, beta cells use various adaptive mechanisms to adjust the functional capacity of the ER to the prevailing demand. These check-and-balance mechanisms are collectively known as the unfolded protein response (UPR). It remains unclear how UPR signaling is ultimately regulated and what delineates the boundaries between a physiological and a pathological response. New discoveries point to the divergent effects of acute and chronic metabolic fluxes and chemical ER stressors on the formation of complexes among UPR transducers, scaffold proteins, and phosphatases. These and other findings provide a first glimpse on how different signals trigger diverging UPR outcomes. PMID:20179270

  19. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing

    Science.gov (United States)

    Gupta, Mukund; Sarangi, Bibhu Ranjan; Deschamps, Joran; Nematbakhsh, Yasaman; Callan-Jones, Andrew; Margadant, Felix; Mège, René-Marc; Lim, Chwee Teck; Voituriez, Raphaël; Ladoux, Benoît

    2015-06-01

    Matrix rigidity sensing regulates a large variety of cellular processes and has important implications for tissue development and disease. However, how cells probe matrix rigidity, and hence respond to it, remains unclear. Here, we show that rigidity sensing and adaptation emerge naturally from actin cytoskeleton remodelling. Our in vitro experiments and theoretical modelling demonstrate a biphasic rheology of the actin cytoskeleton, which transitions from fluid on soft substrates to solid on stiffer ones. Furthermore, we find that increasing substrate stiffness correlates with the emergence of an orientational order in actin stress fibres, which exhibit an isotropic to nematic transition that we characterize quantitatively in the framework of active matter theory. These findings imply mechanisms mediated by a large-scale reinforcement of actin structures under stress, which could be the mechanical drivers of substrate stiffness-dependent cell shape changes and cell polarity.

  20. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  1. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.;

    2009-01-01

    DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA......Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  2. HLA-DP specific responses in allogeneic stem cell transplantation

    OpenAIRE

    Rutten, Caroline Elisabeth

    2013-01-01

    Clinical studies demonstrated that HLA-DPB1 mismatched stem cell transplantation (SCT) is associated with a decreased risk of disease relapse and an increased risk of graft versus host disease (GVHD) compared to HLA-DPB1 matched SCT. In T-cell depleted SCT, mismatching of HLA-DPB1 was not associated with an increased risk of severe GVHD, whereas a significant decreased risk of disease relapse was still observed. In this thesis we showed that HLA-DPB1 mismatched allo-SCT followed by donor lymp...

  3. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  4. Structural analysis of antigen-specific Ia-bearing regulatory T-cell factors: gel electrophoretic analysis of the antigen-specific augmenting T -cell factor.

    OpenAIRE

    Miyatani, S; Hiramatsu, K; Nakajima, P B; Owen, F L; Tada, T

    1983-01-01

    An antigen-specific T-cell factor (TaF) that specifically augments the antibody response was purified and biochemically analyzed by NaDodSO4/polyacrylamide gel electrophoresis and isoelectric focusing. Biosynthetically labeled TaF was separated from the Nonidet P-40 extract of T-cell hybridoma FL10, which produces a keyhole limpet hemocyanin-specific TaF, by affinity chromatography either with antigen or with monoclonal anti-I-A antibodies. The material thus obtained was composed of two diffe...

  5. Specific Effects of Synthetic Oligopeptides on Cultured Animal Cells

    Czech Academy of Sciences Publication Activity Database

    Franěk, František; Katinger, H.

    2002-01-01

    Roč. 18, - (2002), s. 155-158. ISSN 8756-7938 R&D Projects: GA MŠk OC 844.10 Institutional research plan: CEZ:AV0Z5038910 Keywords : Oligopeptides * Animal Cells Subject RIV: CE - Biochemistry Impact factor: 1.734, year: 2002

  6. The role of auxin in cell specification during arabidopsis embryogenesis

    NARCIS (Netherlands)

    Lokerse, A.S.

    2011-01-01

    Auxin is a structurally simple molecule, yet it elicits many different responses in plants. In Chapter 1 we have reviewed how specificity in the output of auxin signaling could be generated by distinct regulation and the unique properties of the members of the Aux/IAA and ARF transcription factor fa

  7. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E; Ladell, Kristin; Buus, Anette Stryhn; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A; Goulder, Philip

    2014-01-01

    ) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by...... effector memory CD8+ T cells. CONCLUSION: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are......OBJECTIVES: Although CD8+ T cells play a critical role in the control of HIV-1 infection,their antiviral efficacy can be limited by antigenic variation and immune exhaustion.The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1...

  8. Antagonism of airway tolerance by endotoxin/lipopolysaccharide through promoting OX40L and suppressing antigen-specific Foxp3+ T regulatory cells.

    Science.gov (United States)

    Duan, Wei; So, Takanori; Croft, Michael

    2008-12-15

    Respiratory exposure to allergens can lead to airway tolerance. Factors that antagonize tolerance mechanisms in the lung might result in susceptibility to diseases such as asthma. We show that inhalation of endotoxin/LPS with Ag prevented airway tolerance and abolished protection from T cell-driven asthmatic lung inflammation. Under conditions leading to tolerance, adaptive Ag-specific CD4(+)Foxp3(+) T regulatory cells (Treg) were generated following exposure to intranasal Ag and outnumbered IL-4- and IFN-gamma-producing CD4 T cells by 100:1 or greater. Inhaled LPS altered the ratio of Treg to IL-4(+) or IFN-gamma(+) T cells by concomitantly suppressing Treg generation and promoting effector T cell generation. LPS induced OX40L expression on dendritic cells and B cells that resulted in a synergistic activity between TLR4 and OX40 signals, leading to production of IL-4, IFN-gamma, and IL-6, which blocked Treg development. Furthermore, inhibiting OX40/OX40L interactions prevented LPS from suppressing tolerance, and resulted in the generation of greater numbers of adaptive Treg. Thus, cooperation between TLR4 and OX40 controls susceptibility to developing airway disease via modulating the balance between adaptive Treg and IL-4(+) or IFN-gamma(+) T cells. Targeting OX40L then has the potential to improve the efficacy of Ag immunotherapy to promote tolerance. PMID:19050285

  9. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  10. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  11. MHC-based detection of antigen-specific CD8(+) T cell responses

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Schumacher, Nana Maria Pii

    2010-01-01

    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different...

  12. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Labuda, Tord; Christensen, Jan Pravsgaard; Rasmussen, Susanne; Bonnesen, Barbara; Karin, Michael; Thomsen, Allan Randrup; Ødum, Niels

    2006-01-01

    in the generation of a virus-specific immune response. Mekk1(DeltaKD) mice challenged with vesicular stomatitis virus (VSV) showed a fourfold increase in splenic CD8(+) T cell numbers. In contrast, the number of splenic T cells in infected WT mice was only marginally increased. The CD8(+) T cell...... result of increased proliferation, since a significantly higher percentage of virus-specific Mekk1(DeltaKD) CD8(+) T cells incorporated BrdU as compared to virus-specific WT CD8(+) T cells. In contrast, similar levels of apoptosis were detected in Mekk1(DeltaKD) and WT T cells following VSV infection....... These results strongly suggest that MEKK1 plays a negative regulatory role in the expansion of virus-specific CD8(+) T cells in vivo....

  13. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection.

    Science.gov (United States)

    Fiege, Jessica K; Beura, Lalit K; Burbach, Brandon J; Shimizu, Yoji

    2016-09-15

    During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues. PMID:27521337

  14. T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies

    OpenAIRE

    Mireya Paulina Velasquez; David Torres; Kota Iwahori; Sunitha Kakarla; Caroline Arber; Tania Rodriguez-Cruz; Arpad Szoor; Bonifant, Challice L.; Claudia Gerken; Cooper, Laurence J.N.; Xiao-Tong Song; Stephen Gottschalk

    2016-01-01

    T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells. To ada...

  15. Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress.

    Science.gov (United States)

    Petronini, P G; De Angelis, E M; Borghetti, A F; Wheeler, K P

    1993-07-15

    Induced expression of the HSP70 gene in 3T3 and SV-3T3 cells was monitored by measurements of the synthesis of HSP70 and of the cellular contents of both HSP70 and its mRNA. The presence of betaine (N-trimethylglycine) at concentrations of 2.5-25 mM decreased the induction of HSP70 gene expression caused by incubation of 3T3 and SV-3T3 cells in hypertonic (0.5 osM) medium. This effect was accompanied by an enhancement of SV-3T3 cell adaptation, assayed by colony formation, to the hyperosmotic conditions. In contrast, the presence of betaine did not affect HSP70 gene expression induced in these cells by heat shock. After 6 h incubation with 25 mM betaine under hypertonic (0.5 osM) conditions the intracellular concentration of betaine in SV-3T3 cells was about 195 mM, compared with about 70 mM under isotonic (0.3 osM) conditions. Hence, with this concentration of extracellular betaine, the marked increase in the accumulation of betaine within the cells presumably counteracts the imposed osmotic pressure and eliminates the signal that otherwise initiates increased expression of the HSP70 gene. PMID:8343134

  16. Adaptation of infectious bronchitis virus in primary cells of the chick embryo chorioallantoic membrane

    Directory of Open Access Journals (Sweden)

    M. H. Mohammed

    2013-06-01

    Full Text Available The susceptibility of the primary chick embryo chorioallontoic membrane cells to infectious bronchitis virus was evaluated after twenty consecutive passages in chick embryo chorioallontoic membrane cells. Virus replication was monitored by cytopathic observation, indirect immunoperoxidase, and reverse transcription polymerase chain reaction (RT-PCR. At 72 hours post-infection (p.i. in third passage, the cytopathic effect was characterized by rounding up of cells, monolayer detachment, intracytoplasmic brownish colouration was readily observed by immunoperoxidase from 24 hours p.i in third passage, and at all times the extracted viral RNA from IBV-infected monolayers was demonstrated by RT-PCR. Tissue culture ineffective dose50 (TCID50 was used to measure virus titration performed on primary chick embryo chorioallontoic membrane cells and the titre in twenty passage was 108.6 TCID50/ml. The results obtained in this study suggested that the primary chick embryo chorioallontoic membrane cells can be used for adaptation infectious bronchitis virus (IBV and may be considered a step forward for the use of these cells in the future for IBV vaccine production

  17. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation.

    Science.gov (United States)

    Guida, Brandon Scott; Garcia-Pichel, Ferran

    2016-05-17

    Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium. PMID:27140633

  18. Specific of adaptation foreign student with different health and physical preparedness level to employments on physical education in Kharkov National Medical University

    Directory of Open Access Journals (Sweden)

    Lukavenko H.G.

    2010-06-01

    Full Text Available The specific of adaptation of foreign students is considered to Ukrainian university reality. Researches were conducted with participation 762 students from 62 countries. Possibilities of teaching of all objects are rotined in English language. The results of questionnaire of students of the first course are presented. Attitude of students is exposed toward an object and their level of physical preparedness. Traditions and departmental of other countries teaching are rotined. Methods and facilities of reduction of adaptation period are presented the increase of level of physical and mental capacity.

  19. 89 Is Basophil Specific Response to Hymenoptera Venom Related to T Regulatory Cells?

    OpenAIRE

    Kucera, Petr; Hulikova, Katarina; Cvackova, Milada; Planska, Daniela; Riegerova, Kamila

    2012-01-01

    Background The exact mechanism of systemic hypersensitivity to venom is not exactly understood. It is suggested T cells with regulatory potential can downregulate other T cell subsets and effector cells, ex. mast cell or basophils. We focused on relationship of specific basophil reactivity in relationship to proportion of regulatory T cells. Methods Forty-five patients with history of systemic symptoms of allergy to Hymenoptera venom were included. Basophil reactivity before the treatment and...

  20. Bi-specific MHC Heterodimers for Characterization of Cross-reactive T Cells*

    OpenAIRE

    Shen, Zu T.; Brehm, Michael A; Daniels, Keith A.; Sigalov, Alexander B.; Selin, Liisa K.; Welsh, Raymond M.; Stern, Lawrence J.

    2010-01-01

    T cell cross-reactivity describes the phenomenon whereby a single T cell can recognize two or more different peptide antigens presented in complex with MHC proteins. Cross-reactive T cells have previously been characterized at the population level by cytokine secretion and MHC tetramer staining assays, but single-cell analysis is difficult or impossible using these methods. In this study, we describe development of a novel peptide-MHC heterodimer specific for cross-reactive T cells. MHC-pepti...

  1. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  2. HIV-specific CD4(+) T cells and viremia: who's in control?

    NARCIS (Netherlands)

    C.A. Jansen; D. van Baarle; F. Miedema

    2006-01-01

    It has been proposed that HIV-specific CD4(+) T cells with a central memory phenotype might be involved in controlling HIV replication. Based on recent data (lack of protective effects of HIV-specific CD4+ T-cell responses in acutely infected patients undergoing treatment interruptions; loss of init

  3. Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans

    OpenAIRE

    Elena Sandalova; Diletta Laccabue; Carolina Boni; Tan, Anthony T.; Katja Fink; Eng Eong Ooi; Robert Chua; Bahar Shafaeddin Schreve; Carlo Ferrari; Antonio Bertoletti

    2010-01-01

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 1...

  4. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia

    OpenAIRE

    Dai, D.; Li, L.; Huebner, A; H. Zeng; Guevara, E; Claypool, D J; Liu, A.; Chen, J.

    2012-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP...

  5. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  6. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Science.gov (United States)

    Yu, Qigui; Chow, Edith M C; McCaw, Shannon E; Hu, Ningjie; Byrd, Daniel; Amet, Tohti; Hu, Sishun; Ostrowski, Mario A; Gray-Owen, Scott D

    2013-01-01

    Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA), but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA) binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA)-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA)-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why

  7. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    OpenAIRE

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  8. Specific immunotherapy generates CD8(+) CD196(+) T cells to suppress lung cancer growth in mice.

    Science.gov (United States)

    Zhang, Jian; Liu, Jing; Chen, Huiguo; Wu, Weibin; Li, Xiaojun; Wu, Yonghui; Wang, Zhigang; Zhang, Kai; Li, Yun; Weng, Yimin; Liao, Hongying; Gu, Lijia

    2016-08-01

    That specific immunotherapy can inhibit cancer growth has been recognized; its efficiency is to be improved. This study aimed to inhibit lung cancer (LC) growth in a mouse model by using an LC-specific vaccination. In this study, a LC mouse model was created by adoptive transplantation with LC cells. The tumor-bearing mice were vaccinated with LC cell extracts plus adjuvant TNBS or adoptive transplantation with specific CD8(+) CD196(+) T cells. The results showed that the vaccination with LC extracts (LCE)/TNBS markedly inhibited the LC growth and induced CD8(+) CD196(+) T cells in LC tissue and the spleen. These CD8(+) CD196(+) T cells proliferated and produce high levels of perforin upon exposure to LCE and specifically induced LC cell apoptosis. Exposure to TNBS induced RAW264.7 cells to produce macrophage inflammatory protein-3α; the latter activated signal transducer and activator of transcription 3 and further induced perforin expression in the CD8(+) CD196(+) T cells. Adoptive transfer with specific CD8(+) CD196(+) T cells suppressed LC growth in mice. In conclusion, immunization with LC extracts and TNBS can induce LC-specific CD8(+) CD196(+) T cells in LC-bearing mice and inhibit LC growth. PMID:26910585

  9. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    OpenAIRE

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Merlin L Robb; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcri...

  10. Induction of delayed-type hypersensitivity by the T cell line specific to bacterial peptidoglycans

    International Nuclear Information System (INIS)

    A T cell line specific for the chemically well-defined peptidoglycan of bacterial cell wall, disaccharide tetrapeptide, was established from Lewis rats immunized with the antigen covalently linked to the autologous rat serum albumin. The antigen specificity was examined with various analogues or derivatives of the peptidoglycan. The cell line was reactive to analogues with the COOH-terminal D-amino acid, but least reactive to those with L-amino acid as COOH terminus. Transferring of the T cell line into X-irradiated normal Lewis rats induced delayed-type hypersensitivity in an antigen specific manner

  11. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  12. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    OpenAIRE

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Gregory B Hurst; Alexandre, Gladys

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clum...

  13. Tracking antigen-specific T-cells during clinical tolerance induction in humans.

    Directory of Open Access Journals (Sweden)

    Aamir Aslam

    Full Text Available Allergen immunotherapy presents an opportunity to define mechanisms of induction of clinical tolerance in humans. Significant progress has been made in our understanding of changes in T cell responses during immunotherapy, but existing work has largely been based on functional T cell assays. HLA-peptide-tetrameric complexes allow the tracking of antigen-specific T-cell populations based on the presence of specific T-cell receptors and when combined with functional assays allow a closer assessment of the potential roles of T-cell anergy and clonotype evolution. We sought to develop tools to facilitate tracking of antigen-specific T-cell populations during wasp-venom immunotherapy in people with wasp-venom allergy. We first defined dominant immunogenic regions within Ves v 5, a constituent of wasp venom that is known to represent a target antigen for T-cells. We next identified HLA-DRB1*1501 restricted epitopes and used HLA class II tetrameric complexes alongside cytokine responses to Ves v 5 to track T-cell responses during immunotherapy. In contrast to previous reports, we show that there was a significant initial induction of IL-4 producing antigen-specific T-cells within the first 3-5 weeks of immunotherapy which was followed by reduction of circulating effector antigen-specific T-cells despite escalation of wasp-venom dosage. However, there was sustained induction of IL-10-producing and FOXP3 positive antigen-specific T cells. We observed that these IL-10 producing cells could share a common precursor with IL-4-producing T cells specific for the same epitope. Clinical tolerance induction in humans is associated with dynamic changes in frequencies of antigen-specific T-cells, with a marked loss of IL-4-producing T-cells and the acquisition of IL-10-producing and FOXP3-positive antigen-specific CD4+ T-cells that can derive from a common shared precursor to pre-treatment effector T-cells. The development of new approaches to track antigen

  14. Adaptive alterations on gill Na(+), K(+)-ATPase activity and mitochondrion-rich cells of juvenile Acipenser sinensis acclimated to brackish water.

    Science.gov (United States)

    Zhao, Feng; Wu, Beibei; Yang, Gang; Zhang, Tao; Zhuang, Ping

    2016-04-01

    Understanding the physiological changes and osmoregulatory strategy is critical for anadromous species to adapt to large changes between freshwater and marine environments. In this study, juvenile Chinese sturgeon (Acipenser sinensis) were acclimated for 2 months to freshwater (FW, c. 0 ‰) and brackish water (BW, 15 ‰). Blood was assessed for changes in osmolality and ions. Gill tissue was assayed for Na(+), K(+)-ATPase (NKA) activity and immunohistochemical analysis on mitochondria-rich cells (MRCs). Serum osmolality and ions concentrations (Na(+), Cl(-) and K(+)) examined, except K(+), increased significantly in those specimens adapted to BW. However, the variations were within the range of effective hyperosmotic adaptation. The specific activity of gill NKA of juveniles adapted to BW was significantly higher (c. 1.6 times) than that of fish adapted to FW. MRCs were mainly presented in the interlamellar region of the filament and at the base of the lamella in either FW- or BW-acclimated individuals. In BW, the number and size of MRCs on filaments greatly increased. However, there was no significant difference in the number and size of the MRCs at the lamella region. Results show that juvenile Chinese sturgeon keep osmotic homeostasis in hyperosmotic environments by increasing gill NKA activity and MRCs' size and number, which is similar to other sturgeons and euryhaline teleosts. PMID:26614501

  15. Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death

    Science.gov (United States)

    Tronov, V. A.; Vinogradova, Yu. V.; Poplinskaya, V. A.; Nekrasova, E. I.; Ostrovsky, M. A.

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous study revealed non-linear dose-response relationship for cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In present study we used the mouse model for MNU-induced retinal degeneration to evaluate adaptive response of retina to proton irradiation and implication in it of glial Muller cells. The data showed that the recovery of retina after genotoxic agents has been associated with increased efficacy of DNA damage repair and lowered death of retinal photoreceptor cells.

  16. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  17. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death.

    Science.gov (United States)

    Zhang, Qiuhong; Kang, Rui; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2013-04-01

    Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments. PMID:23388380

  18. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  19. Sequence and chromatin determinants of cell-type-specific transcription factor binding.

    Science.gov (United States)

    Arvey, Aaron; Agius, Phaedra; Noble, William Stafford; Leslie, Christina

    2012-09-01

    Gene regulatory programs in distinct cell types are maintained in large part through the cell-type-specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence signal, histone modifications, and DNase accessibility to cell-type-specific binding, we analyzed 286 ChIP-seq experiments performed by the ENCODE Consortium. This analysis included experiments for 67 transcriptional regulators, 15 of which were profiled in both the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines. To model TF-bound regions, we trained support vector machines (SVMs) that use flexible k-mer patterns to capture DNA sequence signals more accurately than traditional motif approaches. In addition, we trained SVM spatial chromatin signatures to model local histone modifications and DNase accessibility, obtaining significantly more accurate TF occupancy predictions than simpler approaches. Consistent with previous studies, we find that DNase accessibility can explain cell-line-specific binding for many factors. However, we also find that of the 10 factors with prominent cell-type-specific binding patterns, four display distinct cell-type-specific DNA sequence preferences according to our models. Moreover, for two factors we identify cell-specific binding sites that are accessible in both cell types but bound only in one. For these sites, cell-type-specific sequence models, rather than DNase accessibility, are better able to explain differential binding. Our results suggest that using a single motif for each TF and filtering for chromatin accessible loci is not always sufficient to accurately account for cell-type-specific binding profiles. PMID:22955984

  20. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri

    OpenAIRE

    Kianianmomeni, Arash

    2014-01-01

    Background The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. Results In response to different light qualities, distin...

  1. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    OpenAIRE

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M.; Sjoerd H van der Burg; Walter, Steffen; Gouttefangeas, Cécile

    2014-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the pep...

  2. The roles of ERAS during cell lineage specification of mouse early embryonic development

    OpenAIRE

    Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei

    2015-01-01

    Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with it...

  3. Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture

    OpenAIRE

    Vergara, Mauricio; Becerra, Silvana; Berrios, Julio; Osses, Nelson; Reyes, Juan; Rodríguez-Moyá, María; Gonzalez, Ramon; Altamirano, Claudia

    2014-01-01

    Mild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific pro...

  4. Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells

    OpenAIRE

    Ana Mafalda Baptista Tadeu; Samantha Lin; Lin Hou; Lisa Chung; Mei Zhong; Hongyu Zhao; Valerie Horsley

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify severa...

  5. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    OpenAIRE

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinati...

  6. Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators

    International Nuclear Information System (INIS)

    Rapid advancement in medicine and bioscience is causing demand for faster, more accurate and dexterous as well as safer and more reliable micro-manipulators capable of handling biological cells. Current micro-manipulation techniques commonly damage cell walls and membranes due to their stiffness and rigidity. Ionic polymer-metal composite (IPMC) actuators have inherent compliance and with their ability to operate well in fluid and cellular environments they present a unique solution for safe cell manipulation. The reason for the downfall of IPMCs is that their complex behaviour makes them hard to control precisely in unknown environments and in the presence of sizeable external disturbances. This paper presents a novel scheme for adaptively tuning IPMC actuators for precise and robust micro-manipulation of biological cells. A two-degree-of-freedom (2DOF) controller is developed to allow optimal performance for both disturbance rejection (DR) and set point (SP) tracking. These criteria are optimized using a proposed IFT algorithm which adaptively updates the controller parameters, with no model or prior knowledge of the operating conditions, to achieve a compliant manipulation system which can precisely track targets in the presence of large external disturbances, as will be encountered in real biological environments. Experiments are presented showing the performance optimization of an IPMC actuator in the presence of external mechanical disturbances as well as the optimization of the SP tracking. The IFT algorithm successfully tunes the DR and SP to an 85% and 69% improvement, respectively. Results are also presented for a one-degree-of-freedom (1DOF) controller tuned first for DR and then for SP, for a comparison with the 2DOF controller. Validation has been undertaken to verify that the 2DOF controller does indeed outperform both 1DOF controllers over a variety of operating conditions.

  7. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  8. Adaptive Second Order Sliding Mode Control of a Fuel Cell Hybrid System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Jianxing Liu

    2015-01-01

    Full Text Available We present an adaptive-gain second order sliding mode (SOSM control applied to a hybrid power system for electric vehicle applications. The main advantage of the adaptive SOSM is that it does not require the upper bound of the uncertainty. The proposed hybrid system consists of a polymer electrolyte membrane fuel cell (PEMFC with a unidirectional DC/DC converter and a Li-ion battery stack with a bidirectional DC/DC converter, where the PEMFC is employed as the primary energy source and the battery is employed as the second energy source. One of the main limitations of the FC is its slow dynamics mainly due to the air-feed system and fuel-delivery system. Fuel starvation phenomenon will occur during fast load demand. Therefore, the second energy source is required to assist the main source to improve system perofrmance. The proposed energy management system contains two cascade control structures, which are used to regulate the fuel cell and battery currents to track the given reference currents and stabilize the DC bus voltage while satisfying the physical limitations. The proposed control strategy is evaluated for two real driving cycles, that is, Urban Dynamometer Driving Schedule (UDDS and Highway Fuel Economy Driving Schedule (HWFET.

  9. Trp53 activity is repressed in radio-adapted cultured murine limb bud cells

    International Nuclear Information System (INIS)

    Understanding the effects of ionizing radiation (IR) at low dose in fetal models is of great importance, because the fetus is considered to be at the most radiosensitive stage of the development and prenatal radiation might influence subsequent development. We previously demonstrated the existence of an adaptive response (AR) in murine fetuses after pre-exposure to low doses of X-rays. Trp53-dependent apoptosis was suggested to be responsible for the teratogenic effects of IR; decreased apoptosis was observed in adapted animals. In this study, in order to investigate the role of Trp53 in AR, we developed a new model of irradiated micromass culture of fetal limb bud cells, which replicated proliferation, differentiation and response to IR in murine embryos. Murine fetuses were exposed to whole-body priming irradiation of 0.3 Gy or 0.5 Gy at embryonic day 11 (E11). Limb bud cells (collected from digital ray areas exhibiting radiation-induced apoptosis) were cultured and exposed to a challenging dose of 4 Gy at E12 equivalent. The levels of Trp53 protein and its phosphorylated form at Ser18 were investigated. Our results suggested that the induction of AR in mouse embryos was correlated with a repression of Trp53 activity. (author)

  10. Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction

    Science.gov (United States)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.

  11. Participation of intercellular communication and intracellular signal transduction in the radio-adaptive response of human fibroblastic cells

    International Nuclear Information System (INIS)

    To investigate the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells with low-dose X-rays and examined the changes in sensitivity to subsequent high-dose X-irradiation. When the cells were irradiated by 200 cGy, the growth ratio of the viable cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a conditioning irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the growth ratio increased significantly to 45-53%, and a peak was reached at a conditioning dose of 13 cGy. Cells blocked off intercellular communication either in Ca2+ ion-free medium or in TPA added medium during the conditioning irradiation of 13 cGy did not show the improvement of growth ratio. Addition of H-7, as an inhibitor of PKC, to the medium during the conditioning irradiation inhibited the induction of the radio-adaptive response. However, addition of either inhibitor of A kinase, H-89, or inhibitor of G kinase, H-8, failed to inhibit the induction of the radio-adaptive response. These results suggest that: (1) normal cells show an adaptive response to low-dose radiation, (2) intercellular communication may play a role in radio-adaptive responses, (3) the transduction of the signal induced in cells by low-dose X-irradiation via protein kinase C was involved in radio-adaptive responses, not via A kinase nor G kinase. (author)

  12. Pancreatic islet-specific T-cell clones from nonobese diabetic mice.

    OpenAIRE

    Haskins, K; Portas, M; Bergman, B.; Lafferty, K; Bradley, B

    1989-01-01

    We have produced a panel of islet-specific T-cell clones from nonobese diabetic (NOD) mice. These clones proliferate and make interleukin 2 in an antigen-specific manner in response to NOD antigen-presenting cells and islet cells. Most of the clones respond to islet-cell antigen from different mouse strains but only in the presence of antigen-presenting cells bearing the class II major histocompatibility complex of the NOD mouse. In vivo, the clones mediate the destruction of islet, but not p...

  13. Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases

    DEFF Research Database (Denmark)

    Friis, Ulla G; Jensen, Boye L; Sethi, Shala;

    2002-01-01

    We tested the hypothesis that cGMP stimulates renin release through inhibition of the cAMP-specific phosphodiesterase 3 (PDE3) in isolated rat juxtaglomerular (JG) cells. In addition, we assessed the involvement of PDE4 in JG-cell function. JG cells expressed PDE3A and PDE3B, and the PDE3 inhibit...

  14. Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy

    NARCIS (Netherlands)

    Maazi, H.; Shirinbak, S.; Willart, M.; Hammad, H. M.; Cabanski, M.; Boon, L.; Ganesh, V.; Baru, A. M.; Hansen, G.; Lambrecht, B. N.; Sparwasser, T.; Nawijn, M. C.; van Oosterhout, A. J. M.

    2012-01-01

    Background Allergen-specific immunotherapy (SIT) has been used since 1911, yet its mechanism of action remains to be elucidated. There is evidence indicating that CD4+FOXP3+ regulatory T cells (Treg cells) are induced during SIT in allergic patients. However, the contribution of these cells to SIT h

  15. A NOVel ELISPOT assay to quantify HLA-specific B cells in HLA-immunized individuals

    NARCIS (Netherlands)

    Heidt, S.; Roelen, D.L.; Vaal, Y.J. de; Kester, M.G.; Eijsink, C.; Thomas, S.; Besouw, N.M. van; Volk, H.D.; Weimar, W.; Claas, F.H.; Mulder, A.

    2012-01-01

    Quantification of the humoral alloimmune response is generally achieved by measuring serum HLA antibodies, which provides no information about the cells involved in the humoral immune response. Therefore, we have developed an HLA-specific B-cell ELISPOT assay allowing for quantification of B cells p

  16. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  17. Studies on thyroglobulin-specific suppressor T cell function in autoimmune thyroid disease

    International Nuclear Information System (INIS)

    T cell regulation of the generation of thyroglobulin plaque-forming cells (Tg PFC) and protein A plaque-forming cells (Prot A PFC) was investigated using lymphocytes from patients with autoimmune thyroid disease. T and B cell mixed cultures (T-B MC) were carried out without mitogenic or antigenic stimulation to identify physiological T cell effects in the system. Tg PFC were found in 8 (44%) of 18 patients who had high titers of thyroglobulin antibody in their sera. Tg-specific and nonspecific immunoregulation by T cells from patients and normal subjects was studied using B cells from these eight patients in the T-B MC system. Remarkably lower values of Tg PFC induction compared to Prot A PFC induction were found after T cell addition. Normal T cells inhibited Tg PFC induction, but patient T cells did not, while the same extent of helper effects were found on Prot A PFC induction by the addition of patient and normal T cells. Irradiation (1500 rads) of T cells from patients and normal subjects significantly enhanced both Tg PFC and Prot A PFC induction. Thus, Tg-specific suppressor T cells are present in all normal subjects as part of the radiosensitive suppressor T cell subset. The increase in Tg-PFC caused by irradiation-induced inhibition of Tg-specific suppressor T cell function was significantly greater in normal subjects than in patients. Histamine type 2 receptor-bearing T cells inhibited Prot A PFC induction, but not Tg PFC induction, in the autologous T-B MC system. No Tg PFC were induced from normal B cells in any combination with untreated T cells, irradiated T cells, or histamine type 2 receptor-negative T cells from patients or normal subjects

  18. Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells

    International Nuclear Information System (INIS)

    Using an intracellular cytokine assay, we recently showed that the frequencies of rotavirus (RV)-specific CD4+ and CD8+ T cells secreting INFγ, circulating in RV infected and healthy adults, are very low compared to the frequencies of circulating cytomegalovirus (CMV) reactive T cells in comparable individuals. In children with acute RV infection, these T cells were barely or not detectable. In the present study, an ELISPOT assay enabled detection of circulating RV-specific INFγ-secreting cells in children with RV diarrhea but not in children with non-RV diarrhea without evidence of a previous RV infection. Using microbead-enriched CD4+ and CD8+ T cell subsets, IFNγ-secreting RV-specific CD8+ but not CD4+ T cells were detected in recently infected children. Using the same approach, both CD4+ and CD8+ RV-specific T cells were detected in healthy adults. Furthermore, stimulation of purified subsets of PBMC that express lymphocyte homing receptors demonstrated that RV-specific INFγ-secreting CD4+ T cells from adult volunteers preferentially express the intestinal homing receptor α4β7, but not the peripheral lymph node homing receptor L-selectin. In contrast, CMV-specific INFγ-secreting CD4+ T cells preferentially express L-selectin but not α4β7. These results suggest that the expression of homing receptors on virus-specific T cells depends on the organ where these cells were originally stimulated and that their capacity to secrete INFγ is independent of the expression of these homing receptors

  19. Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more.

    Science.gov (United States)

    Verhagen, Johan; Blaser, Kurt; Akdis, Cezmi A; Akdis, Mübeccel

    2006-05-01

    Activation-induced cell death, anergy, or immune response modulation by regulatory T cells (Treg cells) are essential mechanisms of peripheral T-cell tolerance. Genetic predisposition and environmental instructions tune thresholds for the activation of T cells, other inflammatory cells, and resident tissue cells in allergic diseases. Skewing allergen-specific effector T cells to a Treg-cell phenotype seems to be crucial in maintaining a healthy immune response to allergens and successful allergen-specific immunotherapy. The Treg-cell response is characterized by an abolished allergen-specific T-cell proliferation and the suppressed secretion of T-helper 1- and T-helper 2-type cytokines. Suppressed proliferative and cytokine responses against allergens are induced by multiple suppressor factors, including cytokines such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-beta), and cell surface molecules such as cytotoxic T-lymphocyte antigen-4, programmed death-1, and histamine receptor 2. The increased levels of IL-10 and TGF-beta produced by Treg cells potently suppress IgE production while simultaneously increasing the production of noninflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress the activity of effector cells of allergic inflammation, such as mast cells, basophils, and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms on T cells, regulation of antibody isotypes, and suppression of effector cells. The application of current knowledge of Treg cells and related mechanisms of peripheral tolerance may soon lead to more rational and safer approaches to the prevention and cure of allergic disease. PMID:16701141

  20. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.

    Science.gov (United States)

    Reid, John A; Mollica, Peter A; Johnson, Garett D; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2016-01-01

    The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, 'luer-lock' syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an

  1. Gender-Specific Models of Work-Bound Korean Adolescents' Social Supports and Career Adaptability on Subsequent Job Satisfaction

    Science.gov (United States)

    Han, Hyojung; Rojewski, Jay W.

    2015-01-01

    A Korean national database, the High School Graduates Occupational Mobility Survey, was used to examine the influence of perceived social supports (family and school) and career adaptability on the subsequent job satisfaction of work-bound adolescents 4 months after their transition from high school to work. Structural equation modeling analysis…

  2. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    Science.gov (United States)

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  3. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles

    Science.gov (United States)

    Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M.; Sapieha, Przemyslaw; Meunier, Michel

    2015-10-01

    Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS

  4. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Hannah K Bayes

    Full Text Available BACKGROUND: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. METHODS: Peripheral blood human memory CD4(+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. RESULTS: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4(+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6(+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. CONCLUSIONS: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions.

  5. Managing inter-cell interference with advanced receivers and rank adaptation in 5G small cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Catania, Davide;

    2015-01-01

    The use of receivers with interference suppression capabilities is expected to be a significant performance booster in 5th Generation (5G) ultra-dense small cell networks. In this respect, they could represent an alternative to traditional frequency reuse techniques, facilitating the inter...

  6. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs.

    Directory of Open Access Journals (Sweden)

    Brian W Busser

    Full Text Available Homeodomain (HD proteins are a large family of evolutionarily conserved transcription factors (TFs having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs, but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs. Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory

  7. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    Science.gov (United States)

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. PMID:24996848

  8. A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells.

    Science.gov (United States)

    van Loenen, Marleen M; de Boer, Renate; van Liempt, Ellis; Meij, Pauline; Jedema, Inge; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2014-04-01

    A sequential, two-step procedure in which T-cell-depleted allogeneic stem cell transplantation is followed by treatment with donor lymphocyte infusion at 6 months can significantly reduce the risk and severity of graft-versus-host disease, with postponed induction of the beneficial graft-versus-leukemia effect. However, patients with high-risk leukemia have a substantial risk of relapse early after transplantation, at a time when administration of donor lymphocytes has a high likelihood of resulting in graft-versus-host disease, disturbing a favorable balance between the graft-versus-leukemia effect and graft-versus-host disease. New therapeutic modalities are, therefore, required to allow early administration of T cells capable of exerting a graft-versus-leukemia effect without causing graft-versus-host disease. Here we describe the isolation of virus-specific T cells using Streptamer-based isolation technology and subsequent transfer of the minor histocompatibility antigen HA-1-specific T-cell receptor using retroviral vectors. Isolation of virus-specific T cells and subsequent transduction with HA-1-T-cell receptor resulted in rapid in vitro generation of highly pure, dual-specific T cells with potent anti-leukemic reactivity. Due to the short production procedure of only 10-14 days and the defined specificity of the T cells, administration of virus-specific T cells transduced with the HA-1-T-cell receptor as early as 8 weeks after allogeneic stem cell transplantation is feasible. (This clinical trial is registered at www.clinicaltrialsregister.eu as EudraCT number 2010-024625-20). PMID:24334296

  9. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  10. Harnessing memory adaptive regulatory T cells to control autoimmunity in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    Cheng-Rui Li; Bas J.G. Baaten; Linda M. Bradley

    2012-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing β-cells in the pancreatic islets.There is an immediate need to restore both β-cell function and immune tolerance to control disease progression and ultimately cure T1D.Currently,there is no effective treatment strategy to restore glucose regulation in patients with T1D.FoxP3-expressing CD4+ regulatory T cells (Tregs) are potential candidates to control autoimmunity because they play a central role in maintaining self-tolerance.However,deficiencies in either naturally occurring Tregs (nTregs) themselves and/or their ability to control pathogenic effector T cells have been associated with T1D.Here,we hypothesize that nTregs can be replaced by FoxP3+ adaptive Tregs (aTregs),which are uniquely equipped to combat autoreactivity in T1D.Unlike nTregs,aTregs are stable and provide long-lived protection.In this review,we summarize the current understanding of aTregs and their potential for use as an immunological intervention to treat T1D.

  11. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    Science.gov (United States)

    Theaker, Sarah M.; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J.; Cole, David K.; Peakman, Mark; Sewell, Andrew K.; Dolton, Garry

    2016-01-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. PMID:26826277

  12. Cell-type-specific control elements of the lymphotropic papovavirus enhancer.

    OpenAIRE

    Erselius, J R; Jostes, B; Hatzopoulos, A K; Mosthaf, L; Gruss, P

    1990-01-01

    Lymphotropic papovavirus (LPV) exhibits a highly restricted host range, in which only cells of primate B-lymphocyte origin are permissive for infection. Its enhancer element contributes to this tropism, since transcriptional potentiation is confined to cells of the hematopoietic lineage. Nuclear extracts from B and T cells, but not from HeLa cells, contain protein factors that interact specifically with the LPV 63-base-pair enhancer repeat, as demonstrated by DNase I footprinting and gel reta...

  13. PROMOTERS WITH CANCER CELL-SPECIFIC ACTIVITY FOR MELANOMA GENE THERAPY

    OpenAIRE

    Pleshkan, V.; Alekseenko, I.; Zinovyeva, M.; Vinogradova, T.; Sverdlov, E.

    2011-01-01

    Melanoma is one of the most aggressive tumors. It develops from pigment-forming cells (melanocytes) and results in a high number of lethal outcomes. The use of genetic constructs with the ability to specifically kill melanoma cells, but not normal cells, might increase the lifespan of patients, as well as improve their quality of life. One of the methods to achieve a selective impact for therapeutic genes on cancer cells is to utilize a transcriptional control mechanism using promoters that a...

  14. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  15. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Ryuji Morizane

    Full Text Available Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  16. Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes

    International Nuclear Information System (INIS)

    Three rabbit antisera are described which are specific without absorption (titer 1:100) for separated human B cells, as measured by complement and non-complement fixing assays. The method of production of these sera involved injections of rabbits with precipitin lines formed between 10μ1 of three separate detergent solubilized membrane preparations and 4μ1 aliquots of rabbit antisera to human B cells. In addition to being B cell specific, the three sera block the MLC reaction, inhibit aggregated IgG binding to B cells, and show differential degrees of B cell lysis when tested on a panel of separated B and T cells. These and other properties suggest that the target specificities of the antibodies are the human equivalent of the murine Ia antigens. (author)

  17. Design of High-Specificity Nanocarriers by Exploiting Non-Equilibrium Effects in Cancer Cell Targeting.

    Directory of Open Access Journals (Sweden)

    Konstantinos Tsekouras

    Full Text Available Although targeting of cancer cells using drug-delivering nanocarriers holds promise for improving therapeutic agent specificity, the strategy of maximizing ligand affinity for receptors overexpressed on cancer cells is suboptimal. To determine design principles that maximize nanocarrier specificity for cancer cells, we studied a generalized kinetics-based theoretical model of nanocarriers with one or more ligands that specifically bind these overexpressed receptors. We show that kinetics inherent to the system play an important role in determining specificity and can in fact be exploited to attain orders of magnitude improvement in specificity. In contrast to the current trend of therapeutic design, we show that these specificity increases can generally be achieved by a combination of low rates of endocytosis and nanocarriers with multiple low-affinity ligands. These results are broadly robust across endocytosis mechanisms and drug-delivery protocols, suggesting the need for a paradigm shift in receptor-targeted drug-delivery design.

  18. Neuroantigen-specific autoregulatory CD8+ T cells inhibit autoimmune demyelination through modulation of dendritic cell function.

    Directory of Open Access Journals (Sweden)

    Venkatesh P Kashi

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS. We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+ ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC, but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+ or proteolipid protein-specific CD8+ (PLP-CD8+ T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.

  19. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  20. Incretin receptor null mice reveal key role of GLP-1 but not GIP in pancreatic beta cell adaptation to pregnancy.

    OpenAIRE

    Moffett R.C.; Vasu S; Thorens B.; Drucker D.J.; Flatt P.R.

    2014-01-01

    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 a...

  1. Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy

    OpenAIRE

    Moffett, R. Charlotte; Vasu, Srividya; Thorens, Bernard; Drucker, Daniel J.; Peter R. Flatt

    2014-01-01

    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 a...

  2. Radioadapted chicken embryo cells: challenge specificity and alterations in higher-order DNA structure

    International Nuclear Information System (INIS)

    Radioadapted chicken embryo cells (X-irradiation in ovo with 10 cGy at the 14th day of development with priming periods of 24 h) were treated in vitro by challenge doses of 14 different DNA- and/or chromatin-interactive agents, including X-rays. A decrease in the cellular damage, as measured by scheduled DNA synthesis, was only observed with X-irradiation. Sedimentation of nucleoids as well as viscosity of alkaline lysates from ethidium bromide (0.35-400 μg/ml)-, vovobiocin (125-1800 μg/ml)-, and hyperthermia (30 min at 43 and 45 )-treated cells suggest a higher tendency of radioadapted cells to undergo positive DNA supercoiling. When DNA from adapted and non-adapted chicken embryo cells was used as substrate, neither its digestion by DNase I nor the inhibition of DNase I activity by various DNA-interactive agents was changed in primed cells. From the previous investigations as well as from the present results it is concluded that an increase of tightening of protein-DNA interactions within the nuclear matrix is a molecular determinant of the elevated radiation resistance in radioadapted chicken embryo cells. (orig.)

  3. Th2-polarised PrP-specific transgenic T-cells confer partial protection against murine scrapie.

    Science.gov (United States)

    Iken, Saci; Bachy, Véronique; Gourdain, Pauline; Lim, Annick; Grégoire, Sylvie; Chaigneau, Thomas; Aucouturier, Pierre; Carnaud, Claude

    2011-09-01

    Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes. PMID:21909267

  4. Th2-polarised PrP-specific transgenic T-cells confer partial protection against murine scrapie.

    Directory of Open Access Journals (Sweden)

    Saci Iken

    2011-09-01

    Full Text Available Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes.

  5. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Science.gov (United States)

    Serrano, Mónica; Gao, JinXin; Bota, João; Bate, Ashley R; Meisner, Jeffrey; Eichenberger, Patrick; Moran, Charles P; Henriques, Adriano O

    2015-04-01

    Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. PMID:25835496

  6. Vaccination Against Human Papilloma Viruses Leads to a Favorable Cytokine Profile of Specific T Cells.

    Science.gov (United States)

    Luckau, Stefanie; Wehrs, Tim P; Brandau, Sven; Horn, Peter A; Lindemann, Monika

    2016-10-01

    Several human papilloma viruses (HPV) are known to cause malignant transformation. The high-risk type HPV 16 is associated with cervical carcinoma and head and neck squamous cell carcinoma. HPV 16-positive tumor cells exclusively carry the HPV 16 oncogenes E6 and E7. These oncogenes appear as excellent targets for an adoptive immunotherapy. We here addressed the question whether specific T cells from HPV-vaccinated healthy volunteers could be especially suitable for an HPV-specific cellular immunotherapy. Of note, vaccines contain HPV 16. To quantify HPV 16 E6-specific and E7-specific cells, enzyme-linked immunospot assays to measure interferon-γ (IFN-γ) and interleukin-10 (Th1-Th2 balance) and the secretion of the cytotoxic molecules granzyme B and perforin have been optimized. The frequency of peripheral blood mononuclear cells secreting IFN-γ and perforin was significantly (P<0.05) increased in HPV-vaccinated versus nonvaccinated volunteers. Overall, however, the median frequency of HPV 16-specific cells with a favorable secretion profile (Th1 balanced and cytotoxic) was low even in vaccinated volunteers (IFN-γ: 0.0018% and 0.0023%, perforin: 0.01% and 0.0087% for E6-specific and E7-specific cells, respectively). But some vaccinated volunteers showed up to 0.1% HPV-specific, IFN-γ or perforin-secreting cells. In conclusion, our data suggest that vaccinated volunteers are superior to nonvaccinated donors for HPV-specific cellular cancer immunotherapy. PMID:27548034

  7. Methodologies for the analysis of HCV-specific CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Megha eLokhande

    2015-02-01

    Full Text Available Virus-specific CD4+ T cells play a major role in viral infections, such as hepatitis C virus (HCV. Viral clearance is associated with vigorous and multispecific CD4+ T cell responses, while chronic infection has been shown to be associated with weak or absent T cell responses. Most of these studies have used functional assays to analyse virus-specific CD4+ T cell responses; however, these and other detection methods have various limitations. Therefore, the important question of whether virus-specific CD4+ T cells are completely absent or primarily impaired in specific effector functions during chronic infection, has yet to be analysed in detail. A novel assay, in which virus-specific CD4+ T cell frequencies can be determined by de novo CD154 (CD40 ligand expression in response to viral antigens, can help to overcome some of the limitations of functional assays and restrictions of multimer-based methods. This and other current established methods for the detection of HCV-specific CD4+ T cells will be discussed in this review.

  8. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells.

    Science.gov (United States)

    Kanninen, Liisa K; Harjumäki, Riina; Peltoniemi, Pasi; Bogacheva, Mariia S; Salmi, Tuuli; Porola, Pauliina; Niklander, Johanna; Smutný, Tomáš; Urtti, Arto; Yliperttula, Marjo L; Lou, Yan-Ru

    2016-10-01

    Human pluripotent stem cells (hPSCs) have gained a solid foothold in basic research and drug industry as they can be used in vitro to study human development and have potential to offer limitless supply of various somatic cell types needed in drug development. Although the hepatic differentiation of hPSCs has been extensively studied, only a little attention has been paid to the role of the extracellular matrix. In this study we used laminin-511, laminin-521, and fibronectin, found in human liver progenitor cells, as culture matrices for hPSC-derived definitive endoderm cells. We observed that laminin-511 and laminin-521 either alone or in combination support the hepatic specification and that fibronectin is not a vital matrix protein for the hPSC-derived definitive endoderm cells. The expression of the laminin-511/521-specific integrins increased during the definitive endoderm induction and hepatic specification. The hepatic cells differentiated on laminin matrices showed the upregulation of liver-specific markers both at mRNA and protein levels, secreted human albumin, stored glycogen, and exhibited cytochrome P450 enzyme activity and inducibility. Altogether, we found that laminin-511 and laminin-521 can be used as stage-specific matrices to guide the hepatic specification of hPSC-derived definitive endoderm cells. PMID:27372423

  9. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

    OpenAIRE

    Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2012-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system in...

  10. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    OpenAIRE

    Rhianna C. Laker; Ryall, James G.

    2016-01-01

    An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic mo...

  11. Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle

    OpenAIRE

    Brooks, Carrie F; Francia, Maria E.; Gissot, Mathieu; Croken, Matthew M.; Kim, Kami; Striepen, Boris

    2011-01-01

    Members of the eukaryotic phylum Apicomplexa are the cause of important human diseases including malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular parasites produce new invasive stages through a complex budding process. The budding cycle is remarkably flexible and can produce varied numbers of progeny to adapt to different host-cell niches. How this complex process is coordinated remains poorly understood. Using Toxoplasma gondii as a genetic model, we show that a ke...

  12. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  13. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes

    Directory of Open Access Journals (Sweden)

    Arias Covadonga R

    2012-11-01

    encountering nutrients. Challenge experiments shown that starved cells were avirulent for a fish host model. Conclusions Specific morphological and ultrastructural changes allowed F. columnare cells to remain viable under adverse conditions. Those changes were reversed by the addition of nutrients. This bacterium can survive in water without nutrients for extended periods of time although long-term starvation appears to decrease cell fitness and resulted in loss of virulence.

  14. Exploring the Role of Mechanotransduction Activation and Adaptation Kinetics in Hair Cell Filtering Using a Hodgkin-Huxley Approach

    Science.gov (United States)

    Wells, Gregg B.; Ricci, Anthony J.

    2011-11-01

    In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.

  15. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    Science.gov (United States)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  16. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    Science.gov (United States)

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  17. Selection of Variants Utilizing Heparin Sulphate For Cell Entry When South African Territories Foot-and-Mouth Disease Virus is Adapted for Growth on Cell Culture

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) attains entry to epithelial cells by affinity for at least four members of the integrin family of receptors. Adaptation of field isolates to grow in cultured cells is an essential step towards development of vaccines against new outbreak strains. This is made poss...

  18. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  19. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  20. Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma.

    Science.gov (United States)

    Wei, Wei; Shin, Young Shik; Xue, Min; Matsutani, Tomoo; Masui, Kenta; Yang, Huijun; Ikegami, Shiro; Gu, Yuchao; Herrmann, Ken; Johnson, Dazy; Ding, Xiangming; Hwang, Kiwook; Kim, Jungwoo; Zhou, Jian; Su, Yapeng; Li, Xinmin; Bonetti, Bruno; Chopra, Rajesh; James, C David; Cavenee, Webster K; Cloughesy, Timothy F; Mischel, Paul S; Heath, James R; Gini, Beatrice

    2016-04-11

    Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations. PMID:27070703

  1. Children after Chernobyl: immune cells adaptive changes and stable alterations under low-dose irradiation

    International Nuclear Information System (INIS)

    Early changes of immune parameters in children evacuated from 30-km zone were characterized by E-rossette forming cells decrease and E-receptor non-stability in theophylline assay, surface Ig changes. Immunological follow-up of children inhabitants of territories contaminated with radionuclides after Chernobyl accident revealed TCR/CD3, CD4 and MHC CD3+, CD4+, CD57+ subsets, RIL-2, TrT expression and calcium channel activity. PMNC percentage with cortical thymocyte phenotype (CD1+, CD4+8+) was elevated during the first years after the accident and seemed to be of a compensatory origin. Combination of heterogenic activation and suppression subset reactions and changes in fine subset (Th1/Th2) organization were suggested. Adaptive and compensatory reactions were supposed and delayed hypersensitivity reactions increase as well. (author)

  2. Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri

    Directory of Open Access Journals (Sweden)

    Hallmann Armin

    2006-12-01

    Full Text Available Abstract Background The multicellular alga Volvox carteri possesses only two cell types: mortal, motile somatic cells and potentially immortal, immotile reproductive cells. It is therefore an attractive model system for studying how cell-autonomous cytodifferentiation is programmed within a genome. Moreover, there are ongoing genome projects both in Volvox carteri and in the closely related unicellular alga Chlamydomonas reinhardtii. However, gene sequencing is only the beginning. To identify cell-type specific expression and to determine relative expression rates, we evaluate the potential of real-time RT-PCR for quantifying gene transcript levels. Results Here we analyze a diversified pool of 39 target genes by real-time RT-PCR for each cell type. This gene pool contains previously known genes with unknown localization of cellular expression, 28 novel genes which are described in this study for the first time, and a few known, cell-type specific genes as a control. The respective gene products are, for instance, part of photosynthesis, cellular regulation, stress response, or transport processes. We provide expression data for all these genes. Conclusion The results show that quantitative real-time RT-PCR is a favorable approach to analyze cell-type specific gene expression in Volvox, which can be extended to a much larger number of genes or to developmental or metabolic mutants. Our expression data also provide a basis for a detailed analysis of individual, previously unknown, cell-type specifically expressed genes.

  3. Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion

    OpenAIRE

    1992-01-01

    Regulated adhesion enables T cells to migrate through tissue and transiently interact with an endless succession of cells. Monoclonal antibody (mAb) engagement of the CD3/T cell receptor (TCR) complex results in a rapid and transient augmentation of the adhesion function of LFA-1 and VLA integrin molecules on human T cells. We show in this study that mAb crosslinking of the T cell-specific accessory molecules CD7 and CD28, or treatment with the Ca2+ ionophore A23187, results in the rapid indu...

  4. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma.

    Science.gov (United States)

    Böhm, Livia; Maxeiner, Joachim; Meyer-Martin, Helen; Reuter, Sebastian; Finotto, Susetta; Klein, Matthias; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias; Taube, Christian

    2015-02-01

    Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells. PMID:25527785

  5. Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells

    OpenAIRE

    Southall, Tony D.; Gold, Katrina S.; Egger, Boris; Davidson, Catherine M.; Caygill, Elizabeth E.; Marshall, Owen J.; Brand, Andrea H.

    2013-01-01

    Summary Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transc...

  6. Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5.

    Directory of Open Access Journals (Sweden)

    Ferenc A Scheeren

    Full Text Available BACKGROUND: Fully human monoclonal antibodies directed against specific pathogens have a high therapeutic potential, but are difficult to generate. METHODOLOGY/PRINCIPAL FINDINGS: Memory B cells were immortalized by expressing an inducible active mutant of the transcription factor Signal Transducer and Activator of Transcription 5 (STAT5. Active STAT5 inhibits the differentiation of B cells while increasing their replicative life span. We obtained cloned B cell lines, which produced antibodies in the presence of interleukin 21 after turning off STAT5. We used this method to obtain monoclonal antibodies against the model antigen tetanus toxin. CONCLUSIONS/SIGNIFICANCE: Here we describe a novel and relatively simple method of immortalizing antigen-specific human B cells for isolation of human monoclonal antibodies. These results show that STAT5 overexpression can be employed to isolate antigen specific antibodies from human memory B cells.

  7. Targeting the hemangioblast with a novel cell type-specific enhancer

    OpenAIRE

    Teixeira Vera; Arede Natacha; Gardner Rui; Rodríguez-León Joaquín; Tavares Ana T

    2011-01-01

    Abstract Background Hemangioblasts are known as the common precursors for primitive hematopoietic and endothelial lineages. Their existence has been supported mainly by the observation that both cell types develop in close proximity and by in vitro differentiation and genetic studies. However, more compelling evidence will arise from tracking their cell fates using a lineage-specific marker. Results We report the identification of a hemangioblast-specific enhancer (Hb) located in the cis-regu...

  8. Onset of cell-specific gene expression in the developing mouse pancreas.

    OpenAIRE

    Gittes, G K; Rutter, W J

    1992-01-01

    A central question in developmental biology has been the initiation of cell-specific gene expression and its temporal relationship to morphogenesis. We have coupled embryo microdissection with the exquisite sensitivity of the polymerase chain reaction to define the onset of cell-specific gene expression during pancreatic organogenesis. Using the precise assignment of gestational age by the number of somites in each embryo, we determined the onset of transcription of major genes of the endocri...

  9. Triple helix-forming oligonucleotides target psoralen adducts to specific chromosomal sequences in human cells.

    OpenAIRE

    Oh, D H; Hanawalt, P C

    1999-01-01

    The ability to target photochemical adducts to specific genomic DNA sequences in cells is useful for studying DNA repair and mutagenesis in intact cells, and also as a potential mode of gene-specific therapy. Triple helix-forming DNA oligonucleotides linked to psoralen (psoTFOs) were designed to deliver UVA-induced psoralen photoadducts to two distinct sequences within the human interstitial collagenase gene. A primer extension assay demonstrated that the appropriate psoTFO selectively damage...

  10. Protection against murine disseminated candidiasis mediated by a Candida albicans-specific T-cell line.

    OpenAIRE

    Sieck, T G; Moors, M A; Buckley, H R; Blank, K J

    1993-01-01

    The role of T lymphocytes in disseminated candidiasis in a mouse model of irradiation-induced immunosuppression was investigated. A continuously cultured Candida albicans-specific T-cell line mediated protection of sublethally irradiated mice from disseminated candidiasis as measured by both the fungal load in the kidneys and mortality. These results are the first to demonstrate directly a role for antigen-specific T cells in the protective immune response against murine disseminated candidia...

  11. Role of SCHIZORIZA in asymmetric cell division, cell fate segregation and specification in Arabidopsis root development

    NARCIS (Netherlands)

    Jansweijer, V.M.A.

    2013-01-01

    Multicellular organisms develop their large variety of cell types from just one single cell, the zygote. Both plants and animals use asymmetric cell division to establish a multicellular body plan How different cell and tissue types are determined, how patterns are created and maintained, and which

  12. The adaptation of mussels Crenomytilus grayanus to cadmium accumulation result in alterations in organization of microsomal enzyme-membrane complex (non-specific phosphatase).

    Science.gov (United States)

    Zakhartsev; Chelomin; Belcheva

    2000-08-01

    The kinetic parameters (V(m), K(m) and slope) of membrane-bound microsomal non-specific phosphatase (NPase, with G6P as the substrate) from the digestive gland of unexposed and cadmium adapted (45 days for 100 µg Cd(2+)/l) mussels were investigated. In vivo and in vitro approaches were used. Adaptation of mussels (Crenomytilus grayanus) to cadmium resulted in a 1.6-fold increase in NPase activity. V(m) was increased by 1.6-fold, but K(m) was the same in terms of enzyme kinetics. This indicates that the total concentration of the enzymes in the digestive gland increased. Cd(2+) (1 mM) did not significantly alter the activity of the membrane-bound enzyme in vitro both for unexposed and for cadmium adapted mussels, meaning that cadmium ions are not a direct inhibitor of the membrane-bound enzyme in this concentration. The microsomal NPase activity in both unexposed and cadmium adapted mussels was inhibited by in vitro solubilization of microsomes with non-ionic detergent (Triton X100, 0.01%). This inhibition was uncompetitive for microsomes of unexposed mussels (K(m) decreased 3.1-fold). The most drastic events were observed in cadmium adapted mussels, where inhibition was mixed (K(m) decreased 7.2-fold). The simultaneous actions of detergent and cadmium ions did not alter NPase activity significantly in comparison with action of the detergent alone. The differences in the types and the extents of inhibition of the enzymes activity by membrane disordering agent (Triton X100) indicated that the enzyme-membrane complex (NPase) has been altered as a result of adaptation of mussels to cadmium accumulation. We conclude that the mussels produced a new enzyme-membrane complex, with the same K(m) as the previous complex, but with other detergent sensitivity and greater amounts. Thus, the adaptation capacity of this enzyme is reduced as result of adaptation of mussels to cadmium accumulation. PMID:10930649

  13. Cell-Specific Expression of Connexins and Evidence of Restricted Gap Junctional Coupling between Glial Cells and between Neurons

    OpenAIRE

    Rash, John E.; Yasumura, Thomas; Dudek, F. Edward; NAGY, JAMES I.

    2001-01-01

    The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus...

  14. Evaluation of Epstein-Barr Virus Latent Membrane Protein 2 Specific T-Cell Receptors Driven by T-Cell Specific Promoters Using Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Dongchang Yang

    2011-01-01

    Full Text Available Transduction of latent membrane protein 2 (LMP2-specific T-cell receptors into activated T lymphocytes may provide a universal, MHC-restricted mean to treat EBV-associated tumors in adoptive immunotherapy. We compared TCR-specific promoters of distinct origin in lentiviral vectors, that is, Vβ6.7, delta, luria, and Vβ5.1 to evaluate TCR gene expression in human primary peripheral blood monocytes and T cell line HSB2. Vectors containing Vβ 6.7 promoter were found to be optimal for expression in PBMCs, and they maintained expression of the transduced TCRs for up to 7 weeks. These cells had the potential to recognize subdominant EBV latency antigens as measured by cytotoxicity and IFN-γ secretion. The nude mice also exhibited significant resistance to the HLA-A2 and LMP2-positive CNE tumor cell challenge after being infused with lentiviral transduced CTLs. In conclusion, LMP2-specific CTLs by lentiviral transduction have the potential use for treatment of EBV-related tumors.

  15. Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells.

    Directory of Open Access Journals (Sweden)

    Virginie Pichard

    Full Text Available Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation.

  16. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    Science.gov (United States)

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  17. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Science.gov (United States)

    Merkle, Ruth; Steiert, Bernhard; Salopiata, Florian; Depner, Sofia; Raue, Andreas; Iwamoto, Nao; Schelker, Max; Hass, Helge; Wäsch, Marvin; Böhm, Martin E; Mücke, Oliver; Lipka, Daniel B; Plass, Christoph; Lehmann, Wolf D; Kreutz, Clemens; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2016-08-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid

  18. Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma.

    Science.gov (United States)

    Hondowicz, Brian D; An, Dowon; Schenkel, Jason M; Kim, Karen S; Steach, Holly R; Krishnamurty, Akshay T; Keitany, Gladys J; Garza, Esteban N; Fraser, Kathryn A; Moon, James J; Altemeier, William A; Masopust, David; Pepper, Marion

    2016-01-19

    Exposure to inhaled allergens generates T helper 2 (Th2) CD4(+) T cells that contribute to episodes of inflammation associated with asthma. Little is known about allergen-specific Th2 memory cells and their contribution to airway inflammation. We generated reagents to understand how endogenous CD4(+) T cells specific for a house dust mite (HDM) allergen form and function. After allergen exposure, HDM-specific memory cells persisted as central memory cells in the lymphoid organs and tissue-resident memory cells in the lung. Experimental blockade of lymphocyte migration demonstrated that lung-resident cells were sufficient to induce airway hyper-responsiveness, which depended upon CD4(+) T cells. Investigation into the differentiation of pathogenic Trm cells revealed that interleukin-2 (IL-2) signaling was required for residency and directed a program of tissue homing migrational cues. These studies thus identify IL-2-dependent resident Th2 memory cells as drivers of lung allergic responses. PMID:26750312

  19. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  20. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Rhianna C. Laker

    2016-01-01

    Full Text Available An unresolved and critically important question in skeletal muscle biology is how muscle stem cells initiate and regulate the genetic program during muscle development. Epigenetic dynamics are essential for cellular development and organogenesis in early life and it is becoming increasingly clear that epigenetic remodeling may also be responsible for the cellular adaptations that occur in later life. DNA methylation of cytosine bases within CpG dinucleotide pairs is an important epigenetic modification that reduces gene expression when located within a promoter or enhancer region. Recent advances in the field suggest that epigenetic regulation is essential for skeletal muscle stem cell identity and subsequent cell development. This review summarizes what is currently known about how skeletal muscle stem cells regulate the myogenic program through DNA methylation, discusses a novel role for metabolism in this process, and addresses DNA methylation dynamics in adult skeletal muscle in response to physical activity.

  1. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Science.gov (United States)

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  2. Identification of proteins specific for human herpesvirus 6-infected human T cells

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-06-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from (/sup 35/S)methionine- and (/sup 3/H)glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 (/sup 35/S)methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpes viruses reacted with few HHV-6-infected cell proteins, and only a 135,000-M/sub r/ polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105K and gp92k, gp116k, gp64k, and gp54k, and gp102k.

  3. Identification of proteins specific for human herpesvirus 6-infected human T cells

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K. (Univ. of Kansas Medical Center, Kansas City (USA))

    1989-06-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from ({sup 35}S)methionine- and ({sup 3}H)glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 ({sup 35}S)methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpesviruses reacted with fewer HHV-6-infected cell proteins, and only a 135,000-M{sub r} polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105k and gp82k, gp116k, gp64k, and gp54k, and gp102k.

  4. Circulating HIV-Specific Interleukin-21(+)CD4(+) T Cells Represent Peripheral Tfh Cells with Antigen-Dependent Helper Functions.

    Science.gov (United States)

    Schultz, Bruce T; Teigler, Jeffrey E; Pissani, Franco; Oster, Alexander F; Kranias, Gregory; Alter, Galit; Marovich, Mary; Eller, Michael A; Dittmer, Ulf; Robb, Merlin L; Kim, Jerome H; Michael, Nelson L; Bolton, Diane; Streeck, Hendrik

    2016-01-19

    A central effort in HIV vaccine development is to generate protective broadly neutralizing antibodies, a process dependent on T follicular helper (Tfh) cells. The feasibility of using peripheral blood counterparts of lymph node Tfh cells to assess the immune response and the influence of viral and vaccine antigens on their helper functions remain obscure. We assessed circulating HIV-specific IL-21(+)CD4(+) T cells and showed transcriptional and phenotypic similarities to lymphoid Tfh cells, and hence representing peripheral Tfh (pTfh) cells. pTfh cells were functionally active and B cell helper quality differed depending on antigen specificity. Furthermore, we found higher frequency of pTfh cells in peripheral blood mononuclear cell specimens from the ALVAC+AIDSVAX (RV144) HIV vaccine trial associated with protective antibody responses compared to the non-protective DNA+Ad5 vaccine trial. Together, we identify IL-21(+)CD4(+) T cells as pTfh cells, implicating them as key populations in the generation of vaccine-evoked antibody responses. PMID:26795249

  5. Production of antigen-specific suppressive T cell factor by radiation leukemia virus-transformed suppressor T cells

    International Nuclear Information System (INIS)

    Hen egg-white lysozyme-specific suppressor T cells induced in C57BL/6 mice have been selected by sequential passage over plates coated with goat anti-mouse Ig and HEL. These suppressor T cells, 80% I-J+, were infected in vitro with radiation leukemia virus and injected intravenously into sublethally irradiated syngeneic recipients. After 4 to 6 months, 6 out of 20 injected mice developed thymic lymphomas, which were maintained by transplantation into histocompatible hosts and subsequently established as permanent cell lines. Cells of these six thymomas were screened for the presence of Thy 1.2, Lyt 1, Lyt 2, I-J/sup b/, and Ig cell surface antigens by direct or indirect immunofluorescence. One tumor was found to express the expected phenotype of suppressor T cells. High-speed supernatants of extracts obtained from L4 cells were able to induce HEL-specific suppression in a T cell proliferative assay, demonstrating the presence of an antigen-specific suppressive T cell factor

  6. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  7. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A...

  8. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O; Welinder, K G

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  9. Embryonic Stem Cell (ES)-Specific Enhancers Specify the Expression Potential of ES Genes in Cancer

    OpenAIRE

    Aran, Dvir; Abu-Remaileh, Monther; Levy, Revital; Meron, Nurit; Toperoff, Gidon; Edrei, Yifat; Bergman, Yehudit; Hellman, Asaf

    2016-01-01

    Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hema...

  10. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors

    OpenAIRE

    Minn, Andy J.; Kang, Yibin; Serganova, Inna; Gupta, Gaorav P.; Giri, Dilip D.; Doubrovin, Mikhail; Ponomarev, Vladimir; Gerald, William L; Blasberg, Ronald; Massagué, Joan

    2005-01-01

    We used bioluminescence imaging to reveal patterns of metastasis formation by human breast cancer cells in immunodeficient mice. Individual cells from a population established in culture from the pleural effusion of a breast cancer patient showed distinct patterns of organ-specific metastasis. Single-cell progenies derived from this population exhibited markedly different abilities to metastasize to the bone, lung, or adrenal medulla, which suggests that metastases to different organs have di...

  11. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease

    OpenAIRE

    Sather, Blythe D.; Treuting, Piper; Perdue, Nikole; Miazgowicz, Mike; Fontenot, Jason D.; Rudensky, Alexander Y.; Campbell, Daniel J.

    2007-01-01

    CD4+Foxp3+ regulatory T cells (T reg) are essential for maintaining self-tolerance, but their functional mechanisms and sites of action in vivo are poorly defined. We examined the homing receptor expression and tissue distribution of T reg cells in the steady state and determined whether altering their distribution by removal of a single chemokine receptor impairs their ability to maintain tissue-specific peripheral tolerance. We found that T reg cells are distributed throughout all nonlympho...

  12. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens

    OpenAIRE

    Suffia, Isabelle J.; Reckling, Stacie K.; Piccirillo, Ciriaco A; Goldszmid, Romina S.; Belkaid, Yasmine

    2006-01-01

    Natural regulatory T (T reg) cells are involved in control of the immune response, including response to pathogens. Previous work has demonstrated that the repertoire of natural T reg cells may be biased toward self-antigen recognition. Whether they also recognize foreign antigens and how this recognition contributes to their function remain unknown. Our studies addressed the antigenic specificity of natural T reg cells that accumulate at sites of chronic infection with Leishmania major in mi...

  13. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    OpenAIRE

    Hsiu-Ni Kung; Marks, Jeffrey R.; Jen-Tsan Chi

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In th...

  14. Successful disease-specific induced pluripotent stem cell generation from patients with kidney transplantation

    OpenAIRE

    Thatava, Tayaramma; Armstrong, Adam S.; De Lamo, Josep Genebriera; Edukulla, Ramakrishna; Khan, Yulia Krotova; Sakuma, Toshie; Ohmine, Seiga; Sundsbak, Jamie L; Harris, Peter C.; Kudva, Yogish C.; Ikeda, Yasuhiro

    2011-01-01

    Introduction End-stage renal disease (ESRD) is a major public health problem. Although kidney transplantation is a viable therapeutic option, this therapy is associated with significant limitations, including a shortage of donor organs. Induced pluripotent stem (iPS) cell technology, which allows derivation of patient-specific pluripotent stem cells, could provide a possible alternative modality for kidney replacement therapy for patients with ESRD. Methods The feasibility of iPS cell generat...

  15. Germ Cell-Specific Excision of loxP-Flanked Transgenes in Rainbow Trout Oncorhynchus mykiss.

    Science.gov (United States)

    Katayama, Naoto; Kume, Sachi; Hattori-Ihara, Shoko; Sadaie, Sakiko; Hayashi, Makoto; Yoshizaki, Goro

    2016-04-01

    Cre/loxP-mediated DNA excision in germ cell lineages could contribute substantially to the study of germ cell biology in salmonids, which are emerging as a model species in this field. However, a cell type-specific Cre/loxPsystem has not been successfully developed for any salmonid species. Therefore, we examined the feasibility of Cre/loxP-mediated, germ cell-specific gene excision and transgene activation in rainbow trout. Double-transgenic (wTg) progeny were obtained by mating a transgenic male carryingcrewith a transgenic female carrying thehsc-LRLGgene;crewas driven by rainbow troutvasaregulatory regions and thehsc-LRLGgene was made up of the rainbow troutheat-shock-cognate71promoter, theDsRedgene flanked by twoloxPsites, and theEgfpgene. PCR analysis, fluorescence imaging, and histological analysis revealed that excision of theloxP-flanked sequence and activation ofEgfpoccurred only in germ cells of wTg fish. However, progeny tests revealed that the excision efficiency ofloxP-flanked sequence in germ cells was low (≤3.27%). In contrast, the other wTg fish derived from two differentcre-transgenic males frequently excised theloxP-flanked sequence in germ cells (≤89.25%). Thus, we showed for the first time successful germ cell-specific transgene manipulation via the Cre/loxPsystem in rainbow trout. We anticipate that this technology will be suitable for studies of cell function through cell targeting, cell-linage tracing, and generating cell type-specific conditional gene knockouts and separately for developing sterile rainbow trout in aquaculture. PMID:26911430

  16. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  17. Circulating rotavirus-specific T cells have a poor functional profile

    International Nuclear Information System (INIS)

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ+ cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α+, CD4 IFN-γ+, and CD8 IFN-γ+ cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells

  18. Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors

    Directory of Open Access Journals (Sweden)

    Alonso Corona

    2009-08-01

    Full Text Available Abstract Background Ageing is associated with changes in the immune system with substantial alterations in T-lymphocyte subsets. Cytomegalovirus (CMV is one of the factors that affect functionality of T cells and the differentiation and large expansions of CMV pp65-specific T cells have been associated with impaired responses to other immune challenges. Moreover, the presence of clonal expansions of CMV-specific T cells may shrink the available repertoire for other antigens and contribute to the increased incidence of infectious diseases in the elderly. In this study, we analyse the effect of ageing on the phenotype and frequency of CMV pp65-specific CD8 T cell subsets according to the expression of CCR7, CD45RA, CD27, CD28, CD244 and CD85j. Results Peripheral blood from HLA-A2 healthy young, middle-aged and elderly donors was analysed by multiparametric flow cytometry using the HLA-A*0201/CMV pp65495–504 (NLVPMVATV pentamer and mAbs specific for the molecules analysed. The frequency of CMV pp65-specific CD8 T cells was increased in the elderly compared with young and middle-aged donors. The proportion of naïve cells was reduced in the elderly, whereas an age-associated increase of the CCR7null effector-memory subset, in particular those with a CD45RAdim phenotype, was observed, both in the pentamer-positive and pentamer-negative CD8 T cells. The results also showed that most CMV pp65-specific CD8 T cells in elderly individuals were CD27/CD28 negative and expressed CD85j and CD244. Conclusion The finding that the phenotype of CMV pp65-specific CD8 T cells in elderly individuals is similar to the predominant phenotype of CD8 T cells as a whole, suggests that CMV persistent infections contributes to the age-related changes observed in the CD8 T cell compartment, and that chronic stimulation by other persistent antigens also play a role in T cell immunosenescence. Differences in subset distribution in elderly individuals showing a decrease in

  19. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  20. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    OpenAIRE

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence...