WorldWideScience

Sample records for cell size

  1. Time evolution of cell size distributions in dense cell cultures

    Science.gov (United States)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  2. Measuring bacterial cells size with AFM

    Directory of Open Access Journals (Sweden)

    Denise Osiro

    2012-03-01

    Full Text Available Atomic Force Microscopy (AFM can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe and the bacterium (Escherichia coli JM-109 strain to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described.

  3. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  4. Cell Size Breathing and Possibilities to Introduce Cell Sleep Mode

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto

    2010-01-01

    regular upgrades in the infrastructure. While network equipment is in itself becoming more efficient, these upgrades still increase the overall energy consumption of the networks. This paper investigates the energy saving potential of exploiting cell size breathing by putting low loaded cells into sleep...... mode. The energy consumption and network performance of the resulting network are used to quantify the potential of this feature. The investigation is carried out on a tilt optimized network. Since putting cells into sleep mode results in a non-optimum antenna tilt configuration, this paper also...

  5. Nuclear size regulation: from single cells to development and disease.

    Science.gov (United States)

    Edens, Lisa J; White, Karen H; Jevtic, Predrag; Li, Xiaoyang; Levy, Daniel L

    2013-04-01

    Cell size varies greatly among different cell types and organisms, especially during early development when cell division is rapid with little overall growth. A fundamental question is how organelle size is regulated relative to cell size. The nucleus exhibits exquisite size scaling during development and between species, and nuclear size is often altered in cancer cells. Recent studies have elucidated mechanisms of nuclear size regulation in a variety of experimental systems, opening the door to future research on how nuclear size impacts upon cell and nuclear function and subnuclear organization. In this review we discuss studies that have clarified nuclear size control mechanisms and how these results have or will contribute to our understanding of the functional significance of nuclear size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Mevalonate Pathway Regulates Cell Size Homeostasis and Proteostasis through Autophagy.

    Science.gov (United States)

    Miettinen, Teemu P; Björklund, Mikael

    2015-12-22

    Balance between cell growth and proliferation determines cell size homeostasis, but little is known about how metabolic pathways are involved in the maintenance of this balance. Here, we perform a screen with a library of clinically used drug molecules for their effects on cell size. We find that statins, inhibitors of the mevalonate pathway, reduce cell proliferation and increase cell size and cellular protein density in various cell types, including primary human cells. Mevalonate pathway effects on cell size and protein density are mediated through geranylgeranylation of the small GTPase RAB11, which is required for basal autophagic flux. Our results identify the mevalonate pathway as a metabolic regulator of autophagy and expose a paradox in the regulation of cell size and proteostasis, where inhibition of an anabolic pathway can cause an increase in cell size and cellular protein density. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  8. Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size.

    Science.gov (United States)

    Miettinen, Teemu P; Björklund, Mikael

    2016-11-07

    Eukaryotic cells attempt to maintain an optimal size, resulting in size homeostasis. While cellular content scales isometrically with cell size, allometric laws indicate that metabolism per mass unit should decline with increasing size. Here we use elutriation and single-cell flow cytometry to analyze mitochondrial scaling with cell size. While mitochondrial content increases linearly, mitochondrial membrane potential and oxidative phosphorylation are highest at intermediate cell sizes. Thus, mitochondrial content and functional scaling are uncoupled. The nonlinearity of mitochondrial functionality is cell size, not cell cycle, dependent, and it results in an optimal cell size whereby cellular fitness and proliferative capacity are maximized. While optimal cell size is controlled by growth factor signaling, its establishment and maintenance requires mitochondrial dynamics, which can be controlled by the mevalonate pathway. Thus, optimization of cellular fitness and functionality through mitochondria can explain the requirement for size control, as well as provide means for its maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Stochastic Modeling of Bacteria Cell Size Control and Homeostasis

    Science.gov (United States)

    Chen, Yanyan; Buceta, Javier

    Besides recent breakthroughs, there is a gap of knowledge about the mechanisms underlying cell size control and homeostasis. In this context, recent studies support the incremental rule in rod-shaped bacteria: cells add a constant length to their size before dividing which is independent of their size at birth. This growing pattern, when coupled with the mid-cell division mechanism, leads to size convergence and homeostasis. However, some aberrantly long mutant strains of E. coli, e.g. ΔFtsW, do not typically divide at the middle. Whether cell size control and homeostasis apply to those mutant backgrounds, or the role played by biomechanical cues, remain open questions. Here we present a combination of theoretical, experimental, and computational approaches to address these questions. First, we introduce a Markov chain model that describes either wild-type (wt) strains or growth-defective strains. Second, we propose a polymer-like model to account for the mechanical inputs. Finally, we test experimentally some of our predictions by using wt and conditional mutant (ΔFtsW) strains. Altogether, our preliminary studies suggest a way to unify the principles of cell size control and homeostasis of wt and growth-defective cell strains.

  10. Cell size and the initiation of DNA replication in bacteria.

    Directory of Open Access Journals (Sweden)

    Norbert S Hill

    Full Text Available In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ~30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.

  11. Unified changes in cell size permit coordinated leaf evolution.

    Science.gov (United States)

    Brodribb, Tim J; Jordan, Greg J; Carpenter, Raymond J

    2013-07-01

    The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Nuclear DNA Content Varies with Cell Size across Human Cell Types

    Science.gov (United States)

    Gillooly, James F.; Hein, Andrew; Damiani, Rachel

    2015-01-01

    Variation in the size of cells, and the DNA they contain, is a basic feature of multicellular organisms that affects countless aspects of their structure and function. Within humans, cell size is known to vary by several orders of magnitude, and differences in nuclear DNA content among cells have been frequently observed. Using published data, here we describe how the quantity of nuclear DNA across 19 different human cell types increases with cell volume. This observed increase is similar to intraspecific relationships between DNA content and cell volume in other species, and interspecific relationships between diploid genome size and cell volume. Thus, we speculate that the quantity of nuclear DNA content in somatic cells of humans is perhaps best viewed as a distribution of values that reflects cell size distributions, rather than as a single, immutable quantity. PMID:26134319

  13. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  14. Size Specific Transfection to Mammalian Cells by Micropillar Array Electroporation

    Science.gov (United States)

    Zu, Yingbo; Huang, Shuyan; Lu, Yang; Liu, Xuan; Wang, Shengnian

    2016-12-01

    Electroporation serves as a promising non-viral gene delivery approach, while its current configuration carries several drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here we developed a new micropillar array electroporation (MAE) platform to advance the electroporation-based delivery of DNA and RNA probes into mammalian cells. By introducing well-patterned micropillar array texture on the electrode surface, the number of pillars each cell faces varies with its plasma membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently carried out, contributing to a 2.5~3 fold increase on plasmid DNA transfection and an additional 10-55% transgene knockdown with siRNA probes, respectively. The delivery efficiency varies with the number and size of micropillars as well as their pattern density. As MAE works like many single cell electroporation are carried out in parallel, the electrophysiology response of individual cells is representative, which has potentials to facilitate the tedious, cell-specific protocol screening process in current bulk electroporation (i.e., electroporation to a large population of cells). Its success might promote the wide adoption of electroporation as a safe and effective non-viral gene delivery approach needed in many biological research and clinical treatments.

  15. How Cells Can Control Their Size by Pumping Ions

    Directory of Open Access Journals (Sweden)

    Alan R. Kay

    2017-05-01

    Full Text Available The ability of all cells to set and regulate their size is a fundamental aspect of cellular physiology. It has been known for sometime but not widely so, that size stability in animal cells is dependent upon the operation of the sodium pump, through the so-called pump-leak mechanism (Tosteson and Hoffman, 1960. Impermeant molecules in cells establish an unstable osmotic condition, the Donnan effect, which is counteracted by the operation of the sodium pump, creating an asymmetry in the distribution of Na+ and K+ staving off water inundation. In this paper, which is in part a tutorial, I show how to model quantitatively the ion and water fluxes in a cell that determine the cell volume and membrane potential. The movement of water and ions is constrained by both osmotic and charge balance, and is driven by ion and voltage gradients and active ion transport. Transforming these constraints and forces into a set of coupled differential equations allows us to model how the ion distributions, volume and voltage change with time. I introduce an analytical solution to these equations that clarifies the influence of ion conductances, pump rates and water permeability in this multidimensional system. I show that the number of impermeant ions (x and their average charge have a powerful influence on the distribution of ions and voltage in a cell. Moreover, I demonstrate that in a cell where the operation of active ion transport eliminates an osmotic gradient, the size of the cell is directly proportional to x. In addition, I use graphics to reveal how the physico-chemical constraints and chemical forces interact with one another in apportioning ions inside the cell. The form of model used here is applicable to all membrane systems, including mitochondria and bacteria, and I show how pumps other than the sodium pump can be used to stabilize cells. Cell biologists may think of electrophysiology as the exclusive domain of neuroscience, however the electrical

  16. Determining the optimum cell size of digital elevation model for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 4. Determining the optimum cell size of digital elevation model for hydrologic ... Technology, Bahal 127 028, Bhiwani, Haryana, India. Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur-721302, West Bengal, India.

  17. Determining the optimum cell size of digital elevation model for ...

    Indian Academy of Sciences (India)

    obtained DEMs were explored for their intrinsic quality using four different methods, i.e., sink analy- sis, fractal dimension of derived stream network, entropy measurement and ... ters decrease, and many delicate landscape fea- tures are lost. However, as one can understand, it is not enough to model the cell size effects.

  18. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  19. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2013-10-23

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).

  20. MANOVA for Nested Designs with Unequal Cell Sizes and Unequal Cell Covariance Matrices

    Directory of Open Access Journals (Sweden)

    Li-Wen Xu

    2014-01-01

    satisfactorily for various cell sizes and parameter configurations and generally outperforms the AHT test in terms of controlling the nominal size. For the heteroscedastic cases, the PB test outperforms the AHT test in terms of power. In addition, the PB test does not lose too much power when the homogeneity assumption is actually valid.

  1. Cell size and cell number in dwarf mutants of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Blonstein, A.D.; Gale, M.D.

    1984-01-01

    Sixteen height mutants, induced by sodium azide treatment of the two-rowed barley variety Proctor, have been used to investigate the relationship between the extent and nature of stem shortening with alterations in cell size and cell number, and the pleiotropic effects of dwarfing genes on vegetative development and agronomic performance. The studies on epidermal cell number and cell length in the developmentally earliest and latest elongated vegetative tissues - the coleoptile and peduncle resprectively - suggest that cell number may be the primary determinant of plant height. One semi-prostrate and one erectoides mutant are used to illustrate different cell number/cell size strategies and their relationships with gibberellin sensitivity, growth rate and lodging resistance are discussed. (author)

  2. Regional variations in HDL metabolism in human fat cells: effect of cell size

    International Nuclear Information System (INIS)

    Despres, J.; Fong, B.S.; Julien, P.; Jimenez, J.; Angel, A.

    1987-01-01

    Abdominal obesity is related to reduced plasma high-density lipoprotein (HDL) cholesterol, and both are associated with cardiovascular disease risk. The authors have observed that plasma membranes from abdominal subcutaneous adipocytes have a greater HDL binding capacity than omental fat cell plasma membranes. The present study examined whether these binding characteristics could be due to differences in fat cell size or cholesterol concentration between the two adipose depots. Abdominal subcutaneous and deep omental fat were obtained from massively obese patients at surgery. Subcutaneous abdominal fat cells were significantly larger and their cellular cholesterol content greater than omental adipocytes. The uptake of HDL by collagenase-isolated fat cells was studied by incubating the cells for 2 h at 37 0 C with 10 μg/ml 125 I-HDL 2 or 125 I-HDL 3 . In both depots, the cellular uptake of 125 I-HDL 2 and 125 I-HDL 3 was specifically inhibited by addition of 25-fold excess unlabeled HDL and a close correlation was observed between the cellular uptake of 125 I-HDL 2 and 125 I-HDL 3 . In obese patients, the uptake of 125 I-HDL was higher in subcutaneous cells than in omental cells. The cellular 125 I-HDL uptake was significantly correlated with adipocyte size and fat cell cholesterol content but not with adipocyte cholesterol concentration. These results suggest that the higher HDL uptake observed in subcutaneous cells compared with omental cells in obesity is the result of differences in adipocyte size rather than differences in the cholesterol concentration (cholesterol-to-triglyceride ratio). The increased interaction of HDL with hypertrophied abdominal adipocytes may play an important role in determining the lipid composition of HDL in obesity

  3. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    Science.gov (United States)

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  4. Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

    Science.gov (United States)

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie

    2014-01-01

    Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016

  5. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  6. The Size And Localisation Of Yellow Pigmented Lipid Cells 6 ...

    African Journals Online (AJOL)

    It was observed that the transverse sections of fresh ginger rhizomes contain spherical yellow-pigmented lipid cells (the spot of aroma and pungency mediating compounds), which were distributed more in the central than in the cortex regions of the rhizomes. The mean cell distribution showed that the proportion of these ...

  7. Cell Size Discrimination Based on the Measurement of the Equilibrium Velocity in Rectangular Microchannels

    Directory of Open Access Journals (Sweden)

    Lisa Schott

    2015-05-01

    Full Text Available Flow cytometry is a well-established diagnostic tool for cell counting and characterization. It utilizes fluorescence and scattered excitation light simultaneously emitted from cells passing an excitation laser focus to discriminate various cell types and estimate cell size. Here, we apply the principle of spatially modulated emission (SME to fluorescently stained SUP-B15 cells as a model system for cancer cells and Marinococcus luteus as model for bacteria. We demonstrate that the experimental apparatus is able to detect these model cells and that the results are comparable to those obtained by a commercially available CASY® TT Counter. Furthermore, by examining the velocity distribution of the cells, we observe clear relationships between cell condition/size and cell velocity. Thus, the cell velocity provides information comparable to the scatter signal in conventional flow cytometry. These results indicate that the SME technique is a promising method for simultaneous cell counting and viability characterization.

  8. Heterotrophic free-living and particle-bound bacterial cell size in the ...

    Indian Academy of Sciences (India)

    PRAKASH

    bacterial cell size was similar in all the five water courses, different sets of environmental variables apparently control the heterotrophic bacterial cell size ... major force controlling both the morphological and the taxonomic structure of ...... 18th edition, pp1–1000. Bennet S J, Sanders R W and Porter K G 1990 Heterotrophic,.

  9. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    Science.gov (United States)

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  10. Flexible PMP Approach for Large-Size Cell Formation

    NARCIS (Netherlands)

    Goldengorin, Boris; Krushinsky, Dmitry; Slomp, Jannes

    2012-01-01

    Lately, the problem of cell formation (CF) has gained a lot of attention in the industrial engineering literature. Since it was formulated (more than 50 years ago), the problem has incorporated additional industrial factors and constraints while its solution methods have been constantly improving in

  11. Robust organelle size extractions from elastic scattering measurements of single cells (Conference Presentation)

    Science.gov (United States)

    Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.

    2016-04-01

    The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.

  12. Effects of ultraviolet irradiation and postirradiation incubation on heterogeneous nuclear RNA size in murine cells

    International Nuclear Information System (INIS)

    Ali, R.; Sauerbier, W.

    1978-01-01

    We have analyzed the decrease in synthesis of individual size classes of heterogeneous nuclear RNA (hnRNA) in ultraviolet (uv)-irradiated Merwin plasmacytoma (MPC-11) cells at various times of postirradiation incubation. HnRNA from nonirradiated control cells is distributed over a wide range from approximately 60S to 5S, with 42S RNA carrying more label than any other size class. HnRNA from uv-irradiated cells shows a dose-dependent shift in size distribution toward lower molecular weight. The size distribution of hnRNA synthesized after prolonged times of postirradiation incubation is restored toward normal, i.e., synthesis of long RNA molecules increases relative to the synthesis of short ones. Analysis of the total number of hnRNA chains synthesized during a 20-min [ 3 H]uridine pulse shows a considerable eduction in their number with increasing uv dose. Murine cell lines are excision-repair-deficient but capable of post replication repair inhibited by caffeine. HnRNA transcripts of cells incubated in its presence were studied. The caffeine, which has no effect on hnRNA size in control cells, inhibits to a considerable extent the restoration of full-length transcripts during postirradiation incubation. The lack of excision repair in MPC-11 was confirmed by the analysis of pyrimidine dimers in trichloracetic acid-insoluble and soluble fractions within 8 h of postirradiation incubation. The size of parental and daughter strand DNA in uv-irradiated cells was correlated with RNA transcript size. The parental DNA in these experiments does not change its size as a consequence of uv exposure and postirradiation incubation. In contrast, daughter DNA strands are short in uv-irradiated cells and they increase in size during postirradiation incubation to reach the size of parental strands after 8 h

  13. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity

    NARCIS (Netherlands)

    Hao, Yi; Legrand, Nicolas; Freitas, Antonio A.

    2006-01-01

    Positive selection in the thymus and peripheral T cell survival depend on T cell receptor (TCR)-major histocompatibility complex (MHC) interactions, but it is not yet clear if both events follow exactly the same rules. We studied peripheral T cell survival and clone sizes in conditions of

  14. Analysis of Cell Size in the Gastrula of Ten Frog Species Reveals a Correlation of Egg with Cell Sizes, and a Conserved Pattern of Small Cells in the Marginal Zone.

    Science.gov (United States)

    Vargas, Alexandra; Del Pino, Eugenia M

    2017-01-01

    We investigated the relationship between egg and cell sizes in the early gastrula of ten species of frogs with eggs of 1,100-3,500 μm diameters. We asked whether differences in cell size of the vegetal region, blastocoel roof, and marginal zone of the early gastrula were associated with egg size. Alternatively, we proposed that cell size differences may associate with gastrulation characteristics. The analyzed species were as follows: Xenopus laevis, Engystomops randi, Engystomops coloradorum, Espadarana callistomma, Epipedobates machalilla, Epipedobates anthonyi, Epipedobates tricolor, Dendrobates auratus, Gastrotheca riobambae, and Eleutherodactylus coqui. A positive correlation between egg and cell size was detected in the three regions of the gastrula. The correlation was strong in the vegetal region and blastocoel roof, and weak in the marginal zone. Large eggs allowed the evolution of frog terrestrial reproductive modes by storing nourishment for the developing embryos. Large cells, laden with yolk, occur in the vegetal region. However, small cell size characterized the marginal zone and blastocoel roof. We proposed that small cells of the marginal zone are required for involution and blastopore formation. The evolution pressure toward small cells in the marginal zone contributed to maintain the blastopore as a universal feature of frog gastrulation in eggs of different sizes and gastrulation modes. Our comparative analysis revealed two fundamental and conserved properties of the frog early gastrula, the correlation of egg with cell sizes, and the general small size of cells in the marginal zone. © 2016 Wiley Periodicals, Inc.

  15. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Directory of Open Access Journals (Sweden)

    Zuzana Starostová

    Full Text Available While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  16. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Science.gov (United States)

    Starostová, Zuzana; Konarzewski, Marek; Kozłowski, Jan; Kratochvíl, Lukáš

    2013-01-01

    While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  17. Effect of pore size and interpore distance on endothelial cell growth on polymers.

    Science.gov (United States)

    Narayan, D; Venkatraman, S S

    2008-12-01

    The endothelization of polymers using surface modification has received great attention. In particular, creation of physical surface features such as craters or pores has been an active area of research. However, there have been no reported studies of the effects of pore sizes (wide range) and interpore distance on endothelial cell growth. This report details the study done on endothelial cell attachment on the surfaces of polymers modified by porogen leaching. The polymeric system studied includes PLLA and PLGA (80/20). Factors such as porogen type, pore size, and interpore distance were varied, and the surface was evaluated for its influence on endothelial cell growth. Three groups of pore sizes were evaluated: small (5-20 mum), medium (20-45 mum), and large pores (45-90 mum). Two porogens were evaluated: sugar and gelatin. In addition to counting the attached endothelial cells, their proliferation was also quantified. Pore size and interpore distances were evaluated using scanning electron microscopy (SEM), and cell morphology was studied by staining with crystal violet. Analysis of variance demonstrated that the main parameters, pore size and interpore distance were significant in endothelial cell growth. In PLGA (80/20), it was found that endothelial cell growth was enhanced by smaller pore size and lower interpore distance, whereas the growth was poor on PLLA regardless of pore features. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  18. Continuous Size Tuning of Monodispersed ZnO Nanoparticles and Its Size Effect on the Performance of Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Rong; Fei, Chengbin; Li, Bo; Fu, Haoyu; Tian, Jianjun; Cao, Guozhong

    2017-03-22

    ZnO has been demonstrated to be a promising candidate to fabricate high efficiency perovskite solar cells (PSCs) in terms of its better electron extraction and transport properties. However, the inability of synthesis of ZnO nanoparticles (NPs) with minimal surface defects and agglomeration remains a great challenge hindering the fabrication of highly efficient PSCs. In this work, highly crystalline and agglomeration-free ZnO NPs with controlled size were synthesized through a facile solvothermal method. Such ZnO NPs were applied in the fabrication of meso-structured PSCs. The solar cells with ∼40 nm ZnO NPs exhibit the highest power conversion efficiency (PCE) of 15.92%. Steady-state and time-resolved photoluminescence measurements revealed the faster injection and lower charge recombination at the interface of ∼40 nm ZnO NPs and perovskite, resulting in significantly enhanced J SC and V OC .

  19. Microprinted Stem Cell Niches Reveal Compounding Effect of Colony Size on Stromal Cells-Mediated Neural Differentiation.

    Science.gov (United States)

    Joshi, Ramila; Thakuri, Pradip Shahi; Buchanan, James C; Li, Jun; Tavana, Hossein

    2018-03-01

    Microenvironmental factors have a major impact on differentiation of embryonic stem cells (ESCs). Here, a novel phenomenon that size of ESC colonies has a significant regulatory role on stromal cells induced differentiation of ESCs to neural cells is reported. Using a robotic cell microprinting technology, defined densities of ESCs are confined within aqueous nanodrops over a layer of supporting stromal cells immersed in a second, immiscible aqueous phase to generate ESC colonies of defined sizes. Temporal protein and gene expression studies demonstrate that larger ESC colonies generate disproportionally more neural cells and longer neurite processes. Unlike previous studies that attribute neural differentiation of ESCs solely to interactions with stromal cells, it is found that increased intercellular signaling of ESCs significantly enhances neural differentiation. This study offers an approach to generate neural cells with improved efficiency for potential use in translational research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing.

    OpenAIRE

    Montesinos, E; Esteve, I; Guerrero, R

    1983-01-01

    Size frequency distributions of different phototrophic and heterotrophic microorganisms were determined by means of scanning and transmission electron microscopy and electronic particle sizing. Statistically significant differences existed among the three techniques used in this study. Cells processed for electron microscopy showed lower mean cellular volumes than those processed for electronic particle sizing, reflecting a shrinkage by factors ranging from 1.1 to 6.2 (mean, 2.3). Processing ...

  1. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    Science.gov (United States)

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    Science.gov (United States)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  3. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies.

    Science.gov (United States)

    Moon, Sung-Hwan; Ju, Jongil; Park, Soon-Jung; Bae, Daekyeong; Chung, Hyung-Min; Lee, Sang-Hoon

    2014-07-01

    Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Sato, K.; Kinoshita, M.

    1994-01-01

    The effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures at 0.1 MPa has been investigated. Experiments were carried out in a 10-cm-inner-diameter, 6.1-m-long heated detonation tube with a maximum operating temperature of 700 K and spatial temperature uniformity of ± 14 K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300--650 K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at ay given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm-inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15% hydrogen at 300 K down to about 9% hydrogen at 650 K. The experimental detonation cell size data were correlated suing a Zel'dovich-von Neumann-Doering (ZND) model for the detonation using detailed chemical-kinetic reaction mechanisms. The proportionality constants used to scale the reaction zone length calculations from the ZND model varied from 3o to 51 for the hydrogen-air cell size data at 650 and 300 K, respectively

  5. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Sato, K.; Kinoshita, M. (Brookhaven National Lab., Upton, NY (United States). Safety and Risk Evaluation Division)

    1994-11-01

    The effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures at 0.1 MPa has been investigated. Experiments were carried out in a 10-cm-inner-diameter, 6.1-m-long heated detonation tube with a maximum operating temperature of 700 K and spatial temperature uniformity of [+-] 14 K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300--650 K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at ay given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm-inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15% hydrogen at 300 K down to about 9% hydrogen at 650 K. The experimental detonation cell size data were correlated suing a Zel'dovich-von Neumann-Doering (ZND) model for the detonation using detailed chemical-kinetic reaction mechanisms. The proportionality constants used to scale the reaction zone length calculations from the ZND model varied from 3o to 51 for the hydrogen-air cell size data at 650 and 300 K, respectively.

  6. A Study on Cell Size of Irradiated Spacer Grid for PWR Fuel

    International Nuclear Information System (INIS)

    Jin, Y. G.; Kim, G. S.; Ryu, W. S. and others

    2014-01-01

    The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and grid spring force decreases under irradiation. This reduction of contact force might cause grid-to-rod fretting wear. The fretting failure of the fuel rod is one of the recent significant issues in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior and the change in size of grid cells for an irradiated spacer grid. In the present study, the dimensional measurement of a spacer grid was conducted to investigate the cell size of an irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the fretting wear performance of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. Hot cell examinations include dimensional measurements for the irradiated spacer grid. The change of cell sizes was dependent on the direction of the spacer grids, leading to significant gap variations. It was found that the change in size of the cell springs due to irradiation-induced stress relaxation and creep during the fuel residency in the reactor core affect the contact behavior between the fuel rod and the cell spring

  7. A method to increase reproducibility in adult ventricular myocyte sizing and flow cytometry: Avoiding cell size bias in single cell preparations.

    Directory of Open Access Journals (Sweden)

    Javier E López

    Full Text Available Flow cytometry (FCM of ventricular myocytes (VMs is an emerging technology in adult cardiac research that is challenged by the wide variety of VM shapes and sizes. Cellular variability and cytometer flow cell size can affect cytometer performance. These two factors of variance limit assay validity and reproducibility across laboratories. Washing and filtering of ventricular cells in suspension are routinely done to prevent cell clumping and minimize data variability without the appropriate standardization. We hypothesize that washing and filtering arbitrarily biases towards sampling smaller VMs than what actually exist in the adult heart.To determine the impact of washing and filtering on adult ventricular cells for cell sizing and FCM.Left ventricular cardiac cells in single-cell suspension were harvested from New Zealand White rabbits and fixed prior to analysis. Each ventricular sample was aliquoted before washing or filtering through a 40, 70, 100 or 200μm mesh. The outcomes of the study are VM volume by Coulter Multisizer and light-scatter signatures by FCM. Data are presented as mean±SD. Myocyte volumes without washing or filtering (NF served as the "gold standard" within the sample and ranged from 11,017 to 46,926μm3. Filtering each animal sample through a 200μm mesh caused no variation in the post-filtration volume (1.01+0.01 fold vs. NF, n = 4 rabbits, p = 0.999 with an intra-assay coefficient of variation (%CV of <5% for all 4 samples. Filtering each sample through a 40, 70 or 100μm mesh invariably reduced the post-filtration volume by 41±10%, 9.0±0.8% and 8.8±0.8% respectively (n = 4 rabbits, p<0.0001, and increased the %CV (18% to 1.3%. The high light-scatter signature by FCM, a simple parameter for the identification of ventricular myocytes, was measured after washing and filtering. Washing discarded VMs and filtering cells through a 40 or 100μm mesh reduced larger VM by 46% or 11% respectively (n = 6 from 2 rabbits, p<0

  8. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    Science.gov (United States)

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  9. System Size Resonance Associated with Canard Phenomenon in a Biological Cell System

    Science.gov (United States)

    Ma, Juan; Li, Hong-ying; Hou, Zhong-huai; Xin, Hou-wen

    2008-12-01

    The influence of internal noise on the calcium oscillations is studied. It is found that stochastic calcium oscillations occur when the internal noise is considered, while the corresponding deterministic dynamics only yields a steady state. Also, the performance of such oscillations shows two maxima with the variation of the system size, indicating the occurrence of system size resonance. This behavior is found to be intimately connected with the canard phenomenon. Interestingly, it is also found that one of the optimal system sizes matches well with the real cell size, and such a match is robust to the variation of the control parameters.

  10. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  11. Optical inline measurement procedures for counting and sizing cells in bioprocess technology.

    Science.gov (United States)

    Rudolph, Guido; Lindner, Patrick; Bluma, Arne; Joeris, Klaus; Martinez, Geovanni; Hitzmann, Bernd; Scheper, Thomas

    2009-01-01

    To observe and control cultivation processes, optical sensors are used increasingly. Important parameters for controlling such processes are cell count, cell size distribution, and the morphology of cells. Among turbidity measurement methods, imaging procedures are applied for determining these process parameters. A disadvantage of most previously developed imaging procedures is that they are only available offline which requires sampling. On the other hand, available imaging inline probes can so far only deliver a limited number of process parameters. This chapter presents new optical procedures for the inline determination of cell count, cell size distribution, and other parameters. In particular, by in situ microscopy an imaging procedure will be described which allows the determination of direct and nondirect cell parameters in real time without sampling.

  12. Night temperature and source-sink effects on overall growth, cell number and cell size in bell pepper ovaries.

    Science.gov (United States)

    Darnell, Rebecca L; Cruz-Huerta, Nicacio; Williamson, Jeffrey G

    2012-10-01

    Ovary swelling, and resultant fruit malformation, in bell pepper flowers is favoured by low night temperature or a high source-sink ratio. However, the interaction between night temperature and source-sink ratio on ovary swelling and the contribution of cell size and cell number to ovary swelling are unknown. The present research examined the interactive effects of night temperature and source-sink ratio on ovary size, cell number and cell size at anthesis in bell pepper flowers. Bell pepper plants were grown in growth chambers at night temperatures of either 20 °C (HNT) or 12 °C (LNT). Within each temperature treatment, plants bore either 0 (non-fruiting) or two developing fruits per plant. Ovary fresh weight, cell size and cell number were measured. Ovary fresh weights in non-fruiting plants grown at LNT were the largest, while fresh weights were smallest in plants grown at HNT with fruits. In general, mesocarp cell size in ovaries was largest in non-fruiting plants grown at either LNT or HNT and smallest in fruiting plants at HNT. Mesocarp cell number was greater in non-fruiting plants under LNT than in the rest of the night temperature/fruiting treatments. These responses were more marked in ovaries sampled after 18 d of treatment compared with those sampled after 40 d of treatment. Ovary fresh weight of flowers at anthesis increased 65 % in non-fruiting plants grown under LNT compared with fruiting plants grown under HNT. This increase was due primarily to increases in mesocarp cell number and size. These results indicate that the combined effects of LNT and high source-sink ratio on ovary swelling are additive. Furthermore, the combined effects of LNT and low source-sink ratio or HNT and high source-sink ratio can partially overcome the detrimental effects of LNT and high source-sink ratio.

  13. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm

    KAUST Repository

    Sabelli, Paolo A.

    2013-04-22

    The endospermof cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ~70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 downregulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1- dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organlevel regulation of endosperm/seed homeostasis.

  14. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of {plus_minus}14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  15. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  16. Bone Microvasculature Tracks Red Blood Cell Size Diminution in Triassic Mammal and Dinosaur Forerunners.

    Science.gov (United States)

    Huttenlocker, Adam K; Farmer, C G

    2017-01-09

    Vertebrate red blood cells (RBCs) display a range of sizes, spanning orders of magnitude in volume in different clades [1]. The importance of this size variation to diffusion during exercise is reinforced by functional links between RBC and capillary diameters [2, 3]. Small RBCs, such as those of mammals (which lack nuclei) and birds, contribute to shorter diffusion distances and permit relatively fast O 2 uptake kinetics [4]. Although constraints on RBC size have been tied to the cell's need to attend capillary sizes for effective gas diffusion [3], as well as to genome size evolution [5, 6], major questions persist concerning patterns of RBC size evolution and its paleobiological significance. Here, we evaluate the relationship between RBC sizes and bone histometry and use microstructural evidence to trace their evolution in a phylogeny of extinct tetrapods. We find that several fossilizable aspects of bone microstructure, including the sizes of vascular and lacunar (cellular) spaces, provide useful indicators of RBC size in tetrapods. We also show that Triassic non-mammalian cynodonts had reduced and densely packed vascular canals identical to those of some mammals and likely accommodated smaller, more mammal-like RBCs. Reduced channel diameters accommodating smaller RBCs predated the origin of crown mammals by as much as 70 million years. This discovery offers a new proxy for the physiologic status of the mammal and avian stem groups and contextualizes the independent origins of their increased activity metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Littmann, Sten

    2016-01-01

    small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates...... of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass....

  18. Size and Dynamics of Caveolae Studied Using Nanoparticles in Living Endothelial Cells

    OpenAIRE

    Wang, Zhenjia; Tiruppathi, Chinnaswamy; Minshall, Richard D.; Malik, Asrar B.

    2009-01-01

    Caveolae are plasma membrane invaginations prominent in all endothelial cells lining blood vessels. Caveolae characteristically bud to form free cytoplasmic vesicles capable of transporting carrier proteins such as albumin through the cell. However, caveolae size distribution and dynamics in living endothelial cells and ability of caveolae to internalize nanoparticles are not well understood. We demonstrate here the design of a dual-color nanoparticle pair to measure non-invasively caveolae s...

  19. Identification and characterization of the nano-sized vesicles released by muscle cells.

    Science.gov (United States)

    Romancino, Daniele P; Paterniti, Gaetano; Campos, Yvan; De Luca, Angela; Di Felice, Valentina; d'Azzo, Alessandra; Bongiovanni, Antonella

    2013-05-02

    Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. Copyright © 2013 Federation of European Biochemical Societies. All rights reserved.

  20. A moonlighting enzyme links Escherichia coli cell size with central metabolism.

    Directory of Open Access Journals (Sweden)

    Norbert S Hill

    Full Text Available Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.

  1. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  2. Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system.

    Science.gov (United States)

    Takeda, Hiroyuki; Nishimura, Kaneyasu; Agata, Kiyokazu

    2009-12-01

    Planarians change in body size depending upon whether they are in feeding or starving conditions. To investigate how planarians regulate this flexible system, the numbers of total cells and specific cell types were counted and compared among worms 2 mm to 9 mm in body length. The total cell number increased linearly with increasing body length, but the ratio of cell numbers between the head and the trunk portion was constant (1:3). Interestingly, counting the numbers of specific neurons in the eye and brain after immunostaining using cell type-specific antibodies revealed that the ratio between different neuron types was constant regardless of the brain and body size. These results suggest that planarians can maintain proportionality while changing their body size by maintaining a constant ratio of different cell types. To understand this system and reveal how planarians restore the original ratio during eye and brain regeneration, the numbers of specialized cells were Investigated during regeneration. The results further substantiate the existence of some form of "counting mechanism" that has the ability to regulate both the absolute and relative numbers of different cell types in complex organs such as the brain during cell turnover, starvation, and regeneration.

  3. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wen; Chen Yongsheng [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kalive, Madhavi; Capco, David G, E-mail: yongsheng.chen@ce.gatech.edu [School of Life Sciences, Arizona State University, Tempe, AZ 85287 (United States)

    2010-09-03

    The increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite ({alpha}-Fe{sub 2}O{sub 3}) NPs and to determine the particle size effects on the adsorption behaviors. Cellular impairment was also investigated and compared. Hematite NPs were synthesized as part of this study with a discrete size distribution and uniform morphology examined by dynamic light scattering (DLS) and confirmed by transmission electron microscopy (TEM). Caco-2 cells were cultured as a model epithelium to mirror human intestinal cells and used to evaluate the impacts of the exposure to NPs by measuring transepithelial electrical resistance (TEER). Cell surface disruption, localization and translocation of NPs through the cells were analyzed with immunocytochemical staining and confocal microscopy. Results showed that hematite NPs had mean diameters of 26, 53, 76 and 98 nm and were positively charged with minor aggregation in the buffer solution. Adsorption of the four sizes of NPs on cells reached equilibrium within approximately 5 min but adsorption kinetics were found to be size-dependent. The adsorption rates expressed as mg m{sup -2} min{sup -1} were greater for large NPs (76 and 98 nm) than those for small NPs (26 and 53 nm). However, adsorption rates, expressed in units of m{sup -2} min{sup -1}, were much greater for small NPs than large ones. After the adsorption equilibrium was reached, the adsorbed mass of NPs on a unit area of cells was calculated and showed no significant size dependence. Longer exposure time (>3 h) induced adverse cellular effects as indicated by the drop in TEER compared to the

  4. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size

    Science.gov (United States)

    Zhang, Wen; Kalive, Madhavi; Capco, David G.; Chen, Yongsheng

    2010-09-01

    The increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite (α-Fe2O3) NPs and to determine the particle size effects on the adsorption behaviors. Cellular impairment was also investigated and compared. Hematite NPs were synthesized as part of this study with a discrete size distribution and uniform morphology examined by dynamic light scattering (DLS) and confirmed by transmission electron microscopy (TEM). Caco-2 cells were cultured as a model epithelium to mirror human intestinal cells and used to evaluate the impacts of the exposure to NPs by measuring transepithelial electrical resistance (TEER). Cell surface disruption, localization and translocation of NPs through the cells were analyzed with immunocytochemical staining and confocal microscopy. Results showed that hematite NPs had mean diameters of 26, 53, 76 and 98 nm and were positively charged with minor aggregation in the buffer solution. Adsorption of the four sizes of NPs on cells reached equilibrium within approximately 5 min but adsorption kinetics were found to be size-dependent. The adsorption rates expressed as mg m - 2 min - 1 were greater for large NPs (76 and 98 nm) than those for small NPs (26 and 53 nm). However, adsorption rates, expressed in units of m - 2 min - 1, were much greater for small NPs than large ones. After the adsorption equilibrium was reached, the adsorbed mass of NPs on a unit area of cells was calculated and showed no significant size dependence. Longer exposure time (>3 h) induced adverse cellular effects as indicated by the drop in TEER compared to the control cells without the exposure

  5. Cell-Sized confinement in microspheres accelerates the reaction of gene expression

    Science.gov (United States)

    Kato, Ayako; Yanagisawa, Miho; Sato, Yuko T.; Fujiwara, Kei; Yoshikawa, Kenichi

    2012-02-01

    Cell-sized water-in-oil droplet covered by a lipid layer was used to understand how lipid membranes affect biochemical systems in living cells. Here, we report a remarkable acceleration of gene expression in a cell-sized water-in-oil droplet entrapping a cell-free translation system to synthesize GFP (green fluorescent protein). The production rate of GFP (VGFP) in each droplet remained almost constant at least for on the order of a day, which implies 0th-order reaction kinetics. Interestingly, VGFP was inversely proportional to radius of droplets (R) when R is under 50 μm, and VGFP in droplets with R ~ 10 μm was more than 10 times higher than that in the bulk. The acceleration rates of GFP production in cell-sized droplets strongly depended on the lipid types. These results demonstrate that the membrane surface has the significant effect to facilitate protein production, especially when the scale of confinement is on the order of cell-size.

  6. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    Science.gov (United States)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  7. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion.

    Directory of Open Access Journals (Sweden)

    Akira C Saito

    Full Text Available Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC field to induce a linear cell-GUV alignment, and then a direct current (DC pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.

  8. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton.

    Science.gov (United States)

    Zhou, Wen; Wang, Guifen; Li, Cai; Xu, Zhantang; Cao, Wenxi; Shen, Fang

    2017-10-20

    Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESD v ) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESD v had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of C i ESD v were in good agreement with the measurements, with r 2 =0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESD v with r 2 =0.78 and NRMSE=23.9%.

  9. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Directory of Open Access Journals (Sweden)

    Varela Juan A

    2012-09-01

    Full Text Available Abstract Background Nanoparticles (NPs are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS NPs of different sizes (20, 40 and 100 nm in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher.

  10. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  11. A chemical screen probing the relationship between mitochondrial content and cell size.

    Directory of Open Access Journals (Sweden)

    Toshimori Kitami

    Full Text Available The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.

  12. Not all cells are equal: effects of temperature and sex on the size of different cell types in the Madagascar ground gecko Paroedura picta

    Directory of Open Access Journals (Sweden)

    Marcin Czarnoleski

    2017-08-01

    Full Text Available Cell size plays a role in evolutionary and phenotypically plastic changes in body size. To examine this role, we measured the sizes of seven cell types of geckos (Paroedura picta reared at three constant temperatures (24, 27, and 30°C. Our results show that the cell size varies according to the body size, sex and developmental temperature, but the pattern of this variance depends on the cell type. We identified three groups of cell types, and the cell sizes changed in a coordinated manner within each group. Larger geckos had larger erythrocytes, striated muscle cells and hepatocytes (our first cell group, but their renal proximal tubule cells and duodenal enterocytes (our second cell group, as well as tracheal chondrocytes and epithelial skin cells (our third cell group, were largely unrelated to the body size. For six cell types, we also measured the nuclei and found that larger cells had larger nuclei. The relative sizes of the nuclei were not invariant but varied in a complex manner with temperature and sex. In conclusion, we provide evidence suggesting that changes in cell size might be commonly involved in the origin of thermal and sexual differences in adult size. A recent theory predicts that smaller cells speed up metabolism but demand more energy for their maintenance; consequently, the cell size matches the metabolic demand and supply, which in ectotherms, largely depends on the thermal conditions. The complex thermal dependency of cell size in geckos suggests that further advancements in understanding the adaptive value of cell size requires the consideration of tissue-specific demand/supply conditions.

  13. Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals.

    Science.gov (United States)

    Kozlowski, J; Czarnoleski, M; François-Krassowska, A; Maciak, S; Pis, T

    2010-12-23

    We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.

  14. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  15. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    Science.gov (United States)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  16. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  17. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells.

    Science.gov (United States)

    Wang, Zhenjia; Tiruppathi, Chinnaswamy; Minshall, Richard D; Malik, Asrar B

    2009-12-22

    Caveolae are plasma membrane invaginations prominent in all endothelial cells lining blood vessels. Caveolae characteristically bud to form free cytoplasmic vesicles capable of transporting carrier proteins such as albumin through the cell. However, caveolae size distribution and dynamics in living endothelial cells and ability of caveolae to internalize nanoparticles are not well understood. We demonstrate here the design of a dual-color nanoparticle pair to measure noninvasively caveolae size and dynamics. First, we coated nanoparticles with BSA (bovine serum albumin) to address whether albumin promoted their delivery. Albumin has been shown to bind to protein on endothelial cell surface localized in caveolae and activate albumin endocytosis. Imaging of BSA-coated nanoparticles varying from 20 to 100 nm in diameter in endothelial cells demonstrated that caveolae-mediated nanoparticle uptake was dependent on albumin coating of particles. We also showed that caveolae could accommodate up to 100 nm diameter nanoparticles, a size larger than the diameter of typical caveolae, suggesting compliant property of caveolae. Together, our results show the feasibility of tracking multicolored nanoparticles in living endothelial cells and potential usefulness for designing therapeutic nanoparticle cargo to cross the limiting vessel wall endothelial barrier.

  18. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    Science.gov (United States)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  19. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity.

    Science.gov (United States)

    Chen, Li Qiang; Fang, Li; Ling, Jian; Ding, Cheng Zhi; Kang, Bin; Huang, Cheng Zhi

    2015-03-16

    Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.

  20. Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations

    Energy Technology Data Exchange (ETDEWEB)

    Echeveste, Pedro, E-mail: pedro.echeveste@uib.e [Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterraneo de Estudios Avanzados, Miquel Marques 21, 07190 Esporles (Spain); Agusti, Susana, E-mail: sagusti@uib.e [Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterraneo de Estudios Avanzados, Miquel Marques 21, 07190 Esporles (Spain); Dachs, Jordi, E-mail: jdmqam@cid.csic.e [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Studies (IDAEA-CSIC), Jordi Girona Salgado 18, 08034 Barcelona (Spain)

    2010-01-15

    The toxicity of pyrene and phenanthrene to phytoplankton was studied by analyzing the effect on the growth, abundance and cell viability of cultured species and natural communities of the Atlantic Ocean and the Mediterranean Sea. A decrease in cell abundance, and growth rate was observed as concentration of PAHs increased, with catastrophic cell mortality induced at the highest PAH concentration tested. A strong positive linear relationship was observed between the LC50 (the PAH concentration at which cell population will decline by a half), and the species cell volume, for both phenanthrene and pyrene. Natural communities were however significantly more sensitive to PAHs than cultured phytoplankton, as indicated by the lower slope (e.g. 0.23 and 0.65, respectively, for pyrene) of the relationship LC50 vs. cell volume. The results highlight the importance of cell size in determining the phytoplankton sensitivity to PAHs identifying the communities from the oligotrophic ocean to be more vulnerable. - Cell size is the major factor determining phytoplankton sensitivity to PAHs.

  1. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  2. The Effects of Topographical Patterns and Sizes on Neural Stem Cell Behavior

    Science.gov (United States)

    Qi, Lin; Li, Ning; Huang, Rong; Song, Qin; Wang, Long; Zhang, Qi; Su, Ruigong; Kong, Tao; Tang, Mingliang; Cheng, Guosheng

    2013-01-01

    Engineered topographical manipulation, a paralleling approach with conventional biochemical cues, has recently attracted the growing interests in utilizations to control stem cell fate. In this study, effects of topological parameters, pattern and size are emphasized on the proliferation and differentiation of adult neural stem cells (ANSCs). We fabricate micro-scale topographical Si wafers with two different feature sizes. These topographical patterns present linear micro-pattern (LMP), circular micro-pattern (CMP) and dot micro-pattern (DMP). The results show that the three topography substrates are suitable for ANSC growth, while they all depress ANSC proliferation when compared to non-patterned substrates (control). Meanwhile, LMP and CMP with two feature sizes can both significantly enhance ANSC differentiation to neurons compared to control. The smaller the feature size is, the better upregulation applies to ANSC for the differentiated neurons. The underlying mechanisms of topography-enhanced neuronal differentiation are further revealed by directing suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/Erk) signaling pathway in ANSC using U0126, known to inhibit the activation of Erk. The statistical results suggest MAPK/Erk pathway is partially involved in topography-induced differentiation. These observations provide a better understanding on the different roles of topographical cues on stem cell behavior, especially on the selective differentiation, and facilitate to advance the field of stem cell therapy. PMID:23527077

  3. Heterotrophic free-living and particle-bound bacterial cell size in the ...

    Indian Academy of Sciences (India)

    Regression analysis revealed that 18% of the variation in mean heterotrophic free-living bacterial cell size was due to biological oxygen demand (BOD) in the river Arkavathy, 11% due to surface water velocity (SWV) in the river Cauvery and 11% due to temperature in the river Kapila. Heterotrophic particle-bound bacterial ...

  4. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P. van den Bosch; T. Hofman; Edwin Tazelaar; Y. Shen

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  5. Three-Dimensional Culture Reduces Cell Size By Increasing Vesicle Excretion.

    Science.gov (United States)

    Mo, Miaohua; Zhou, Ying; Li, Sen; Wu, Yaojiong

    2018-02-01

    Our previous study has shown that three-dimensional (3D) culture decreases mesenchymal stem cell (MSC) size, leading to enhanced trafficking ability and reduced lung vascular obstructions. However, the underlying mechanisms are unclear. In this study, we proposed that 3D culture reduces MSC size by increasing vesicle excretion. Scanning electron microscope showed that 3D culture markedly increased the amount of membrane-bound vesicles on the cell surface. In consistence, tunable resistive pulse sensing quantifying analysis of vesicles in the culture medium indicated that there were higher levels of vesicles in the 3D culture MSC medium. 3D culture significantly lowered the level of actin polymerization (F-actin), suggestive of lowering actin skeleton tension may facilitate vesicle excretion. Indeed, treatment of MSCs with Cytochalasin D or functional blockade of integrin β1 caused increased vesicle secretion and decreased cell sizes. Thus, our results suggest that 3D culture reduces MSC size by increasing vesicle excretion which is likely mediated by lowering cytoskeleton tension. Stem Cells 2018;36:286-292. © 2017 AlphaMed Press.

  6. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.

    Science.gov (United States)

    Fadda, S; Briesen, H; Cincotti, A

    2011-06-01

    Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram. This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173-2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells. From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size.

    Science.gov (United States)

    Im, Gun-Ii; Ko, Ji-Yun; Lee, Jin Ho

    2012-01-01

    This study examined how the difference in pore size of porous scaffolds affected the in vitro chondrogenic differentiation of seeded adipose stem cells (ASCs) and the in vivo cartilage repair of ASC/scaffold construct. ASCs were isolated from 18 rabbits and seeded in a porous poly (ε-caprolactone) (PCL) scaffold with different pore sizes (100, 200, 400 μm). The ASCs underwent in vitro chondrogenic induction under TGF-β2 and BMP-7 for 21 days before analysis. The ASC/scaffold construct was also implanted on the osteochondral defect created on the distal femur of the same rabbits, and the quality of cartilage regeneration was analyzed after 8 weeks. At day 21, the ASCs proliferated and spread on the surface of the scaffolds with a pore size 100 and 200 μm, whereas there were many lumps of conglomerated ASCs on those with a pore size of 400 μm. The DNA content was significantly lower in the scaffold with a pore size of 400 μm than in that with a pore size of 100 or 200 μm. Proteoglycan production was significantly greater in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm. The chondrogenic marker gene expression including SOX9 and COL2A1 was greatest in the scaffold with a pore size of 400 μm followed by 200 μm. Immunofluorescent imaging showed that, while SOX9 was localized to nucleus, type II collagen was observed on the cytoplasm and secreted matrix around the cells most abundantly in the scaffold with a pore size of 400 μm followed by 200 μm. The gross and histological findings from the osteochondral defects showed that the cartilage repair was better in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm.

  8. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis.

    Science.gov (United States)

    Sonal; Sidhaye, Jaydeep; Phatak, Mandar; Banerjee, Shamik; Mulay, Aditya; Deshpande, Ojas; Bhide, Sourabh; Jacob, Tressa; Gehring, Ines; Nuesslein-Volhard, Christiane; Sonawane, Mahendra

    2014-09-01

    The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.

  10. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Directory of Open Access Journals (Sweden)

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  11. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

    Science.gov (United States)

    Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2016-04-01

    Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the

  12. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Directory of Open Access Journals (Sweden)

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  13. Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size.

    Science.gov (United States)

    Nakata, Yumiko; Taniguchi, Go; Takazaki, Shinya; Oda-Ueda, Naoko; Miyahara, Kohji; Ohshima, Yasumi

    2012-09-01

    Common pumpkin plants (Cucurbita maxima) produce fruits of 1-2 kg size on the average, while special varieties of the same species called Atlantic Giant are known to produce a huge fruit up to several hundred kilograms. As an approach to determine the factors controlling the fruit size in C. maxima, we cultivated both AG and control common plants, and found that both the cell number and cell sizes were increased in a large fruit while DNA content of the cell did not change significantly. We also compared protein patterns in the leaves, stems, ripe and young fruits by two-dimensional (2D) gel electrophoresis, and identified those differentially expressed between them with mass spectroscopy. Based on these results, we suggest that factors in photosynthesis such as ribulose-bisphosphate carboxylase, glycolysis pathway enzymes, heat-shock proteins and ATP synthase play positive or negative roles in the growth of a pumpkin fruit. These results provide a step toward the development of plant biotechnology to control fruit size in the future. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  15. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Siti Sarah Omar Zaki

    2015-01-01

    Full Text Available Chitosan nanoparticles (CSNPs have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs. CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential. Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW. Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  16. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  17. Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-07-01

    Full Text Available The content of volatile and semivolatile organic compounds (VOC and SOC, measured as exchangeable dissolved organic carbon (EDOC, was quantified in 9 phytoplanktonic species that spanned 4 orders of magnitude in cell volume, by disrupting the cells and quantifying the gaseous organic carbon released. EDOC content varied 4 orders of magnitude, from 0.0015 to 14.12 pg C cell-1 in the species studied and increased linearly with increasing phytoplankton cell volume following the equation EDOC (pg C cell-1 = -2.35 x cellular volume (CV, µm3 cell-1 0.90 (± 0.3, with a slope (0.90 not different from 1 indicating a constant increase in volatile carbon as the cell size of phytoplankton increased. The percentage of EDOC relative to total cellular carbon was small but varied 20 fold from 0.28 % to 5.17 %, and no obvious taxonomic pattern in the content of EDOC was appreciable for the species tested. The cell release rate of EDOC is small compared to the amount of carbon in the cell and difficult to capture. Nonetheless, the results point to a potential flux of volatile and semivolatile phytoplankton-derived organic carbon to the atmosphere that has been largely underestimated and deserves further attention in the future.

  18. A micro-sized bio-solar cell for self-sustaining power generation.

    Science.gov (United States)

    Lee, Hankeun; Choi, Seokheun

    2015-01-21

    Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.

  19. Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Recent studies have indicated that graphene and its derivative graphene oxide (GO engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm, small GOs (SGOs, 50–200 nm, and large GOs (LGOs, 0.5–3 μm. We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7 cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.

  20. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zhao W

    2011-08-01

    Full Text Available Weizhong Zhao1, Xun Lu3, Yuan Yuan1, Changsheng Liu1, Baican Yang3, Hua Hong1, Guoying Wang3, Fanyan Zeng21The State Key Laboratory of Bioreactor Engineering, 2Key Laboratory for Ultrafine Materials of Ministry of Education and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, 3Pharmacy Department of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaAbstract: In this study, the effects of the size and Chinese traditional processing (including elutriation, water cleaning, acid cleaning, alkali cleaning on realgar nanoparticles (RN-induced antitumor activity in human osteosarcoma cell lines (MG-63 and hepatoma carcinoma cell lines (HepG-2 were investigated. The human normal liver cell line (L-02 was used as control. RN was prepared by high-energy ball milling technology. The results showed that with the assistance of sodium dodecyl sulfate, the size of realgar could be reduced to 127 nm after 12 hours’ ball milling. The surface charge was decreased from 0.83 eV to −17.85 eV and the content of As2O3 clearly increased. Except for elutriation, the processing methods did not clearly change the size of the RN, but the content of As2O3 was reduced dramatically. In vitro MTT tests indicated that in the two cancer cell lines, RN cytotoxicity was more intense than that of the coarse realgar nanoparticles, and cytotoxicity was typically time- and concentration-dependent. Also, RN cytotoxicities in the HepG-2 and L-02 cells all increased with increasing milling time. Due to the reduction of the As2O3 content, water cleaning, acid cleaning, and alkali cleaning decreased RN cytotoxicity in HepG-2, but RN after elutriation, with the lowest As2O3 (3.5 mg/g and the smallest size (109.3 nm, showed comparable cytotoxicity in HepG-2 to RN without treatment. Meanwhile, RN-induced cytotoxicity in L-02 cells was

  2. Tracking T-cells in vivo with a new nano-sized MRI contrast agent.

    Science.gov (United States)

    Liu, Li; Ye, Qing; Wu, Yijen; Hsieh, Wen-Yuan; Chen, Chih-Lung; Shen, Hsin-Hsin; Wang, Shian-Jy; Zhang, Haosen; Hitchens, T Kevin; Ho, Chien

    2012-11-01

    Non-invasive in vivo tracking of T-cells by magnetic resonance imaging (MRI) can lead to a better understanding of many pathophysiological situations, including AIDS, cancer, diabetes, graft rejection. However, an efficient MRI contrast agent and a reliable technique to track non-phagocytic T-cells are needed. We report a novel superparamagnetic nano-sized iron-oxide particle, IOPC-NH2 series particles, coated with polyethylene glycol (PEG), with high transverse relaxivity (250 s(-1) mM(-1)), thus useful for MRI studies. IOPC-NH2 particles are the first reported magnetic particles that can label rat and human T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation. IOPC-NH2 particles do not cause any measurable effects on T-cell properties. Infiltration of IOPC-NH2-labeled T-cells can be detected in a rat model of heart-lung transplantation by in vivo MRI. IOPC-NH2 is potentially valuable contrast agents for labeling a variety of cells for basic and clinical cellular MRI studies, e.g., cellular therapy. In this study, a novel PEG coated superparamagnetic nano-sized iron-oxide particle was investigated as a T-cell labeling agent for MRI studies. The reported particles can label T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation, therefore may enable more convenient preclinical call labeling studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Size-dependent isolation of primordial germ cells from avian species.

    Science.gov (United States)

    Jung, Kyung M; Kim, Young M; Ono, Tamao; Han, Jae Y

    2017-06-01

    Primordial germ cells (PGCs), the precursors of sperm or ova, could be used to generate transgenic animals and interspecies germ-line chimeras, which would facilitate the recovery of endangered species by making their access and manipulation in vitro easier. During early embryogenesis in avian species, PGCs are transported via the bloodstream to the gonadal anlagen. PGCs of most avian species-particularly wild or endangered birds-are not readily isolated from the embryonic bloodstream because germ-cell markers have not yet been defined for them. Here, we report a rapid, efficient, and convenient method for PGC isolation from various avian species. Blood PGCs were isolated based on the difference in size between PGCs and other blood cells, using a microporous membrane. The efficiency of this size-dependent isolation for the White Leghorn chicken was not significantly different from that of magnetic-activated cell sorting, and the isolated cells expressed chicken PGC-related genes and PGC-specific markers. The utility of the method was then verified in Japanese quail (Coturnix japonica), Mallard duck (Anas platyrhynchos), and Muscovy duck (Cairina moschata). Immunocytochemistry and an in vivo migration assay indicated that this method was able to enrich for true embryonic blood PGCs without specific antibodies, and could be applied to the development of avian interspecies chimeras for restoration of wild or endangered species. © 2017 Wiley Periodicals, Inc.

  4. Exact, time-independent estimation of clone size distributions in normal and mutated cells.

    Science.gov (United States)

    Roshan, A; Jones, P H; Greenman, C D

    2014-10-06

    Biological tools such as genetic lineage tracing, three-dimensional confocal microscopy and next-generation DNA sequencing are providing new ways to quantify the distribution of clones of normal and mutated cells. Understanding population-wide clone size distributions in vivo is complicated by multiple cell types within observed tissues, and overlapping birth and death processes. This has led to the increased need for mathematically informed models to understand their biological significance. Standard approaches usually require knowledge of clonal age. We show that modelling on clone size independent of time is an alternative method that offers certain analytical advantages; it can help parametrize these models, and obtain distributions for counts of mutated or proliferating cells, for example. When applied to a general birth-death process common in epithelial progenitors, this takes the form of a gambler's ruin problem, the solution of which relates to counting Motzkin lattice paths. Applying this approach to mutational processes, alternative, exact, formulations of classic Luria-Delbrück-type problems emerge. This approach can be extended beyond neutral models of mutant clonal evolution. Applications of these approaches are twofold. First, we resolve the probability of progenitor cells generating proliferating or differentiating progeny in clonal lineage tracing experiments in vivo or cell culture assays where clone age is not known. Second, we model mutation frequency distributions that deep sequencing of subclonal samples produce.

  5. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    Energy Technology Data Exchange (ETDEWEB)

    Kast, James; Marcinkoski, Jason; Vijayagopal, Ram; Duran, Adam

    2016-06-22

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles. [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representative sample of MD and HD diesel trucks into Fuel Cell Electric Trucks (FCETs), while ensuring the same truck performance, in terms of range, payload, acceleration, speed, gradeability and fuel economy.

  6. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  7. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan

    2017-02-01

    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  8. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette

    2011-01-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim...... of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static...... number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500...

  9. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    Science.gov (United States)

    2015-06-01

    mixture pressure detonation cell sizes are important for scaling the combustion chambers, and before this research no data existed for hydrogen and air...Introduction General Issue Pressure gain combustors have the potential to replace traditional combustions systems in gas turbine engines (Tellefsen et al... combustion has not been fully incorporated into turbine engines. In order to fully integrate RDEs into turbine engines, RDEs must be able to function

  10. Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination

    OpenAIRE

    Cid Martín, J.J.; Assali, Mohyeddin; Fernández García, E.; Valdivia Giménez, Victoria Esther; Sánchez Fernández, E. M.; García Fernández, José Manuel; Wellinger, Ralf Erik; Fernández Fernández, Inmaculada; Khiar, N.

    2016-01-01

    Multivalent glycosystems are potential candidates for anti-adhesive therapy, a non-lethal approach against the ever increasing antibiotic resistance of pathogenic bacteria. In order to fine-tune the glyconanomaterial size and shape for selective bacterial cell agglutination, herein we report the synthesis of sugar-coated dynamic and polymeric 3D-micelles and 1D-carbon nanotubes. The reported shot-gun like synthetic approach is based on the ability of diacetylenic-based neoglycolipids to self-...

  11. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed.

    Science.gov (United States)

    Lemontey, C; Mousset-Déclas, C; Munier-Jolain, N; Boutin, J P

    2000-02-01

    When reciprocal crosses are made between different pea genotypes, there is a strong maternal influence on mature seed size of the reciprocal hybrids, i.e. their dry weights are similar to that of seeds obtained from their maternal parents. Reciprocal crosses between pea varieties having very different mature seed sizes were used to investigate how the maternal genotype controls seed development and mature seed size. The differences in dry seed weight between genotypes and reciprocal hybrids reflected differences in both cotyledon cell number and mean cell volume, and the maternal control on the establishment of these two traits was investigated. Using flow cytometry, data relative to endoreduplication kinetics in cotyledons during the transition between the cell division phase and maturation were obtained. The appearance of nuclei having an 8C DNA content indicates the initiation of the endoreduplication phenomenon and thus the end of the cell division phase. It was shown that the duration of the cell division phase was the same in the reciprocal hybrids, its value being intermediate between those recorded for their maternal parents. This result indicates that the timing of development of the embryo is not under maternal control, but depends on its own genotype. Consequently, maternal genotype must influence the mitotic rate during the cell division phase to achieve differences in cell number found in the cotyledons of mature F1-reciprocal hybrids. The final level of endoreduplication in cotyledons of mature seeds was also investigated. This study showed that there is a close relationship (r2 = 0.919) between the endoreduplication level in mature cotyledons and seed dry weight or mean volume of cotyledon cells, suggesting that both maternal and non-maternal factors could control the number of endoreduplicating cycles in the cotyledons and, hypothetically, the cotyledon cell size.

  12. Experimental study of commercial size proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Yan, Wei-Mon; Wang, Xiao-Dong; Lee, Duu-Jong; Zhang, Xin-Xin; Guo, Yi-Fan; Su, Ay

    2011-01-01

    Commercial sized (16 x 16 cm 2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX (registered) PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm -2 Pt and cathode catalyst layer with 0.6 mg cm -2 Pt and Ru or GORE-TEX (registered) PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm -2 Pt and cathode catalyst layer at 0.4 mg cm -2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.

  13. Experimental study of commercial size proton exchange membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Guo, Yi-Fan [Department of Greenergy, National University of Tainan, Tainan 700 (China); Wang, Xiao-Dong; Zhang, Xin-Xin [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lee, Duu-Jong [Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan 300 (China)

    2011-01-15

    Commercial sized (16 x 16 cm{sup 2} active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX registered PRIMEA 5621 was used with a 35-{mu}m-thick PEM with an anode catalyst layer with 0.45 mg cm{sup -2} Pt and cathode catalyst layer with 0.6 mg cm{sup -2} Pt and Ru or GORE-TEX registered PRIMEA 57 was used with an 18-{mu}m-thick PEM with an anode catalyst layer at 0.2 mg cm{sup -2} Pt and cathode catalyst layer at 0.4 mg cm{sup -2} of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature. (author)

  14. Microfluidic Isolation of Circulating Tumor Cell Clusters by Size and Asymmetry.

    Science.gov (United States)

    Au, Sam H; Edd, Jon; Stoddard, Amy E; Wong, Keith H K; Fachin, Fabio; Maheswaran, Shyamala; Haber, Daniel A; Stott, Shannon L; Kapur, Ravi; Toner, Mehmet

    2017-05-26

    Circulating tumor cell clusters (CTC clusters) are potent initiators of metastasis and potentially useful clinical markers for patients with cancer. Although there are numerous devices developed to isolate individual circulating tumor cells from blood, these devices are ineffective at capturing CTC clusters, incapable of separating clusters from single cells and/or cause cluster damage or dissociation during processing. The only device currently able to specifically isolate CTC clusters from single CTCs and blood cells relies on the batch immobilization of clusters onto micropillars which necessitates long residence times and causes damage to clusters during release. Here, we present a two-stage continuous microfluidic chip that isolates and recovers viable CTC clusters from blood. This approach uses deterministic lateral displacement to sort clusters by capitalizing on two geometric properties: size and asymmetry. Cultured breast cancer CTC clusters containing between 2-100 + cells were recovered from whole blood using this integrated two-stage device with minimal cluster dissociation, 99% recovery of large clusters, cell viabilities over 87% and greater than five-log depletion of red blood cells. This continuous-flow cluster chip will enable further studies examining CTC clusters in research and clinical applications.

  15. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.

    Science.gov (United States)

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2008-07-01

    Previous studies have shown that dietary copper supplementation reversed heart hypertrophy induced by pressure overload in a mouse model. The present study was undertaken to understand the cellular basis of copper-induced regression of cardiac hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine (PE) at a final concentration of 100 microM in cultures for 48 h to induce cellular hypertrophy. The hypertrophied cardiomyocytes were exposed to copper sulfate at a final concentration of 5 microM in cultures for additional 24 h. This copper treatment reduced the size of the hypertrophied cardiomyocytes, as measured by flow cytometry, protein content in cells, cell volume and cardiomyocyte hypertrophy markers including beta-myosin heavy chain protein, skeletal alpha-actin, and atrial natriuretic peptide. Cell cycle analysis and cell sorting of p-histone-3 labeled cardiomyocytes indicated that cell division was not involved in the copper-induced regression of cardiomyocyte hypertrophy. Copper also inhibited PE-induced apoptosis, determined by a TUNEL assay. Because copper stimulates vascular endothelial growth factor (VEGF) production through activation of hypoxia-inducible transcription factor, an anti-VEGF antibody at a final concentration of 2 ng/ml in cultures was used and shown to blunt copper-induced regression of cell hypertrophy. Conversely, VEGF alone at a final concentration of 0.2 microg/ml reversed cell hypertrophy as the same as copper did. This study demonstrates that both copper and VEGF reduce the size of hypertrophied cardiomyocytes, and copper regression of cardiac hypertrophy is VEGF-dependent.

  16. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    Science.gov (United States)

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  17. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.

    Science.gov (United States)

    Maciak, S; Bonda-Ostaszewska, E; Czarnołęski, M; Konarzewski, M; Kozłowski, J

    2014-03-01

    Evolution of metabolic rates of multicellular organisms is hypothesized to reflect the evolution of their cell architecture. This is likely to stem from a tight link between the sizes of cells and nuclei, which are expected to be inversely related to cell metabolism. Here, we analysed basal metabolic rate (BMR), internal organ masses and the cell/nucleus size in different tissues of laboratory mice divergently selected for high/low mass-corrected BMR and four random-bred mouse lines. Random-bred lines had intermediate levels of BMR as compared to low- and high-BMR lines. Yet, this pattern was only partly consistent with the between-line differences in cell/nucleus sizes. Erythrocytes and skin epithelium cells were smaller in the high-BMR line than in other lines, but the cells of low-BMR and random-bred mice were similar in size. On the other hand, the size of hepatocytes, kidney proximal tubule cells and duodenum enterocytes were larger in high-BMR mice than other lines. All cell and nucleus sizes were positively correlated, which supports the role of the nucleus in cell size regulation. Our results suggest that the evolution of high BMR involves a reduction in cell size in specialized tissues, whose functions are primarily dictated by surface-to-volume ratios, such as erythrocytes. High BMR may, however, also incur an increase in cell size in tissues with an intense transcription and translation, such as hepatocytes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Primary cilium and autophagy: The avengers of cell-size regulation.

    Science.gov (United States)

    Orhon, Idil; Dupont, Nicolas; Codogno, Patrice

    2016-11-01

    The maintenance of cellular homeostasis in response to extracellular stresses by autophagy is vital for the health of various tissues. Extracellular stimuli may include nutrient starvation, endoplasmic reticulum stress, hypoxia, cytotoxic agents, or mechanical stress. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of various extracellular stimuli. The interconnection between macroautophagy/autophagy and the PC is beginning to be illuminated. In this punctum, we discuss our recent study of PC-dependent autophagy in response to fluid flow in kidney epithelial cells. Urinary flow in kidney tubules creates a shear stress that regulates epithelial cell volume. PC-mediated autophagy is necessary for the regulation of cell size. The signal from the PC is transduced by the activation of STK11/LKB1 and by MTOR inhibition. Our results clarify the physiological role of PC-dependent autophagy in the kidney and suggest that autophagy manipulation may provide a route to the treatment of ciliopathies.

  19. Assessing T cell clonal size distribution: a non-parametric approach.

    Science.gov (United States)

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  20. Assessing T cell clonal size distribution: a non-parametric approach.

    Directory of Open Access Journals (Sweden)

    Olesya V Bolkhovskaya

    Full Text Available Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  1. Microbial single-cell analysis in picoliter-sized batch cultivation chambers.

    Science.gov (United States)

    Kaganovitch, Eugen; Steurer, Xenia; Dogan, Deniz; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2018-03-14

    Microfluidics has enabled various research projects in the field of microbial single-cell analysis. In particular, single-use microfluidic cultivation devices combined with automated time-lapse imaging provide powerful approaches for analyzing microbial phenomena at the single-cell level. High spatiotemporal resolution facilitates individual cell identification and tracking, delivering detailed insights into areas like phenotypic population heterogeneity, which can be highly relevant to the fate of a microbial population and may negatively impact the efficiency of biotechnological fermentations. New tools need to be developed to access the origin of population heterogeneity and understand its functional role. In this study, we present a microfluidic device for batch cultivations inside picoliter-sized cultivation chambers that can be reversibly isolated from continuous medium supply. Therefore, the cultivation broth is simply replaced by a continuous flow of humidified air, removing any medium residue along the supply channels but preserving five picoliters of cultivation medium inside the cultivation chambers in a highly parallel manner. Living cells can grow inside our microfabricated batch chambers, which can accommodate up to several hundred cells. The chamber height approximately matches the diameter of a single cell, facilitating cell growth in monolayers that are ideal for image-based cell analysis. We successfully demonstrated the growth of Escherichia coli during continuous medium perfusion and batch cultivation conditions. As expected, the cells grew exponentially under continuous medium influx until the maximum chamber capacity was reached, but when they were cultivated under batch conditions, cellular growth underwent an exponential phase, followed by a stationary phase with obvious morphological changes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Selective Rapid Eye Movement Sleep Deprivation Affects Cell Size and Number in Kitten Locus Coeruleus

    Directory of Open Access Journals (Sweden)

    James P Shaffery

    2012-05-01

    Full Text Available Cells in the locus coeruleus (LC constitute the sole source of norepinephrine (NE in the brain, and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas. Selective suppression of rapid eye movement sleep (REMS in the CP kitten enhances the central effects of monocular occlusion. The mechanisms responsible for heightened cortical plasticity following REMS deprivation (REMSD remain undetermined. One possible mediator of an increase in plasticity is continuous NE outflow, which presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH is the rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells. We selectively suppressed REMS in kittens for one week during the CP. The number and size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir was assessed in age-matched REMS-deprived (RD-, treatment-control (TXC-, and home cage-reared (HCC animals. Sleep amounts and slow wave activity (SWA were also examined relative to baseline. Time spent in REMS during the study was lower in RD compared to TXC animals, and RD kittens increased SWA delta power in the latter half of the REMSD period. The estimated total number of TH-ir cells in LC was significantly lower in the RD- than in the TXC kittens and numerically lower than in HCC animals. The size of LC cells expressing TH-ir was greatest in the HCC group. They were significantly larger than the cells in the RD kittens. These data are consistent with a possible reduction in NE in forebrain areas, including visual cortex, caused by one week of REMSD.

  3. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    Science.gov (United States)

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  4. Effect of pore size on the calculated pressure at biological cells pore wall.

    Science.gov (United States)

    El-Hag, Ayman H; Zheng, Zhong; Boggs, Steven A; Jayaram, Shesha H

    2006-09-01

    A transient nonlinear finite-element program has been used to calculate the electric field distribution as a function of time for a spherical cell with a pore in a conducting medium during application of a subnanosecond rise time "step" wave, including the effects of dipolar saturation in the water-based cytoplasm and cell medium. The time-dependent pressure on the pore wall has been computed as a function of time as the system polarizes from the change of the energy in the electric field to the left (inside the pore) and to the right (inside the membrane) of the pore wall. The computations suggest that dipolar saturation, while significant, has little effect on the time-dependent electric field distribution but a substantial effect on the field-induced pore wall pressure. Also, the effect of pore size on both the computed electric field and field-induced pressure was studied. As the pore size increases, a collapse in both the electric field and field-induced pressure has been noticed. This suggests that as the pore size increases, the driving force for further opening the pore is not electrical.

  5. Energy harvesting from organic liquids in micro-sized microbial fuel cells

    KAUST Repository

    Mink, J.E.

    2014-03-07

    Micro-sized microbial fuel cells (MFCs) are miniature energy harvesters that use bacteria to convert biomass from liquids into usable power. The key challenge is transitioning laboratory test beds into devices capable of producing high power using readily available fuel sources. Here, we present a pragmatic step toward advancing MFC applications through the fabrication of a uniquely mobile and inexpensive micro-sized device that can be fueled with human saliva. The 25-ll MFC was fabricated with graphene, a two-dimensional atomic crystal-structured material, as an anode for efficient current generation and with an air cathode for enabling the use of the oxygen present in air, making its operation completely mobile and free of the need for laboratory chemicals. With saliva as a fuel, the device produced higher current densities (1190 Am-3) than any previous aircathode micro-sized MFCs. The use of the graphene anode generated 40 times more power than that possible using a carbon cloth anode. Additional tests were performed using acetate, a conventional organic material, at high organic loadings that were comparable to those in saliva, and the results demonstrated a linear relationship between the organic loading and current. These findings open the door to saliva-powered applications of this fuel cell technology for Lab-on-a-Chip devices or portable point-of-care diagnostic devices. 2014 Nature Publishing Group All rights reserved 1884-4057/14.

  6. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply

    International Nuclear Information System (INIS)

    Spoden, Gilles A.; Rostek, Ursula; Lechner, Stefan; Mitterberger, Maria; Mazurek, Sybille; Zwerschke, Werner

    2009-01-01

    The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.

  7. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip.

    Science.gov (United States)

    Song, Yongxin; Li, Mengqi; Pan, Xinxiang; Wang, Qi; Li, Dongqing

    2015-02-01

    An electrokinetic microfluidic chip is developed to detect and sort target cells by size from human blood samples. Target-cell detection is achieved by a differential resistive pulse sensor (RPS) based on the size difference between the target cell and other cells. Once a target cell is detected, the detected RPS signal will automatically actuate an electromagnetic pump built in a microchannel to push the target cell into a collecting channel. This method was applied to automatically detect and sort A549 cells and T-lymphocytes from a peripheral fingertip blood sample. The viability of A549 cells sorted in the collecting well was verified by Hoechst33342 and propidium iodide staining. The results show that as many as 100 target cells per minute can be sorted out from the sample solution and thus is particularly suitable for sorting very rare target cells, such as circulating tumor cells. The actuation of the electromagnetic valve has no influence on RPS cell detection and the consequent cell-sorting process. The viability of the collected A549 cell is not impacted by the applied electric field when the cell passes the RPS detection area. The device described in this article is simple, automatic, and label-free and has wide applications in size-based rare target cell sorting for medical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recovery of aging-related size increase of skin epithelial cells: in vivo mouse and in vitro human study.

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    Full Text Available The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment. An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8. A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20-40% for cells of older passage (6-8 passages whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.

  9. Dose dependency of the frequency of micronucleated binucleated clone cells and of division related median clone sizes difference. Pt. 2

    International Nuclear Information System (INIS)

    Hagemann, G,; Kreczik, A.; Treichel, M.

    1996-01-01

    Following irradiation of the progenitor cells the clone growth of CHO cells decreases as a result of cell losses. Lethally acting expressions of micronuclei are produced by heritable lethal mutations. The dependency of the frequency of micronucleated binucleated clone cells and of the median clone sizes difference on the radiation dose was measured and compared to non-irradiated controls. Using the cytokinesis-block-micronucleus-method binucleated cells with micronuclei were counted as ratio of all binucleated cells within a clone size distribution. This ratio (shortened: micronucleus yield) was determined for all clone size distributions, which had been exposed to different irradiation doses and incubation times. The micronucleus yields were compared to the corresponding median clone sizes differences. The micronucleus yield is linearly dependent on the dose and is independent of the incubation time. The same holds true for the division related median clone sizes difference, which as a result is also linearly dependent on the micronucleus yield. Due to the inevitably errors of the cell count of micronucleated binucleated cells, an automatic measurement of the median clone sizes differences is the preferred method for evaluation of cellular radiation sensitivity for heritable lethal mutations. This value should always be determined in addition, if clone survival fractions are used as predictive test because it allows for an estimation of the remission probability of surviving cells. (orig.) [de

  10. Effect of Different Support Morphologies and Pt Particle Sizes in Electrocatalysts for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    G. Sevjidsuren

    2010-01-01

    Full Text Available The performance of a low temperature fuel cell is strongly correlated with parameters like the platinum particle size, platinum dispersion on the carbon support, and electronic and protonic conductivity in the catalyst layer as well as its porosity. These parameters can be controlled by a rational choice of the appropriate catalyst synthesis and carbon support. Only recently, particular attention has been given to the support morphology, as it plays an important role for the formation of the electrode structure. Due to their significantly different structure, mesoporous carbon microbeads (MCMBs and multiwalled carbon nanotubes (MWCNTs were used as supports and compared. Pt nanoparticles were decorated on these supports using the polyol method. Their size was varied by different heating times during the synthesis, and XRD, TEM, SEM, CV, and single cell tests used in their detailed characterization. A membrane-electrode assembly prepared with the MCMB did not show any activity in the fuel cell test, although the catalyst's electrochemical activity was almost similar to the MWCNT. This is assumed to be due to the very dense electrode structure formed by this support material, which does not allow for sufficient mass transport.

  11. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    Science.gov (United States)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  12. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Science.gov (United States)

    Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting

    2011-07-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs

  13. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pengpeng; Guan Rongfa; Jiang Jiaxin; Liu Mingqi; Huang Guangrong; Chen Xiaoting [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018 (China); Ye Xingqian, E-mail: rfguan@163.com [Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029 (China)

    2011-07-06

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 {mu}g{center_dot}mL{sup -1}. LDH leakage significantly increased in cells exposed to Ag NPs ({>=} 25 {mu}g mL{sup -1}) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 {mu}g{center_dot}mL{sup -1}). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage

  14. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2012-08-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  15. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...

  16. A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil, MS

    2016-08-01

    Full Text Available Myocardial infarction (MI remains a dreadful disease around the world, causing irreversible sequelae that shorten life expectancy and reduce quality of life despite current treatment. Here, the authors engineered a cell-enriched myocardial graft, composed of a decellularized myocardial matrix refilled with adipose tissue-derived progenitor cells (EMG-ATDPC. Once applied over the infarcted area in the swine MI model, the EMG-ATDPC improved cardiac function, reduced infarct size, attenuated fibrosis progression, and promoted neovascularization of the ischemic myocardium. The beneficial effects exerted by the EMG-ATDPC and the absence of identified adverse side effects should facilitate its clinical translation as a novel MI therapy in humans.

  17. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities

    Directory of Open Access Journals (Sweden)

    Wei SC

    2012-03-01

    Full Text Available Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing, 4Hospital of Stomatology, Tongji University, Shanghai, ChinaIntroduction:Hydroxyapatite (HA is the principal inorganic constituent of human bone. Due to its good biocompatibility and osteoconductivity, all kinds of HA particles were prepared by different methods. Numerous reports demonstrated that the properties of HA affected its biological effects.Methods: Two kinds of nanohydroxyapatite with different sizes and crystallinities were obtained via a hydrothermal treatment method under different temperatures. It was found that at a temperature of 140°C, a rod-like crystal (n-HA1 with a diameter of 23 ± 5 nm, a length of 47 ± 14 nm, and crystallinity of 85% ± 5% was produced, while at a temperature of 80°C, a rod-like crystal (n-HA2 with a diameter of 16 ± 3 nm, a length of 40 ± 10 nm, and crystallinity of 65% ± 3% was produced. The influence of nanohydroxyapatite size and crystallinity on osteoblast viability was studied by MTT, scanning electron microscopy, and flow cytometry.Results: n-HA1 gave a better biological response than n-HA2 in promoting cell growth and inhibiting cell apoptosis, and also exhibited much more active cell morphology. Alkaline phosphatase activity for both n-HA2 and n-HA1 was obviously higher than for the control, and no significant difference was found between n-HA1 and n-HA2. The same trend was observed on Western blotting for expression of type I collagen and osteopontin. In addition, it was found by transmission electron microscopy that large quantities of n-HA2 entered into the cell

  18. Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner.

    Science.gov (United States)

    Sun, Qingqing; Ishii, Takayuki; Kanehira, Koki; Sato, Takeshi; Taniguchi, Akiyoshi

    2017-05-02

    The size of titanium dioxide (TiO 2 ) nanoparticles is a vital parameter that determines their cytotoxicity. However, most reported studies have employed irregular shapes and sizes of TiO 2 nanoparticles, as it is difficult to produce nanoparticles of suitable sizes for research. We produced good model TiO 2 nanoparticles of uniform shape and size for use in studying their cytotoxicity. In this work, spherical, uniform polyethylene glycol-modified TiO 2 (TiO 2 -PEG) nanoparticles of differing sizes (100, 200, and 300 nm) were prepared using the sol-gel method. A size-dependent decrease in cell viability was observed with increasing nanoparticle size. Furthermore, apoptosis was found to be positively associated with nanoparticle size, as evidenced by an increase in caspase-3 activity with increasing nanoparticle size. Larger nanoparticles exhibited higher cellular uptake, suggesting that larger nanoparticles more strongly induce apoptosis. In addition, the cellular uptake of different sizes of nanoparticles was energy dependent, suggesting that there are size-dependent uptake pathways. We found that 100 and 200 nm (but not 300 nm) nanoparticles were taken up via clathrin-mediated endocytosis. These results utilizing uniform nanoparticles suggest that the size-dependent cytotoxicity of nanoparticles involves active cellular uptake, caspase-3 activation, and apoptosis in the epithelial cell line (NCI-H292). These findings will hopefully aid in the future design and safe use of nanoparticles.

  19. Fast and Near-Optimal Timing-Driven Cell Sizing under Cell Area and Leakage Power Constraints Using a Simplified Discrete Network Flow Algorithm

    Directory of Open Access Journals (Sweden)

    Huan Ren

    2013-01-01

    Full Text Available We propose a timing-driven discrete cell-sizing algorithm that can address total cell size and/or leakage power constraints. We model cell sizing as a “discretized” mincost network flow problem, wherein available sizes of each cell are modeled as nodes. Flow passing through a node indicates the choice of the corresponding cell size, and the total flow cost reflects the timing objective function value corresponding to these choices. Compared to other discrete optimization methods for cell sizing, our method can obtain near-optimal solutions in a time-efficient manner. We tested our algorithm on ISCAS’85 benchmarks, and compared our results to those produced by an optimal dynamic programming- (DP- based method. The results show that compared to the optimal method, the improvements to an initial sizing solution obtained by our method is only 1% (3% worse when using a 180 nm (90 nm library, while being 40–60 times faster. We also obtained results for ISPD’12 cell-sizing benchmarks, under leakage power constraint, and compared them to those of a state-of-the-art approximate DP method (optimal DP runs out of memory for the smallest of these circuits. Our results show that we are only 0.9% worse than the approximate DP method, while being more than twice as fast.

  20. How does a single cell know when the liver has reached its correct size?

    Directory of Open Access Journals (Sweden)

    Nadine Hohmann

    Full Text Available The liver is a multi-functional organ that regulates major physiological processes and that possesses a remarkable regeneration capacity. After loss of functional liver mass the liver grows back to its original, individual size through hepatocyte proliferation and apoptosis. How does a single hepatocyte 'know' when the organ has grown to its final size? This work considers the initial growth phase of liver regeneration after partial hepatectomy in which the mass is restored. There are strong and valid arguments that the trigger of proliferation after partial hepatectomy is mediated through the portal blood flow. It remains unclear, if either or both the concentration of metabolites in the blood or the shear stress are crucial to hepatocyte proliferation and liver size control. A cell-based mathematical model is developed that helps discriminate the effects of these two potential triggers. Analysis of the mathematical model shows that a metabolic load and a hemodynamical hypothesis imply different feedback mechanisms at the cellular scale. The predictions of the developed mathematical model are compared to experimental data in rats. The assumption that hepatocytes are able to buffer the metabolic load leads to a robustness against short-term fluctuations of the trigger which can not be achieved with a purely hemodynamical trigger.

  1. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton

    International Nuclear Information System (INIS)

    Echeveste, Pedro; Agusti, Susana; Dachs, Jordi

    2011-01-01

    Polycyclic Aromatic Hydrocarbons' (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs' phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs' toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased. - Highlights: → The smallest picocyanobacteria were the most sensitive to PAHs and UVR. → PAHs-UVR synergism for the picophytoplankton and the oligotrophic communities. → PAHs-UVR additivity for the nanophytoplankton and the eutrophic communities. → An irradiance threshold is suggested to determine the joint action of UVR and PAHs. - Cell size and UVR levels determine additive/synergetic effects of PAHs and UVR to oceanic phytoplankton.

  2. Birth order, sibship size, and risk for germ-cell testicular cancer.

    Science.gov (United States)

    Richiardi, Lorenzo; Akre, Olof; Lambe, Mats; Granath, Fredrik; Montgomery, Scott M; Ekbom, Anders

    2004-05-01

    Several studies have reported an inverse association between birth order and testicular cancer risk, but estimates vary greatly and the biologic mechanism underlying the association is not established. We have evaluated the effect of birth order, sibship size, and the combined effect of these 2 variables in relation to risk for testicular cancer in a large, nested case-control study. Specifically, we compared 3051 patients with germ-cell testicular cancer (diagnosed between 1958 and 1998 and identified through the Swedish Cancer Registry) with 9007 population control subjects. Using record linkage with the Multi-Generation Register and the Census, we obtained information on number, order, and sex of the subjects' siblings, parental age, and paternal socioeconomic status. Both birth order and sibship size had an inverse and monotonically decreasing association with testicular cancer risk after adjusting for parental age, paternal socioeconomic status, and twin status. The associations were modified by subjects' cohort of birth and were not present among those born after 1959. The odds ratio for having at least 3 siblings, compared with none, was 0.63 (95% confidence interval = 0.53-0.75) among subjects born before 1960. Stratified analyses showed that birth order and number of younger siblings had a similar inverse association with the risk for testicular cancer. Sibship size, and not only birth order, is associated with testicular cancer risk. This suggests a higher prevalence of parental subfertility among patients with testicular cancer.

  3. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Echeveste, Pedro, E-mail: pecheveste@imedea.uib-csic.es [Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterraneo de Estudios Avanzados, Miquel Marques 21, 07190 Esporles, Illes Balears (Spain); Agusti, Susana [Department of Global Change Research, IMEDEA (CSIC-UIB) Instituto Mediterraneo de Estudios Avanzados, Miquel Marques 21, 07190 Esporles, Illes Balears (Spain); Dachs, Jordi [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya (Spain)

    2011-05-15

    Polycyclic Aromatic Hydrocarbons' (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs' phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs' toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased. - Highlights: > The smallest picocyanobacteria were the most sensitive to PAHs and UVR. > PAHs-UVR synergism for the picophytoplankton and the oligotrophic communities. > PAHs-UVR additivity for the nanophytoplankton and the eutrophic communities. > An irradiance threshold is suggested to determine the joint action of UVR and PAHs. - Cell size and UVR levels determine additive/synergetic effects of PAHs and UVR to oceanic phytoplankton.

  4. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells

    International Nuclear Information System (INIS)

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L’Azou, Béatrice

    2012-01-01

    Silica nanoparticles (nano-SiO 2 ) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO 2 can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO 2 of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK 1 ). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO 2 nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24 h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO 2 . The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO 2 .

  5. Evaluation of a method to measure HHV-6B infection in vitro based on cell size.

    Science.gov (United States)

    Becerra-Artiles, Aniuska; Santoro, Tessa; Stern, Lawrence J

    2018-01-05

    Human herpesvirus 6 (HHV-6A and HHV-6B) infection of cell cultures can be measured by different methods, including immunofluorescence microscopy, flow cytometry, or quantification of virus DNA by qPCR. These methods are reliable and sensitive but require long processing times and can be costly. Another method used in the field relies on the identification of enlarged cells in the culture; this method requires little sample processing and is relatively fast. However, visual inspection of cell cultures can be subjective and it can be difficult to establish clear criteria to decide if a cell is enlarged. To overcome these issues, we explored a method to monitor HHV-6B infections based on the systematic and objective measurement of the size of cells using an imaging-based automated cell counter. The size of cells in non-infected and HHV-6B-infected cultures was measured at different times post-infection. The relatively narrow size distribution observed for non-infected cultures contrasted with the broader distributions observed in infected cultures. The average size of cultures shifted towards higher values after infection, and the differences were significant for cultures infected with relatively high doses of virus and/or screened at longer times post-infection. Correlation analysis showed that the trend observed for average size was similar to the trend observed for two other methods to measure infection: amount of virus DNA in supernatant and the percentage of cells expressing a viral antigen. In order to determine the performance of the size-based method in differentiating non-infected and infected cells, receiver operating characteristic (ROC) curves were used to analyze the data. Analysis using size of individual cells showed a moderate performance in detecting infected cells (area under the curve (AUC) ~ 0.80-0.87), while analysis using the average size of cells showed a very good performance in detecting infected cultures (AUC ~ 0.99). The size

  6. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  7. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  8. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  9. Cell therapy with allogenic canine periodontal ligament-derived cells in periodontal regeneration of critical size defects.

    Science.gov (United States)

    Nuñez, Javier; Sanchez, Nerea; Vignoletti, Fabio; Sanz-Martin, Ignacio; Caffesse, Raul; Santamaria, Silvia; Garcia-Sanz, Jose A; Sanz, Mariano

    2017-12-29

    The objective of this in vivo experimental study to evaluate the regenerative potential of a cell therapy combining allogenic periodontal ligament-derived cells within a xenogeneic bone substitute in a similar experimental model. In nine beagle dogs, critical size 6-mm supra-alveolar periodontal defects were created around the PIII and PIV. The resulting supra-alveolar defects were randomly treated with either 1.4 × 10 6 allogenic canine periodontal ligament-derived cells seeded on de-proteinized bovine bone mineral with 10% collagen (DBBM-C) (test group) or DBBM-C without cells (control group). Specimens were obtained at 3 months, and histological outcomes were studied. The histological analysis showed that total furcation closure occurred very seldom in both groups, being the extent of periodontal regeneration located in the apical third of the defect. The calculated amount of periodontal regeneration at the furcation area was comparable in both the test and control groups (1.93 ± 1.14 mm (17%) versus 2.35 ± 1.74 mm (22%), respectively (p = .37). Similarly, there were no significant differences in the amount of new cementum formation 4.49 ± 1.56 mm (41%) versus 4.97 ± 1.05 mm (47%), respectively (p = .45). This experimental study was unable to demonstrate the added value of allogenic cell therapy in supra-crestal periodontal regeneration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  11. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    Directory of Open Access Journals (Sweden)

    Zachary J Smith

    Full Text Available We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  12. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell

    Science.gov (United States)

    Yoo, Y. J.; Zheng, H. Y.; Kim, Y. J.; Rhee, J. Y.; Kang, J.-H.; Kim, K. W.; Cheong, H.; Kim, Y. H.; Lee, Y. P.

    2014-07-01

    Using a planar and flexible metamaterial (MM), we obtained the low-frequency perfect absorption even with very small unit-cell size in snake-shape structure. These shrunken, deep-sub-wavelength and thin MM absorbers were numerically and experimentally investigated by increasing the inductance. The periodicity/thickness (the figure of merit for perfect absorption) is achieved to be 10 and 2 for single-snake-bar and 5-snake-bar structures, respectively. The ratio between periodicity and resonance wavelength (in mm) is close to 1/12 and 1/30 at 2 GHz and 400 MHz, respectively. The absorbers are specially designed for absorption peaks around 2 GHz and 400 MHz, which can be used for depressing the electromagnetic noise from everyday electronic devices and mobile phones.

  13. A case of gastric endocrine cell carcinoma which was significantly reduced in size by radiotherapy

    International Nuclear Information System (INIS)

    Azakami, Kiyoshi; Nishida, Kouji; Tanikawa, Ken

    2016-01-01

    In 2010, the World Health Organization classified gastric neuroendocrine tumors (NETs) into three types: NET grade (G) 1, NET G2 and neuroendocrine carcinoma (NEC). NECs are associated with a very poor prognosis. The patient was an 84-year-old female who was initially diagnosed by gastrointestinal endoscope with type 3 advanced gastric cancer with stenosis of the gastric cardia. Her overall status and performance status did not allow for operations or intensive chemotherapy. Palliative radiotherapy was performed and resulted in a significant reduction in the size of the tumor as well as the improvement of the obstructive symptoms. She died 9 months after radiotherapy. An autopsy provided a definitive diagnosis of gastric endocrine cell carcinoma, and the effectiveness of radiotherapy was pathologically-confirmed. Palliative radiotherapy may be a useful treatment option for providing symptom relief, especially for old patients with unresectable advanced gastric neuroendocrine carcinoma. (author)

  14. Tailoring the rate-sensitivity of low density polyurea foams through cell wall aperture size

    Science.gov (United States)

    Ramirez, B. J.; Kingstedt, O. T.; Crum, R.; Gamez, C.; Gupta, V.

    2017-06-01

    The plateau stress and energy absorption of low density (≤300 kg/m3) polyurea (PU) foams and expanded polystyrene (EPS) were measured at deformation rates ranging from 0.004 s-1 to 5000 s-1. Low (≤10-1 s-1) strain rate testing was performed using an Instron load frame, intermediate (101-102 s-1) strain rates using a drop-weight impact tower, and high (≥103 s-1) strain rate conditions using a modified split-Hopkinson pressure bar. The plateau stress and energy absorption of low density PU foams exhibit a strong rate dependence across all deformation rates. This result has been previously unreported for low density polymer foams under low and intermediate strain rates. The strain rate sensitivity of PU foams was found to be strongly dependent on cell size for low strain rates and cell wall aperture size for intermediate and high strain rates. EPS type foam, however, remained nearly insensitive to strain rate. At low and intermediate strain rates, the plastic crushing in the EPS and the high plateau stress yield a much higher energy absorption capability than the viscoelastic dissipation in the PU foams. However, PU foams were found to display similar energy absorption properties as EPS based foams under high strain rates. Thus, controlling the strain rate sensitivity of PU foams through aperture diameter can lead to an increase in energy absorption properties at high strain rates, while simultaneously maintaining the peak stress below certain injury thresholds. Additionally, unlike EPS, which undergo plastic crushing after first impact, flexible polyurea foams will recover fully after each impact and thus will have multiple hit capabilities. This will allow these materials to have a wide range of applications, in advance body armors and protective headgears to use in low-cost protection systems for a wide range of military platforms, civilian, and space applications.

  15. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  16. Impact of sickle cell anaemia on cardiac chamber size in the paediatric population.

    Science.gov (United States)

    Adjagba, Philippe M; Habib, Gaston; Robitaille, Nancy; Pastore, Yves; Raboisson, Marie-Josée; Curnier, Daniel; Dahdah, Nagib

    2017-07-01

    Purpose Sickle cell disease is known to cause various degrees of vasculopathy, including impact on heart function. The aims of this single-centre, retrospective study were to assess cardiac chamber size and function and the relationship with haematological indices such as haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin, lactate dehydrogenase in sickle cell disease. Right ventricle and left ventricle diastolic diameters, left ventricle mass estimate, left ventricle shortening fraction, myocardial performance index, and an index of myocardial relaxation (E/E') were calculated and correlated with haematological parameters. A total of 110 patients (65% haemoglobin SS, 29% haemoglobin SC) were studied at a mean age of 12.14±5.26 years. Right ventricle dilatation and left ventricle dilatation were present in 61.5 and 42.9%, respectively. Left ventricle mass was abnormal in 21.9%; all patients had normal myocardial performance index, 31.4% had abnormal E/E', and left ventricle shortening fraction was low in 38.1%. Cardiac dilatation was best correlated with haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin. Best subset regression analysis yielded significant additional prediction for right ventricle or left ventricle dilatation with haemoglobin, bilirubin, and lactate dehydrogenase. Abnormal E/E' was solely predictable with haemoglobin level. Hydroxyurea-treated patients had improved diastolic function. Right ventricle dilatation was more prevalent than left ventricle dilatation. The long-term consequences of right ventricular dilatation, clinical consequences, and association with pulmonary vasculopathy need to be further determined.

  17. Fabrication of large size alginate beads for three-dimensional cell-cluster culture

    Science.gov (United States)

    Zhang, Zhengtao; Ruan, Meilin; Liu, Hongni; Cao, Yiping; He, Rongxiang

    2017-08-01

    We fabricated large size alginate beads using a simple microfluidic device under a co-axial injection regime. This device was made by PDMS casting with a mold formed by small diameter metal and polytetrafluorothylene tubes. Droplets of 2% sodium alginate were generated in soybean oil through the device and then cross-linked in a 2% CaCl2 solution, which was mixed tween80 with at a concentration of 0.4 to 40% (w/v). Our results showed that the morphology of the produced alginate beads strongly depends on the tween80 concentration. With the increase of concentration of tween80, the shape of the alginate beads varied from semi-spherical to tailed-spherical, due to the decrease of interface tension between oil and cross-link solution. To access the biocompatibility of the approach, MCF-7 cells were cultured with the alginate beads, showing the formation of cancer cells clusters which might be useful for future studies.

  18. Communication across the bacterial cell envelope depends on the size of the periplasm.

    Science.gov (United States)

    Asmar, Abir T; Ferreira, Josie L; Cohen, Eli J; Cho, Seung-Hyun; Beeby, Morgan; Hughes, Kelly T; Collet, Jean-François

    2017-12-01

    The cell envelope of gram-negative bacteria, a structure comprising an outer (OM) and an inner (IM) membrane, is essential for life. The OM and the IM are separated by the periplasm, a compartment that contains the peptidoglycan. The OM is tethered to the peptidoglycan via the lipoprotein, Lpp. However, the importance of the envelope's multilayered architecture remains unknown. Here, when we removed physical coupling between the OM and the peptidoglycan, cells lost the ability to sense defects in envelope integrity. Further experiments revealed that the critical parameter for the transmission of stress signals from the envelope to the cytoplasm, where cellular behaviour is controlled, is the IM-to-OM distance. Augmenting this distance by increasing the length of the lipoprotein Lpp destroyed signalling, whereas simultaneously increasing the length of the stress-sensing lipoprotein RcsF restored signalling. Our results demonstrate the physiological importance of the size of the periplasm. They also reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function. Similar strategies are likely at play in cellular compartments surrounded by 2 concentric membranes, such as chloroplasts and mitochondria.

  19. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM. Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B, whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin signaling components, such as Rheb (small GTPase, TOR and S6K (S6 kinase. After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth.

  20. Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs by the multiple titanium oxide (TiO2 layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency.

  1. Monocrystalline solar cells performance coated by silver nanoparticles: Effect of NPs sizes from point of view Mie theory

    Science.gov (United States)

    Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.

    2018-05-01

    Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.

  2. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting.

    Science.gov (United States)

    Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel

    2017-08-01

    The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.

  3. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686

  4. Cell-Based Gene Therapy for Repair of Critical Size Defects in the Rat Fibula

    Science.gov (United States)

    Lazard, ZaWaunyka W.; Heggeness, Michael H.; Hipp, John A.; Sonnet, Corinne; Fuentes, Angie S.; Nistal, Rita P.; Davis, Alan R.; Olabisi, Ronke M.; West, Jennifer L.; Olmsted-Davis, Elizabeth A.

    2012-01-01

    More than a decade has passed since the first experiments using adenovirus-transduced cells expressing bone morphogenetic protein 2 were performed for the synthesis of bone. Since this time, the field of bone gene therapy has tackled many issues surrounding safety and efficacy of this type of strategy. We present studies examining the parameters of the timing of bone healing, and remodeling when heterotopic ossification (HO) is used for bone fracture repair using an adenovirus gene therapy approach. We use a rat fibula defect, which surprisingly does not heal even when a simple fracture is introduced. In this model, the bone quickly resorbs most likely due to the non-weight bearing nature of this bone in rodents. Using our gene therapy system robust HO can be introduced at the targeted location of the defect resulting in bone repair. The HO and resultant bone healing appeared to be dose dependent, based on the number of AdBMP2-transduced cells delivered. Interestingly, the HO undergoes substantial remodeling, and assumes the size and shape of the missing segment of bone. However, in some instances we observed some additional bone associated with the repair, signifying that perhaps the forces on the newly forming bone are inadequate to dictate shape. In all cases, the HO appeared to fuse into the adjacent long bone. The data collectively indicates that the use of BMP2 gene therapy strategies may vary depending on the location and nature of the defect. Therefore, additional parameters should be considered when implementing such strategies. PMID:21344484

  5. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation.

    Science.gov (United States)

    Fu, Jiayin; Wiraja, Christian; Muhammad, Hamizan B; Xu, Chenjie; Wang, Dong-An

    2017-08-01

    In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that

  6. Application of the Stage, Size, Grade, and Necrosis (SSIGN) Score for Clear Cell Renal Cell Carcinoma in Contemporary Patients.

    Science.gov (United States)

    Parker, William P; Cheville, John C; Frank, Igor; Zaid, Harras B; Lohse, Christine M; Boorjian, Stephen A; Leibovich, Bradley C; Thompson, R Houston

    2017-04-01

    The tumor stage, size, grade, and necrosis (SSIGN) score was originally defined using patients treated with radical nephrectomy (RN) between 1970 and 1998 for clear cell renal cell carcinoma (ccRCC), excluding patients treated with partial nephrectomy (PN). To characterize the original SSIGN score cohort with longer follow-up and evaluate a contemporary series of patients treated with RN and PN. Retrospective single-institution review of 3600 consecutive surgically treated ccRCC patients grouped into three cohorts: original RN, contemporary (1999-2010) RN, and contemporary PN. RN or PN. The association of the SSIGN score with risk of death from RCC was assessed using a Cox proportional hazards regression model, and predictive ability was summarized with a C-index. The SSIGN scores differed significantly between the original RN, contemporary RN, and contemporary PN cohorts (pcontemporary RN, and 1.70 for contemporary PN; all pcontemporary RN, and contemporary PN, respectively. After accounting for an era-specific improvement in survival among RN patients (HR: 0.53 for contemporary vs original RN; pcontemporary RN and PN patients, the score retained strong predictive ability. These results should assist in patient counseling and help guide surveillance for ccRCC patients treated with RN or PN. We evaluated the validity of a previously described tool to predict survival following surgery in contemporary patients with kidney cancer. We found that this tool remains valid even when extended to patients significantly different than were initially used to create the tool. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  8. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    Science.gov (United States)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  9. Effect of fertilization on cell size in wood of Eucalyptus grandis Hill Ex Maiden

    Directory of Open Access Journals (Sweden)

    Luiz Santini Junior

    2010-12-01

    Full Text Available The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from a Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel elements length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel elements length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel elements length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.

  10. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  11. Effects of cell spatial organization and size distribution on ultrasound backscattering.

    Science.gov (United States)

    Saha, Ratan K; Kolios, Michael C

    2011-10-01

    In ultrasound tissue characterization dealing with cellular aggregates (such as tumors), it can be hypothesized that cell microstructure and spatial distribution dominate the backscatter signal. Effects of spatial organization and size distribution of nuclei in cell aggregates on ultrasound backscatter are examined in this work using 2-D computer simulations. The nuclei embedded in cytoplasm were assumed to be weak scatterers of incident ultrasound waves, and therefore multiple scattering could be neglected. The fluid sphere model was employed to obtain the scattering amplitude for each nucleus and the backscatter echo was generated by summing scattered signals originating from many nuclei. A Monte Carlo algorithm was implemented to generate realizations of cell aggregates. It was found that the integrated backscattering coefficient (IBSC) computed between 10 and 30 MHz increased by about 27 dB for a spatially random distribution of mono-disperse nuclei (radius = 4.5 μm) compared with that of a sample of periodically positioned mono-disperse nuclei. The IBSC also increased by nearly 7 dB (between 10 and 30 MHz) for a spatially random distribution of poly-disperse nuclei (mean radius ± SD = 4.5 ± 1.54 μm) compared with that of a spatially random distribution of mono-disperse nuclei. Two different Gaussian pulses with center frequencies 5 and 25 MHz were employed to study the backscatter envelope statistics. An 80% bandwidth was chosen for each case with approximately 0.32 mm as the full-width at half-maximum (FWHM) for the first pulse and 0.06 mm for the second. The incident beam was approximated as a Gaussian beam (FWHM = 2.11 and 1.05 mm for those pulses, respectively). The backscatter signal envelope histograms generally followed the Rayleigh distribution for mono-disperse and poly-disperse samples. However, for samples with partially ordered nuclei, if the irradiating pulse contained a frequency for which ultrasound wavelength and scatter periodicity became

  12. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    Science.gov (United States)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  13. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  14. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  15. Real-time garbage collection for list processing using restructured cells for increased reference counter size

    Science.gov (United States)

    Shuler, Jr., Robert L. (Inventor)

    1990-01-01

    In a list processing system, small reference counters are maintained in conjunction with memory cells for the purpose of identifying memory cells that become available for re-use. The counters are updated as references to the cells are created and destroyed, and when a counter of a cell is decremented to logical zero the cell is immediately returned to a list of free cells. In those cases where a counter must be incremented beyond the maximum value that can be represented in a small counter, the cell is restructured so that the additional reference count can be represented. The restructuring involves allocating an additional cell, distributing counter, tag, and pointer information among the two cells, and linking both cells appropriately into the existing list structure.

  16. Silica Nanoparticle-induced Cytokine Responses in BEAS-2B and HBEC3-KT Cells: Significance of Particle Size and Signalling Pathways in Different Lung Cell Cultures.

    Science.gov (United States)

    Låg, Marit; Skuland, Tonje; Godymchuk, Anna; Nguyen, Thu H T; Pham, Hang L T; Refsnes, Magne

    2018-01-15

    We have previously reported that silica nanoparticles (SiNPs) of nominal size 50 nm (Si50) induce the pro-inflammatory cytokines CXCL8 and IL-6 in BEAS-2B cells, via mechanisms involving MAPK p38, TACE-mediated TGF-α release and the NF-κB pathway. In this study, we examined whether these findings are cell specific or might be extended to another epithelial lung cell model, HBEC3-KT, and also to SiNPs of a smaller size (nominal size of 10 nm; Si10). The TEM average size of Si10 and Si50 was 10.9 and 34.7 nm, respectively. The surface area (BET) of Si10 was three times higher than for Si50 per mass unit. With respect to hydrodynamic size (DLS), Si10 in exposure medium showed a higher z-average for the main peak than Si50, indicating more excessive agglomeration. Si10 strongly induced CXCL8 and IL-6, as assessed by ELISA and RT-PCR, and was markedly more potent than Si50, even when adjusted to equal surface area. Furthermore, Si10 was far more cytotoxic, measured as lactate dehydrogenase (LDH) release, than Si50 in both epithelial cell cultures. With respect to signalling pathways, Western analysis and experiments with and without inhibition of MAPK, TACE and NF-κB (synthetic inhibitors) revealed that p38-phosphorylation, TACE-mediated TGF-α release and NF-κB activation seem to be important triggering mechanisms for both Si50 and Si10 in the two different lung epithelial cell cultures. In conclusion, the identified signalling pathways are suggested to be important in inducing cytokine responses in different epithelial cell types and also for various sizes of silica nanoparticles. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.

    Science.gov (United States)

    Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten

    2011-07-01

    Engineered amorphous silica nanoparticles (SiO(2)-NPs) are widely used in dyes, varnishes, plastics and glue, as well as in pharmaceuticals, cosmetics and food. Novel composite SiO(2)-NPs are promising multifunctional devices and combine labels for subsequent tracking and are functionalized e.g. to specifically target cells to deliver their cargo. However, biological and potential toxic effects of SiO(2)-NPs are insufficiently understood. The aim of this study was to determine the uptake and fate of SiO(2)-NPs in mammalian cells. Also, silica submicron particles (SiO(2)-SMPs) were included in the studies in order to identify effects, which are only observed for nano-sized SiO(2) particles. Fluorescently labelled SiO(2)-NPs (nominal size 70 nm) and SiO(2)-SMPs (nominal size 200 and 500 nm) were used to examine cytotoxicity, cellular uptake and localization in human cervical carcinoma cells (HeLa). Particle uptake and intracellular localization in mitochondria, endosomes, lysosomes and nuclei were studied by wide field and confocal laser scanning fluorescence microscopy. Physicochemical characterization of SiO(2)-NPs by transmission electron microscopy and dynamic light scattering revealed a spherical morphology and a monodisperse size distribution. In the presence of serum, all SiO(2) particles are non-toxic. However, in the absence of serum SiO(2)-NPs but not SiO(2)-SMPs are highly toxic. SiO(2) particles, irrespective of size, were detected in the cytosol and accumulated in endosomal compartments of HeLa cells. No accumulation of SiO(2) particles in nuclei or mitochondria of HeLa cells could be observed. In contrast to SiO(2)-SMPs, SiO(2)-NPs are preferentially localized in lysosomes.

  18. Size Matters: How Scaling Affects the Interaction between Grid and Border Cells

    Directory of Open Access Journals (Sweden)

    Diogo Santos-Pata

    2017-07-01

    Full Text Available Many hippocampal cell types are characterized by a progressive increase in scale along the dorsal-to-ventral axis, such as in the cases of head-direction, grid and place cells. Also located in the medial entorhinal cortex (MEC, border cells would be expected to benefit from such scale modulations. However, this phenomenon has not been experimentally observed. Grid cells in the MEC of mammals integrate velocity related signals to map the environment with characteristic hexagonal tessellation patterns. Due to the noisy nature of these input signals, path integration processes tend to accumulate errors as animals explore the environment, leading to a loss of grid-like activity. It has been suggested that border-to-grid cells' associations minimize the accumulated grid cells' error when rodents explore enclosures. Thus, the border-grid interaction for error minimization is a suitable scenario to study the effects of border cell scaling within the context of spatial representation. In this study, we computationally address the question of (i border cells' scale from the perspective of their role in maintaining the regularity of grid cells' firing fields, as well as (ii what are the underlying mechanisms of grid-border associations relative to the scales of both grid and border cells. Our results suggest that for optimal contribution to grid cells' error minimization, border cells should express smaller firing fields relative to those of the associated grid cells, which is consistent with the hypothesis of border cells functioning as spatial anchoring signals.

  19. Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population.

    Science.gov (United States)

    Kozlitina, Julia; Garcia, Christine Kim

    2012-01-01

    Although mutations in the genes encoding either the protein or RNA component of telomerase have been found in patients with various blood disorders, the impact of telomere length on hematopoiesis is less well understood for subjects from the general population. Here we have measured telomere lengths of genomic DNA isolated from circulating leukocytes of 3157 subjects, ranging from 18 to 85 years of age, enrolled in a large multiethnic population based study, the Dallas Heart Study 2. Shorter telomere lengths are marginally associated with lower red blood cell counts in this cohort, but are significantly associated with larger mean red blood cell size (as measured by the MCV), increased red blood cell distribution width (RDW), higher hemoglobin levels and lower platelet counts, even after correction for age, gender and ethnicity (p-values of 50 years vs. p = 0.0006 for size in a large urban US population and suggests a biologic mechanism for macrocytosis of aging.

  20. Change in number and size of circulating tumor cells with high telomerase activity during treatment of patients with gastric cancer.

    Science.gov (United States)

    Ito, Hiroaki; Yamaguchi, Noriko; Onimaru, Manabu; Kimura, Satoshi; Ohmori, Tohru; Ishikawa, Fumihiro; Sato, Jun; Ito, Shun; Inoue, Haruhiro

    2016-12-01

    Detection of circulating tumor cells (CTCs) in peripheral blood is useful for estimating the prognosis of patients with cancer. We previously reported the detection of CTCs by OBP-401, a telomerase-specific, replication-selective, oncolytic adenoviral agent carrying the green fluorescent protein (GFP) gene. We demonstrated that the number of large (L)-GFP+ cells (≥7.735 µm in diameter) in peripheral blood samples correlated significantly with the prognosis of treatment-naïve gastric cancer patients, whereas the number of small (S)-GFP+ cells (number of GFP+ cells during treatment, and analyzed the association between the number of GFP+ cells in blood samples and the outcome of patients. Peripheral blood samples were obtained from 37 gastric patients prior and subsequent to surgery (three samples per time point). Upon infection of blood cells with OBP-401, GFP+ cells of different sizes were counted and measured. The association between the number of GFP+ cells and surgical outcome was determined by statistical analysis. The median follow-up period after surgery was 39 months. Although the difference was not significant, patients with ≥6 L-GFP+ cells in preoperative blood samples had a lower relapse-free survival rate than patients with 0-5 L-GFP+ cells. There was no significant correlation between the number of L-GFP+ cells in postoperative blood samples and the prognosis of patients receiving adjuvant therapy. Although the difference was not significant, the number of S-GFP+ cells in samples from patients who had received postoperative chemotherapy was higher than in those who had not. The number of L-GFP+ cells was not significantly correlated with the relapse-free survival rate in gastric cancer patients who underwent surgery. The number of S-GFP+ cells was relatively high in samples from patients who had received postoperative chemotherapy.

  1. Optimized Size and Tab Width in Partial Solar Cell Modules including Shingled Designs

    Directory of Open Access Journals (Sweden)

    Julius Roeth

    2017-01-01

    Full Text Available Cell-to-module loss (CTM loss is defined by optical and electrical losses. Using partial solar cells can reduce ohmic losses. Today, some manufactures use halved cells even if they have to employ extra effort for sorting, placing, and soldering the solar cells. In this work, the advantage of partial solar cells is described. An LTSpice simulation is used to quantify the reduced ohmic loss and the resulting efficiency gain for differently separated solar cells. This efficiency gain is compared with the whole module area caused by the tab and cell areas. The additional gain due to the backsheet reflection is added afterwards. It can be pointed out that the use of half cells is a technical optimal application while not using shingled modules.

  2. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  3. Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A.K. [PPF Cellules solaires photovoltaiques plastiques, Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 Bd Lavoisier, 49045 Angers (France); Nunzi, J.M. [PPF Cellules solaires photovoltaiques plastiques, Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 Bd Lavoisier, 49045 Angers (France); Departments of Chemistry and Physics at Queen' s University, Kingston K7L 3N6, Ontario (Canada)], E-mail: nunjijm@queensu.ca; Ratier, B. [XLim Institute of research, UMR-CNRS 6172, Faculte des Sciences de l' Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges (France); Moliton, A. [XLim Institute of research, UMR-CNRS 6172, Faculte des Sciences de l' Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges (France)], E-mail: andre.moliton@unilim.fr

    2008-02-18

    Electromagnetic study of organic photovoltaic cells design shows that electrical parameters depend drastically on the active area geometry: we theoretically show that electrical parameters are altered when the cell length becomes greater than one centimeter. Experimental verification is provided with simple molecular heterojunction cells with areas from 0.03 to 0.78 cm{sup 2}.

  4. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation

    DEFF Research Database (Denmark)

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N.; Svahn, Helene Andersson

    2017-01-01

    in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped...

  5. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    Science.gov (United States)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  6. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: Young larvae of the honey bee (Apis mellifera are totipotent; they can become either queens (reproductives or workers (largely sterile helpers. DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. METHODOLOGY/PRINCIPAL FINDINGS: We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. CONCLUSIONS/SIGNIFICANCE: We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same.

  7. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae).

    Science.gov (United States)

    Shi, Yuan Yuan; Huang, Zachary Y; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-04-26

    Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same.

  8. Size and number of DNA molecules from Chinese hamster ovary cells determined by molecular autoradiography

    International Nuclear Information System (INIS)

    Todd, M.B.

    1980-06-01

    A new method for visualization of separable subunits of DNA is described. Autoradiography of tritium-labeled DNA from one or a few nuclei, lysed with detergent, moderate salt, and proteases, and gently deposited on a filter, allows determination of subunit molecular weight, size distribution, number per nucleus, and organization. The shape of the size distribution of CHO subunit images is similar to that of CHO mitotic chromosomes, and the numbers of subunits per nucleus supports a model of eight subunits per chromosome

  9. Immunohistochemical study of hepatocyte, cholangiocyte and stem cell markers of hepatocellular carcinoma: the second report: relationship with tumor size and cell differentiation.

    Science.gov (United States)

    Kumagai, Arisa; Kondo, Fukuo; Sano, Keiji; Inoue, Masafumi; Fujii, Takeshi; Hashimoto, Masaji; Watanabe, Masato; Soejima, Yurie; Ishida, Tsuyoshi; Tokairin, Takuo; Saito, Koji; Sasajima, Yuko; Takahashi, Yoshihisa; Uozaki, Hiroshi; Fukusato, Toshio

    2016-07-01

    The purpose of this study is to investigate whether ordinary hepatocellular carcinomas (HCCs) show positivity of stem/progenitor cell markers and cholangiocyte markers during the process of tumor progression. Ninety-four HCC lesions no larger than 8 cm from 94 patients were immuno-histochemically studied using two hepatocyte markers (Hep par 1 and α-fetoprotein), five cholangiocyte markers (cytokeratin CK7, CK19, Muc1, epithelial membrane antigen and carcinoembryonic antigen) and three hepatic stem/progenitor cell markers (CD56, c-Kit and EpCAM). The tumors were classified into three groups by tumor size: S1, tumors were also classified according to tumor differentiation: well, moderately and poorly differentiated. The relationship between the positive ratios of these markers, tumor size and tumor differentiation was examined. The positive ratios of cholangiocyte markers tended to be higher in larger sized and more poorly differentiated tumors (except for CK7). The positive ratios of stem/progenitor cell markers tended to be higher in larger sized and more poorly differentiated tumors (except for c-Kit). Ordinary HCC can acquire the characteristic of positivity of cholangiocyte and stem/progenitor cell markers during the process of tumor progression. © 2016 The Authors. Journal of Hepato-Biliary-Pancreatic Sciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  10. Cell encapsulation in sub-mm sized gel modules using replica molding.

    Directory of Open Access Journals (Sweden)

    Alison P McGuigan

    Full Text Available For many types of cells, behavior in two-dimensional (2D culture differs from that in three-dimensional (3D culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method--one that is similarly convenient, flexible, and reproducible--exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules in a variety of simple shapes (cylinders, crosses, rectangular prisms with lateral dimensions between 40 and 1000 microm, cell densities of 10(5-10(8 cells/cm(3, and total volumes between 1x10(-7 and 8x10(-4 cm(3. By varying (i the initial density of cells at seeding, and (ii the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (10(8-10(9 cells/cm(3. This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii developing applications in tissue engineering.

  11. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    Shinya Matsuoka

    Full Text Available In order to sustain lifelong production of gametes, many animals have evolved a stem cell-based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs arise from a pool of primordial germ cells (PGCs that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe, limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell-cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating

  12. Uptake of Gold Nanoparticles by Intestinal Epithelial Cells: Impact of Particle Size on Their Absorption, Accumulation, and Toxicity.

    Science.gov (United States)

    Yao, Mingfei; He, Lili; McClements, David Julian; Xiao, Hang

    2015-09-16

    Inorganic nanomaterials have been increasingly utilized in many consumer products, which has led to concerns about their potential toxicity. At present, there is limited knowledge about the gastrointestinal fate and cytotoxicity of ingested inorganic nanoparticles. This study determined the influence of particle size and concentration of gold nanoparticles (AuNPs) on their absorption, accumulation, and cytotoxicity in model intestinal epithelial cells. As the mean particle diameter of the AuNPs decreased (from 100 to 50 to 15 nm), their rate of absorption by the intestinal epithelium cells increased, but their cellular accumulation in the epithelial cells decreased. Moreover, accumulation of AuNPs caused cytotoxicity in the intestinal epithelial cells, which was evidenced by depolarization of mitochondria membranes. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity.

  13. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements

    International Nuclear Information System (INIS)

    Ghosh, N.; Buddhiwant, P.; Uppal, A.; Majumder, S.K.; Patel, H.S.; Gupta, P.K.

    2006-01-01

    We present a fast and accurate approach for simultaneous determination of both the mean diameter and refractive index of a collection of red blood cells (RBCs). The approach uses the peak frequency of the power spectrum and the corresponding phase angle obtained by performing Fourier transform on the measured angular distribution of scattered light to determine these parameters. Results on the measurement of two important clinical parameters, the mean cell volume and mean cell hemoglobin concentration of a collection of RBCs, are presented

  14. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  15. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    International Nuclear Information System (INIS)

    Santana, Steven Michael; Kirby, Brian J; Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell–cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells. (paper)

  16. Temporal anomaly detection: an artificial immune approach based on T cell activation, clonal size regulation and homeostasis.

    Science.gov (United States)

    Antunes, Mário J; Correia, Manuel E

    2010-01-01

    This paper presents an artificial immune system (AIS) based on Grossman's tunable activation threshold (TAT) for temporal anomaly detection. We describe the generic AIS framework and the TAT model adopted for simulating T Cells behaviour, emphasizing two novel important features: the temporal dynamic adjustment of T Cells clonal size and its associated homeostasis mechanism. We also present some promising results obtained with artificially generated data sets, aiming to test the appropriateness of using TAT in dynamic changing environments, to distinguish new unseen patterns as part of what should be detected as normal or as anomalous. We conclude by discussing results obtained thus far with artificially generated data sets.

  17. Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2015-10-01

    Full Text Available A perovskite-type solar cell with a substrate size of 70 mm × 70 mm was fabricated by a simple spin-coating method using a mixed solution. The photovoltaic properties of the TiO2/CH3NH3PbI3-based photovoltaic devices were investigated by current density-voltage characteristic and incident photon to current conversion efficiency measurements. Their short-circuit current densities were almost constant over a large area. The photoconversion efficiency was influenced by the open-circuit voltage, which depended on the distance from the center of the cell.

  18. Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Meneghini, R.; Cordeiro-Stone, M.; Schumacher, R.I.

    1981-01-01

    Native newly synthesized DNA from human cells (xeroderma pigmentosum type) irradiated with ultraviolet light releases short pieces of DNA (L-DNA) when incubated with the single-strand specific S 1 nuclease. This is not observed in the case of unirradiated cells. Previous experiments had shown that the L-DNA resulted from the action of S 1 nuclease upon gaps, i.e., single-stranded DNA discontinuities in larger pieces of double-stranded DNA. We verified that the duplex L-DNA, that arises from the inter-gap regions upon S 1 nuclease treatment, has a size which approximates the distance between two pyrimidine dimers on the same strand. A method was devised to measure the size of the gaps. These parameters have been considered in the proposition of a model for DNA synthesis on a template containing pyrimidine dimers

  19. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles

    International Nuclear Information System (INIS)

    Hu, Zunyan; Li, Jianqiu; Xu, Liangfei; Song, Ziyou; Fang, Chuan; Ouyang, Minggao; Dou, Guowei; Kou, Gaihong

    2016-01-01

    Highlights: • Fuel economy, lithium battery size and powertrain system durability are incorporated in optimization. • A multi-objective power allocation strategy by taking battery size into consideration is proposed. • Influences of battery capacity and auxiliary power on strategy design are explored. • Battery capacity and fuel cell service life for the system life cycle cost are optimized. - Abstract: The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.

  20. Diet and Cell Size Both Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (Apis mellifera, Apidae)

    OpenAIRE

    Shi, Yuan Yuan; Huang, Zachary Y.; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-01-01

    BACKGROUND: Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. METHODOLOGY/PRINCIPAL FINDINGS: We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene ...

  1. Development and Application of ANN Model for Worker Assignment into Virtual Cells of Large Sized Configurations

    International Nuclear Information System (INIS)

    Murali, R. V.; Fathi, Khalid; Puri, A. B.

    2010-01-01

    This paper presents an extended version of study already undertaken on development of an artificial neural networks (ANNs) model for assigning workforce into virtual cells under virtual cellular manufacturing systems (VCMS) environments. Previously, the same authors have introduced this concept and applied it to virtual cells of two-cell configuration and the results demonstrated that ANNs could be a worth applying tool for carrying out workforce assignments. In this attempt, three-cell configurations problems are considered for worker assignment task. Virtual cells are formed under dual resource constraint (DRC) context in which the number of available workers is less than the total number of machines available. Since worker assignment tasks are quite non-linear and highly dynamic in nature under varying inputs and conditions and, in parallel, ANNs have the ability to model complex relationships between inputs and outputs and find similar patterns effectively, an attempt was earlier made to employ ANNs into the above task. In this paper, the multilayered perceptron with feed forward (MLP-FF) neural network model has been reused for worker assignment tasks of three-cell configurations under DRC context and its performance at different time periods has been analyzed. The previously proposed worker assignment model has been reconfigured and cell formation solutions available for three-cell configuration in the literature are used in combination to generate datasets for training ANNs framework. Finally, results of the study have been presented and discussed.

  2. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  3. Splenic Size in Sickle Cell Anaemia Patients in A Tertiary Hospital ...

    African Journals Online (AJOL)

    Sickle cell disease is one of the common haemoglobinopathies in the world. It can affect any organ in the body and one of the most common and an early organ to be affected in SCA is the spleen. Reports have shown that patients with sickle cell anaemia (HbSS) have an increased susceptibility to infection leading to ...

  4. Perylenes as sensitizers in hybrid solar cells : how molecular size influences performance

    NARCIS (Netherlands)

    Li, Chen; Liu, Zhihong; Schoneboom, Jan; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Mullen, Klaus; Schöneboom, Jan; Grätzel, Michael; Janssen, René

    2009-01-01

    Dye-sensitized solar cells (DSCs), one kind of hybrid solar cells, are being intensively developed due to their high efficiency and low cost. One of the main factors to improve the efficiency is the minimization of the recombination of holes and electrons at the TiO(2)/dye/electrolyte interface. To

  5. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches

    CSIR Research Space (South Africa)

    Evers-King, H

    2014-05-01

    Full Text Available ocean colour products To put these results in to the context of current ocean colour products, Fig. 5 shows an approx- imation of the maximum band ratio (MBR) approach used in the OC4 algorithm [37] using forward model output (ES) analogous to the data...], suggesting that variability in a∗φ (in our case, coincident with changes in size) may be obscured by agd , particularly at lower biomass, where the majority of the size related signal occurs in the blue and MBR approaches are typically applied (Fig. 1). Sauer...

  6. Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models

    Science.gov (United States)

    Yohan, Darren; Yang, Celina; Lu, Xiaofeng; Chithrani, Devika B.

    2016-03-01

    Gold nanoparticles (GNPs) can be used as a model NP system to improve the interface between nanotechnology and medicine since their size and surface properties can be tailored easily. GNPs are being used as radiation dose enhancers and as drug carriers in cancer research. Hence, it is important to know the optimum NP size for uptake not only at monolayer level but also at tissue level. Once GNPs leave tumor vasculature, they enter the tumor tissue. Success of any therapeutic technique using NPs depends on how well NPs penetrate the tumor tissue and reach individual tumor cells. In this work, multicellular layers (MCLs) were grown to model the post-vascular tumor environment. GNPs of 20 nm and 50 nm diameters were used to elucidate the effects of size on the GNP penetration and distribution dynamics. Larger NPs (50 nm) were better at monolayer level, but smaller NPs (20 nm) were at tissue level. The MCLs exhibited a much more extensive extracellular matrix (ECM) than monolayer cell cultures. This increased ECM created a barrier for NP transport and ECM was also dependent on the tumor cell lines. Smaller NPs penetrated better compared to larger NPs. Transport of NPs was better in MDA-MB231 vs MCF-7. This MCL model tissue structures are better tools to optimize NP transport through tissue before using them in animal models. Based on our study, we believe that smaller NPs are better for improved outcome in future cancer therapeutics.

  7. The growth rate and size of the mastoid air cell system and mastoid bone: a review and reference.

    Science.gov (United States)

    Cinamon, Udi

    2009-06-01

    This review suggests a reference to the postnatal growth of mastoid air cells and bone. Information was retrieved from studies having large consecutive age groups, in order to reveal a development pattern. Data regarding origin, gender, and antibiotic treatment was investigated as well. Most measurements were obtained by planimetry. Assessment of the various data sources suggested the antrum to be well developed at birth (1-1.5 cm2), the mastoid cells to be about 3.5-4 cm2 at 1 year, followed by a linear growth till the age of 6 (1-1.2 cm2/year), having a slower increment up to adult size at puberty (approximately 12 cm2). The mastoid bone expansion is about 0.6-0.9 cm/year in length and width and 0.4 cm/year in depth in the first year, followed by half that rate until the age of 6-7. At puberty there was a slower sprout reaching adult size. Different ethnic groups share similar mastoid aeration and bone growth patterns. There were no differences between mastoid aeration measured at the pre-antibiotic era and after its widespread use. In conclusion, there are three distinguishable phases of mastoid pneumatization from birth till reaching final size. Bone and air cell compartments share a similar growth pattern; bone expansion lags behind aeration. Antibiotic treatment for otitis may have no impact upon mastoid aeration.

  8. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression.

    Science.gov (United States)

    Woodruff, Prescott G; Dolganov, Gregory M; Ferrando, Ronald E; Donnelly, Samantha; Hays, Steven R; Solberg, Owen D; Carter, Roderick; Wong, Hofer H; Cadbury, Peggy S; Fahy, John V

    2004-05-01

    Bronchial hyperresponsiveness in mild to moderate asthma may result from airway smooth muscle cell proliferation or acquisition of a hypercontractile phenotype. Because these cells have not been well characterized in mild to moderate asthma, we examined the morphometric and gene expression characteristics of smooth muscle cells in this subgroup of patients with asthma. Using bronchial biopsies from 14 subjects with mild to moderate asthma and 15 control subjects, we quantified smooth muscle cell morphology by stereology and the expression of a panel of genes related to a hypercontractile phenotype of airway smooth muscle, using laser microdissection and two-step real-time polymerase chain reaction. We found that airway smooth muscle cell size was similar in both groups, but cell number was nearly twofold higher in subjects with asthma (p = 0.03), and the amount of smooth muscle in the submucosa was increased 50-83% (p 0.1). We conclude that airway smooth muscle proliferation is a pathologic characteristic of subjects with mild to moderate asthma. However, smooth muscle cells in mild to moderate asthma do not show hypertrophy or gene expression changes of a hypercontractile phenotype observed in vitro.

  9. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Longfei Guan

    2016-05-01

    Full Text Available The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1–2.5, and 2.5–10 µm in an aerodynamic diameter ambient particulate matter (PM on reactive oxygen species (ROS activity and cell viability in human bronchial epithelial cells (BEAS-2B. The PM samples were collected from an urban site (uPM in Beijing and a steel factory site (sPM in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function.

  10. Distinct MicroRNA Subcellular Size and Expression Patterns in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Beibei Chen

    2012-01-01

    Full Text Available Introduction. Small noncoding RNAs have important regulatory functions in different cell pathways. It is believed that most of them mainly play role in gene post-transcriptional regulation in the cytoplasm. Recent evidence suggests miRNA and siRNA activity in the nucleus. Here, we show distinct genome-wide sub-cellular localization distribution profiles of small noncoding RNAs in human breast cancer cells. Methods. We separated breast cancer cell nuclei from cytoplasm, and identified small RNA sequences using a high-throughput sequencing platform. To determine the relationship between miRNA sub-cellular distribution and cancer progression, we used microarray analysis to examine the miRNA expression levels in nucleus and cytoplasm of three human cell lines, one normal breast cell line and two breast cancer cell lines. Logistic regression and SVM were used for further analysis. Results. The sub-cellular distribution of small noncoding RNAs shows that numerous miRNAs and their isoforms (isomiR not only locate to the cytoplasm but also appeare in the nucleus. Subsequent microarray analyses indicated that the miRNA nuclear-cytoplasmic-ratio is a significant characteristic of different cancer cell lines. Conclusions. Our results indicate that the sub-cellular distribution is important for miRNA function, and that the characterization of the small RNAs sub-cellular localizome may contribute to cancer research and diagnosis.

  11. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Directory of Open Access Journals (Sweden)

    Lisa Fauteux

    Full Text Available There is now evidence that aerobic anoxygenic phototrophic (AAP bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively. AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC, whereas cell-specific BChla content was negatively related to chlorophyll a (Chla. As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  12. β-Glucan Size Controls Dectin-1-Mediated Immune Responses in Human Dendritic Cells by Regulating IL-1β Production

    Directory of Open Access Journals (Sweden)

    Matthew J. Elder

    2017-07-01

    Full Text Available Dectin-1/CLEC7A is a pattern recognition receptor that recognizes β-1,3 glucans, and its stimulation initiates signaling events characterized by the production of inflammatory cytokines from human dendritic cells (DCs required for antifungal immunity. β-glucans differ greatly in size, structure, and ability to activate effector immune responses from DC; as such, small particulate β-glucans are thought to be poor activators of innate immunity. We show that β-glucan particle size is a critical factor contributing to the secretion of cytokines from human DC; large β-glucan-stimulated DC generate significantly more IL-1β, IL-6, and IL-23 compared to those stimulated with the smaller β-glucans. In marked contrast, the secretion of TSLP and CCL22 were found to be insensitive to β-glucan particle size. Furthermore, we show that the capacity to induce phagocytosis, and the relative IL-1β production determined by β-glucan size, regulates the composition of the cytokine milieu generated from DC. This suggests that β-glucan particle size is critically important in orchestrating the nature of the immune response to fungi.

  13. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ajita, J.; Saravanan, S.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2015-08-01

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol–gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7 ± 0.62 nm, nBG-2: 43.25 ± 1.5 nm, and nBG-3: 37.6 ± 0.81 nm). All three nBGs were non-toxic at a concentration of 20 mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. - Highlights: • Three different sizes of bioactive glass nanoparticles (nBGs) were prepared via the sol–gel method. • Increased concentrations of polyethylene glycol decreased the size of nBG particles. • All three nBGs were non-toxic at a concentration of 20 mg/mL. • Cell number, cell cycle phase analysis, cyclin gene expression and ERK activation were studied. • Increased proliferation was observed in mMSCs treated with smaller nBG particles.

  14. [Sizes of bacterial cells in soils determined by cascade filtration technique].

    Science.gov (United States)

    Polianskaia, L M; Gorodnichev, R B; Zviagintsev, D G

    2013-01-01

    This paper studies the number of bacteria in typical chernozem and mountain-meadow soil by the traditional method and the cascade filtration technique. The total number of bacteria in these soils, which was obtained in filters of different diameters during filtering the suspension of a certain amount, is 1.5-5 times higher than that obtained by the traditional method. In the structure of the bacterial biomass in both soils, the biomass of bacterial cells with a diameter of 0.38-0.43 microm was dominating by 8-90%. In the typical chernozem, the biomass of cells with a diameter of 0.17 microm was slightly more than 1%; in the mountain-meadow soil, the percentage of the biomass of cells with a diameter of 0.17 microm increased by 5%. The average volume and diameter of the bacteria in the studied soils were calculated. In typical chernozem, the average volume of bacterial cells was equal to 0.0046 microm3 and the diameter was 0.206 microm. In the mountain-meadow soils, these values were slightly lower, 0.0038 microm3 and 0.194 microm, respectively. The biomass of the bacterial cells, which is usually calculated based on the cell volume of 0.1 microm3, is overestimated by about five times when counting the number on the filters. The percentage of the real biomass of soil bacteria is traditionally much lower than that estimated.

  15. Effects of Chronic Blood-Flow Restriction Exercise on Skeletal Muscle Size and Myogenic Satellite Cell Expression

    DEFF Research Database (Denmark)

    Aagaard, Per; Jacobsen, Mikkel; Jensen, Kasper Y.

    2016-01-01

    of continued sports activity, resulting in visible hypertrophy of his left leg. AIM: To study the effect of chronic blood-flow restricted (BFR) exercise conditions on skeletal muscle size and myogenic satellite cell (SC) expression in an arterio-venous shunt patient. METHODS: Muscle biopsies were obtained from......-regulation in myogenic satellite cell activity within all stages of the cell cycle, which was accompanied by substantial muscle hypertrophy. Specifically, muscle fiber cross-sectional area (40%) and myonuclei number (15%) were elevated in the affected leg, together with an elevated myonuclear domain (20%). This single......-case study confirms previous result from our Lab demonstrating that blood-flow restricted muscle exercise leads to a marked activation of myogenic SCs, upregulated myonuclei number and marked myofiber hypertrophy....

  16. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    Science.gov (United States)

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; Moreno de Alborán, Ignacio

    2005-05-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth.

  17. [Increased Size of Epidermal Cells in Syringa josikaea Jacq. Smaller Leaf Side as an Adaptive Mechanism for Reducing Its Asymmetry].

    Science.gov (United States)

    Polonskii, V I; Polyakova, I S

    2015-01-01

    Comparative study of quantitative anatomy of the epidermis in Syringa josikaea Jacq. leaf halves of different width was conducted in order to analyze the possible mechanism of formation of the value of fluctuating leaf asymmetry. A regular decrease in the density of main epidermal cells in the smaller leaf half compared with the bigger one was traced during leaf ontogeny. Stomatal index was equal in different-sized leaf halves. Adaptive response was found in fully formed leaves; it was aimed at reducing leaf blade fluctuating asymmetry by 23% on average and consisted of compensatory growth--further elongation of main epidermal cells in the smaller half of the leaf. It was concluded that the level of fluctuating leaf asymmetry in Hungary lilac is mainly due to a lower rate of cell division, as well as due to their greater elongation in the smaller half of adult leaf compared with the bigger half.

  18. Cell-size distribution and scaling in a one-dimensional Kolmogorov-Johnson-Mehl-Avrami lattice model with continuous nucleation

    Science.gov (United States)

    Néda, Zoltán; Járai-Szabó, Ferenc; Boda, Szilárd

    2017-10-01

    The Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth model is considered on a one-dimensional (1D) lattice. Cells can grow with constant speed and continuously nucleate on the empty sites. We offer an alternative mean-field-like approach for describing theoretically the dynamics and derive an analytical cell-size distribution function. Our method reproduces the same scaling laws as the KJMA theory and has the advantage that it leads to a simple closed form for the cell-size distribution function. It is shown that a Weibull distribution is appropriate for describing the final cell-size distribution. The results are discussed in comparison with Monte Carlo simulation data.

  19. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.

    Science.gov (United States)

    Carvalho, Kevin; Tsai, Feng-Ching; Tsai, Feng C; Lees, Edouard; Voituriez, Raphaël; Koenderink, Gijsje H; Sykes, Cecile

    2013-10-08

    Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.

  20. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Giannakou, Christina; Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [Philips Innovation Services (Netherlands)

    2016-09-15

    Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

  1. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  2. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  3. Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells

    KAUST Repository

    Dacarro, Giacomo

    2017-07-01

    The synthesis of large pentatwinned five-branched gold nanostars (GNS) has been modified so to obtain overall dimensions shrunk to 60% and a lower branches aspect ratio, leading to a dramatic blue shift of their two near-infrared (NIR) localized surface plasmon resonances (LSPR) absorptions but still maintaining one LSPR in the biotransparent NIR range. The interactions of polyethylene glycol (PEG) coated large and shrunk GNS with SH-SY5Y cells revealed that the large ones (DCI - diameter of the circumference in which GNS can be inscribed = 76 nm) are internalized more efficiently than the shrunk ones (DCI = 46 nm), correlating with a decreased cells surving fraction.

  4. Hydrogel Pore-Size Modulation for Enhanced Single-Cell Western Blotting.

    Science.gov (United States)

    Duncombe, Todd A; Kang, Chi-Chih; Maity, Santanu; Ward, Toby M; Pegram, Mark D; Murthy, Niren; Herr, Amy E

    2016-01-13

    Pore-gradient microgel arrays enable thousands of parallel high-resolution single-cell protein electrophoresis separations for targets accross a wide molecular mass (25-289 kDa), yet within 1 mm separation distances. Dual crosslinked hydrogels facilitate gel-pore expansion after electrophoresis for efficient and uniform immunoprobing. The photopatterned, light-activated, and acid-expandable hydrogel underpins single-cell protein analysis, here for oncoprotein-related signaling in human breast biopsy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    Science.gov (United States)

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  6. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  7. Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses.

    Science.gov (United States)

    De Momi, Anna; Lead, Jamie R

    2006-11-01

    Split-flow thin-cell (SPLITT) was employed in conventional mode (CSF), to size-fractionate colloids and particles from a selected freshwater. Imaging and quantification by calculations of particle size distributions (PSDs) and shape factors were performed on sample analyzed by conventional high vacuum scanning electron microscopy (SEM) and environmental SEM (ESEM), to investigate the ability of SPLITT to make accurate and nonperturbing separations. SEM and ESEM images of unperturbed and SPLITT-generated fractions were used in order to obtain qualitative and quantitative information about the properties of colloids and particles. Particle size distributions (PSDs) showed that separations were very good, agreeing with theoretical behavior. ESEM PSDs showed that up to 87-88% of the material in the a fraction (expected to be 1 microm) 87-95% of the material was the expected size. The SEM data indicated a slightly higher contamination of the b fraction with the presence of submicron colloids. Moreover, analysis of conformations indicated significant nonsphericity in unfractionated colloids and particles, but after SPLITT fractionation, shape factors showed that particles were significantly more spherical than before separation.

  8. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  9. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling

    Science.gov (United States)

    Park, Ju Hyuk; Yang, Sei Hyun; Lee, Hyeong Rae; Yu, Cheng Bin; Pak, Seong Yeol; Oh, Chi Sung; Kang, Yeon June; Youn, Jae Ryoun

    2017-06-01

    Sound absorption of a polyurethane (PU) foam was predicted for various geometries to fabricate the optimum microstructure of a sound absorbing foam. Multiscale numerical analysis for sound absorption was carried out by solving flow problems in representative unit cell (RUC) and the pressure acoustics equation using Johnson-Champoux-Allard (JCA) model. From the numerical analysis, theoretical optimum cell diameter for low frequency sound absorption was evaluated in the vicinity of 400 μm under the condition of 2 cm-80 K (thickness of 2 cm and density of 80 kg/m3) foam. An ultrasonic foaming method was employed to modulate microcellular structure of PU foam. Mechanical activation was only employed to manipulate the internal structure of PU foam without any other treatment. A mean cell diameter of PU foam was gradually decreased with increase in the amplitude of ultrasonic waves. It was empirically found that the reduction of mean cell diameter induced by the ultrasonic wave enhances acoustic damping efficiency in low frequency ranges. Moreover, further analyses were performed with several acoustic evaluation factors; root mean square (RMS) values, noise reduction coefficients (NRC), and 1/3 octave band spectrograms.

  10. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    NARCIS (Netherlands)

    Pinheiro, P.S.; Jansen, A.M.; de Wit, H.; Tawfik, B.; Madsen, K.L.; Verhage, M.; Gether, U.; Sørensen, J.B.

    2014-01-01

    Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6, a marker

  11. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability.

    Science.gov (United States)

    Chien, An-Chun; Zareh, Shannon Kian Gharabiklou; Wang, Yan Mei; Levin, Petra Anne

    2012-11-01

    How cells co-ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient-rich conditions. In nutrient-rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient-poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient-dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co-ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high-affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP-glc-dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP•UgtP and UgtP•FtsZ, fine-tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size. © 2012 Blackwell Publishing Ltd.

  12. Effects of cell size and macrosegregation on the corrosion behavior of a dilute Pb-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Daniel M.; Spinelli, Jose E.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, P.O. Box 6122, 13083-970 Campinas, Sao Paulo (Brazil)

    2006-11-08

    The aim of this study was to examine the effect of cooling rate on the cellular growth of a Pb-0.85wt%Sb alloy and to evaluate the influences of cell size and of the corresponding macrosegregation profile on the resultant corrosion behavior. In order to obtain the as-cast samples a water-cooled unidirectional solidification system was used. Such experimental set-up has permitted the development of a clear cellular structural array even for relative high cooling rates and has allowed a wide range of solidification conditions to be analyzed. Macrostructural and microstructural aspects along the casting were characterized by optical microscopy and scanning electron microscope (SEM) techniques. The electrochemical impedance spectroscopy technique and potentiodynamic curves (Tafel extrapolation) were used to analyze the corrosion resistance of samples collected along the casting length and immersed in a 0.5M H{sub 2}SO{sub 4} solution at 25{sup o}C. It was found that the corrosion rate decreases with increasing cell spacing and that the pre-programming of microstructure cell size can be used as an alternative way to produce as-cast components of Pb-Sb alloys, such as battery grids, with better corrosion resistance. (author)

  13. Evaluation of growth, cell size and biomass of Isochrysis aff. galbana (T-ISO with two LED regimes

    Directory of Open Access Journals (Sweden)

    Miguel Victor Cordoba-Matson

    2013-04-01

    Full Text Available In contrast to crops, there are fewer studies using LED-based light with green microalgae and none cultivating the microalga Isochrysis aff. galbana (T-ISO even though of its importance in marine aquaculture. The objective was to evaluate of white and red LEDs as an alternative source of light to cultivate I. aff. galbana (T-ISO. In order to carry this out white and red LEDs were used with a laboratory built Erlenmeyer-type photobioreactor to determine productivity, cell number and size and biomass composition. Results were compared with standard fluorescent lights of the same light intensity. The culture system consisted of 3 flasks for applying red LEDs and three for white LEDs and 3 control group flasks illuminated with the normal fluorescent lighting at the similar light intensity of ~60 mM m–2 s–1. It was found that the population cell density did not significantly increase with either red LEDs or white LEDs (p > 0.05, if at all. Standard fluorescent lighting (control group showed significant increases in population cell number (p < 0.05. Through microscopic observation cell size was found to be smaller for white LEDS and even smaller for red LEDs compared to fluorescent lighting. Biochemical composition of proteins, carbohydrates and lipids was similar for all light regimes. The authors suggest that the unexpected non-growth I. aff. galbana (T-ISO, a haptophyte microalga, with white and red LEDs is possibly due to fact that to initiate cell growth this microalgae requires other wavelengths (possibly green besides red and blue, to allow other pigments, probably fucoxanthin, to capture light

  14. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Srđenović Branislava U.

    2015-01-01

    Full Text Available Fullerenol (C60(OH24 nanoparticles (FNP have a significant role in biomedical research due to their numerous biological activities, some of which are cytoprotective and antioxidative properties. The aim of this study was to measure distribution of fullerenol nanoparticles and zeta potential in cell medium RPMI 1640 with 10% fetal bovine serum (FBS and to investigate the influence of FNP on Chinese hamster ovary cells (CHO-K1 survival, as well as to determine the activity of three antioxidative enzymes: superoxide-dismutase, glutathione-reductase and glutathione-S-transferase in mitomycin C-treated cell line. Our investigation implies that FNP, as a strong antioxidant, influence the cellular redox state and enzyme activities and thus may reduce cell proliferation, which confirms that FNP could be exploited for its use as a cytoprotective agent.[Projekat Ministarstva nauke Republike Srbije, br. III45005 i Pokrajinski Sekretarijat za nauku i tehnološki razvoj Vojvodine, grant number 114-451-2056/2011-01

  15. Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival

    DEFF Research Database (Denmark)

    Lamm, Trine Tandrup

    Neurodegenerative sygdomme er karakteriseret ved tab af nervefibre og nervecellelegemer. Tilstande med fysiske eller toksikologiske beskadigelser af de primære sensoriske nerveceller hos rotten har ofte været anvendt som model for forståelse af de processer, der fører til celledød eller -overleve...

  16. Patterns of hyperphagia in the Zucker obese rat: a role for fat cell size and number?

    Science.gov (United States)

    Vasselli, J R

    1985-06-01

    The hypothesis that adipocyte size and number influence feeding behavior, via as yet unidentified signals to the CNS, is reviewed. The proposal is made that, due to several metabolic alterations which favor lipid deposition, the genetically obese Zucker rat (fafa) may be an appropriate model in which to study feeding-adipose tissue relationships. Data from several studies are presented demonstrating that the developing male Zucker fatty rat displays hyperphagia during the growth period which reaches a peak, or "break point," and then declines such that intake of fatty and lean rats becomes comparable at approximately 20 weeks of age. Beyond week 20, cycles of hyperphagia of several weeks' duration can be detected in fatty rats. The above feeding changes are related to data showing that on a laboratory chow-type diet, adipocytes approach maximal size at 15-16 weeks in the fatty rat, while accelerated proliferation of adipocytes takes place following week 20. During growth, responding for food in an operant task by fatty rats varies in accord with the pattern of hyperphagia. Further studies in the fatty rat show that the duration and magnitude of developmental hyperphagia can be altered by manipulating the caloric density and macronutrient content of the diet, with fat containing diets leading to the earliest break point of developmental hyperphagia. Some theoretical problems with the notion of adipose tissue feedback control of feeding behavior are discussed.

  17. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice

    Science.gov (United States)

    Gelderblom, Mathias; Leypoldt, Frank; Lewerenz, Jan; Birkenmayer, Gabriel; Orozco, Denise; Ludewig, Peter; Thundyil, John; Arumugam, Thiruma V; Gerloff, Christian; Tolosa, Eva; Maher, Pamela; Magnus, Tim

    2012-01-01

    The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia. PMID:22234339

  18. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  19. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  20. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    Science.gov (United States)

    Guan, Longfei; Rui, Wei; Bai, Ru; Zhang, Wei; Zhang, Fang; Ding, Wenjun

    2016-01-01

    The aim of the present study was to investigate the effects of size-fractionated (i.e., Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO) significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function. PMID:27171105

  1. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects.

    Science.gov (United States)

    Herberg, Samuel; Aguilar-Perez, Alexandra; Howie, R Nicole; Kondrikova, Galina; Periyasamy-Thandavan, Sudharsan; Elsalanty, Mohammed E; Shi, Xingming; Hill, William D; Cray, James J

    2017-06-01

    Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  3. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells.

    Science.gov (United States)

    Ding, M; Kisin, E R; Zhao, J; Bowman, L; Lu, Y; Jiang, B; Leonard, S; Vallyathan, V; Castranova, V; Murray, A R; Fadeel, B; Shvedova, A A

    2009-12-15

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-kappaB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P(+)). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P(+) cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-kappaB more efficiently in JB6(+/+) cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6(+/+) cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  4. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications.

    Science.gov (United States)

    Ajita, J; Saravanan, S; Selvamurugan, N

    2015-08-01

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol-gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7±0.62 nm, nBG-2: 43.25±1.5 nm, and nBG-3: 37.6±0.81 nm). All three nBGs were non-toxic at a concentration of 20mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Life Cycle of the Centric Diatom Thalassiosira Weissflogii: Control of Gametogenesis and Cell Size

    Science.gov (United States)

    1990-06-01

    were proven to possess isogamous or morphologically equivalent haploid gametes, arguments flourished as to the exact nature of sexual reproduction in...require vitamin B12, the number of bacteria -free clones of diatoms maintained in culture increased dramatically during the fifties and sixties (Lewin...these divisions is the creation of four uniflagellated haploid sperm from each spermatogonium. Thus, a C. pavillardlL cell, for example, can create as

  6. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available resin-CB composites (with 70wt% loading). Keywords: Polydimethylsiloxane (PDMS); Polymer nanocomposite, Carbon black; Thermal conductivity; Thermal stability; Fuel cell Biographical notes: Hao Chen received his bachelor degree honours in physics... initiative (SANi), his current main research focus is related to smart and engineered nano-materials for photonics and renewable energy applications. Prof. V. Vasudeva Rao holds Bachelors Degree in Mechanical Engineering, Masters Degree...

  7. Biocompatible micro-sized cell culture chamber for the detection of nanoparticle-induced IL8 promoter activity on a small cell population

    Directory of Open Access Journals (Sweden)

    Oostingh Gertie

    2011-01-01

    Full Text Available Abstract In most conventional in vitro toxicological assays, the response of a complete cell population is averaged, and therefore, single-cell responses are not detectable. Such averaging might result in misinterpretations when only individual cells within a population respond to a certain stimulus. Therefore, there is a need for non-invasive in vitro systems to verify the toxicity of nanoscale materials. In the present study, a micro-sized cell culture chamber with a silicon nitride membrane (0.16 mm2 was produced for cell cultivation and the detection of specific cell responses. The biocompatibility of the microcavity chip (MCC was verified by studying adipogenic and neuronal differentiation. Thereafter, the suitability of the MCC to study the effects of nanoparticles on a small cell population was determined by using a green fluorescence protein-based reporter cell line. Interleukin-8 promoter (pIL8 induction, a marker of an inflammatory response, was used to monitor immune activation. The validation of the MCC-based method was performed using well-characterized gold and silver nanoparticles. The sensitivity of the new method was verified comparing the quantified pIL8 activation via MCC-based and standard techniques. The results proved the biocompatibility and the sensitivity of the microculture chamber, as well as a high optical quality due to the properties of Si3N4. The MCC-based method is suited for threshold- and time-dependent analysis of nanoparticle-induced IL8 promoter activity. This novel system can give dynamic information at the level of adherent single cells of a small cell population and presents a new non-invasive in vitro test method to assess the toxicity of nanomaterials and other compounds. PACS: 85.35.Be, 81.16.Nd, 87.18.Mp

  8. Biocompatible micro-sized cell culture chamber for the detection of nanoparticle-induced IL8 promoter activity on a small cell population

    Science.gov (United States)

    Kohl, Yvonne; Oostingh, Gertie J.; Sossalla, Adam; Duschl, Albert; von Briesen, Hagen; Thielecke, Hagen

    2011-08-01

    In most conventional in vitro toxicological assays, the response of a complete cell population is averaged, and therefore, single-cell responses are not detectable. Such averaging might result in misinterpretations when only individual cells within a population respond to a certain stimulus. Therefore, there is a need for non-invasive in vitro systems to verify the toxicity of nanoscale materials. In the present study, a micro-sized cell culture chamber with a silicon nitride membrane (0.16 mm2) was produced for cell cultivation and the detection of specific cell responses. The biocompatibility of the microcavity chip (MCC) was verified by studying adipogenic and neuronal differentiation. Thereafter, the suitability of the MCC to study the effects of nanoparticles on a small cell population was determined by using a green fluorescence protein-based reporter cell line. Interleukin-8 promoter (pIL8) induction, a marker of an inflammatory response, was used to monitor immune activation. The validation of the MCC-based method was performed using well-characterized gold and silver nanoparticles. The sensitivity of the new method was verified comparing the quantified pIL8 activation via MCC-based and standard techniques. The results proved the biocompatibility and the sensitivity of the microculture chamber, as well as a high optical quality due to the properties of Si3N4. The MCC-based method is suited for threshold- and time-dependent analysis of nanoparticle-induced IL8 promoter activity. This novel system can give dynamic information at the level of adherent single cells of a small cell population and presents a new non-invasive in vitro test method to assess the toxicity of nanomaterials and other compounds. PACS: 85.35.Be, 81.16.Nd, 87.18.Mp

  9. Endothelial Cell-derived Extracellular Vesicles Size-dependently Exert Procoagulant Activity Detected by Thromboelastometry.

    Science.gov (United States)

    Holnthoner, Wolfgang; Bonstingl, Cornelia; Hromada, Carina; Muehleder, Severin; Zipperle, Johannes; Stojkovic, Stefan; Redl, Heinz; Wojta, Johann; Schöchl, Herbert; Grillari, Johannes; Weilner, Sylvia; Schlimp, Christoph J

    2017-06-16

    Endothelial cells (ECs) are major modulators of hemostasis by expressing and releasing pro- and anticoagulant mediators into the circulation. Previous studies showed that cultured ECs release procoagulant mediators into cell culture supernatants as evidenced by the reduction of viscoelastic clotting time. This effect was reversed with an anti-tissue factor antibody. Here, we aimed to investigate whether tissue factor (TF) was released by endothelial-derived extracellular vesicles (EVs) and which portion of the released vesicles displays the most prominent procoagulant properties. After stimulation of ECs with tumor-necrosis factor-α (TNF-α) the supernatants of EC cultures were subjected to differential centrifugation steps to collect larger and smaller EVs which were then characterised by nanoparticle tracking analysis (NTA) and flow cytometry. Mixed with fresh human blood and analysed by thromboelastometry EVs exerted a significant procoagulant stimulus, which could be partly reversed by addition of an anti-TF antibody. Moreover, TF activity was confirmed in the centrifuged fractions. In summary, our results provide evidence of the procoagulant potential of smaller and larger endothelial-derived EV fractions detected by thromboelastometry. The observed effect is most likely due to the release of TF-bearing EVs of different dimensions, which are released upon TNF-α stimulation of endothelial cell cultures.

  10. Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.

    Science.gov (United States)

    Bhamidipati, Manjari; Fabris, Laura

    2017-02-15

    In recent years, we and others have become interested in evaluating the use of surface-enhanced Raman scattering (SERS) tags for early cancer detection and in designing new approaches to demonstrate the applicability of this spectroscopic technique in the clinic. SERS-based imaging in particular offers ultra sensitivity up to the single molecule, multiplexing capability, and increased photostability and has been shown to outperform fluorescence. However, to employ SERS tags for early cancer detection, it is important to understand their interaction with cells and determine their cytotoxicity. We have been particularly interested for quite some time in determining if and how gold nanostars, which have been demonstrated as outstanding SERS enhancing substrates, can be safely employed in living systems and translated to the clinic. In this study, we carried out a multiparametric in vitro study to look at the cytotoxicity and cellular uptake of gold nanoparticles on human glioblastoma and human dermal fibroblast cell lines. Cytotoxicity was evaluated by incubating cells with three different morphologies of AuNPs, namely nanospheres, nanorods, and nanostars, each having three different surface chemistries (cetyltrimethylammonium bromide (CTAB), poly(ethylene glycol) (PEG), and human serum albumin (HSA)). Our results showed that the surface chemistry of the nanoparticles had predominant effects on cytotoxicity, and the morphology and size of the nanoparticles only slightly affected cell viability. CTAB-coated particles were found to be the most toxic to cells, and PEGylated nanostars were determined to be the least toxic. Caspase-3 assay and LDH assay revealed that cell death occurs via apoptosis for cancerous cells and via necrosis for healthy ones. Cellular uptake studies carried out via TEM showed that the particles retain their shape even at long incubation times, which may be beneficial for in vivo SERS-based disease detection. Overall, this study provides valuable

  11. A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Guo, J.-W.; Gu, H.-Y.

    2010-01-01

    A nano-sized bionic function interface was prepared by immobilizing red blood cells onto a silver electrode, which was modified with cysteamine and colloidal gold. Scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize its surface. Cyclic voltammograms in phosphate buffer solution of pH 7.0 exhibited a pair of redox peaks for oxygen at -378 and -207 mV, respectively. The reduction peak currents at -378 mV were linearly proportional to the oxygen concentration in the range from 12.6 μM to 1.39 mM. Cyclic voltammetry also indicated that the functional surface enhanced the ability of red blood cells to transport oxygen. (author)

  12. Testis size, peripheral concentrations of testosterone, semen criteria and Sertoli and germ cell numbers in Nelore bulls

    Directory of Open Access Journals (Sweden)

    Erika Bezerra de Menezes

    2014-10-01

    Full Text Available A study was conducted to evaluate the associations among testis size, testosterone concentrations, semen parameters and aspects of spermatogenesis in Nelore bulls (n = 28. Testis size was measured from 10 to 29 months of age. Bulls were treated with GnRH (12 to 21 months and semen samples also collected from 25 to 29 months. At 30 months, animals were slaughtered. Correlations were significant when p < 0.05. Basal testosterone was highest at 18 months, suggesting that bulls reached puberty at this age. At 30 months, seminiferous tubules represented 77.9 ± 3.8 % of the testicular parenchyma and there were 33.6 ± 8.4 round spermatids/A1 spermatogonium/tubule section, indicating a 47.5% degeneration rate during spermatogenesis. At 30 months, heavier testis correlated with Sertoli cell numbers/testis (r = 0.77, and round spermatids/tubule section, Sertoli cell and A1 spermatogonium (r = 0.50 – 0.60. Scrotal circumference (SC taken between 10 and 29 months correlated with the percentage of tubules with spermatids (r = 0.42 – 0.59 and number of A1 spermatogonium and round spermatids/Sertoli cell (r = 0.49 – 0.68. Epididymal weight was related to Sertoli cell numbers/testis, and round spermatids/ Sertoli cell and A1 spermatogonium (r = 0.51 – 0.61. GnRH-stimulated testosterone from 17 to 21 months correlated with SC between 14 and 29 months (r = 0.48 – 0.60, testis and epididymal weights (r = 0.41 – 0.64 and with parameters of spermatogenesis (r = 0.44 – 0.58. Additionally, sperm motility and vigor from 25 to 29 months correlated with the number of tubules with spermatids (r = 0.42 – 0.59 and GnRH-stimulated testosterone at 12, 13 and 18 months (r = 0.46 – 0.57. In conclusion, testis size during and after the period of pronounced increases in testosterone is an indicator of quantitative parameters of spermatogenesis of post-pubertal bulls.

  13. Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Xu, Liangfei; Mueller, Clemens David; Li, Jianqiu; Ouyang, Minggao; Hu, Zunyan

    2015-01-01

    Highlights: • A non-linear model regarding fuel economy and system durability of FCEV. • A two-step algorithm for a quasi-optimal solution to a multi-objective problem. • Optimal parameters for DP algorithm considering accuracy and calculating time. • Influences of FC power and battery capacity on system performance. - Abstract: A typical topology of a proton electrolyte membrane (PEM) fuel cell electric vehicle contains at least two power sources, a fuel cell system (FCS) and a lithium battery package. The FCS provides stationary power, and the battery delivers dynamic power. In this paper, we report on the multi-objective optimization problem of powertrain parameters for a pre-defined driving cycle regarding fuel economy and system durability. We introduce the dynamic model for the FCEV. We take into consideration equations not only for fuel economy but also for system durability. In addition, we define a multi-objective optimization problem, and find a quasi-optimal solution using a two-loop framework. In the inside loop, for each group of powertrain parameters, a global optimal energy management strategy based on dynamic programming (DP) is exploited. We optimize coefficients for the DP algorithm to reduce calculating time as well as to maintain accuracy. For the outside loop, we compare the results of all the groups with each other, and choose the Pareto optimal solution based on a compromise of fuel economy and system durability. Simulation results show that for a “China city bus typical cycle,” a battery capacity of 150 Ah and an FCS maximal net output power of 40 kW are optimal for the fuel economy and system durability of a fuel cell city bus.

  14. Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity.

    Science.gov (United States)

    Ben Ammar, J; Lanoisellé, J-L; Lebovka, N I; Van Hecke, E; Vorobiev, E

    2011-01-01

    Efficiency of pulsed electric field (PEF) induced permeabilization at 293 K in selected fruit and vegetable plant tissues (apple, potato, carrot, courgette, orange, and banana) at electric field strength (E) of 400 V·cm(-1), 1000 V·cm(-1) and pulse duration (t(p)) of 1000 μs was studied experimentally. The mean cell radius (〈r〉) was within 30 to 60 μm, and the ratio of electrical conductivities of the intact and damaged tissues (σ(i)/σ(d)) was within 0.07 to 0.79 for the studied tissues. Electroporation theory predicts higher damage for tissue with larger cells; however, the direct correlation between PEF damage efficiency and size of cell was not always observed. To explain this anomaly, a theoretical Monte Carlo model was developed and checked for parameters typical for potato tissue. The model showed a strong dependence of PEF damage efficiency and power consumption (W) on σ(i)/σ(d) ratio. The optimum value of electric field strength (E(opt)) was an increasing function of σ(i)/σ(d), and plant tissues with high σ(i)/σ(d) ratio (σ(i)/σ(d) ≈ 1) required application of a rather strong field (for example, E(opt) ≈ 3000 V·cm(-1) for σ(i)/σ(d) ≈ 0.8). However, the PEF treatment at a lower field (E ≈ 400 V·cm(-1)) allowed regulation of the selectivity of damage of cells in dependence of their size. A good qualitative correspondence between experimental data and simulation results were observed.

  15. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    Protein Interacting with C Kinase 1 (PICK1) is a Bin/Amphiphysin/Rvs (BAR) domain protein involved in AMPA receptor trafficking. Here, we identify a selective role for PICK1 in the biogenesis of large, dense core vesicles (LDCVs) in mouse chromaffin cells. PICK1 colocalized with syntaxin-6......, consistent with an upstream role for PICK1. Disrupting lipid binding of the BAR domain (2K-E mutation) or of the PDZ domain (CC-GG mutation) was sufficient to reproduce the secretion phenotype of the null mutant. The same mutations are known to eliminate PICK1 function in receptor trafficking, indicating...

  16. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  17. Metabolic Rate of Diploid and Triploid Edible Frog Pelophylax esculentus Correlates Inversely with Cell Size in Tadpoles but Not in Frogs.

    Science.gov (United States)

    Hermaniuk, Adam; Rybacki, Mariusz; Taylor, Jan R E

    In multicellular organisms, cell size may have crucial consequences for basic parameters, such as body size and whole-body metabolic rate (MR). The hypothesis predicts that animals composed of smaller cells (a higher membrane surface-to-cell volume ratio) should have a higher mass-specific MR because a large part of their energy is used to maintain cell membranes and ionic gradients. In this article, we investigated the link between cell size and MR in diploid and triploid tadpoles and froglets of the hybridogenetic frog Pelophylax esculentus. In our previous study, we showed that triploids had significantly larger cells (erythrocytes, hepatocytes, and epidermal cells were measured). Therefore, we hypothesized that triploid tadpoles and froglets would have a lower standard metabolic rate (SMR). Our study demonstrated for the first time two distinct effects of polyploidy/cell size on MR within a single species developing in both aquatic and terrestrial habitats. As we hypothesized, diploid tadpoles had a higher SMR than triploids, whereas in froglets, ploidy did not affect the SMR. We also found that the water temperatures in which tadpoles were reared had no effect on the SMR of froglets after metamorphosis. Based on our results and other reports, we suggest that cell size may have more consequences for whole-body MR in aquatic habitats than in terrestrial habitats because oxygen is less available in water and its availability in relation to oxygen demand decreases with temperature.

  18. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    International Nuclear Information System (INIS)

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-01-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  19. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres.

    Directory of Open Access Journals (Sweden)

    Ignacio Flores

    Full Text Available Telomere maintenance is essential to ensure proper size and function of organs with a high turnover. In particular, a dwarf phenotype as well as phenotypes associated to premature loss of tissue regeneration, including the skin (hair loss, hair graying, decreased wound healing, are found in mice deficient for telomerase, the enzyme responsible for maintaining telomere length. Coincidental with the appearance of these phenotypes, p53 is found activated in several tissues from these mice, where is thought to trigger cellular senescence and/or apoptotic responses. Here, we show that p53 abrogation rescues both the small size phenotype and restitutes the functionality of epidermal stem cells (ESC of telomerase-deficient mice with dysfunctional telomeres. In particular, p53 ablation restores hair growth, skin renewal and wound healing responses upon mitogenic induction, as well as rescues ESCmobilization defects in vivo and defective ESC clonogenic activity in vitro. This recovery of ESC functions is accompanied by a downregulation of senescence markers and an increased proliferation in the skin and kidney of telomerase-deficient mice with critically short telomeres without changes in apoptosis rates. Together, these findings indicate the existence of a p53-dependent senescence response acting on stem/progenitor cells with dysfunctional telomeres that is actively limiting their contribution to tissue regeneration, thereby impinging on tissue fitness.

  20. The Effect of Alcohols on Red Blood Cell Mechanical Properties and Membrane Fluidity Depends on Their Molecular Size

    Science.gov (United States)

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J.; Baskurt, Oguz K.

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; palcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations. PMID:24086751

  1. Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Juanssilfero, Ario B; Kahar, Prihardi; Amza, Rezky L; Miyamoto, Nao; Otsuka, Hiromi; Matsumoto, Hana; Kihira, Chie; Thontowi, Ahmad; Yopi; Ogino, Chiaki; Prasetya, Bambang; Kondo, Akihiko

    2018-01-17

    Oleaginous microbes can convert substrates such as carbon dioxide, sugars, and organic acids to single-cell oils (SCOs). Among the oleaginous microorganisms, Lipomyces starkeyi is a particularly well-suited host given its impressive native abilities, including the capability to utilize a wide variety of carbon sources. In this work, the potential of L. starkeyi NBRC10381 to produce SCOs in a synthetically nitrogen-limited mineral medium (-NMM) was investigated by differing the inoculum size using glucose and/or xylose as a carbon source. Fermentation using glucose and xylose as mixed carbon sources generated the highest production of biomass at 40.8 g/L, and achieved a lipid content of 84.9% (w/w). When either glucose or xylose was used separately, the totals for achieved lipid content were 79.6% (w/w) and 85.1% (w/w), respectively. However, biomass production was higher for glucose than for xylose (30.3 vs. 28.7 g/L, respectively). This study describes the first simultaneous achievement of higher levels of cell mass and lipid production using glucose and/or xylose as the carbon sources in different inoculum sizes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. The Rts1 regulatory subunit of protein phosphatase 2A is required for control of G1 cyclin transcription and nutrient modulation of cell size.

    Directory of Open Access Journals (Sweden)

    Karen Artiles

    2009-11-01

    Full Text Available The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A, is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Delta cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates.

  3. NBT-II cell locomotion is modulated by restricting the size of focal contacts and is improved through EGF and ROCK signaling.

    Science.gov (United States)

    Liu, Hong-Wen; Lin, Chia-Ping; Liou, Yi-Jia; Hsu, Kuo-Wei; Yang, Jung-Yen; Lin, Chi-Hung

    2014-06-01

    Focal contacts, large macromolecular complexes that link the extracellular matrix and the internal cell cytoskeleton, are thought to govern cell locomotion. However, the maturation process through which focal contacts control the cellular migratory machinery by changes in size and molecular composition remain unclear. Here, we fabricated cell growth substrates that contained linear ECM strips of micron- or submicron-width in order to limit the enlargement of focal contacts. We found that NBT-II cells plated on the submicron substrate possessed smaller focal complexes that exhibited a highly dynamic turnover. These cells possessed various leading edges at multiple sites of the cell periphery, which prevented the cell from advancing. In contrast, cells grown on the micron-width substrate possessed large and stable focal adhesions. Most of these cells were elongated bipolar cells that were tethered at both ends and were immobile. Further, EGF and ROCK signaling pathways can modulate the cellular migratory responses according to the substrate guidance. On the submicron-width substrate, EGF treatment increased the focal contact size and the contractile force, causing these cells to develop one leading edge and migrate along the submicron-sized ECM paths. In contrast, inhibition of ROCK signaling decreased the focal contact size for cells plated on the micron substrate. These cells became less tethered and were able to migrate along or even across the micron-sized ECM paths. Our results indicate that formation and maturation of focal contacts is controlled by both ECM cues and intracellular signaling and they play a central role in directed cell motion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    John M Lachin

    Full Text Available Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet, repeated 2-hour Mixed Meal Tolerance Tests (MMTT were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC of the C-peptide values. The natural log(x, log(x+1 and square-root (√x transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years and adults (18+ years. The sample size needed to detect a given relative (percentage difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1 and √x transformed values in terms of the original units of measurement (pmol/ml. Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab versus masked placebo. These results provide the information needed to

  5. Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient.

    Science.gov (United States)

    Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine

    2014-06-21

    The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time τ in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter [Formula: see text]. Evaluating this proposed model function, the dimensionless diffusion coefficient [Formula: see text] was numerically calculated for 60 values of the dimensionless diffusion time [Formula: see text] and 35 values of [Formula: see text]. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results [Formula: see text] to determine L, P, and D0. The measured diffusivities followed the simulated dependence of [Formula: see text]. Determined cell sizes varied from 21 to 76 μm, permeabilities from 0.007 to 0.039 μm(-1), and the free diffusivities from 1354 to 1713 μm(2) s(-1). In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.

  6. Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review

    Science.gov (United States)

    Jun, Suckjoon; Si, Fangwei; Pugatch, Rami; Scott, Matthew

    2018-05-01

    Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1–3), we review the first ‘golden era’ of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4–7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the ‘adder’ principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome ‘sectors’ re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.

  7. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  8. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  9. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies.

    Science.gov (United States)

    Benedikter, Birke J; Bouwman, Freek G; Vajen, Tanja; Heinzmann, Alexandra C A; Grauls, Gert; Mariman, Edwin C; Wouters, Emiel F M; Savelkoul, Paul H; Lopez-Iglesias, Carmen; Koenen, Rory R; Rohde, Gernot G U; Stassen, Frank R M

    2017-11-10

    Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.

  10. Toxicological characterization of size-segregated urban air particulate matter in macrophage cell line - effects of chemical composition and sources

    Energy Technology Data Exchange (ETDEWEB)

    Jalava, P.

    2008-07-01

    of the chemical mass closure method in the characterization of the gravimetrically measured, size-segregated particulate mass of the HVCI samples used in toxicological studies. These results and well-established chemical tracers were utilized in the identification of potentially harmful particulate sources. Inflammatory properties of the HVCI particulate samples were investigated in an immortalized mouse macrophage cell line (RAW264.7). They were assessed by measuring the production of proinflammatory cytokines (IL-6, TNFalpha) and chemokine (MIP-2) by macrophages exposed to the particulate samples. Nitric oxide production was also measured. Cell viability, apoptosis and the stage of the cell cycle of the macrophages were analyzed as indicators of cytotoxicity. Toxicity profiles of the samples collected during different air pollution situations in Helsinki varied extensively. The overall toxicity of the PM{sub 1-0.2} mass per cubic meter of air during transnational forest fire smoke episodes was estimated as being higher than the seasonal average in springtime. The particulate samples in PM{sub 10-2.5} size range were the most potent inducers of inflammation and cytotoxicity. However, the air pollution situation strongly affected the particle-induced responses in six European cities. There was more heterogeneity in the toxic responses in association with the PM{sub 2.5-0.2} than the PM{sub 10-2.5} samples. In both size ranges, the responses were mainly due to the insoluble fraction of the particulate samples with only minor effects by the water-soluble or organic solvent soluble fractions. The PM{sub 0.2} samples did not substantially increase cytokine production, but some samples exhibited cytotoxic and apoptotic activity. This suggests that the solubility and the chemical composition of the particulate material affect the toxic potency and that the material in different particulate size ranges can activate distinct biological mechanisms. There were a larger number

  11. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage......, the battery, and the ultracapacitors, are proposed. A charging strategy, which charges the energy-storage devices due to the conditions of the FCHEV, is also proposed. The analysis provides recommendations on the design of the battery and the ultracapacitor energy-storage systems for FCHEVs....

  12. Interactions between mammalian cells and nano- or micro-sized wear particles: physico-chemical views against biological approaches.

    Science.gov (United States)

    Prokopovich, Polina

    2014-11-01

    Total joint arthroplasty (TJA) is a more and more frequent approach for the treatment of end-stage osteoarthritis in young and active adults; it successfully relieves joint pain and improves function significantly enhancing the health-related quality of life. Aseptic loosening and other wear-related complications are some of the most recurrent reasons for revision of TJA. This review focuses on current understanding of the biological reactions to prosthetic wear debris comparing in vivo and in vitro results. Mechanisms of interactions of various types of cells with metal, polymeric and ceramic wear particles are summarised. Alternative views based on multidisciplinary approaches are proposed to consider physico-chemical, surface parameters of wear particles (such as: particle size, geometry and charge) and material (particle chemical composition and its nature) with biological effects (cellular responses). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Effect of Size on Ag Nanosphere Toxicity in Macrophage Cell Models and Lung Epithelial Cell Lines Is Dependent on Particle Dissolution

    Directory of Open Access Journals (Sweden)

    Raymond F. Hamilton

    2014-04-01

    Full Text Available Silver (Ag nanomaterials are increasingly used in a variety of commercial applications. This study examined the effect of size (20 and 110 nm and surface stabilization (citrate and PVP coatings on toxicity, particle uptake and NLRP3 inflammasome activation in a variety of macrophage and epithelial cell lines. The results indicated that smaller Ag (20 nm, regardless of coating, were more toxic in both cell types and most active in the THP-1 macrophages. TEM imaging demonstrated that 20 nm Ag nanospheres dissolved more rapidly than 110 nm Ag nanospheres in acidic phagolysosomes consistent with Ag ion mediated toxicity. In addition, there were some significant differences in epithelial cell line in vitro exposure models. The order of the epithelial cell lines’ sensitivity to Ag was LA4 > MLE12 > C10. The macrophage sensitivity to Ag toxicity was C57BL/6 AM > MARCO null AM, which indicated that the MARCO receptor was involved in uptake of the negatively charged Ag particles. These results support the idea that Ag nanosphere toxicity and NLRP3 inflammasome activation are determined by the rate of surface dissolution, which is based on relative surface area. This study highlights the importance of utilizing multiple models for in vitro studies to evaluate nanomaterials.

  14. Nano-sized iron particles may induce multiple pathways of cell death following generation of mistranscripted RNA in human corneal epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Chae, Jae-Byoung; Kang, Seuyoung; Lyu, Jungmook; Jeong, Uiseok; Yeom, Changjoo; Kim, Younghun; Chang, Jaerak

    2017-08-01

    Iron is closely associated with an ambient particulate matters-induced inflammatory response, and the cornea that covers the front of the eye, is among tissues exposed directly to ambient particulate matters. Prior to this study, we confirmed that nano-sized iron particles (FeNPs) can penetrate the cornea. Thus, we identified the toxic mechanism of FeNPs using human corneal epithelial cells. At 24h after exposure, FeNPs located inside autophagosome-like vacuoles or freely within human corneal epithelial cells. Level of inflammatory mediators including nitric oxide, cytokines, and a chemokine was notably elevated accompanied by the increased generation of reactive oxygen species. Additionally, cell proliferation dose-dependently decreased, and level of multiple pathways of cell death-related indicators was clearly altered following exposure to FeNPs. Furthermore, expression of gene encoding DNA binding protein inhibitor (1, 2, and 3), which are correlated to inhibition of the binding of mistranscripted RNA, was significantly down-regulated. More importantly, expression of p-Akt and caspase-3 and conversion to LC3B-II from LC3B-I was enhanced by pretreatment with a caspase-1 inhibitor. Taken together, we suggest that FeNPs may induce multiple pathways of cell death via generation of mistranscripted RNA, and these cell death pathways may influence by cross-talk. Furthermore, we propose the need of further study for the possibility of tumorigenesis following exposure to FeNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    International Nuclear Information System (INIS)

    Othman, Hiba Ben; Leboulanger, Christophe; Le Floc’h, Emilie; Hadj Mabrouk, Hassine; Sakka Hlaili, Asma

    2012-01-01

    Highlights: ► Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. ► Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. ► Acute (photosynthesis) and chronic (population growth) effects have different thresholds. ► Toxicity depends on both the species selected as a model and the compound considered. ► Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L −1 . The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 μg L −1 , respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 μg L −1 for the picophytoplankton Picochlorum sp. to 418 μg L −1 for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms.

  16. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size.

    Directory of Open Access Journals (Sweden)

    Melda Sonmez

    Full Text Available The role of membrane fluidity in determining red blood cell (RBC deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol using ektacytometry and electron paramagnetic resonance (EPR spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01. The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.

  17. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats.

    Science.gov (United States)

    Minhas, Sumeet; Liu, Clarissa; Galdamez, Josselyn; So, Veronica M; Romeo, Russell D

    2016-08-01

    Studies indicate that adolescent exposure to stress is a potent environmental factor that contributes to psychological and physiological disorders, though the mechanisms that mediate these dysfunctions are not well understood. Periadolescent animals display greater stress-induced hypothalamic-pituitary-adrenal (HPA) axis responses than adults, which may contribute to these vulnerabilities. In addition to the HPA axis, the hypothalamo-neurohypophyseal tract (HNT) is also activated in response to stress. In adults, stress activates this system resulting in secretion of oxytocin from neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. However, it is currently unknown whether a similar or different response occurs in prepubertal animals. Given the influence of these hormones on a variety of emotional behaviors and physiological systems known to change as an animal transitions into adulthood, we investigated stress-induced HPA and HNT hormonal responses before and after stress, as well as the number and size of oxytocin-containing cells in the SON and PVN of prepubertal (30d) and adult (70d) male and female rats. Though we found the well-established protracted adrenocorticotropic hormone and corticosterone response in prepubertal males and females, only adult males and prepubertal females showed a significant stress-induced increase in plasma oxytocin levels. Moreover, though we found no pubertal changes in the number of oxytocin cells, we did find a pubertal-related increase in oxytocin somal size in both the SON and PVN of males and females. Taken together, these data indicate that neuroendocrine systems can show different patterns of stress reactivity before and after adolescent development and that these responses can be further modified by sex. Given the impact of these hormones on a variety of systems, it will be imperative to further explore these changes in hormonal stress reactivity and their role in adolescent health. Copyright © 2016 Elsevier

  18. Preliminary Study of the Influence of Red Blood Cells Size on the Determinism of the Breed in Cattle

    Directory of Open Access Journals (Sweden)

    Nezar Adili

    2014-01-01

    Full Text Available This study was carried out on five cattle groups, local, cross, Prim’Holstein, Montbeliard, and Brown of the Alps, in order to study the influence of breed on erythrocytes diameter. For each breed, blood samples were taken from 15 adult females by jugular venipuncture; blood smears were made on slides immediately after the blood collection and stained according to the method of May-Gründwald Giemsa. Morphometric study was realized using the OPTIKA Pro Vision software. The statistical analysis was assessed by using the descriptive boxplots test and ANOVA. The size of red blood cells is greater in the imported Brown of the Alps breed (5,32 ± 0,19 and also in our local breed (5,23 ± 0,10, whereas they were smaller in the Montbeliard breed (4,79 ± 0,21. This investigation allowed us to show that from a drop of blood we can have an idea of the bovine breeds, taking into account the size of the erythrocytes.

  19. Preliminary Study of the Influence of Red Blood Cells Size on the Determinism of the Breed in Cattle

    Science.gov (United States)

    Adili, Nezar; Melizi, Mohamed; Belabbas, Hadj; Achouri, Abdelhamid

    2014-01-01

    This study was carried out on five cattle groups, local, cross, Prim'Holstein, Montbeliard, and Brown of the Alps, in order to study the influence of breed on erythrocytes diameter. For each breed, blood samples were taken from 15 adult females by jugular venipuncture; blood smears were made on slides immediately after the blood collection and stained according to the method of May-Gründwald Giemsa. Morphometric study was realized using the OPTIKA Pro Vision software. The statistical analysis was assessed by using the descriptive boxplots test and ANOVA. The size of red blood cells is greater in the imported Brown of the Alps breed (5,32 ± 0,19) and also in our local breed (5,23 ± 0,10), whereas they were smaller in the Montbeliard breed (4,79 ± 0,21). This investigation allowed us to show that from a drop of blood we can have an idea of the bovine breeds, taking into account the size of the erythrocytes. PMID:24660089

  20. Association Between Mohs Surgery Wait Times and Surgical Defect Size in Patients With Squamous Cell or Basal Cell Carcinoma of the Skin.

    Science.gov (United States)

    Diehl, Joseph; Choi, Young M; Liang, Li-Jung; Chiu, Melvin

    2015-07-01

    Consequences of delays in treatment of nonmelanoma skin cancers (NMSCA) are largely unstudied. To determine the relationship between Mohs micrographic surgery (MMS) delay time and final MMS defect size. A retrospective chart review was performed to identify patients who underwent MMS for biopsy-proven basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) between 2004 and 2006. Time delay between date of biopsy and date of surgery and lesion diameter increase between biopsy and surgical defect were calculated. Two hundred eighty-three lesions qualified for inclusion in the study. No significant difference in mean change of major diameter between primary and recurrent tumors (1.0 vs 1.1 cm, p = .67), between BCCs and SCCs (both were 1.0 cm, p = .99), and between tumor size at presentation <1.0 versus ≥1.0 cm (1.1 vs 0.8 cm, p = .11) were found. However, the mean number of MMS layers taken was significantly different between BCCs and SCCs (1.9 vs 1.5, respectively; p = .0022). Linear regression analysis of major diameter change versus time delay to MMS showed no significant increasing trend over time. No evidence was found that time delays of up to 1 year from biopsy to MMS impact the growth of NMSCA.

  1. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. [and others

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

  2. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.L.

    1997-11-01

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  3. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.

    Science.gov (United States)

    He, Feng-Li; Li, Da-Wei; He, Jin; Liu, Yang-Yang; Ahmad, Fiaz; Liu, Ya-Li; Deng, Xudong; Ye, Ya-Jing; Yin, Da-Chuan

    2018-05-01

    Electrospinning is a powerful method for preparing porous materials that can be applied as biomedical materials for implantation or tissue engineering or as scaffolds for 3D cell culture experiments. However, this technique is limited in practical applications because the pore size of 3D scaffolds directly prepared by conventional electrospinning is usually less than several tens of micrometres, which may not be suitable for 3D cell culture and tissue growth. To allow for satisfactory 3D cell culture and tissue engineering, the pore size of the scaffold should be controllable according to the requirement of the specific cells to be cultured. Here, we show that layer-structured scaffolds with pore sizes larger than 100μm can be obtained by stacking meshes prepared by direct-writing using the near-field electrospinning (NFES) technique. In the study, we prepared composite scaffolds made of polycaprolactone (PCL) and hydroxyapatite (HAp) via the above-mentioned method and tested the effectiveness of the novel scaffold in cell culture using mouse pre-osteoblast cells (MC3T3-E1). The pore size and the degradability of the PCL/HAp scaffolds were characterized. The results showed that the average pore size of the scaffolds was 167μm, which was controllable based on the required application; the degradation rate was controllable depending on the ratio of PCL to HAp. The biocompatibility of the scaffolds in vitro was studied, and it was found that the scaffolds showed no toxicity and that the cells could effectively attach, proliferate, and differentiate in the 3D skeleton of the scaffolds. Our studies showed that a simple modification of the preparation procedure can lead to a new way to fabricate novel layer-structured 3D scaffolds with controllable structures and pore sizes suitable for practical applications in implantation, tissue engineering and 3D cell culture. Copyright © 2017. Published by Elsevier B.V.

  4. Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Ruining WANG,Yubao ZHI,Junqing GUO,Qingmei LI,Li WANG,Jifei YANG,Qianyue JIN,Yinbiao WANG,Yanyan YANG,Guangxu XING,Songlin QIAO,Mengmeng ZHAO,Ruiguang DENG,Gaiping ZHANG

    2015-09-01

    Full Text Available Large-scale production of cell culture-based classical swine fever virus (CSFV vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF and size-exclusion chromatography (SEC, and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM, infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR. TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10-4.25 TCID50·mL-1 to 3.0×10-6.25 TCID50·mL-1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40—60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05. The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses.

  5. Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance.

    Science.gov (United States)

    Abbas, Muhammad A; Kim, Tea-Yon; Lee, Sang Uck; Kang, Yong Soo; Bang, Jin Ho

    2016-01-13

    Gold nanoclusters (Au NCs) with molecule-like behavior have emerged as a new light harvester in various energy conversion systems. Despite several important strides made recently, efforts toward the utilization of NCs as a light harvester have been primarily restricted to proving their potency and feasibility. In solar cell applications, ground-breaking research with a power conversion efficiency (PCE) of more than 2% has recently been reported. Because of the lack of complete characterization of metal cluster-sensitized solar cells (MCSSCs), however, comprehensive understanding of the interfacial events and limiting factors which dictate their performance remains elusive. In this regard, we provide deep insight into MCSSCs for the first time by performing in-depth electrochemical impedance spectroscopy (EIS) analysis combined with physical characterization and density functional theory (DFT) calculations of Au NCs. In particular, we focused on the effect of the size of the Au NCs and electrolytes on the performance of MCSSCs and reveal that they are significantly influential on important solar cell characteristics such as the light absorption capability, charge injection kinetics, interfacial charge recombination, and charge transport. Besides offering comprehensive insights, this work represents an important stepping stone toward the development of MCSSCs by accomplishing a new PCE record of 3.8%.

  6. Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells.

    Science.gov (United States)

    Wang, Bin; Li, Kexin; Jin, Wenjie; Lu, Yan; Zhang, Yuzhong; Shen, Guofeng; Wang, Rong; Shen, Huizhong; Li, Wei; Huang, Ye; Zhang, Yanyan; Wang, Xilong; Li, Xiqing; Liu, Wenxin; Cao, Hongying; Tao, Shu

    2013-09-17

    Particulate matter (PM) is a major ambient air pollutant causing millions of premature deaths each year in China. The toxicity of PM is property and size dependent. In this study, ambient PM samples collected in Beijing were divided into five size fractions with nominal aerodynamic ranges of properties including particle size distribution, specific surface area, zeta potential, dithiothreitol (DTT)-based redox ability, and contents of water-soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), selected metals, and endotoxin. Human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were tested for their relative viabilities and inflammatory effects (interleukine-8 for A549 and tumor necrosis factor-α for J774A.1) after exposure to PM of various sizes. It was found that PM specific area was positively correlated with WSOC, high molecular weight PAHs, DTT-based redox ability, negatively correlated with surface zeta potential and lithophile metals. Several trace metals from combustion sources were enriched in intermediate size fractions. For both endotoxin concentrations of the PM and PM induced inflammatory cytokine expressions by the two cell lines, there were general increasing trends as PM size increased with an exception of the finest fraction, which induced the highest inflammatory effects. It seems that the size dependence of cytokine expression was associated with a number of properties including endotoxin content, zeta potential, settling velocity, metal content, and DTT-based redox ability.

  7. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Science.gov (United States)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  8. Pulsed and oscillating gradient MRI for assessment of cell size and Extracellular space (POMACE) in mouse gliomas

    Science.gov (United States)

    Reynaud, Olivier; Winters, Kerryanne Veronica; Hoang, Dung Minh; Wadghiri, Youssef Zaim; Novikov, Dmitry S.; Kim, Sungheon Gene

    2016-01-01

    Solid tumor microstructure is related to aggressiveness of tumor, interstitial pressure and drug delivery pathways that are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, Pulsed and Oscillating gradient MRI for Assessment of Cell size and Extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n=8). Since the complete diffusion time-dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell, intracellular diffusivity Dics) surrounded by extracellular space (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell, Dics, Decs) were compared with conventional diffusion weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long-time tortuosity limit in the range [1/(88 Hz) - 31 ms]. ECS estimations (44±7% in vivo and 54±11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell=4.8±1.3 in vivo and 4.3±1.4 μm ex vivo) were consistent with EM measurements (4.7±1.8 μm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support that POMACE provides a way to interpret the frequency- or time-dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. PMID:27448059

  9. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Hiba Ben [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia); Leboulanger, Christophe, E-mail: christophe.leboulanger@ird.fr [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Le Floc' h, Emilie [UMS MEDIMEER, CNRS-Universite Montpellier II, SMEL 2 rue des Chantiers F-34200 Sete (France); Hadj Mabrouk, Hassine; Sakka Hlaili, Asma [Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. Black-Right-Pointing-Pointer Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. Black-Right-Pointing-Pointer Acute (photosynthesis) and chronic (population growth) effects have different thresholds. Black-Right-Pointing-Pointer Toxicity depends on both the species selected as a model and the compound considered. Black-Right-Pointing-Pointer Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L{sup -1}. The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 {mu}g L{sup -1}, respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 {mu}g L{sup -1} for the picophytoplankton Picochlorum sp. to 418 {mu}g L{sup -1} for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when

  10. Intermediate-Sized Conjugated Donor Molecules for Organic Solar Cells: Comparison of Benzodithiophene and Benzobisthiazole-Based Cores

    KAUST Repository

    Zhang, Siyuan

    2017-09-05

    Two intermediate-sized donor molecules, BBTz-X and BDT-X, have been synthesized by the Stille coupling between 4-(4,4-bis(2-ethylhexyl)-6-(trimethylstannyl)-4H-silolo[3,2-b:4,5-b′]dithiophen-2-yl)-7-(5′-hexyl-[2,2′-bithiophen]-5-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine and either 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-2,6-diiodobenzo[1,2-d:4,5-d′]bis(thiazole) or 2,6-dibromo-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene, respectively. Both oxidation and reduction potentials for BBTz-X are anodically shifted relative to those for BDT-X, but the oxidation potential is more sensitive to the identity of the core; this is consistent with what is seen for DFT-calculated HOMO and LUMO energies and with a slightly blue-shifted absorption maximum for BBTz-X. Although DFT calculations, along with crystal structures of related compounds, suggest more planar molecular structures for BBTz-X than for BDT-X, film structures and the effects of various annealing processes on these films, as revealed by GIWAXS, are similar. The performance of BDT-X:PC61BM bulk-heterojunction solar cells is more sensitive to annealing conditions than that of BBTz-X:PC61BM cells, but under appropriate conditions, both yield power conversion efficiencies of >7%.

  11. Conducting transition metal nitride thin films with tailored cell sizes: The case of δ-TixTa1-xN

    Science.gov (United States)

    Koutsokeras, L. E.; Abadias, G.; Lekka, Ch. E.; Matenoglou, G. M.; Anagnostopoulos, D. F.; Evangelakis, G. A.; Patsalas, P.

    2008-07-01

    We present results on the stability and tailoring of the cell size of conducting δ-TixTa1-xN obtained by film growth and ab initio calculations. Despite the limited solubility of Ta in Ti, we show that TiN and TaN are soluble due to the hybrization of the d and sp electrons of the metal and N, respectively, that stabilizes the ternary system to the rocksalt structure. The stress-free cell sizes follow the Vegard's rule; nevertheless, process-dependent stresses expand the cell size of the as-grown films. The electronic properties of δ-TixTa1-xN films (ρ =180Ωcm) are similar to those of TiN and TaN.

  12. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1

    Science.gov (United States)

    Michaillat, Lydie; Baars, Tonie Luise; Mayer, Andreas

    2012-01-01

    Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles—the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment. PMID:22238359

  13. Silica particle size and shape: in vitro effects on extracellular matrix metabolism and viability of human bronchial epithelial cells.

    Science.gov (United States)

    Bodo, M; Lilli, C; Calvitti, M; Rosati, E; Luca, G; Lumare, A; Gambelunghe, A; Murgia, N; Muzi, G; Bellucci, C

    2012-01-01

    Crystal micro-morphology and dimension of silica particles could be responsible for the high prevalence of silicosis as recently found among goldsmiths. In the present study we investigated two samples of silica particles with different surface sizes and shapes for their capacity to induce changes in ECM component production. In addition we investigated if their different effects could be related to cytotoxicity and apoptotic effects. Human bronchial epithelial cells were cultured with or without a sample of Silica used for casting gold jewellery, named in our experiments Silica P or a commercial sample of Silica with different physical and chemical properties, named in our experiments Silica F. After 48 h of exposure PCR analysis determined levels of several matrix components. As induction of the apoptosis cascade, annexin assay, caspase 3 activity and cellular cytoxicity by MTT assay were assayed. Silica F promoted fibronectin, MMP12, tenascin C and Integrins b5 gene expressions more than Silica P. Silica P stimulated more TGFß1 and its TGFßR1 receptor than Silica F. Cytotoxic effects were induced by the two samples of Silica. On the contrary, no alteration in classic apoptotic marker protein expression was observed in presence of either Silica F or Silica P, suggesting silica particles affect ECM production and metalloproteases through a mechanism that does not involve apoptotic activation. Different Silica micromorphology and TGFß signal pathway are linked to lung fibrotic effects but the potential role Silica in apoptotic and toxic reaction remains to be ascertained.

  14. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films

    Science.gov (United States)

    Zang, Zhigang

    2018-01-01

    Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3˜4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%.

  15. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I.E.; Hnida, C.; Cruger, D.G.

    2008-01-01

    Purpose The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. Methods The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...... were enumerated for 13 chromosomes by a combination of PNA and DNA probes. Results In the mononucleated embryos there was no difference in the mean size of chromosomally normal and abnormal nuclei but a significant difference in the mean nuclei size of nuclei that had gained chromosomes compared...... to nuclei that had lost chromosomes. The nuclei from multinucleated blastomeres had a significant smaller mean size and the frequency of chromosomally aberrant blastomeres was significantly higher. Conclusion The mean nuclear size is not a marker for the chromosome content in mononucleated embryos. However...

  16. Portion size

    Science.gov (United States)

    ... with hummus. To control your portion sizes when eating out, try these tips: Order the small size. Instead of a medium or large, ask for the smallest size. By eating a small hamburger instead of a large, you ...

  17. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  18. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  19. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  20. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    Science.gov (United States)

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  1. The first decade of oligotrophication in Lake Constance : I. The response of phytoplankton biomass and cell size.

    Science.gov (United States)

    Gaedke, Ursula; Schweizer, Anette

    1993-03-01

    Phytoplankton biomass and species composition were measured with a relatively high temporal resolution (once or twice a week during the growing season) from 1979 to 1989 in Lake Constance/Überlingersee. Over this period soluble reactive phosphorus (SRP) concentrations during winter mixing were reduced by ca. 50% from 104 to 47 μg 1 -1 , which caused a prolongation and amplification of the epilimnetic P depletion during the growth period. Seasonal dynamics of phytoplankton reacted to the decrease of SRP in the following ways: (1) Algal biomass decreased at least proportionally to the winter SRP concentrations in summer, but not in spring and autumn when biomass fluctuated irregularly. (2) The peak of biomass concentration changed from summer to spring. (3) The earlier onset of epilimnetic P depletion during the season in recent years promoted a stronger growth of some pennate diatoms in spring. It caused an amplification of the silicon depletion in summer, which may cause still greater reduction of diatoms and total algal biomass in summer. (4) Reduction of algal biomass during the clear-water phase proper became shorter and less pronounced. (5) The temporal variability of algal biomass decreased in summer and autumn but not in spring. (6) Average cell sizes remained unchanged in summer and autumn but increased in spring during the beginning of oligotrophication. These results are largely in agreement with other studies on lake restoration and expectations derived from the PEG (Plankton Ecology Group) model (Sommer et al. 1986). They show that a 50% reduction of SRP concentrations during homothermy may have pronounced effects on seasonal dynamics of algal biomass in a large and deep lake. The algal response to the external change of SRP concentrations can be described by the Le Chatelier principle, implying that the internal structure of the system (e.g. species composition) changes in order to minimize the effect of the external pressure (e.g. reduction of total

  2. The impact of tumour size on the probability of synchronous metastasis and survival in renal cell carcinoma patients: a population-based study.

    Science.gov (United States)

    Ingimarsson, Johann P; Sigurdsson, Martin I; Hardarson, Sverrir; Petursdottir, Vigdis; Jonsson, Eirikur; Einarsson, Gudmundur V; Gudbjartsson, Tomas

    2014-08-31

    The observed low metastatic potential and favorable survival of small incidentally detected renal cell carcinomas (RCCs) have been a part of the rationale for recommending partial nephrectomy as a first treatment option and active surveillance in selected patients. We examined the relationship between tumor size and the odds of synchronous metastases (SMs) (primary outcome) and disease specific survival (secondary outcome) in a nationwide RCC registry. Retrospective study of the 794 RCC patients diagnosed in Iceland between 1971 and 2005. Histological material and TNM staging were reviewed centrally. The presence of SM and survival were recorded. Cubic spline analysis was used to assess relationship between tumor size and probability of SM. Univariate and multivariate statistics were used to estimate prognostic factors for SM and survival. The probability of SM increased in a non-linear fashion with increasing tumor size (11, 25, 35, and 50%) for patients with tumors of ≤4, 4.1-7.0, 7.1-10.0, and >10 cm, respectively. On multivariate analysis, tumor size was an independent prognostic factor for disease-specific survival (HR = 1.05, 95% CI 1.02-1.09, p size affected the probability of disease-specific mortality but not SM, after correcting for TNM staging in multivariate analysis. This confirms the prognostic ability of the 2010 TNM staging system for renal cell cancer in the Icelandic population.

  3. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong, E-mail: cchen19@tigers.lsu.edu; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W. [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States); Gimble, Jeffrey M., E-mail: Jeffrey.Gimble@pbrc.edu [Tulane University School of Medicine, Center for Stem Cell Research & Regenerative Medicine (United States); Hayes, Daniel J., E-mail: danielhayes@lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2015-04-15

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell–particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  4. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  5. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

    Science.gov (United States)

    Silva, Carlos Alberto; Hudak, Andrew Thomas; Klauberg, Carine; Vierling, Lee Alexandre; Gonzalez-Benecke, Carlos; de Padua Chaves Carvalho, Samuel; Rodriguez, Luiz Carlos Estraviz; Cardil, Adrián

    2017-12-01

    LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m -2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. The results show that LiDAR pulse density of 5 pulses m -2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m -2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m -2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

  6. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingdi; Tan, Ke; Zhou, Yan; Ye, Zhaoyang, E-mail: zhaoyangye@ecust.edu.cn; Tan, Wen-Song

    2016-02-01

    Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100–200 μm, 200–300 μm and 300–450 μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200–300 μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200–300 μm with hydrolysis for 1 h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300–450 μm and treated with aminolysis for 1 h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs. - Highlights: • Surface chemistry of poly(ε-caprolactone) films actively modulates MSC behaviors. • Varying surface chemistry and pore size in combination is enabled in 3D scaffolds. • Surface chemistry and pore size potentially dictate MSC fates in synergy.

  7. Pinus Monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems.

    Science.gov (United States)

    Van De Water, P. K.

    2016-12-01

    The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size

  8. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line

    International Nuclear Information System (INIS)

    Clift, Martin J.D.; Rothen-Rutishauser, Barbara; Brown, David M.; Duffin, Rodger; Donaldson, Ken; Proudfoot, Lorna; Guy, Keith; Stone, Vicki

    2008-01-01

    This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH 2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 μg ml -1 ). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH 2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p 2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction

  9. Cell size increased in tissues from transgenic mice overexpressing a cell surface growth-related and cancer-specific hydroquinone oxidase, tNOX, with protein disulfide-thiol interchange activity.

    Science.gov (United States)

    Yagiz, Kader; Snyder, Paul W; Morré, D James; Morré, Dorothy M

    2008-12-15

    tNOX (ENOX2), a cancer-specific and growth-related cell surface protein with protein disulfide-thiol interchange and hydroquinone (NADH) oxidase activities was overexpressed in a transgenic mouse model. Female transgenic mice grew faster than wild type as did embryonic fibroblast cells prepared from the transgenic mice. The tissue expression of tNOX mRNA was greatest in heart, lung and liver. When these tissues were analyzed for cell size, the cells from the tissues of transgenic animals were, on average, 20% larger in surface area than cells from corresponding wild-type tissues. Also analyzed were cells of intestine, spleen and kidney in which tNOX overexpression was observed but to a lesser extent. Cell size was increased as well with intestine and kidney but less so with spleen. At the end of the study, carcass weights of the transgenic animals were greater than those of wild type. This increase in carcass weight was reflected in an increase in femur weight and thickness in both male and female transgenic mice but not in femur length. Other carcass parameters such as skin weight and body fat or body fluids were unchanged or changes were insufficient to account for the increased carcass weight. The findings are consistent with the property of tNOX observed in studies with cultured cells as contributing to the enlargement phase of cell growth.

  10. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast‑growing Eucalyptus forest plantation using airborne LiDAR data

    Science.gov (United States)

    Carlos Alberto Silva; Andrew Thomas Hudak; Carine Klauberg; Lee Alexandre Vierling; Carlos Gonzalez‑Benecke; Samuel de Padua Chaves Carvalho; Luiz Carlos Estraviz Rodriguez; Adrian Cardil

    2017-01-01

    LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m− 2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations...

  11. The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Umme S. Akhtar

    2014-01-01

    Full Text Available Epidemiological and toxicological studies have suggested that the health effects associated with exposure to particulate matter (PM are related to the different physicochemical properties of PM. These effects occur through the initiation of differential cellular responses including: the induction of antioxidant defenses, proinflammatory responses, and ultimately cell death. The main objective of this study was to investigate the effects of size-fractionated ambient PM on epithelial cells in relation to their physicochemical properties. Concentrated ambient PM was collected on filters for three size fractions: coarse (aerodynamic diameter [AD] 2.5–10 μm, fine (0.15–2.5 μm, and quasi-ultrafine (<0.2 μm, near a busy street in Toronto, Ontario, Canada. Filters were extracted and analyzed for chemical composition and redox activity. Chemical analyses showed that the coarse, fine, and quasi-ultrafine particles were comprised primarily of metals, water-soluble species, and organic compounds, respectively. The highest redox activity was observed for fine PM. After exposure of A549 cells to PM (10–100 μg/ml for 4 h, activation of antioxidant, proinflammatory and cytotoxic responses were assessed by determining the expression of heme oxygenase (HMOX-1, mRNA, interleukin-8 (IL-8, mRNA, and metabolic activity of the cells, respectively. All three size fractions induced mass-dependent antioxidant, proinflammatory, and cytotoxic responses to different degrees. Quasi-ultrafine PM caused significant induction of HMOX-1 at the lowest exposure dose. Correlation analyses with chemical components suggested that the biological responses correlated mainly with transition metals and organic compounds for coarse and fine PM and with organic compounds for quasi-ultrafine PM. Overall, the observed biological responses appeared to be related to the combined effects of size and chemical composition and thus both of these physicochemical properties should be

  12. Influence of size and shape of sub-micrometer light scattering centers in ZnO-assisted TiO2 photoanode for dye-sensitized solar cells

    Science.gov (United States)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2018-03-01

    Sub-micrometer cavities have been incorporated in the TiO2 photoanode of dye-sensitized solar cell to enhance its optical property with light scattering effect. These are large pores of several hundred nanometers in size and scatter incident light due to the difference refraction index between the scattering center and the surrounding materials, according to Mie theory. The pores are created using polystyrene (PS) or zinc oxide (ZnO) templates reported previously which resulted in ellipsoidal and spherical shapes, respectively. The effect of size and shape of scattering center was modeled using a numerical analysis finite-difference time-domain (FDTD). The scattering cross-section was not affected significantly with different shapes if the total displacement volume of the scattering center is comparable. Experiments were carried out to evaluate the optical property with varying size of ZnO templates. Photovoltaic effect of dye-sensitized solar cells made from these ZnO-assisted films were investigated with incident-photon-to-current efficiency to understand the effect of scattering center size on the enhancement of absorption. With 380 nm macropores incorporated, the power conversion efficiency has increased by 11% mostly thanks to the improved current density, while 170 nm and 500 nm macropores samples did not have increment in sufficiently wide range of absorbing wavelengths.

  13. Molecular and Cellular Mechanisms for the Interaction between Gold Nanoparticles and Neuroimmune Cells Based on Size, Shape, and Charge

    Science.gov (United States)

    2014-04-25

    associated with GNPs, the injection of GNPs causes impairment of cognition in mice [12]. A heavy dose of GNPs has lethal size-dependent effects, most...effects [13]. GNPs also show size-dependent immune-stimulating activity when used as vaccine carriers [14]. In a recent report, 10 nm GNPs induced the...containing 20 mM KCl), and was eluted with the same buffer at a flow rate of 1 mL/min. The metal components of the metal -binding proteins that were

  14. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.

    Science.gov (United States)

    Roose, Dimitri; Leroux, Frederic; De Vocht, Nathalie; Guglielmetti, Caroline; Pintelon, Isabel; Adriaensen, Dirk; Ponsaerts, Peter; Van der Linden, Annemie; Bals, Sara

    2014-01-01

    In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright © 2014 John Wiley & Sons, Ltd.

  15. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Kim JE

    2014-12-01

    Full Text Available Jung-Eun Kim,1,* Hyejin Kim,1,* Seong Soo A An,2 Eun Ho Maeng,3 Meyoung-Kon Kim,4 Yoon-Jae Song1 1Department of Life Science, 2Department of Bionano Technology, Gachon University, Seongnam-Si, South Korea; 3Korea Testing and Research Institute, Seoul, South Korea; 4Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea *These authors contributed equally to this work Abstract: Silicon dioxide (SiO2 and zinc oxide (ZnO nanoparticles are widely used in various applications, raising issues regarding the possible adverse effects of these metal oxide nanoparticles on human cells. In this study, we determined the cytotoxic effects of differently charged SiO2 and ZnO nanoparticles, with mean sizes of either 100 or 20 nm, on the U373MG human glioblastoma cell line. The overall cytotoxicity of ZnO nanoparticles against U373MG cells was significantly higher than that of SiO2 nanoparticles. Neither the size nor the surface charge of the ZnO nanoparticles affected their cytotoxicity against U373MG cells. The 20 nm SiO2 nanoparticles were more toxic than the 100 nm nanoparticles against U373MG cells, but the surface charge had little or no effect on their cytotoxicity. Both SiO2 and ZnO nanoparticles activated caspase-3 and induced DNA fragmentation in U373MG cells, suggesting the induction of apoptosis. Thus, SiO2 and ZnO nanoparticles appear to exert cytotoxic effects against U373MG cells, possibly via apoptosis. Keyword: apoptosis

  16. Effects of pH, conductivity, host cell protein, and DNA size distribution on DNA clearance in anion exchange chromatography media.

    Science.gov (United States)

    Stone, Melani C; Borman, Jon; Ferreira, Gisela; Robbins, P David

    2018-01-01

    Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process-related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ-650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6-8), conductivity (2-15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a "size exclusion qPCR assay." Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141-149, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  17. Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor.

    Science.gov (United States)

    Bar, Daniel Z; Charar, Chayki; Dorfman, Jehudith; Yadid, Tam; Tafforeau, Lionel; Lafontaine, Denis L J; Gruenbaum, Yosef

    2016-08-09

    Dietary restriction (DR) is a metabolic intervention that extends the lifespan of multiple species, including yeast, flies, nematodes, rodents, and, arguably, rhesus monkeys and humans. Hallmarks of lifelong DR are reductions in body size, fecundity, and fat accumulation, as well as slower development. We have identified atx-2, the Caenorhabditis elegans homolog of the human ATXN2L and ATXN2 genes, as the regulator of these multiple DR phenotypes. Down-regulation of atx-2 increases the body size, cell size, and fat content of dietary-restricted animals and speeds animal development, whereas overexpression of atx-2 is sufficient to reduce the body size and brood size of wild-type animals. atx-2 regulates the mechanistic target of rapamycin (mTOR) pathway, downstream of AMP-activated protein kinase (AMPK) and upstream of ribosomal protein S6 kinase and mTOR complex 1 (TORC1), by its direct association with Rab GDP dissociation inhibitor β, which likely regulates RHEB shuttling between GDP-bound and GTP-bound forms. Taken together, this work identifies a previously unknown mechanism regulating multiple aspects of DR, as well as unknown regulators of the mTOR pathway. They also extend our understanding of diet-dependent growth retardation, and offers a potential mechanism to treat obesity.

  18. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell.

    Science.gov (United States)

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Bai, Junhong; Bai, Heng; Yan, Dengming; Cao, Yin; Li, Yihao; Yu, Zhilei; Dong, Guoqiang

    2017-12-01

    Integrating microbial fuel cell with constructed wetland (CW-MFC) is a novel way to harvest bioelectricity during wastewater treatment. In this study, the bioelectricity generation, containment removal and microbial community distribution in CW-MFC as affected by substrate material sizes and aquatic macrophyte were investigated. The planted CW-MFC with larger filler size showed a significant promotion of the relative abundance of electrochemically active bacteria (beta-Proteobacteria), which might result in the increase of bioelectricity generation in CW-MFC (8.91mWm -2 ). Additionally, a sharp decrease of voltage was observed in unplanted CW-MFC with smaller filler size in Cycle eight. However, the peak COD (86.7%) and NO 3 -N (87.1%) removal efficiencies were observed in planted CW-MFC with smaller filler size, which was strongly related to the biodiversity of microorganisms. Generally, the acclimation of exoelectrogens as dominant microbes in the anode chamber of planted CW-MFC with larger filler size could promote the bioelectricity generation during wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    Science.gov (United States)

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-05-01

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication.

    Science.gov (United States)

    Aghajanpoor, Mahdiyeh; Hashemi-Najafabadi, Sameereh; Baghaban-Eslaminejad, Mohamadreza; Bagheri, Fatemeh; Mohammad Mousavi, Seyyed; Azam Sayyahpour, Foruogh

    2017-07-01

    One of the major problems associated with the electrospun scaffolds is their small pore size, which limits the cellular infiltration for bone tissue engineering. In this study, the effect of increasing the pore size on cellular infiltration was studied in poly/nanohydroxyapatite electrospun scaffolds, which were modified using ultrasonication, co-electrospinning with poly (ethylene oxide), and a combination of both. Ultrasonic process was optimized by central composite design. The ultrasonic output power and time of the process were considered as the effective parameters. The pore size of the scaffolds was evaluated by scanning electron microscope. The optimum conditions, according to the pore area and mechanical properties of the scaffolds were selected, and finally the groups that had the highest pore size and mechanical strength were selected for the combined method. Increasing the pore size enhanced the cellular proliferation, extension and infiltration, as well as the osteodifferentiation of stem cells. At the optimum condition, the average cellular infiltration was 36.51 µm compared to the control group with no cellular infiltration. In addition, alkaline phosphatase activity and the expression of osteocalcin and collagen I (COL I) were, respectively, 1.86, 2.54, and 2.16 fold compared to the control group on day 14. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1887-1899, 2017. © 2017 Wiley Periodicals, Inc.

  1. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells

    DEFF Research Database (Denmark)

    Miethling-Graff, Rona; Rumpker, Rita; Richter, Madeleine

    2014-01-01

    The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most frequently utilized nanomaterials in consumer products; therefore, a comprehensive understanding of their toxicity is necessary. In particular, information about the cellular uptake and size dep...

  2. The effects of ultraviolet light on host cell reactivation and plaque size of Herpes simplex virus type 1 in C3H/10T1/2 mouse cells

    International Nuclear Information System (INIS)

    Montes, J.G.; Taylor, W.D.

    1986-01-01

    Herpes simplex virus-type 1 (HSV-1) plaque-forming ability and plaque size were measured on (C3H/10T1/2) cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus, as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others, C3H/10T1/2 cells have been transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation. (author)

  3. Optimizing the size of a solar cell array; Optimiser la taille d'un panneau solaire

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, J. [Linear Technology, 94 - Rungis (France)

    2006-06-15

    The electronic power conversion system is a strategic part of solar power supply systems. An ideal diode controller combined to a compensated switching regulator allows to optimize the operation of the battery and to optimize the dimensioning of the solar cells array. The ideal diode controller limits the discharge of the battery inside the non-exposed solar cells and limits the related direct voltage drop and loss of power. The switching regulator charger lowers the solar cells voltage to charge the battery and ensures the optimum operation of the solar elements. (J.S.)

  4. Development and application of resistive pulse spectroscopy: studies on the size, form and deformability of red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.P.

    1979-01-01

    The following studies were conducted using the resistive pulse spectroscopy (RPS) technique: cumulative spectra and individual pulse forms for rigid latex polymer spheres; acquisition and analysis of RPS spectral data by means of special computer program; interaction of red blood cells with glutaraldehyde; membrane properties of erythrocytes undergoing abrupt osmotic hemolysis; reversible effects of the binding of chlorpromazine HCl at the red cell membrane surface; effects of high cholesterol diet on erythrocytes of guinea pigs; and multi-population analysis for a mixture of fetal and maternal red cells. (HLW)

  5. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression

    OpenAIRE

    Slavov, Nikolai; Botstein, David

    2013-01-01

    To survive and proliferate, cells need to coordinate their metabolism, gene expression, and cell division. To understand this coordination and the consequences of its failure, we uncoupled biomass synthesis from nutrient signaling by growing, in chemostats, yeast auxotrophs for histidine, lysine, or uracil in excess of natural nutrients (i.e., sources of carbon, nitrogen, sulfur, and phosphorus), such that their growth rates (GRs) were regulated by the availability of their auxotrophic requir...

  6. Poly (lactide-co-glycolide) microspheres in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen 85B.

    Science.gov (United States)

    Lu, Dongmei; Garcia-Contreras, Lucila; Xu, Ding; Kurtz, Sherry L; Liu, Jian; Braunstein, Miriam; McMurray, David N; Hickey, Anthony J

    2007-10-01

    To investigate the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for Antigen 85B (Ag85B), a secreted protein of Mycobacterium tuberculosis, with the ultimate goal of employing them in pulmonary delivery of tuberculosis vaccine. Recombinant Ag85B was expressed from two Escherichia coli strains and encapsulated by spray-drying in PLGA microspheres with/without adjuvants. These microspheres containing rAg85B were assessed for their ability to deliver antigen to macrophages for subsequent processing and presentation to the specific CD4 T-hybridoma cells DB-1. DB-1 cells recognize the Ag85B(97-112) epitope presented in the context of MHC class II and secrete IL-2 as the cytokine marker. Microspheres suitable for aerosol delivery to the lungs (3.4-4.3 microm median diameter) and targeting alveolar macrophages were manufactured. THP-1 macrophage-like cells exposed with PLGA-rAg85B microspheres induced the DB-1 cells to produce IL-2 at a level that was two orders of magnitude larger than the response elicited by soluble rAg85B. This formulation demonstrated extended epitope presentation. PLGA microspheres in respirable sizes were effective in delivering rAg85B in an immunologically relevant manner to macrophages. These results are a foundation for further investigation into the potential use of PLGA particles for delivery of vaccines to prevent M. tuberculosis infection.

  7. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.

    Science.gov (United States)

    Langston Suen, Wai-Leung; Chau, Ying

    2014-04-01

    We aim to quantify the effect of size and degree of folate loading of folate-decorated polymeric nanoparticles (NPs) on the kinetics of cellular uptake and the selection of endocytic pathways in retinal pigment epithelium (RPE) cells. In this study, methoxy-poly(ethylene glycol)-b-polycaprolactone (mPEG-b-PCL) and folate-functionalized PEG-b-PCL were synthesized for assembling into nanoparticles with sizes ranging from 50 nm to 250 nm. These nanoparticles were internalized into ARPE-19 (human RPE cell line) via receptor-mediated endocytosis. A two-step endocytosis process mathematical model was adopted to quantify binding affinity and uptake kinetics of nanoparticles in RPE cells in uptake and inhibition studies. Nanoparticles with 100% folate loading have highest binding affinity and uptake rate in RPE cells. Maximum uptake rate (Vmax) of nanoparticles increased as the size of particles decreased from 250 nm to 50 nm. Endocytic pathway study was studied by using chlorpromazine and methyl-β-cyclodextran (MβCD), which are clathrin- and caveolae-mediated endocytosis inhibitors, respectively. Both chlorpromazine and MβCD inhibited the uptake of folate-decorated nanoparticles. Inhibition constant (Ki) and maximum uptake rate (Vmax) revealed that 50 nm and 120 nm folate-decorated nanoparticles were found to be internalized via both clathrin- and caveolae-mediated endocytosis. The 250 nm folate-decorated nanoparticles, however, were only internalized via caveolae-mediated pathway. Increased uptake rate of folate-decorated NPs into RPE cells is observed with increasing degree of folate modification. These NPs utilize both clathrin- and caveolae-mediated receptor-mediated endocytosis pathways to enter RPE cells upon size variation. The 50 nm NPs are internalized the fastest, with clathrin-mediated endocytosis as the preferred route. Uptake of 250 nm particles is the slowest and is dominated by caveolae-mediated endocytosis. © 2013 Royal Pharmaceutical

  8. Improving charge transport in PbS quantum Dot to Al:ZnO layer by changing the size of Quantum dots in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2016-07-01

    PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).

  9. The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae.

    Science.gov (United States)

    Amigoni, Loredana; Colombo, Sonia; Belotti, Fiorella; Alberghina, Lilia; Martegani, Enzo

    2015-08-03

    To investigate the specific target of PKA in the regulation of cell cycle progression and cell size we developed a new approach using the yeast strain GG104 bearing a deletion in adenylate cyclase gene and permeable to cAMP ( cyr1Δ, pde2Δ, msn2Δ, msn4Δ). In this strain the PKA activity is absent and can be activated by addition of cAMP in the medium, without any other change of the growth conditions. In the present work we show that the activation of PKA by exogenous cAMP in the GG104 strain exponentially growing in glucose medium caused a marked increase of cell size and perturbation of cell cycle with a transient arrest of cells in G1, followed by an accumulation of cells in G2/M phase with a minimal change in the growth rate. Deletion of CLN1 gene, but not of CLN2, abolished the transient G1 phase arrest. Consistently we found that PKA activation caused a transcriptional repression of CLN1 gene. Transcription of CLN1 is controlled by SBF and MBF dual-regulated promoter. We found that also the deletion of SWI4 gene abolished the transient G1 arrest suggesting that Swi4 is a target responsible for PKA modulation of G1/S phase transition. We generated a SWI4 allele mutated in the consensus site for PKA (Swi4(S159A)) and we found that expression of Swi4(S159A) protein in the GG104-Swi4Δ strain did not restore the transient G1 arrest induced by PKA activation, suggesting that Swi4 phosphorylation by PKA regulates CLN1 gene expression and G1/S phase transition.

  10. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers.

    Science.gov (United States)

    Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C

    2017-11-01

    Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. On the influence of cell size in physically-based distributed hydrological modelling to assess extreme values in water resource planning

    Directory of Open Access Journals (Sweden)

    M. Egüen

    2012-05-01

    Full Text Available This paper studies the influence of changing spatial resolution on the implementation of distributed hydrological modelling for water resource planning in Mediterranean areas. Different cell sizes were used to investigate variations in the basin hydrologic response given by the model WiMMed, developed in Andalusia (Spain, in a selected watershed. The model was calibrated on a monthly basis from the available daily flow data at the reservoir that closes the watershed, for three different cell sizes, 30, 100, and 500 m, and the effects of this change on the hydrological response of the basin were analysed by means of the comparison of the hydrological variables at different time scales for a 3-yr-period, and the effective values for the calibration parameters obtained for each spatial resolution. The variation in the distribution of the input parameters due to using different spatial resolutions resulted in a change in the obtained hydrological networks and significant differences in other hydrological variables, both in mean basin-scale and values distributed in the cell level. Differences in the magnitude of annual and global runoff, together with other hydrological components of the water balance, became apparent. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of a distributed hydrological model to reach a balance between the quality of results and the computational cost; thus, 30 and 100-m could be chosen for water resource management, without significant decrease in the accuracy of the simulation, but the 500-m cell size resulted in significant overestimation of runoff and consequently, could involve uncertain decisions based on the expected availability of rainfall excess for storage in the reservoirs. Particular values of the effective calibration parameters are also provided for this hydrological model and the study area.

  13. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  14. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    International Nuclear Information System (INIS)

    Kather, H.; Simon, B.

    1975-01-01

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of 14 C incorporation from (U- 14 C) glucose into CO 2 and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism. (orig.) [de

  15. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: Comparison with thyroid function

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Takahashi, Satoru; Maeda, Tetsuo; Yoshikawa, Takeshi; Ohno, Yoshiharu; Fujii, Masahiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Miyake, Hideaki; Fujisawa, Masato [Department of Urology, Kobe University Graduate School of Medicine, Kobe (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2012-09-15

    Objective: Hypothyroidism is a common complication in patients receiving tyrosine kinase inhibitors. We evaluated the relationship between thyroid size evident on CT and thyroid function in patients with advanced renal cell carcinoma (RCC) receiving tyrosine kinase inhibitors. Materials and methods: Forty-two patients with metastatic RCC receiving tyrosine kinase inhibitors (sorafenib n = 25; sunitinib n = 17) and, followed-up for ≥12 months were eligible. Patients who had ever shown an elevated thyroid-stimulating hormone (TSH) level of >10 mU/l were defined as having “hypothyroidism”. CT scans were performed before, and 3, 6, 9, and 12 months after the start of treatment. The area of the thyroid in the maximum section at each examination was measured and compared with that before treatment. Using repeated-measures ANOVA, differences in thyroid size were compared over time between patients with and without “hypothyroidism”, in relation to the type of drug employed. Results: Twenty-one patients (sorafenib 9, sunitinib 12) developed “hypothyroidism” 95 ± 88 days (range 12–315 days) after the start of treatment. In such patients, the thyroid was reduced in size to 89 ± 16% after 3 months, 81 ± 21% after 6 months, 71 ± 21% after 9 months and 68 ± 21% after 12 months, whereas the patients without “hypothyroidism” maintained a thyroid size of 90 ± 12% even after 12 months (p = 0.0030). Among the patients with “hypothyroidism”, those treated with sunitinib tended to show greater thyroid size reduction than those with sorafenib (59 ± 23% vs. 79 ± 13%, after 12 months). Conclusion: Tyrosine kinase inhibitors cause an apparent thyroid size reduction in patients with “hypothyroidism”.

  16. Buffy coat (top/bottom)- and whole-blood filtration (top/top)-produced red cell concentrates differ in size of extracellular vesicles.

    Science.gov (United States)

    Bicalho, B; Pereira, A S; Acker, J P

    2015-10-01

    The influence that blood component separation methods have on changes to the red blood cell membrane during storage is not well understood. In Canada, red cell concentrates (RCCs) are produced using the buffy coat (BC, top/bottom) and the whole-blood filtration (WBF, top/top) methods, and this study aimed at comparing their influence on the characteristics of the extracellular vesicles (EV) which accumulated in the respective products during storage. Using flow cytometry, dynamic light scattering and mass spectrometry, we assessed RCC EVs for concentration, size, lipid composition and correlation with supernatant haemoglobin (Hb). Accumulation of RBC EVs (CD235a(+) ) with storage time was similar in WBF and BC RCCs. The size of the EVs changed from size characteristics of the EVs in WBF and BC RCCs suggest that non-RBC EVs are more prevalent in WBF products. Understanding the impact that manufacturing has on the characteristics of the different populations of EVs in RCCs will aid quality improvement efforts. © 2015 International Society of Blood Transfusion.

  17. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Sillesen, H; Eldrup, N; Hultgren, R

    2015-01-01

    BACKGROUND: Abdominal aortic aneurysm (AAA) is thought to develop as a result of inflammatory processes in the aortic wall. In particular, mast cells are believed to play a central role. The AORTA trial was undertaken to investigate whether the mast cell inhibitor, pemirolast, could retard...... at the anterior wall to leading edge adventitia at the posterior wall in systole. All ultrasound scans were read in a central imaging laboratory. RESULTS: Some 326 patients (mean age 70·8 years; 88·0 per cent men) were included in the trial. The overall mean growth rate was 2·42 mm during the 12-month study...

  18. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.

    Science.gov (United States)

    Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J

    2016-12-20

    Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.

  19. Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals.

    Science.gov (United States)

    Fukagawa, Naomi K; Li, Muyao; Poynter, Matthew E; Palmer, Brian C; Parker, Erin; Kasumba, John; Holmén, Britt A

    2013-01-01

    Debate about the biological effects of biodiesel exhaust emissions exists due to variation in methods of exhaust generation and biological models used to assess responses. Because studies in cells do not necessarily reflect the integrated response of a whole animal, experiments were conducted in two human cell lines representing bronchial epithelial cells and macrophages and female mice using identical particle suspensions of raw exhaust generated by a Volkswagen light-duty diesel engine using petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume). Tailpipe particle emissions measurement showed B0 generated two times more particle mass, larger ultrafine particle number distribution modes, and particles of more nonpolar organic composition than the B20 fuel. Biological assays (inflammatory mediators, oxidative stress biomarkers) demonstrated that particulate matter (PM) generated by combustion of the two fuels induced different responses in in vitro and in vivo models. Concentrations of inflammatory mediators (Interleukin-6, IL-6; Interferon-gamma-induced Protein 10, IP-10; Granulocyte-stimulating factor, G-CSF) in the medium of B20-treated cells and in bronchoalveolar lavage fluid of mice exposed to B20 were ∼20-30% higher than control or B0 PM, suggesting that addition of biodiesel to diesel fuels will reduce PM emissions but not necessarily adverse health outcomes.

  20. Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing Gao

    2015-09-01

    Full Text Available To grow high-quality and large-size monocrystal-line silicon at low cost, we proposed a single-seed casting technique. To realize this technique, two challenges—polycrystalline nucleation on the crucible wall and dislocation multiplication inside the crystal—needed to be addressed. Numerical analysis was used to develop solutions for these challenges. Based on an optimized furnace structure and operating conditions from numerical analysis, experiments were performed to grow monocrystalline silicon using the single-seed casting technique. The results revealed that this technique is highly superior to the popular high-performance multicrystalline and multiseed casting mono-like techniques.

  1. Effectiveness of nanometer-sized extracellular matrix layer-by-layer assembled films for a cell membrane coating protecting cells from physical stress.

    Science.gov (United States)

    Matsuzawa, Atsushi; Matsusaki, Michiya; Akashi, Mitsuru

    2013-06-18

    In recent approaches to tissue engineering, cells face various stresses from physical, chemical, and environmental stimuli. For example, coating cell membranes with nanofilms using layer-by-layer (LbL) assembly requires many cycles of centrifugation, causing physical (gravity) stress. Damage to cell membranes can cause the leakage of cytosol molecules or sometimes cell death. Accordingly, we evaluated the effectiveness of LbL films prepared on cell membranes in protecting cells from physical stresses. After two steps of LbL assembly using Tris-HCl buffer solution without polymers or proteins (four centrifugation cycles including washing), hepatocyte carcinoma (HepG2) cells showed extremely high cell death and the viability was ca. 15%. Their viability ultimately decreased to 6% after 9 steps of LbL assembly (18 cycles of centrifugation), which is the typical number of steps involved in preparing LbL nanofilms. However, significantly higher viability (>85%) of HepG2 cells was obtained after nine steps of LbL assembly employing fibronectin (FN)-gelatin (G) or type IV collagen (Col IV)-laminin (LN) solution combinations, which are typical components of an extracellular matrix (ECM), to fabricate 10-nm-thick LbL films. When LbL films of synthetic polymers created via electrostatic interactions were employed instead of the ECM films described above, the viability of the HepG2 cells after the same nine steps slightly decreased to 61%. The protective effects of LbL films were strongly dependent on their thickness, and the critical thickness was >5 nm. Surprisingly, a high viability of over 85% was achieved even under extreme physical stress conditions (10,000 rpm). We evaluated the leakage of lactate dehydrogenase (LDH) during the LbL assembly processes to clarify the protective effect, and a reduction in LDH leakage was clearly observed when using FN-G nanofilms. Moreover, the LbL films do not inhibit cell growth during cell culturing, suggesting that these coated cells

  2. Variations in the structure of neutral sugar chains in the pectic polysaccharides of morphologically different carrot calli and correlations with the size of cell clusters.

    Science.gov (United States)

    Kikuchi, A; Edashige, Y; Ishii, T; Fujii, T; Satoh, S

    1996-01-01

    Carrot (Daucus carota L.) embryogenic callus (EC) loses its embryogenic competence and becomes non-embryogenic callus (NC) during long-term culture. With the loss of embryogenic competence, the cell clusters become smaller and the extent of intercellular attachments is reduced. Pectic fractions prepared from EC and NC were separated into two subfractions by gel filtration. A difference in sugar composition between EC and NC was found only in the high-molecular-mass (ca. 1300 kDa) subfraction, and the ratio of the amount of arabinose to that of galactose (Ara/Gal) was strongly and positively correlated with the size of cell clusters in several different cultures. From the results of sugar-composition and methylation analyses, and the results of treatment with exo-arabinanase, models of the neutral sugar chains of pectins from Ec and NC are proposed. Both neutral sugar chains are composed of three regions. The basal region is composed of linearly linked arabinan 5-Araf) moieties in both types of callus. The middle galactan region is composed of 6-linked galactose, some of which branches at the 3 and 4 positions, and this region is larger and more frequently branched in NC than in EC. Finally, the terminal arabinan region is composed of 5-linked arabinose, branched at the 3 position, and the size of the terminal arabinan is larger in EC than in NC. The significance of the neutral sugar chains of pectins in the interaction of cell wall components and intercellular attachment is discussed.

  3. Arginine as an eluent for automated on-line Protein A/size exclusion chromatographic analysis of monoclonal antibody aggregates in cell culture.

    Science.gov (United States)

    Wang, Sean; Raghani, Anil

    2014-01-15

    An automated two-dimensional method using Protein A chromatography followed by size exclusion HPLC was developed for analysis of aggregates of monoclonal antibodies in mammalian cell culture samples. The method development was intended to address the analysis of IgG2 monoclonal antibody products that are particularly prone to aggregation at pHProtein A chromatography. In addition, the arginine solution is a compatible mobile phase for the analysis of these samples by size exclusion HPLC, separating aggregates from the monomer of the monoclonal antibody. The effect of arginine concentration in the eluent on parameters such as protein recovery from Protein A chromatography and resolution of aggregates from the monomer are reported. The developed method was shown to provide accuracy of reported aggregates greater than 98%, and intermediate precision of 4.4% RSD. The method limit of quantitation for aggregates was determined to be 0.1%. Application of the method is demonstrated for analysis of aggregates in cell culture samples to aid in the development of cell culture conditions for the production of antibodies. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect.

    Science.gov (United States)

    Cipitria, Amaia; Boettcher, Kathrin; Schoenhals, Sophia; Garske, Daniela S; Schmidt-Bleek, Katharina; Ellinghaus, Agnes; Dienelt, Anke; Peters, Anja; Mehta, Manav; Madl, Christopher M; Huebsch, Nathaniel; Mooney, David J; Duda, Georg N

    2017-09-15

    In-situ tissue regeneration aims to utilize the body's endogenous healing capacity through the recruitment of host stem or progenitor cells to an injury site. Stromal cell-derived factor-1α (SDF-1α) is widely discussed as a potent chemoattractant. Here we use a cell-free biomaterial-based approach to (i) deliver SDF-1α for the recruitment of endogenous bone marrow-derived stromal cells (BMSC) into a critical-sized segmental femoral defect in rats and to (ii) induce hydrogel stiffness-mediated osteogenic differentiation in-vivo. Ionically crosslinked alginate hydrogels with a stiffness optimized for osteogenic differentiation were used. Fast-degrading porogens were incorporated to impart a macroporous architecture that facilitates host cell invasion. Endogenous cell recruitment to the defect site was successfully triggered through the controlled release of SDF-1α. A trend for increased bone volume fraction (BV/TV) and a significantly higher bone mineral density (BMD) were observed for gels loaded with SDF-1α, compared to empty gels at two weeks. A trend was also observed, albeit not statistically significant, towards matrix stiffness influencing BV/TV and BMD at two weeks. However, over a six week time-frame, these effects were insufficient for bone bridging of a segmental femoral defect. While mechanical cues combined with ex-vivo cell encapsulation have been shown to have an effect in the regeneration of less demanding in-vivo models, such as cranial defects of nude rats, they are not sufficient for a SDF-1α mediated in-situ regeneration approach in segmental femoral defects of immunocompetent rats, suggesting that additional osteogenic cues may also be required. Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant used to recruit host cells for tissue regeneration. The concept that matrix stiffness can direct mesenchymal stromal cell (MSC) differentiation into various lineages was described a decade ago using in-vitro experiments. Recently

  5. Cell size variations of large granular lymphocyte leukemia: Implication of a small cell subtype of granular lymphocyte leukemia with STAT3 mutations.

    Science.gov (United States)

    Tanahashi, Takahiro; Sekiguchi, Nodoka; Matsuda, Kazuyuki; Takezawa, Yuka; Ito, Toshiro; Kobayashi, Hikaru; Ichikawa, Naoaki; Nishina, Sayaka; Senoo, Noriko; Sakai, Hitoshi; Nakazawa, Hideyuki; Ishida, Fumihiro

    2016-06-01

    Large granular lymphocyte leukemia (LGL-L) has been morphologically defined as a group of lymphoproliferative disorders, including T-cell large granular lymphocytic leukemia (T-LGL-L), chronic lymphoproliferative disorders of NK cells (CLPD-NK) and aggressive NK cell leukemia. We investigated the morphological features of LGL leukemic cells in 26 LGL-L patients in order to elucidate relationships with current classifications and molecular backgrounds. LGL-L cells were mostly indistinguishable from normal LGL. Patients with STAT3 SH2 domain mutations showed significantly smaller cells compared with patients without STAT3 mutations. Four patients with T-LGL-L showed smaller granular lymphocytes with a median diameter of less than 13μm, which were rarely seen in normal subjects. This small subtype of T-LGL-L was recognized among rather young patients and was associated with D661Y mutations in the STAT3 gene SH2 domain. In addition, all of them showed anemia including two cases with pure red cell aplasia. These results suggest the heterogeneity of T-LGL-L and a specific subtype with small variants of T-LGL-L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model

    DEFF Research Database (Denmark)

    Foged, Camilla; Brodin, Birger; Frøkjær, Sven

    2005-01-01

    Current vaccine development includes optimization of antigen delivery to antigen presenting cells, such as dendritic cells (DC). Particulate systems have attracted increasing attention in the development of vaccine delivery systems. In the present study, we investigated DC uptake of model....... The polystyrene particles interacted with the DC throughout the tested diameter range of 0.04-15 microm in a time- and concentration-dependent manner. The optimal particle diameter for fast and efficient acquisition by a substantial percentage of the DC was 0.5 microm and below. The surface of 1 and 0.1 microm.......5 microm and below were optimal for DC uptake; however uptake of larger particles could be greatly enhanced by rendering the particle surface positive. Whether increased particle uptake is correlated with increased immune responses, remains to be established....

  7. Contact size scaling of a W-contact phase-change memory cell based on numerical simulation

    International Nuclear Information System (INIS)

    Wei Yiqun; Lin Xinnan; Jia Yuchao; Cui Xiaole; Zhang Xing; Song Zhitang

    2012-01-01

    In the design of phase-change memory (PCM), it is important to perform numerical simulations to predict the performances of different device structures. This work presents a numerical simulation using a coupled system including Poisson's equation, the current continuity equation, the thermal conductivity equation, and phase-change dynamics to simulate the thermal and electric characteristics of phase-change memory. This method discriminates the common numerical simulation of PCM cells, from which it applies Possion's equation and current continuity equations instead of the Laplace equation to depict the electric characteristics of PCM cells, which is more adoptable for the semiconductor characteristics of phase-change materials. The results show that the simulation agrees with the measurement, and the scalability of PCM is predicted.

  8. Gain in toxic function of stefin B EPM1 mutants aggregates: correlation between cell death, aggregate number/size and oxidative stress.

    Science.gov (United States)

    Polajnar, Mira; Zavašnik-Bergant, Tina; Kopitar-Jerala, Nataša; Tušek-Žnidarič, Magda; Zerovnik, Eva

    2014-09-01

    EPM1 is a rare progressive myoclonus epilepsy accompanied by apoptosis in the cerebellum of patients. Mutations in the gene of stefin B (cystatin B) are responsible for the primary defect underlying EPM1. Taking stefin B aggregates as a model we asked what comes first, protein aggregation or oxidative stress, and how these two processes correlate with cell death. We studied the aggregation in cells of the stefin B wild type, G4R mutant, and R68X fragment before (Ceru et al., 2010, Biol. Cell). The present study was performed on two more missense mutants of human stefin B, G50E and Q71P, and they similarly showed numerous aggregates upon overexpression. Mutant- and oligomer-dependent increase in oxidative stress and cell death in cells bearing aggregates was shown. On the other hand, there was no correlation between the size and number of the aggregates and cell death. We suggest that differences in toxicity of the aggregates depend on whether they are in oligomeric/protofibrillar or fibrillar form. This in turn likely depends on the mutant's 3D structure where unfolded proteins show lower toxicity. Imaging by transmission electron microscopy showed that the aggregates in cells are of different types: bigger perinuclear, surrounded by membranes and sometimes showing vesicle-like invaginations, or smaller, punctual and dispersed throughout the cytoplasm. All EPM1 mutants studied were inactive as cysteine proteases inhibitors and in this way contribute to loss of stefin B functions. Relevance to EPM1 disease by gain in toxic function is discussed. Copyright © 2014. Published by Elsevier B.V.

  9. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells.

    Science.gov (United States)

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2017-01-01

    Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are

  10. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells

    Directory of Open Access Journals (Sweden)

    Arshan Nasir

    2017-06-01

    Full Text Available Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency

  11. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  12. Enthalpy analysis and Heat Exchanger Sizing of an Air-cooled Proton Exchange Membrane Fuel Cell System

    DEFF Research Database (Denmark)

    Gao, Xin; Berning, Torsten; Kær, Søren Knudsen

    Proton exchange membrane fuel cells (PEMFC’s) are becoming increasingly popular for uninterrupted power supply especially in remote areas. In the case of telecom back-up operations, PEMFC systems are often placed in areas of extreme climates, e.g. in Norway or Canada where the temperatures drop...... or an ordinary heat exchanger can fulfill the heat recovery demand. Despite the fact that the air enters the stack at a cold temperature, even the forefront of the stack is at a much elevated and desired stack temperature with the help of supplying an acceptable amount of power to an electric stack heater. So...

  13. Role of metal/silicon semiconductor contact engineering for enhanced output current in micro-sized microbial fuel cells

    KAUST Repository

    Mink, Justine E.

    2013-11-25

    We show that contact engineering plays an important role to extract the maximum performance from energy harvesters like microbial fuel cells (MFCs). We experimented with Schottky and Ohmic methods of fabricating contact areas on silicon in an MFC contact material study. We utilized the industry standard contact material, aluminum, as well as a metal, whose silicide has recently been recognized for its improved performance in smallest scale integration requirements, cobalt. Our study shows that improvements in contact engineering are not only important for device engineering but also for microsystems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pregnancy in Sickle Cell-Haemoglobin C (SC) Disease, A Retrospective Study of Birth Size and Maternal Weight Gain

    OpenAIRE

    Thame, Minerva M.; Singh-Minott, Indira; Osmond, Clive; Melbourne-Chambers, Roxanne H.; Serjeant, Graham R

    2016-01-01

    Objective: To assess pregnancy and fetal outcomes in Jamaican subjects with sickle cell-haemoglobin C (SC) disease.Study design: A retrospective chart review over 21 years (1992–2012) of all pregnancies in SC disease and a comparison group matched by gender and date of delivery in mothers with a normal haemoglobin (AA) phenotype at the University Hospital of the West Indies, Jamaica. There were 118 pregnancies in 81 patients with SC disease and 110 pregnancies in 110 in the normal comparison ...

  15. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses

    Directory of Open Access Journals (Sweden)

    Pan CH

    2014-08-01

    Full Text Available Chih-Hong Pan,1,2,* Wen-Te Liu,3,4,* Mauo-Ying Bien,4,5 I-Chan Lin,6 Ta-Chih Hsiao,7 Chih-Ming Ma,8 Ching-Huang Lai,2 Mei-Chieh Chen,9 Kai-Jen Chuang,10,11 Hsiao-Chi Chuang3,4 On behalf of the Taiwan CardioPulmonary Research (T-CPR Group 1Institute of Labor, Occupational Safety and Health, Ministry of Labor, 2School of Public Health, National Defense Medical Center, 3Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, 4School of Respiratory Therapy, College of Medicine, 5Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, 6Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, Taipei, 7Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 8Department of Cosmetic Application and Management, St Mary’s Junior College of Medicine, Nursing and Management, Sanxing, 9Department of Microbiology and Immunology, College of Medicine, 10Department of Public Health, School of Medicine, College of Medicine, 11School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Although the health effects of zinc oxide nanoparticles (ZnONPs on the ­respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to Zn

  16. Upconversion NaYF4 Nanoparticles for Size Dependent Cell Imaging and Concentration Dependent Detection of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Shigang Hu

    2015-01-01

    Full Text Available Upconversion nanoparticles (UCNPs based on NaYF4 nanocrystals with strong upconversion luminescence are synthesized by the solvothermal method. The emission color of these NaYF4 upconversion nanoparticles can be easily modulated by the doping. These NaYF4 upconversion nanocrystals can be employed as fluorescence donors to pump fluorescent organic molecules. For example, the efficient luminescence resonant energy transfer (LRET can be achieved by controlling the distance between NaYF4:Yb3+/Er3+ UCNPs and Rhodamine B (RB. NaYF4:Yb3+/Er3+ UCNPs can emit green light at the wavelength of ~540 nm while RB can efficiently absorb the green light of ~540 nm to emit red light of 610 nm. The LRET efficiency is highly dependent on the concentration of NaYF4 upconversion fluorescent donors. For the fixed concentration of 3.2 µg/mL RB, the optimal concentration of NaYF4:Yb3+/Er3+ UCNPs is equal to 4 mg/mL which generates the highest LRET signal ratio. In addition, it is addressed that the upconversion nanoparticles with diameter of 200 nm are suitable for imaging the cells larger than 10 µm with clear differentiation between cell walls and cytoplasm.

  17. Dynamic Morphological Changes Induced By GM1 and Protein Interactions on the Surface of Cell-Sized Liposomes

    Directory of Open Access Journals (Sweden)

    Masahiro Takagi

    2013-06-01

    Full Text Available It is important to understand the physicochemical mechanisms that are responsible for the morphological changes in the cell membrane in the presence of various stimuli such as osmotic pressure. Lipid rafts are believed to play a crucial role in various cellular processes. It is well established that Ctb (Cholera toxin B subunit recognizes and binds to GM1 (monosialotetrahexosylganglioside on the cell surface with high specificity and affinity. Taking advantage of Ctb-GM1 interaction, we examined how Ctb and GM1 molecules affect the dynamic movement of liposomes. GM1 a natural ligand for cholera toxin, was incorporated into liposome and the interaction between fluorescent Ctb and the liposome was analyzed. The interaction plays an important role in determining the various surface interaction phenomena. Incorporation of GM1 into membrane leads to an increase of the line tension leading to either rupture of liposome membrane or change in the morphology of the membrane. This change in morphology was found to be GM1 concentration specific. The interaction between Ctb-GM1 leads to fast and easy rupture or to morphological changes of the liposome. The interactions of Ctb and the glycosyl chain are believed to affect the surface and the curvature of the membrane. Thus, the results are highly beneficial in the study of signal transduction processes.

  18. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    Science.gov (United States)

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  19. The effect of pupil size on stimulation of the melanopsin containing retinal ganglion cells, as evaluated by monochromatic pupillometry

    DEFF Research Database (Denmark)

    Nissen, Claus Jeppe; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    or contracted, the entire sequence of red and blue light exposure repeated. After at least 3¿days, when the effect of the eye drop had subsided, the entire experiment was repeated, this time employing the other substance. Results: Prior dilatation of the left pupil augmented the post light contraction to blue...... (660¿nm) and in a following session, blue (470¿nm) light. The consensual pupillary diameter in the right eye was continuously measured before, during, and after light exposure. Subsequently, Tropicamide 1% or Pilocarpine 2% was instilled into the left eye and when the pupil was either maximally dilated......Purpose: To evaluate the influence of the size of the light exposed pupil in one eye on the pupillary light reflex of the other eye. Method: Using a monochromatic pupillometer, the left eye in each of 10 healthy subjects was exposed to 20¿s of monochromatic light of luminance 300¿cd/m(2), first red...

  20. Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Hoogeman, Mischa S.; Water, Steven van de; Levendag, Peter C.; Holt, Bronno van der; Heijmen, Ben J.M.; Nuyttens, Joost J.

    2010-01-01

    Purpose: To provide a prescription dose for Monte Carlo (MC) treatment planning in patients with non-small-cell lung cancer according to tumor size and location. Methods: Fifty-three stereotactic radiotherapy plans designed using the equivalent path-length (EPL) algorithm were re-calculated using MC. Plans were compared by the minimum dose to 95% of the PTV (D95), the heterogeneity index (HI) and the mean dose to organs at risk (OARs). Based on changes in D95, the prescription dose was converted from EPL to MC. Based on changes in HI, we examined the feasibility of MC prescription to plans re-calculated but not re-optimized with MC. Results: The MC fraction dose for peripheral tumors is 16-18 Gy depending on tumor size. For central tumors the MC dose was reduced less than for peripheral tumors. The HI decreased on average by 4-9% in peripheral tumors and 3-5% in central tumors. The mean dose to OARs was lower for MC than EPL, and correlated strongly (R 2 = 0.98-0.99). Conclusion: For the conversion from EPL to MC we recommend a separate prescription dose according to tumor size. MC optimization is not required if a HI ≥ 70% is accepted. Dose constraints to OARs can be easily converted due to the high EPL-MC correlation.

  1. Amino acid synthesis in photosynthesizing spinach cells: effects of ammonia on pool sizes and rates of labeling from 14CO2

    International Nuclear Information System (INIS)

    Larsen, P.O.; Cornwell, K.L.; Gee, S.L.; Bassham, J.A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO 2 fixation for more than 60 hours. The incorporation of 14 CO 2 under saturating CO 2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14 C saturation of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphenoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on-such synthesis

  2. DISLOCATIONS STRUCTURE AND SCATTERING PHENOMENON IN CRYSTALLINE CELL SIZE OF 2024 AL ALLOY DEFORMED BY ONE PASS OF ECAP AT ROOM TEMPERATURE

    Directory of Open Access Journals (Sweden)

    M. H. Goodarzy

    2014-03-01

    Full Text Available Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 22 and C 44 . The effect of dislocations contrast factor on the anisotropic strain broadening of diffraction profiles was considered for measuring the microstructural features on the base of the modified Williamson-Hall and Warren-Averbach methods. Results showed that the dislocations density of the solution annealed sample increased from 4.28×10 12m-2 to 2.41×10 14m-2 after one pass of cold ECAP and the fraction of edge dislocations in the solution annealed sample increased from 43% to 74% after deformation. This means that deformation changed the overall dislocations characteristic more to edge dislocations. Also the crystalline cell size of the solution annealed sample decreased from 0.83μm to about 210nm after one pass of ECAP process at room temperature

  3. Differential colony size, cell length, and cellular proteome of Escherichia coli isolated from urine vs. stone nidus of kidney stone patients.

    Science.gov (United States)

    Tavichakorntrakool, Ratree; Boonsiri, Patcharee; Prasongwatana, Vitoon; Lulitanond, Aroonlug; Wongkham, Chaisiri; Thongboonkerd, Visith

    2017-03-01

    Escherichia coli is associated with kidney stone disease, as a cause or an effect (secondary or recurrent urinary tract infection, UTI). Defining phenotypic or functional differences between E. coli inside stone nidus (ECS, associated with infection-induced stone) and outside the stone (i.e. from urine) (ECU, represented secondary infection) would be helpful to better understand bacterial involvement in this disease. ECS and ECU were isolated from 100 stone formers and subjected to antimicrobial susceptibility test, ERIC-PCR genotyping, determination of biofilm formation, bacterial colony size on agar plate and cell length in broth, 2-DE, nanoLC-MS/MS, protein network analysis, and pyruvate dehydrogenase (PDH) activity assay. From 100 stone formers, 36 had positive bacterial culture, of which 5 pairs had identical antimicrobial susceptibility patterns and comparable ERIC-PCR genotypes. ECS had smaller colony size and longer cell length than ECU. 2-DE proteomic analysis revealed significantly differential levels of proteins involved in carbohydrate metabolism, stress response, and RNA/protein metabolism. Functional validation demonstrated lower PDH activity in ECS. All these differential phenotypic and cellular proteome findings might be adaptive response of E. coli from remote infection to survive within the stone matrix that subsequently caused recurrent UTI in kidney stone patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cell size and basal metabolic rate in hummingbirds Tamaño celular y tasa metabólica basal en picaflores

    Directory of Open Access Journals (Sweden)

    Juan C. Opazo

    2005-06-01

    Full Text Available Nucleotypic theory suggests that genome size play indirect roles in determining organismal fitness. Among endotherms this theory has been demonstrated by an inverse correlation between basal metabolic rate (BMR and genome size. Nonetheless, accumulation of variables, especially for some key groups of endotherms, involved in C-value enigma (e.g., cell size will fortify this theory. In this sense, hummingbird species are of particular interest because they are an energetic extreme in avian and endotherm evolution. Knowing that cell size is proportional to C-value, in this study we tested for a relationship between mean corpuscular volume of red blood cells and BMR in four species of hummingbirds ranging from 4 to 20 g. In comparison with other birds, our hummingbird data show higher BMR and the smallest mean corpuscular volumes, thereby providing further support for the nucleotypic theoryLa teoría nucleotípica sugiere que el tamaño del genoma juega un rol indirecto en la adecuación biológica, a través de las variables con las que se relaciona. En endotermos esta teoría ha sido demostrada por la relación inversa entre la tasa metabólica basal y el tamaño del genoma. La acumulación de variables, en grupos claves de endotermos, relacionadas con esta problemática (e.g., tamaño celular son ideales para poner a prueba esta teoría. En este sentido, los picaflores son de particular interés ya que son el extremo energético dentro de los endotermos. Sabiendo que el tamaño celular es proporcional al tamaño del genoma, en este trabajo ponemos a prueba la relación del volumen corpuscular medio y la tasa metabólica basal, e indirectamente el tamaño del genoma, en cuatro especies de picaflores con masas corporales que van desde 4 a 20 g. Los datos de metabolismo mostraron estar dentro de los mayores descritos para aves, asimismo, los tamaños de los eritrocitos fueron los más pequeños dentro de los valores reportados en la literatura

  5. Purification of Semiconducting Polymer Dots by Size Exclusion Chromatography Prior to Cytotoxicity Assay and Stem Cell Labeling.

    Science.gov (United States)

    Chen, Dandan; Yuan, Ye; Yu, Jiangbo; Chiu, Daniel T; Wu, Changfeng

    2018-03-23

    Semiconducting polymer dots (Pdots) as fluorescent probes have shown promising applications because of their excellent optical properties. However, apparent differences were observed in cytotoxicity assays, which might originate from impurities introduced in polymer synthesis or nanoparticle preparation. In this paper, a simple gel filtration-based purification method was used to address this issue. Purified Pdots displayed obviously decreased cytotoxicity as compared with the same batch of unpurified Pdots. The purified Pdots were further examined in cytotoxicity study on mesenchymal stem cells (MSCs), which are very sensitive to exogenous probes. The results indicated that purified Pdots did not affect the proliferation ability of MSCs, while unpurified Pdots could have obvious cytotoxicity. In addition, the purified Pdots did not show cytotoxicity even after 6-month storage. Our results demonstrated that gel filtration is an effective method for obtaining Pdots with minimal cytotoxicity, which are more suitable for biological applications.

  6. The Impact of Tumor Size on Outcomes After Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allibhai, Zishan [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto (Canada); Taremi, Mojgan [Department of Radiation Oncology, Stronach Regional Cancer Centre, Newmarket (Canada); Bezjak, Andrea; Brade, Anthony; Hope, Andrew J.; Sun, Alexander [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto (Canada); Cho, B.C. John, E-mail: john.cho@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto (Canada)

    2013-12-01

    Purpose: Stereotactic body radiation therapy for medically inoperable early-stage non-small cell lung cancer (NSCLC) offers excellent control rates. Most published series deal mainly with small (usually <4 cm), peripheral, solitary tumors. Larger tumors are associated with poorer outcomes (ie, lower control rates, higher toxicity) when treated with conventional RT. It is unclear whether SBRT is sufficiently potent to control these larger tumors. We therefore evaluated and examined the influence of tumor size on treatment outcomes after SBRT. Methods and Materials: Between October 2004 and October 2010, 185 medically inoperable patients with early (T1-T2N0M0) NSCLC were treated on a prospective research ethics board-approved single-institution protocol. Prescription doses were risk-adapted based on tumor size and location. Follow-up included prospective assessment of toxicity (as per Common Terminology Criteria for Adverse Events, version 3.0) and serial computed tomography scans. Patterns of failure, toxicity, and survival outcomes were calculated using Kaplan-Meier method, and the significance of tumor size (diameter, volume) with respect to patient, treatment, and tumor factors was tested. Results: Median follow-up was 15.2 months. Tumor size was not associated with local failure but was associated with regional failure (P=.011) and distant failure (P=.021). Poorer overall survival (P=.001), disease-free survival (P=.001), and cause-specific survival (P=.005) were also significantly associated with tumor size (with tumor volume more significant than diameter). Gross tumor volume and planning target volume were significantly associated with grade 2 or worse radiation pneumonitis. However, overall rates of grade ≥3 pneumonitis were low and not significantly affected by tumor or target size. Conclusions: Currently employed stereotactic body radiation therapy dose regimens can provide safe effective local therapy even for larger solitary NSCLC tumors (up to 5.7 cm

  7. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  8. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  9. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    Science.gov (United States)

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A. Jan; de Jong, Wim H.

    2016-07-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  10. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Katja, E-mail: K.Kettler@science.ru.nl [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Krystek, Petra [VU University, Institute for Environmental Studies (IVM) (Netherlands); Giannakou, Christina [National Institute for Public Health and the Environment (RIVM) (Netherlands); Hendriks, A. Jan [Radboud University Nijmegen, Department of Environmental Science (Netherlands); Jong, Wim H. de [National Institute for Public Health and the Environment (RIVM) (Netherlands)

    2016-07-15

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  11. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    International Nuclear Information System (INIS)

    Kettler, Katja; Krystek, Petra; Giannakou, Christina; Hendriks, A. Jan; Jong, Wim H. de

    2016-01-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

  12. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  13. Determination of the active transport of fucoidan derived from Okinawa Mozuku across the human intestinal Caco-2 cells as assessed by size-exclusion chromatography.

    Science.gov (United States)

    Nagamine, Takeaki; Hayakawa, Kou; Nakazato, Kyoumi; Iha, Masahiko

    2015-08-01

    In order to clarify the mechanism of fucoidan transport, we developed the chromatographic determination method. A size-exclusion chromatography (SEC) method for the determination of Okinawa-fucoidan using Develosil 300 Diol-5 (60×8.0mm I.D., 30nm pore-diameter) with the eluent containing 1% non-ionic detergent is developed. Determination range (UV at 210nm) is from 0 to 100ng of fucoidan with the linear calibration line inserting to zero. A transport activity of fucoidan is demonstrated by using Caco-2 cells (model of gut transport system); i.e., the initial transport velocity 12nmol/h/mg of protein (25-fold slower rate as compared to a bacterial l-alanine active-transport activity 300nmol/h/mg of protein) is found to occur. Since this fucoidan transport is inhibited by 10mM sodium azide (respiration inhibitor) and 0.05mM FCCP (uncoupler), this transport by Caco-2 cells is found to be an active one requiring energy-source. On the other hand, colchicine (inhibitor of phagocytosis/pinocytosis) and mannitol (putative competitive-inhibitor of tight-junction transport) cannot inhibit the fucoidan transport at all. We firstly report that the active transport occurs for such a high molecular-weight sulphated-polyfucose of fucoidan in vitro using Caco-2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  15. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  16. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    the hypothesis that a decrease in the size of food plates may lead to significant reductions in food waste from buffets. It supports and extends the set of circumstances in which a recent experiment found that reduced dinner plates in a hotel chain lead to reduced quantities of leftovers....

  17. Development of Micro-sized Microbial Fuel Cells as Ultra-Low Power Generators Using Nano-engineered Materials and Sustainable Designs

    KAUST Repository

    Mink, Justine E.

    2013-12-01

    Many of the most pressing global challenges today and in the future center around the scarcity of sustainable energy and water sources. The innovative microbial fuel cell (MFC) technology addresses both as it utilizes bacteria to convert wastewaters into electricity. Advancing this technology requires a better understanding of the optimal materials, designs and conditions involved. The micro-sized MFC was recently developed to serve this need by providing a rapid testing device requiring only a fraction of the materials. Further, development of micro-liter scale MFCs has expanded into potential applications such as remote and self-sustained power sources as well as on-chip energy generators. By using microfabrication, the fabrication and assembly of microsized MFCs is potentially inexpensive and mass produced. The objective of the work within this dissertation was to explore and optimize the micro-sized MFC to maximize power and current generation towards the goal of a usable and application-oriented device. Micro-sized MFCs were examined and developed using four parameters/themes considered most important in producing a high power generating, yet usable device: Anode- The use of nano-engineered carbon nanomaterials, carbon nanotubes and graphene, as anode as well as testing semiconductor industry standard anode contact area materials for enhanced current production. 5 Cathode- The introduction of a membrane-less air cathode to eliminate the need for continuous chemical refills and making the entire device mobile. Reactor design- The testing of four different reactor designs (1-75 μLs) with various features intended to increase sustainability, cost-effectiveness, and usability of the microsized MFC. Fuels- The utilization of real-world fuels, such as industrial wastewaters and saliva, to power micro-sized MFCs. The micro-sized MFC can be tailored to fit a variety of applications by varying these parameters. The device with the highest power production here was

  18. Testosterone replacement alters the cell size in visceral fat but not in subcutaneous fat in hypogonadal aged male rats as a late-onset hypogonadism animal model

    Directory of Open Access Journals (Sweden)

    Abdelhamed A

    2015-03-01

    Full Text Available Amr Abdelhamed,1,2 Shin-ichi Hisasue,1 Masato Shirai,3 Kazuhito Matsushita,1 Yoshiaki Wakumoto,1 Akira Tsujimura,1 Taiji Tsukamoto,4 Shigeo Horie1 1Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan; 2Department of Dermatology, Venereology and Andrology, Sohag University, Graduate School of Medicine, Sohag, Egypt; 3Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Japan; 4Department of Urology, School of Medicine, Sapporo Medical University, Sapporo, Japan Background: Patients with late-onset hypogonadism (LOH benefit from testosterone replacement by improvement in the parameters of the metabolic syndrome, but fat cell morphology in these patients is still unclear. This study aims to determine the effect of testosterone replacement on the morphology of fat cells in subcutaneous and visceral adipose tissue and on erectile function in hypogonadal aged male rats as a model of LOH. Methods: Ten male Sprague-Dawley rats aged 20–22 months were randomly allocated to two groups, ie, aged male controls (control group, n=5 and aged males treated with testosterone replacement therapy (TRT group, n=5. Testosterone enanthate 25 mg was injected subcutaneously every 2 weeks for 6 weeks. At 6 weeks, the intracavernous pressure (ICP and mean arterial blood pressure (MAP ratio was assessed. Visceral and subcutaneous adipose tissue specimens were collected and analyzed using Image-J software. Results: Body weight at 2, 4, and 6 weeks after TRT was 800.0±35.4 g, 767.5±46.3 g, and 780±40.4 g, respectively (not statistically significant. The ICP/MAP ratio was 0.341±0.015 in the TRT group and 0.274±0.049 in the control group (not statistically significant. The median subcutaneous fat cell size was 4.85×103 (range 0.85–12.53×103 µm2 in the control group and 4.93×103 (range 6.42–19.7×103 µm2 in the TRT group (not statistically significant. In contrast, median visceral fat cell size was significantly

  19. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L)

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Shibata, Taro; Saji, Hisashi; Nakajima, Ryu; Tada, Hirohito; Okada, Morihito; Asamura, Hisao; Nakamura, Shinichiro; Tsuboi, Masahiro

    2010-01-01

    A Phase III study was started in Japan to evaluate the non-inferiority in overall survival of segmentectomy compared with lobectomy in patients with small-sized (diameter ≤2 cm) peripheral non-small cell lung cancer, excluding radiologically determined non-invasive cancer. This study began in August 2009, and a total of 1100 patients will be accrued from 71 institutions within 3 years. The primary endpoint is overall survival. The secondary endpoints are post-operative respiratory function, relapse-free survival, proportion of local recurrence, adverse events, proportion of patients who complete segmentectomy, duration of hospitalization, duration of chest tube placement, operation time, blood loss and number of auto-sutures used. This study is one of the first intergroup studies in Japan between the Japan Clinical Oncology Group and the West Japan Oncology Group. (author)

  20. Small-sized and contacting Pt-WC nanostructures on graphene as highly efficient anode catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Wang, Ruihong; Xie, Ying; Shi, Keying; Wang, Jianqiang; Tian, Chungui; Shen, Peikang; Fu, Honggang

    2012-06-11

    The synergistic effect between Pt and WC is beneficial for methanol electro-oxidation, and makes Pt-WC catalyst a promising anode candidate for the direct methanol fuel cell. This paper reports on the design and synthesis of small-sized and contacting Pt-WC nanostructures on graphene that bring the synergistic effect into full play. Firstly, DFT calculations show the existence of a strong covalent interaction between WC and graphene, which suggests great potential for anchoring WC on graphene with formation of small-sized, well-dispersed WC particles. The calculations also reveal that, when Pt attaches to the pre-existing WC/graphene hybrid, Pt particles preferentially grow on WC rather than graphene. Our experiments confirmed that highly disperse WC nanoparticles (ca. 5 nm) can indeed be anchored on graphene. Also, Pt particles 2-3 nm in size are well dispersed on WC/graphene hybrid and preferentially grow on WC grains, forming contacting Pt-WC nanostructures. These results are consistent with the theoretical findings. X-ray absorption fine structure spectroscopy further confirms the intimate contact between Pt and WC, and demonstrates that the presence of WC can facilitate the crystallinity of Pt particles. This new Pt-WC/graphene catalyst exhibits a high catalytic efficiency toward methanol oxidation, with a mass activity 1.98 and 4.52 times those of commercial PtRu/C and Pt/C catalysts, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  2. Multielemental fractionation in human peripheral blood mononuclear cells by size exclusion liquid chromatography coupled to UV and ICP-MS detection.

    Science.gov (United States)

    Alvarado, Gladys; Murillo, Miguel

    2010-10-01

    An analytical methodology is presented in this work to determine metal-biomolecule complexes size distribution patterns of several elements, among different compounds present in human peripheral blood mononuclear cells (PBMC). A hyphenated technique based on size exclusion chromatography (SEC) coupled online to UV and inductively coupled plasma mass spectrometry (ICP-MS) detection is used. Two different SEC columns with separation ranges between 1,500-1,000,000 relative molecular mass (M(r)) (Nanofilm SEC-250) and 5,000 and 100,000 relative molecular mass (M(r)) (TSK-Gel G2000 SW) are used with 10 mmol/L tris-HCl at pH 7.3 as mobile phase. Retention behavior (retention time and peak-area ratios) remained unchanged for several successive separations. Metal-containing compounds are found to a wide range of M(r). Copper-zinc superoxide dismutase, copper and zinc metallothionein, and copper and zinc transferrin are identified in PBMC samples. A high M(r) (147,000) metal-binding protein containing copper and zinc and a high M(r) (107,000) manganese-binding protein were also found; however, these remained unknown.

  3. A solvent approach to the size-controllable synthesis of ultrafine Pt catalysts for methanol oxidation in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Ye, Feng; Liu, Hui; Feng, Yan; Li, Jianling; Wang, Xindong; Yang, Jun

    2014-01-01

    Graphical abstract: - Highlights: • An ethylene glycol-based approach for the synthesis of Pt/C catalysts with uniform Pt nanoparticles. • Superior catalytic activity of Pt/C catalysts synthesized at EG/water volume ratio of 1/1 for methanol oxidation reaction. • High performance of MEA for DMFC using Pt/C catalysts synthesized at EG/water volume ratio of 1/1 at anode. - Abstract: An ethylene glycol (EG)-based approach has been developed for the synthesis of Pt/C catalysts with uniform Pt nanoparticles. A number of characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements are used to characterize the as-prepared Pt catalysts. The well-dispersed Pt nanoparticles with average size of approximate 2 nm could be obtained in the EG/water mixture with volume ratio of 1/1, which display higher activity for methanol oxidation than that of the Pt/C products prepared at other EG/water volume ratios (0:1, 2:1, and 1:0). In particular, the performance of the Pt nanoparticles prepared at EG/water volume ratio of 1/1 in the membrane electrode assembly for direct methanol fuel cells has also been evaluated and benchmarked by commercial Pt/C catalysts. This study offers a vivid example to synthesize Pt nanoparticles with fine size and good catalytic activity by simply tuning the solvent ratio in colloidal chemistry methods

  4. Risk factors of lymph node metastasis in patients with non-small cell lung cancer ≤ 2 cm in size: A monocentric population-based analysis.

    Science.gov (United States)

    Yu, Xiyan; Li, Yanwen; Shi, Chunlei; Han, Baohui

    2018-01-01

    This study was designed to determine the risk factors of lymph node metastasis in non-small cell lung cancer (NSCLC) patients with tumors ≤ 2 cm, using the Shanghai Chest Hospital Lung Cancer Database. Five hundred and eighteen patients with NSCLC ≤ 2 cm were included in this study, and were classified into lymph node-positive and lymph node-negative groups. Univariate and multivariate logistic regression analyses were performed to select the independent risk factors for lymph node metastasis in NSCLC patients. No evidence of metastasis was found in tumors ≤ 1 cm, all positive results were in tumors sized 1-2 cm. Imaging characteristics, including solid and part-solid nodules, were strongly associated with lymph node metastasis (odds ratio [OR] 24.959, 95% confidence interval [CI] 5.999-103.835, P 1 cm. Size had a great impact on lymph node metastasis, especially tumors of 1-2 cm. Preoperative imaging, non-adeno non-squamous carcinoma, pleural invasion, and carcinoembryonic antigen all indicated lymph node dissection. There was no discrepancy between N1 and N2 positive lymph nodes. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner

    Directory of Open Access Journals (Sweden)

    Orlando A

    2017-05-01

    Full Text Available Antonina Orlando,1 Emanuela Cazzaniga,1 Maria Tringali,2 Francesca Gullo,3 Andrea Becchetti,3 Stefania Minniti,1 Francesca Taraballi,4,5 Ennio Tasciotti,4,5 Francesca Re1 1Nanomedicine Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, 2Department of Environmental Sciences, 3Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy; 4Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI, 5Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA Purpose: Mesoporous silica nanoparticles (MSNPs are excellent candidates for biomedical applications and drug delivery to different human body areas, the brain included. Although toxicity at cellular level has been investigated, we are still far from using MSNPs in the clinic, because the mechanisms involved in the cellular responses activated by MSNPs have not yet been elucidated.Materials and methods: This study used an in vitro multiparametric approach to clarify relationships among size, dose, and time of exposure of MSNPs (0.05–1 mg/mL dose range, and cellular responses by analyzing the morphology, viability, and functionality of human vascular endothelial cells and neurons.Results: The results showed that 24 hours of exposure of endothelial cells to 250 nm MSNPs exerted higher toxicity in terms of mitochondrial activity and membrane integrity than 30 nm MSN at the same dose. This was due to induced cell autophagy (in particular mitophagy, probably consequent to MSNP cellular uptake (>20%. Interestingly, after 24 hours of treatment with 30 nm MSNPs, very low MSNP uptake (<1% and an increase in nitric oxide production (30%, P<0.01 were measured. This suggests that MSNPs were able to affect endothelial functionality from outside the cells. These differences could be attributed to the different protein-corona composition of the MSNPs used, as suggested by sodium dodecyl sulfate

  6. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification.

    Science.gov (United States)

    Hanada, Sanshiro; Fujioka, Kouki; Inoue, Yuriko; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2014-01-24

    The possibility of nanoparticle (NP) uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs) passed through the blood-brain barrier (BBB). For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (P(app)) to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm), revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots), showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.

  7. Combined Protein A and size exclusion high performance liquid chromatography for the single-step measurement of mAb, aggregates and host cell proteins.

    Science.gov (United States)

    Gjoka, Xhorxhi; Schofield, Mark; Cvetkovic, Aleksandar; Gantier, Rene

    2014-12-01

    Quantification of monoclonal antibody (mAb) monomer, mAb aggregates, and host cell proteins (HCPs) is critical for the optimization of the mAb production process. The present work describes a single high throughput analytical tool capable of tracking the concentration of mAb, mAb aggregate and HCPs in a growing cell culture batch. By combining two analytical HPLC methods, Protein A affinity and size-exclusion chromatography (SEC), it is possible to detect a relative increase or decrease in the concentration of all three entities simultaneously. A comparison of the combined Protein A-SEC assay to SEC alone was performed, demonstrating that it can be useful tool for the quantification of mAb monomer along with trending data for mAb aggregate and HCP. Furthermore, the study shows that the Protein A-SEC method is at least as accurate as other commonly used analytical methods such as ELISA and Bradford. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells.

    Science.gov (United States)

    Xie, Yuexia; Liu, Dejun; Cai, Chenlei; Chen, Xiaojing; Zhou, Yan; Wu, Liangliang; Sun, Yongwei; Dai, Huili; Kong, Xianming; Liu, Peifeng

    2016-01-01

    The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.

  9. Dual Delivery of rhPDGF-BB and Bone Marrow Mesenchymal Stromal Cells Expressing the BMP2 Gene Enhance Bone Formation in a Critical-Sized Defect Model

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo

    2013-01-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis. PMID:23901900

  10. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Science.gov (United States)

    Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.

    2014-01-01

    Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220

  11. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  12. High-performance size-based microdevice for the detection of circulating tumor cells from peripheral blood in rectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Wenjie Sun

    Full Text Available Since individualized therapy becomes more and more important in the treatment of rectal cancer, an accurate and effective approach should be established in the clinical settings to help physicians to make their decisions. Circulating tumor cells (CTCs, originated from either primary or metastatic cancer, could provide important information for diagnosis and monitoring of cancer. However, the implication and development of CTCs are limited due to the extreme rarity of these tumor cells. In this study we fabricated a simple and high-performance microfluidic device, which exploited numerous filtered microchannels in it to enrich the large-sized target tumor cells from whole blood. A very high CTC capture efficiency (average recovery rate: 94% was obtained in this device at the optimum flow rate of 0.5 mL/h and channel height of 5 µm. Additionally, we used this device for detecting CTCs in 60 patients with rectal cancer. The CTC counts of rectal cancer patients were significantly higher than those in healthy subjects. Furthermore, the CTC counts detected by this device were significantly higher than those by EpCAM bead-based method for rectal cancer patients with various stage. Especially, for localized rectal cancer patients, the positive rates of samples with more than 3 CTCs per 5 mL blood by use of microdevice vs. EpCAM-based ones were 100% vs. 47%, respectively. Thus, this device provides a new and effective tool for accurate identification and measurement of CTCs in patients with rectal cancer, and has broad potential in clinical practice.

  13. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal

    2016-01-01

    -PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. RESULTS AND DISCUSSION: The results from the in vitro study revealed......INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone...... a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion...

  14. Rhizosphere size

    Science.gov (United States)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  15. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  16. Size of the iceberg

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Toft, Nils; Okura, Hisako

    2012-01-01

    of detectable infections among all infected is often referred to as ‘the tip of the iceberg’. For MAP infections, infected cattle may be divided into those with cell-mediated immune reactions (CMI) during latent infection, and those with humoral immune reactions (HI) characterized by IgG1 antibodies.......e. a significant shift in the size of the iceberg. Although the ‘iceberg’ concept is well-known among paratuberculosis researchers, the size of the iceberg has not previously been characterized. Results can be used for inclusion of the distribution of cows in different infection stages at different ages...

  17. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Geomela Panagiota-Aikaterini

    2012-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.

  18. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  19. Plasma Amino Acids During 8 Weeks of Overfeeding: Relation to Diet Body Composition and Fat Cell Size in the PROOF Study.

    Science.gov (United States)

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Rood, Jennifer; Sutton, Elizabeth F; Smith, Steven R

    2018-02-01

    Different amounts of dietary protein during overfeeding produced similar fat gain but different amounts of gain in fat-free body mass. Protein and energy intake may have differential effects on amino acids during overfeeding. Twenty-three healthy adult men and women were overfed by 40% for 8 weeks with 5%, 15%, or 25% protein diets. Plasma amino acids were measured by gas chromatography and mass spectrometry at baseline and week 8. Body composition was measured by dual-energy x-ray absorptiometry, fat cell size (FCS) from subcutaneous fat biopsies, and insulin resistance by euglycemic-hyperinsulinemic clamp. The following three amino acid patterns were seen: increasing concentration of five essential and three nonessential amino acids with increasing protein intake, higher levels of six nonessential amino acids with the low-protein diet, and a pattern that was flat or "V" shaped. Dietary fat and protein were both correlated with changes in valine, leucine/isoleucine/norleucine, phenylalanine, and tyrosine, but energy intake was not. The change in fat mass and weight was related to the change in several amino acids. Baseline FCS and the interaction between glucose disposal and FCS were associated with changes in several amino acids during overfeeding. Overfeeding dietary protein affects the levels of both essential and nonessential amino acids. © 2017 The Obesity Society.

  20. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Xie Y

    2016-07-01

    Full Text Available Yuexia Xie,1,2,* Dejun Liu,3,* Chenlei Cai,1,* Xiaojing Chen,1 Yan Zhou,1 Liangliang Wu,1 Yongwei Sun,3 Huili Dai,1,2 Xianming Kong,1,2 Peifeng Liu1,2 1Central Laboratory, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 3Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The application of Fe3O4 nanoparticles (NPs has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mecha­nisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm. Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. Keywords: hepatoma cells, nanoparticles, cytotoxicity, mechanism, oxidative stress

  1. Small size ion pumps

    International Nuclear Information System (INIS)

    Cyranski, R.; Kiliszek, Cz.R.; Marks, J.; Sobolewski, A.; Magielko, H.

    2001-01-01

    This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs

  2. Measurements of Neuronal Soma Size and Estimated Peptide Concentrations in Addition to Cell Abundance Offer a Higher Resolution of Seasonal and Reproductive Influences of GnRH-I and GnIH in European Starlings.

    Science.gov (United States)

    Amorin, Nelson; Calisi, Rebecca M

    2015-08-01

    Hypothalamic neuropeptides involved in vertebrate reproduction, gonadotropin releasing hormone (GnRH-I) and gonadotropin-inhibitory hormone (GnIH), can vary in the abundance of immunoreactive cells as a function of the reproductive status and nest box occupation of European starlings (Sturnus vulgaris). While using the abundance of cells as an indicator of the activity of neurohormones is informative, incorporating information on cell size (readily observed using immunohistochemistry) can offer a more detailed understanding of environmentally-mediated changes in hormonal dynamics. In this study, we tested the hypothesis that the size of cells' somas and the estimated concentration of peptides in cells immunoreactive (ir) for GnRH-I and GnIH would vary throughout the breeding season and as a function of nest-box status (resident or not). In the absence of a direct assay of protein, we estimated an index of the concentration of hypothalamic peptides via the relative optical density (i.e., the difference between the mean optical density and the optical density of background staining). In support of our hypothesis, we found that GnRH-I- and GnIH-ir soma size and peptide concentration changed both in males and females throughout the breeding season. Somas were largest and estimated peptide concentration was highest mid-season when compared with earlier in the season or to the non-breeding period. For nest-box residents, GnIH-ir soma size and peptide concentration were higher during the middle of the breeding season than earlier in the breeding season, although residence in the nest box was not related to GnRH-I-ir variables. Our results confirm that previously reported changes in cell abundance mimic changes we see in GnRH-I and GnIH-ir soma size and our proxy for peptide concentration. However, investigating changes in the soma of GnRH-I-ir cells revealed a peak in size during the middle of the breeding season, a change not evident when solely examining data on the

  3. Low-Dose Bone Morphogenetic Protein-2/Stromal Cell-Derived Factor-1β Cotherapy Induces Bone Regeneration in Critical-Size Rat Calvarial Defects

    Science.gov (United States)

    Herberg, Samuel; Susin, Cristiano; Pelaez, Manuel; Howie, R. Nicole; Moreno de Freitas, Rubens; Lee, Jaebum; Cray, James J.; Johnson, Maribeth H.; Elsalanty, Mohammed E.; Hamrick, Mark W.; Isales, Carlos M.; Wikesjö, Ulf M.E.

    2014-01-01

    Increasing evidence suggests that stromal cell-derived factor-1 (SDF-1/CXCL12) is involved in bone formation, though underlying molecular mechanisms remain to be fully elucidated. Also, contributions of SDF-1β, the second most abundant splice variant, as an osteogenic mediator remain obscure. We have shown that SDF-1β enhances osteogenesis by regulating bone morphogenetic protein-2 (BMP-2) signaling in vitro. Here we investigate the dose-dependent contribution of SDF-1β to suboptimal BMP-2-induced local bone formation; that is, a dose that alone would be too low to significantly induce bone formation. We utilized a critical-size rat calvarial defect model and tested the hypotheses that SDF-1β potentiates BMP-2 osteoinduction and that blocking SDF-1 signaling reduces the osteogenic potential of BMP-2 in vivo. In preliminary studies, radiographic analysis at 4 weeks postsurgery revealed a dose-dependent relationship in BMP-2-induced new bone formation. We then found that codelivery of SDF-1β potentiates suboptimal BMP-2 (0.5 μg) osteoinduction in a dose-dependent order, reaching comparable levels to the optimal BMP-2 dose (5.0 μg) without apparent adverse effects. Blocking the CXC chemokine receptor 4 (CXCR4)/SDF-1 signaling axis using AMD3100 attenuated the osteoinductive potential of the optimal BMP-2 dose, confirmed by qualitative histologic analysis. In conclusion, SDF-1β provides potent synergistic effects that support BMP-induced local bone formation and thus appears a suitable candidate for optimization of bone augmentation using significantly lower amounts of BMP-2 in spine, orthopedic, and craniofacial settings. PMID:24341891

  4. Comparison of on-line flow-cell and off-line solvent-elimination interfaces for size-exclusion chromatography and Fourier-transform infrared spectroscopy in polymer analysis

    NARCIS (Netherlands)

    Kok, S.J.; Wold, C.A.; Hankemeier, Th.; Schoenmakers, P.J.

    2003-01-01

    Two commercial liquid chromatography-Fourier-transform infrared spectroscopy interfaces (LC-FTIR), viz. a flow cell and a solvent-elimination interface have been assessed for use in size-exclusion chromatography (SEC) with respect to their chromatographic integrity (i.e. peak asymmetry,

  5. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma

    NARCIS (Netherlands)

    Chitty, L. S.; Griffin, D. R.; Meaney, C.; Barrett, A.; Khalil, A.; Pajkrt, E.; Cole, T. J.

    2011-01-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed

  6. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  7. Out-of-plane integration of a multimode optical fiber for single particle/cell detection at multiple points on a microfluidic device with applications to particle/cell counting, velocimetry, size discrimination and the analysis of single cell lysate injections.

    Science.gov (United States)

    Sadeghi, Jalal; Patabadige, Damith E W; Culbertson, Anne H; Latifi, Hamid; Culbertson, Christopher T

    2016-12-20

    In this paper a single particle/cell-tracking microfluidic device that integrates an out-of-plane multimode optical fiber (OP-MMF) is reported. This OP-MMF is used to generate three excitation light-lines and three detection spots using only one excitation source and one detector. It takes advantage of an optical tunneling mode to create two excitation lines in a microfluidic channel emanating from a single fiber end. This method was used to accurately count particles/cells and perform velocity measurements and size discrimination. The velocity and size distributions of 5, 7, and 10 μm fluorescently labeled polystyrene beads were determined using the OP-MMF. Additionally, this method was used to analyze cell lysates with the third excitation line in the separation channel. The OP-MMF setup accurately detected an intact cell twice ∼2 mm prior to lysis, determined its velocity, and detected the injected cell lysate 3 mm downstream of the injection point in the separation channel. Using this setup, the velocity of cells entering the lysis intersection and the absolute migration times of fluorescently labeled analytes injected into the separation channel were determined in an automated fashion. This method enabled us to determine a lysing/injection efficiency coefficient (K) using signals from the injected lysate signal and from the intact cell before lysing. K provided a reliable measurement of the amount of cell lysate that was injected into the separation channel. The approach reported here could be used in the future to track particles, cells or droplets in a variety of existing microfluidic devices without the need for multiplexed masks, layers, bulky optical elements or complex optical designs.

  8. Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yu Huiming; Liu Yunfang; Hou Ming; Liu Jie; Li Xiaonan; Yu Jinming

    2009-01-01

    Purpose: The correlation of gross tumor sizes between combined 18 F-FDG PET/CT images and macroscopic surgical samples has not yet been studied in detail. In the present study, we compared CT, 18 F-FDG PET and combined 18 F-FDG PET/CT for the delineation of gross tumor volume (GTV) and validated the results through examination of the macroscopic surgical specimen. Methods: Fifty-two operable non-small cell lung cancer (NSCLC) patients had integrated 18 F-FDG PET/CT scans preoperatively and pathological examination post-operation. Four separate maximal tumor sizes at X (lateral direction), Y (ventro-dorsal direction) and Z (cranio-caudal direction) axis were measured on 18 F-FDG PET, CT, combined 18 F-FDG PET/CT and surgical specimen, respectively. Linear regression was calculated for each of the three imaging measurements versus pathological measurement. Results: No significant differences were observed among the tumor sizes measured by three images and pathological method. Compared with pathological measurement, CT size at X, Y, Z axis was larger, whereas combined 18 F-FDG PET/CT and 18 F-FDG PET size were smaller. Combined 18 F-FDG PET/CT size was more similar to the pathological size than that of 18 F-FDG PET or CT. Results of linear regressions showed that integrated 18 F-FDG PET/CT was the most accurate modality in measuring the size of cancer. Conclusions: 18 F-FDG PET/CT correlates more faithfully with pathological findings than 18 F-FDG PET or CT. Integrated 18 F-FDG PET/CT is an effective tool to define the target of GTV in radiotherapy.

  9. Lysosomal responses to different gold forms (nanoparticles, aqueous, bulk) in mussel digestive cells: a trade-off between the toxicity of the capping agent and form, size and exposure concentration.

    Science.gov (United States)

    Jimeno-Romero, A; Izagirre, U; Gilliland, D; Warley, A; Cajaraville, M P; Marigómez, I; Soto, M

    2017-06-01

    Gold nanoparticles (NPs) are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from bulk and aqueous gold. The aim of this work was to understand the effects of Au NPs especially, how the form, the size and the coating influence bioaccumulation/biodistribution and toxicity of NPs in mussels, Mytilus galloprovincialis. Mussels were exposed for 3 d to concentrations of Au (0.75, 75 and 750 μg Au/l) supplied as Au-Cit NPs (5 and 40 nm; Au5-Cit and Au40-Cit), bulk and aqueous Au (HAu(III)Cl 4 ), and to the capping agent (Na-citrate) in doses used in the formulation of NPs (0.005, 0.5, 5 mg/l). Citrate-stabilised NPs formed stable suspensions of aggregates in seawater (SW) available for mussels. Au accumulation in soft tissues was similar in Au40-Cit and aqueous Au exposed mussels, lower in Au5-Cit and negligible after bulk exposure. Au NPs were identified (X-ray microanalysis) in different compartments of the endolysosomal system in digestive cells, and small size NPs (5 nm) were more accumulated than 40 nm NPs, aqueous and bulk. The degree of lysosomal membrane destabilisation was related with intralysosomal metal accumulation and depended on the form, NP size (Au5-Cit > Au40-Cit > aqueous > bulk) and concentration. Citrate alone provoked extreme reduction in lysosomal membrane stability. Toxicopathic alterations were recorded in digestive gland cells (vacuolisation, swollen RER, connective tissue disruption and cell death) especially in mussels exposed to 40 nm NPs. Deleterious effects resulted from digestive tract obliteration (agglomerates) and digestion malfunction. The toxic effect of Au-Cit NPs was influenced both by NP size, capping agent composition and the dose of capping agent carried by NPs, which was size dependent.

  10. Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell

    Science.gov (United States)

    Heidarzadeh, Hamid

    2018-03-01

    Significant performance enhancement in an ultrathin perovskite (CH3NH3PbI3) solar cell is done using plasmonic embedded core–shell dimer nanoparticles. Three-dimensional finite difference time-domain (FDTD) method is used. A perovskite absorber with a volume of 400 × 400 × 200 nm3 is considered. At first, a cell with one embedded nanoparticle is simulated. Absorptance of CH3NH3PbI3 absorber and gold nanoparticle are obtained. An optimization is done. Then a cell with embedded dimer nanoparticles is evaluated. The results show higher photocurrent enhancement for that in compared to a cell with one embedded nanoparticle. To further photocurrent enhancement, gold-SiO2 core–shell nanoparticles are used. Photocurrents of 23.37 mA cm‑2, 23.3 mA cm‑2, 22.5 mA cm‑2 and 21.47 mA cm‑2 are obtained for a cell with two embedded core–shell nanoparticles with core radius of 60 nm and shell thickness of 2 nm, 5 nm, 10 nm and 20 nm, respectively. It is important to mention that the photocurrent is 17.9 mA cm‑2 for reference cell and 19.8 mA cm‑2 for a cell with one embedded nanoparticle. Higher photocurrent is due to the near-field plasmonic effect.

  11. Elevated hydrostatic pressure enhances the motility and enlarges the size of the lung cancer cells through aquaporin upregulation mediated by caveolin-1 and ERK1/2 signaling.

    Science.gov (United States)

    Kao, Y-C; Jheng, J-R; Pan, H-J; Liao, W-Y; Lee, C-H; Kuo, P-L

    2017-02-09

    The mechanical characteristics presented in cancer microenvironment are known to have pivotal roles in cancer metastasis, which accounts for the leading cause of death from malignant tumors. However, while a uniformly distributed high interstitial fluid pressure (IFP) is a common feature in solid tumors, the effects of high IFP on the motility and invasiveness of cancer cells remain obscure. Using cell-culture devices that simulated increased IFP conditions by applying hydrostatic pressure (HP) ranging from 0 to 20 mm Hg to the cells, we found that the elevated HPs increased the migration speeds, invasiveness, cell volume, filopodial number and aquaporin-1 (AQP1), Snail and vinculin expression levels, as well as phosphorylation of caveolin-1 and extracellular signal-regulated kinase1/2 (ERK1/2), in the lung cancer cells CL1-5 and A549. The increases of migration speed and cell volume correlated temporally with the increase of AQP1 expression. The elevated HP-induced migration acceleration was hindered by AQP1 knockdown using small interfering RNA (siRNA) transfection. Inhibition of ERK1/2 phosphorylation using the mitogen-activated protein kinase kinase inhibitor PD98059 abrogated the elevated HP-induced AQP1 upregulation and migration acceleration in the cancer cells. Caveolin-1 knockdown by siRNA transfection attenuated the HP-induced, ERK1/2-depedent AQP1 upregulation and migration acceleration. Further biochemical studies revealed that the caveolin-1 activation-driven ERK1/2 signaling is mediated by Akt1/2 phosphorylation. By contrast, the elevated HPs had negligible effects on the migration speed and volume of normal bronchial epithelial cells. These results disclose a novel mechanism relating high IFP to the invasiveness of cancer cells and highlight potential targets to impede cancer spreading.

  12. Intron size and genome size in plants.

    Science.gov (United States)

    J. Wendel; R. Cronn; I. Alvarez; B. Liu; R. Small; D. Senchina

    2002-01-01

    It has long been known that genomes vary over a remarkable range of sizes in both plants (Bennett, Cox, and Leitch 1997) and animals (Gregory 2001). It also has become evident that across the broad phylogenetic sweep, genome size may be correlated with intron size (Deutsch and Long 1999; Vinogradov 1999; McLysaght et al. 2000), suggesting that some component of genome...

  13. One size does not fit all--bacterial cell death by antibiotics cannot be explained by the action of reactive oxygen species.

    Science.gov (United States)

    Kuhnert, Nikolai

    2013-10-11

    Back to square one: Two recent studies prove that reactive oxygen species (ROS) are not responsible for bacterial cell death after treatment with antibiotics. The ROS concept cannot be generalized to explain all processes resulting in cell death. The search for the mechanism of action of bacterial antibiotics must thus return to the beginning. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma.

    Science.gov (United States)

    Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J

    2011-03-01

    To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  15. Study of the Flow Temperature and Ring Design Influence on the Response of a New Reduced-Size Calorimetric Cell for Nuclear Heating Quantification

    Science.gov (United States)

    Volte, A.; Reynard-Carette, C.; Brun, J.; De Vita, C.; Carette, M.; Fiorido, T.; Lyoussi, A.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2018-01-01

    This paper concerns experimental studies of different designs of a new compact calorimetric cell under laboratory conditions. This kind of cell is used for the measurement of the nuclear heating rate inside Material Testing Reactors thanks to differential calorimetry. The results, obtained by applying an operating protocol corresponding to a preliminary out-of-pile calibration step, are presented for three designs. The influence of the horizontal-fin design is shown on the calibration curve and the sensor sensitivity. The influence of the external fluid flow temperature is given for the quarter design. The different responses of the calorimetric cell are explained by taken into account a 1D analytical thermal model coupling thermal conductive and radiative transfers.

  16. Automated measurement of diatom size

    Science.gov (United States)

    Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.

    2012-01-01

    Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.

  17. Measurement of bubble shape and size in bubbly flow structure for stagnant and pulsating liquid flow using an undivided electrochlorination cell and Telecentric Direct Image Method

    DEFF Research Database (Denmark)

    Andersen, Nikolaj; Stroe, Rodica-Elisabeta; Hedensted, Lau

    2016-01-01

    This study presents the measurement of shape and diameter of bubbles in different regions of the bubbly flow structure at the cathode for stagnant and pulsating liquid flow in a single undivided electrochlorination cell. The cell is filled with a dilute sodium chloride electrolyte solution...... is supported by an increase in fraction of total gas volume constituted by large bubbles. For pulsating liquid flow the mean bubble diameter is observed to remain constant around 35 μm when moving across the bubbly flow structure, which likewise is supported by the fraction of total gas volume investigations...

  18. Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet beta-cells of diabetic Goto Kakizaki rats

    Czech Academy of Sciences Publication Activity Database

    Špaček, Tomáš; Pavluch, Vojtěch; Alán, Lukáš; Capková, Nikola; Engstová, Hana; Dlasková, Andrea; Berková, Z.; Saudek, F.; Ježek, Petr

    2017-01-01

    Roč. 7, Nov 15 (2017), č. článku 15674. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA13-02033S; GA ČR(CZ) GA13-06666S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : GK rat * superresolution fluorescence * microscopy reveals * binding- protein * insulin-release Subject RIV: EA - Cell Biology OBOR OECD: Cell biology Impact factor: 4.259, year: 2016

  19. Large and medium-sized pulmonary artery obstruction does not play a role of primary importance in the etiology of sickle-cell disease-associated pulmonary hypertension

    NARCIS (Netherlands)

    van Beers, Eduard J.; van Eck-Smit, Berthe L. F.; Mac Gillavry, Melvin R.; van Tuijn, Charlotte F. J.; van Esser, Joost W. J.; Brandjes, Dees P. M.; Kappers-Klunne, Mies C.; Duits, Ashley J.; Biemond, Bart J.; Schnog, John-John B.

    2008-01-01

    Background: Pulmonary hypertension (PHT) occurs in approximately 30% of adult patients with sickle-cell disease (SCD) and is a risk factor for early death. The potential role of pulmonary artery obstruction, whether due to emboli or in situ thrombosis, in the etiology of SCD-related PHT is unknown.

  20. Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells

    NARCIS (Netherlands)

    Kettler, K.; Krystek, P.W.; Giannakou, C.; Hendriks, A.J.; de Jong, W.H.

    2016-01-01

    The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the

  1. Objective malignancy grading of squamous cell carcinoma of the lung. Stereologic estimates of mean nuclear size are of prognostic value, independent of clinical stage of disease

    DEFF Research Database (Denmark)

    Ladekarl, M; Bæk-Hansen, T; Henrik-Nielsen, R

    1995-01-01

    BACKGROUND: The prognostic value of quantitative histopathologic parameters was evaluated in 55 consecutively treated patients with operable lung carcinoma of squamous (N = 39) and mixed, adenosquamous (N = 16) cell type. Patients alive were followed for at least 12 years. METHODS: Using a projec...

  2. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  3. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice

    NARCIS (Netherlands)

    Braccioli, Luca; Heijnen, Cobi J.; Coffer, Paul J.; Nijboer, Cora H.A.

    2017-01-01

    Background Hypoxic-ischemic (HI) encephalopathy causes mortality and severe morbidity in neonates. Treatments with a therapeutic window >6 hours are currently not available. Here we explored whether delayed transplantation of allogenic neural stem cells (NSCs) at 10 days after HI could be a tool to

  4. PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B.

    Science.gov (United States)

    Shi, Shuai; Hickey, Anthony J

    2010-02-01

    To study the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for recombinant tuberculosis (TB) antigen, TB10.4-Ag85B, with the ultimate goal of pulmonary delivery as vaccine for the prevention of TB. Recombinant TB antigens were purified from E. coli by FPLC and encapsulated into PLGA microparticles by emulsion/spray-drying. Spray-drying condition was optimized by half-factorial design. Microparticles encapsulating TB antigens were assessed for their ability to deliver antigens to macrophages for subsequent presentation by employing an in vitro antigen presentation assay specific to an Ag85B epitope. Spray-drying condition was optimized to prepare PLGA microparticles suitable for pulmonary delivery (aerodynamic diameter of 3.3 microm). Antigen release from particles exhibited an initial burst release followed by sustained release up to 10 days. Antigens encapsulated into PLGA microparticles induced much stronger interleukin-2 secretion in a T-lymphocyte assay compared to antigen solutions for three particle formulations. Macrophages pulsed with PLGA-MDP-TB10.4-Ag85B demonstrated extended epitope presentation. PLGA microparticles in respirable sizes were effective in delivering recombinant TB10.4-Ag85B in an immunologically relevant manner to macrophages. These results set the foundation for further investigation into the potential use of PLGA particles for pulmonary delivery of vaccines to prevent Mycobacterium tuberculosis infection.

  5. Size-Based Enrichment of Exfoliated Tumor Cells in Urine Increases the Sensitivity for DNA-Based Detection of Bladder Cancer

    DEFF Research Database (Denmark)

    Andersson, Elin; Steven, Kenneth; Guldberg, Per

    2014-01-01

    Bladder cancer is diagnosed by cystoscopy, a costly and invasive procedure that is associated with patient discomfort. Analysis of tumor-specific markers in DNA from sediments of voided urine has the potential for non-invasive detection of bladder cancer; however, the sensitivity is limited by low...... series of patients with primary or recurrent bladder tumors (N = 189) was processed by microfiltration using a membrane filter with a defined pore-size, and sedimentation by centrifugation, respectively. DNA from the samples was analyzed for seven bladder tumor-associated methylation markers using Methy......Light and pyrosequencing assays. The fraction of tumor-derived DNA was higher in the filter samples than in the corresponding sediments for all markers (ptumor stages, the number of cases positive for one or more markers was 87% in filter samples compared to 80% in the corresponding sediments...

  6. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Jadhav, Nitin A; Singh, Pramod K; Rhee, Hee Woo; Bhattacharya, Bhaskar

    2014-01-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m(2)/g which was 5.54 m(2)/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m(2)/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J-V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments.

  7. On Effect Size

    Science.gov (United States)

    Kelley, Ken; Preacher, Kristopher J.

    2012-01-01

    The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…

  8. Reduction of Charge-Carrier Recombination at ZnO-Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant.

    Science.gov (United States)

    Ben Dkhil, Sadok; Gaceur, Meriem; Diallo, Abdou Karim; Didane, Yahia; Liu, Xianjie; Fahlman, Mats; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2017-05-24

    Cathode interfacial layers, also called electron extraction layers (EELs), based on zinc oxide (ZnO) have been studied in polymer-blend solar cells toward optimization of the opto-electric properties. Bulk heterojunction solar cells based on poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 70 BM) were realized in regular structure with all-solution-processed interlayers. A pair of commercially available surfactants, ethanolamine (EA) and ethylene glycol (EG), were used to modify the surface of ZnO nanoparticles (NPs) in alcohol-based dispersion. The influence of ZnO particle size was also studied by preparing dispersions of two NP diameters (6 versus 11 nm). Here, we show that performance improvement can be obtained in polymer solar cells via the use of solution-processed ZnO EELs based on surface-modified nanoparticles. By the optimizing of the ZnO dispersion, surfactant ratio, and the resulting morphology of EELs, PTB7/PC 70 BM solar cells with a power-conversion efficiency of 8.2% could be obtained using small sized EG-modified ZnO NPs that allow the clear enhancement of the performance of solution-processed photovoltaic devices compared to state-of-the-art ZnO-based cathode layers.

  9. Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females

    DEFF Research Database (Denmark)

    Mackey, Abigail; Andersen, Lars L; Frandsen, Ulrik

    2011-01-01

    While strength training has been shown to be effective in mediating hypertrophy and reducing pain in trapezius myalgia, responses at the cellular level have not previously been studied. This study investigated the potential of strength training targeting the affected muscles (SST, n = 18......) and general fitness training (GFT, n = 16) to augment the satellite cell (SC) and macrophage pools in the trapezius muscles of women diagnosed with trapezius myalgia. A group receiving general health information (REF, n = 8) served as a control. Muscle biopsies were collected from the trapezius muscles...... hypertrophy (r = -0.669, P = 0.005). SST also resulted in a 74% enhancement of the trapezius macrophage content (P

  10. Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments

    DEFF Research Database (Denmark)

    Posth, Nicole R.; Huelin, Sonia; Konhauser, Kurt O.

    2010-01-01

    Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental...... iron phase depended on the composition of the medium: goethite formed in cultures grown by oxidation of dissolved Fe(II) medium in the presence of low phosphate concentrations, while poorly ordered ferrihydrite (or Fe(III) phosphates) formed when amorphous Fe(II) minerals (Fe(II)-phosphates) and high...

  11. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  12. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton

    Science.gov (United States)

    Huete-Ortega, María; Cermeño, Pedro; Calvo-Díaz, Alejandra; Marañón, Emilio

    2012-01-01

    The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03–1.32), negating the idea that Kleiber's law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of −1.15 (range: −1.29 to −0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems. PMID:22171079

  13. One-step synthesis of small-sized and water-soluble NaREF4 upconversion nanoparticles for in vitro cell imaging and drug delivery.

    Science.gov (United States)

    Yang, Dongmei; Dai, Yunlu; Ma, Pingan; Kang, Xiaojiao; Cheng, Ziyong; Li, Chunxia; Lin, Jun

    2013-02-18

    Small (2-28 nm) NaREF(4) (rare earth (RE)=Nd-Lu, Y) nanoparticles (NPs) were prepared by an oil/water two-phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase-transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow-structured NaREF(4) (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron-beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as-prepared hollow-structured NPs can be used as anti-cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α-NaLuF(4):20% Yb(3+), 2% Er(3+) exhibits a pH-sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti-cancer efficacy. Furthermore, α-NaLuF(4):20% Yb(3+), 2% Er(3+) NPs show bright-red emission under IR excitation, making both the excitation and emission light fall within the "optical window" of biological tissues. The application of α-NaLuF(4):20% Yb(3+), 2% Er(3+) in the luminescence imaging of cells was also investigated, which shows a bright-red emission without background noise. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Directory of Open Access Journals (Sweden)

    Thompson Erik W

    2009-07-01

    Full Text Available Abstract Background A feature of epithelial to mesenchymal transition (EMT relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1 and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4 and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4. Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse

  15. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    International Nuclear Information System (INIS)

    Hugo, Honor J; Wafai, Razan; Blick, Tony; Thompson, Erik W; Newgreen, Donald F

    2009-01-01

    A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive

  16. Nuclear size, shape, and density in endometrial carcinoma: relationship to survival at over 5 years of follow-up. Does analyzing only cells occupying the G0-G1 peak add useful information?

    Science.gov (United States)

    Miller, J; Geisler, J P; Manahan, K J; Geisler, H E; Miller, G A; Zhou, Z; Wiemann, M C; Crabtree, W

    2004-01-01

    The authors, using image analysis, previously demonstrated nuclear size and summed optical density to be independent prognostic indicators of recurrence in patients with endometrial carcinoma. The same tumors were analyzed by studying the optical features in the G0-G1 peak to see if this changed the values found as well as their importance as prognostic features at greater than 5 years of follow-up. Tumors from 74 consecutive patients, surgically treated, with endometrial cancer, were evaluated. Survival, depth of invasion, lymphvascular space invasion, FIGO stage, grade, histology were analyzed. DNA index, progesterone receptor status, as well as nuclear size (NUSZ), shape (NUSH), and summed optical density (NUSD) were evaluated. NUSZ, NUSH, and NUSD were quantified using image analysis. Fifteen patients died from disease during the observation period of the study. Mean follow-up was 82 months with a median of 84 months. Forty-nine patients had stage I cancers, five stage II, 17 stage III, and three stage IV. NUSZ and NUSD were all significantly different between the original (entire cell cycle) and the re-measured (G0G1 only) values (both P parameters not otherwise quantifiable. NUSD and NUSZ correlated with traditional prognostic indicators, were demonstrated independent predictors of survival at over 5 years of follow-up. Although the re-measured NUSZ and NUSD from only the G0-G1 peak were significantly different from the original NUSZ and NUSD, they were not as valuable as prognostic factors. Nuclear size and summed optical density measured from the entire cell cycle are independent prognostic indicators of survival at greater than 5 years of follow-up. Measuring nuclear morphometric features in the G0-G1 peak only does not add any new prognostic information.

  17. Size of quorum sensing communities

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Sams, Thomas

    2014-01-01

    Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell–cell regulatory system termed quorum sensing. In the generic...... quorum sensor a positive feedback in the production of signal molecules defines the conditions at which the collective behavior switches on. In spite of its conceptual simplicity, a proper measure of biofilm colony ‘‘size’’ appears to be lacking. We establish that the cell density multiplied...... by a geometric factor which incorporates the boundary conditions constitutes an appropriate size measure. The geometric factor is the square of the radius for a spherical colony or a hemisphere attached to a reflecting surface. If surrounded by a rapidly exchanged medium, the geometric factor is divided by three...

  18. Significance of tumor size and radiation dose to local control in stage I-III diffuse large cell lymphoma treated with CHOP-Bleo and radiation

    International Nuclear Information System (INIS)

    Fuller, Lillian M.; Krasin, Matthew J.; Velasquez, William S.; Allen, Pamela K.; McLaughlin, Peter; Rodriguez, M. Alma; Hagemeister, Fredrick B.; Swan, Forrest; Cabanillas, Fernando; Palmer, Judy L.; Cox, James D.

    1995-01-01

    Purpose: The purpose of this study was to evaluate the possible effect of adjunctive involved field (IF) radiotherapy on long-term local control for patients with Ann Arbor Stage I-III diffuse large cell lymphoma (DLCL) who achieved a complete remission on a combined modality program which included cyclophosphamide, doxorubicin, vincristine, prednisone, and Bleomycin (CHOP-Bleo). Methods and Materials: One hundred and ninety patients with Ann Arbor Stage I-III DLCL were treated with CHOP-Bleo and radiotherapy. Analyses were undertaken to determine (a) response to treatment according to stage, extent of maximum local disease, and irradiation dose either < 40 Gy or ≥ 40 Gy and (b) relapse patterns. Results: A complete remission (CR) was achieved in 162 patients. Among patients who achieved a CR, local control was better for those who received tumor doses of ≥ 40 Gy (97%) than for those who received < 40 Gy (83%) (p = 0.002.) Among those with extensive local disease, the corresponding control rates were 88% and 71%, respectively. A study of distant relapse patterns following a CR showed that the first relapse usually involved an extranodal site. Conclusion: Radiotherapy was an effective adjunctive treatment to CHOP-Bleo for patients with stage I-III DLCL who achieved a CR. Patterns of relapse suggested that total nodal irradiation (TNI) possibly could have benefited a small subset of patients

  19. An investigation of red blood cell concentrate quality during storage in paediatric-sized polyvinylchloride bags plasticized with alternatives to di-2-ethylhexyl phthalate (DEHP).

    Science.gov (United States)

    Serrano, K; Levin, E; Chen, D; Hansen, A; Turner, T R; Kurach, J; Reidel, A; Boecker, W F; Acker, J P; Devine, D V

    2016-04-01

    Di-2-ethylhexyl phthalate (DEHP) is a blood bag plasticizer. It is also a toxin, raising concerns for vulnerable populations, for example, neonates and infants. Here, the in vitro quality of red cell concentrates (RCC) stored in paediatric bags formulated with alternative plasticizers to DEHP was compared. RCC were pooled and split into polyvinylchloride (PVC)/DEHP, PVC/1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) or PVC/butyryl trihexyl citrate (BTHC) bags. Quality was assessed on storage days 5, 21, 35 and 43. Metabolism differed among the bags: pCO2 levels were lowest and pO2 were highest in BTHC bags. Glucose consumption and lactate production suggested higher metabolic rates in BTHC bags. ATP levels were best maintained in DINCH bags (day 43 mean level: 2·86 ± 0·29 μmol/g Hb). RCC in BTHC bags had the greatest potassium release (54·6 ± 3·0 mm on day 43). From day 21, haemolysis was higher in BTHC bags (P bags showed more microparticle formation than RCC in DEHP or DINCH bags. The results suggest that the BTHC formulation used was detrimental to RBC quality. DINCH bags could be a viable alternative to DEHP: they outperformed DEHP bags energetically, with better maintenance of ATP levels. © 2015 International Society of Blood Transfusion.

  20. Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells.

    Science.gov (United States)

    Perrone, M G; Gualtieri, M; Consonni, V; Ferrero, L; Sangiorgi, G; Longhin, E; Ballabio, D; Bolzacchini, E; Camatini, M

    2013-05-01

    Particulate matter (PM), a complex mix of chemical compounds, results to be associated with various health effects. However there is still lack of information on the impact of its different components. PM2.5 and PM1 samples, collected during the different seasons at an urban, rural and remote site, were chemically characterized and the biological effects induced on A549 cells were assessed. A Partial Least Square Discriminant Analysis has been performed to relate PM chemical composition to the toxic effects observed. Results show that PM-induced biological effects changed with the seasons and sites, and such variations may be explained by chemical constituents of PM, derived both from primary and secondary sources. The first-time here reported biological responses induced by PM from a remote site at high altitude were associated with the high concentrations of metals and secondary species typical of the free tropospheric aerosol, influenced by long range transports and aging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Size and Political Participation

    DEFF Research Database (Denmark)

    Lassen, David Dreyer; Serritzlew, Søren

    This paper uses a novel research design to re-examine the causal effect of jurisdiction size on political participation. Two waves of municipal consolidation in Denmark, in 1970 and in 2005, provide exogenous variation in jurisdiction size.......This paper uses a novel research design to re-examine the causal effect of jurisdiction size on political participation. Two waves of municipal consolidation in Denmark, in 1970 and in 2005, provide exogenous variation in jurisdiction size....

  2. Bra sizing and fit

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2007-01-01

    It is often reported that 70% or more of the women wear the wrong-sized bra. A fact is that many women complain about bra fit even though the number of available sizes varies from 20 to 100. Sizing of bras is based on under bust circumference and its difference with circumference over the bust (cup

  3. Bra sizing and fit

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2008-01-01

    It is often reported that 70% or more of the women wear the wrong-sized bra. A fact is that many women complain about bra fit even though the number of available sizes varies from 20 to 100. Sizing of bras is based on under bust circumference and its difference with circumference over the bust (cup

  4. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size : Structure-activity relationships of non-digestible oligosaccharides.

    Science.gov (United States)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H A M; Difilippo, Elisabetta; Schols, Henk A; Schoterman, Margriet H C; Garssen, Johan; Braber, Saskia

    2017-08-01

    The direct effects of galacto-oligosaccharides (GOS), including Vivinal ® GOS syrup (VGOS) and purified Vivinal ® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To investigate structure-activity relationships, the effects of individual DP fractions of VGOS were evaluated. Moreover, the obtained results with GOS were compared with Caco-2 monolayers incubated with fructo-oligosaccharides (FOS) and inulin. Caco-2 monolayers were pretreated (24 h) with or without specific oligosaccharides or DP fractions of VGOS (DP2 to DP6) before being exposed for 12 or 24 h to the fungal toxin deoxynivalenol (DON). Transepithelial electrical resistance and lucifer yellow permeability were measured to investigate barrier integrity. A calcium switch assay was used to study the reassembly of tight junction proteins. Release of CXCL8, a typical marker for inflammation, was quantified by ELISA. In comparison with PGOS, FOS and inulin, VGOS showed the most pronounced protective effect on the DON-induced impairment of the monolayer integrity, acceleration of the tight junction reassembly and the subsequent CXCL8 release. DP2 and DP3 in concentrations occurring in VGOS prevented the DON-induced epithelial barrier disruption, which could be related to their high prevalence in VGOS. However, no effects of the separate DP GOS fractions were observed on CXCL8 release. This comparative study demonstrates the direct, microbiota-independent effects of oligosaccharides on the intestinal barrier function and shows the differences between individual galacto- and fructo-oligosaccharides. This microbiota-independent effect of oligosaccharides depends on the oligosaccharide structure, DP length and concentration.

  5. [Mortality in early-stage, surgically resected non-small cell lung cancer less than 3 cm of size: Competing risk analysis].

    Science.gov (United States)

    Jordá Aragón, Carlos; Peñalver Cuesta, Juan Carlos; Mancheño Franch, Nuria; de Aguiar Quevedo, Karol; Vera Sempere, Francisco; Padilla Alarcón, José

    2015-09-07

    Survival studies of non-small cell lung cancer (NSCLC) are usually based on the Kaplan-Meier method. However, other factors not covered by this method may modify the observation of the event of interest. There are models of cumulative incidence (CI), that take into account these competing risks, enabling more accurate survival estimates and evaluation of the risk of death from other causes. We aimed to evaluate these models in resected early-stage NSCLC patients. This study included 263 patients with resected NSCLC whose diameter was ≤ 3 cm without node involvement (N0). Demographic, clinical, morphopathological and surgical variables, TNM classification and long-term evolution were analysed. To analyse CI, death by another cause was considered to be competitive event. For the univariate analysis, Gray's method was used, while Fine and Gray's method was employed for the multivariate analysis. Mortality by NSCLC was 19.4% at 5 years and 14.3% by another cause. Both curves crossed at 6.3 years, and probability of death by another cause became greater from this point. In multivariate analysis, cancer mortality was conditioned by visceral pleural invasion (VPI) (P=.001) and vascular invasion (P=.020), with age>50 years (P=.034), smoking (P=.009) and the Charlson index ≥ 2 (P=.000) being by no cancer. By the method of CI, VPI and vascular invasion conditioned cancer death in NSCLC >3 cm, while non-tumor causes of long-term death were determined. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  7. Phylogenetic effective sample size.

    Science.gov (United States)

    Bartoszek, Krzysztof

    2016-10-21

    In this paper I address the question-how large is a phylogenetic sample? I propose a definition of a phylogenetic effective sample size for Brownian motion and Ornstein-Uhlenbeck processes-the regression effective sample size. I discuss how mutual information can be used to define an effective sample size in the non-normal process case and compare these two definitions to an already present concept of effective sample size (the mean effective sample size). Through a simulation study I find that the AICc is robust if one corrects for the number of species or effective number of species. Lastly I discuss how the concept of the phylogenetic effective sample size can be useful for biodiversity quantification, identification of interesting clades and deciding on the importance of phylogenetic correlations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.

    1996-12-31

    At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and a high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.

  9. Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging.

    Science.gov (United States)

    Gong, Mingfu; Yang, Hua; Zhang, Song; Yang, Yan; Zhang, Dong; Qi, Yueyong; Zou, Liguang

    2015-03-25

    GoldMag nanoparticles (GMNPs) possess the properties of colloid gold and superparamagnetic iron oxide nanoparticles, which make them useful for delivery, separation and molecular imaging. However, because of the nanometer effect, GMNPs are highly toxic. Thus, the biosafety of GMNPs should be fully studied prior to their use in biomedicine. The main purpose of this study was to evaluate the nanotoxicity of GMNPs on human umbilical vein endothelial cells (HUVECs) and determine a suitable size, concentration and time for magnetic resonance imaging (MRI). Transmission electron microscopy showed that GMNPs had a typical shell/core structure, and the shell was confirmed to be gold using energy dispersive spectrometer analysis. The average sizes of the 30 and 50 nm GMNPs were 30.65 ± 3.15 and 49.23 ± 5.01 nm, respectively, and the shell thickness were 6.8 ± 0.65 and 8.5 ± 1.36 nm, respectively. Dynamic light scattering showed that the hydrodynamic diameter of the 30 and 50 nm GMNPs were 33.2 ± 2.68 and 53.12 ± 4.56 nm, respectively. The r 2 relaxivity of the 50 nm GMNPs was 98.65 mM(-1) s(-1), whereas it was 80.18 mM(-1) s(-1) for the 30 nm GMNPs. The proliferation, cytoskeleton, migration, tube formation, apoptosis and ROS generation of labeled HUVECs depended on the size and concentration of GMNPs and the time of exposure. Because of the higher labeling rate, the 50 nm GMNPs exhibited a significant increase in nanotoxicity compared with the 30 nm GMNPs at the same concentration and time. At no more than 25 μg/mL and 12 hours, the 50 nm GMNPs exhibited no significant nanotoxicity in HUVECs, whereas no toxicity was observed at 50 μg/mL and 24 hours for the 30 nm GMNPs. These results demonstrated that the nanotoxicity of GMNPs in HUVECs depended on size, concentration and time. Exposure to larger GMNPs with a higher concentration for a longer period of time resulted in a higher labeling rate and ROS level for HUVECs. Coupled with r 2 relaxivity, it was suggested

  10. Size makes a difference

    DEFF Research Database (Denmark)

    Matthiessen, Jeppe; Fagt, Sisse; Biltoft-Jensen, Anja Pia

    2003-01-01

    items was obtained from a 4-day weighed food record (Study 1). Trends in portion sizes of commercial foods were examined by gathering information from major food manufacturers and fast food chains (Study 2). Data on intakes and sales of sugar-sweetened soft drinks and confectionery were obtained through...... content. As a result, almost the same amounts of energy and fat were consumed both ways, with the exception of sliced cold meat (energy and fat) and milk (fat). Study 2: Portion sizes of commercial energy-dense foods and beverages, and fast food meals rich in fat and/or added sugars, seem to have......Objective: To elucidate status and trends in portion size of foods rich in fat and/or added sugars during the past decades, and to bring portion size into perspective in its role in obesity and dietary guidelines in Denmark. Data sources: Information about portion sizes of low-fat and full-fat food...

  11. Produtividade da couve-flor em função da idade de transplantio das mudas e tamanhos de células na bandeja Cauliflower production depending on age of seedling and cell size of the trays

    Directory of Open Access Journals (Sweden)

    Maria Carolina Godoy

    2005-07-01

    Full Text Available O experimento foi realizado de novembro de 2000 a abril de 2001, na UNESP em São Manuel (SP. Estudou-se o efeito do tamanho da célula da bandeja de poliestireno expandido e a idade de transplantio das mudas sobre a produção de couve-flor, híbrido Shiromaru II. Usaram-se bandejas com 128 e 288 células, correspondentes a 34,6 e 9,7 cm³/célula, respectivamente, e mudas transplantadas aos 27, 34, 41 e 48 dias após a semeadura. Os tratamentos foram arranjados como fatorial 2 x 4, dispostos no delineamento de blocos casualizados, com cinco repetições. Foram avaliados, por ocasião do transplantio, o número de folhas, peso fresco, peso seco e área foliar das mudas. A parcela experimental no campo foi constituída por dez plantas. Nas colheitas, avaliaram-se a porcentagem de plantas com cabeça comercial e nestas, o número de folhas, peso fresco e diâmetro da cabeça. A produção total por parcela foi obtida com a soma do peso fresco de todas as cabeças consideradas comerciais. A produção de mudas em bandejas com 128 células proporcionou maior porcentagem de plantas comerciais (64% relativamente às bandejas com 288 células (45%, maior peso médio de cabeça (337 g na bandeja com 128 e 247 g na bandeja com 288 células e maior produção de plantas comerciais (36,9 t/ha em bandeja de 128 células e 19,9 t/ha em bandeja de 288 células. As mudas transplantadas com 32 dias apresentaram maior peso médio de cabeça (319 g. Concluiu-se ser recomendável produzir mudas de couve-flor em bandejas com 128 células.The experiment was carried out from November/2000 to April/2001, in São Manuel, São Paulo State, Brazil. The effect of cell size of two polyestyrene trays and age of seedling at transplanting date was observed, on the production of cauliflower, hybrid Shiromaru II. Trays with 128 and 288 cells, corresponding to 34.6 and 9.7 cm³/cell, respectively, were used with seedlings transplanted at 27; 34; 41 and 48 days after sowing date

  12. Sample size methodology

    CERN Document Server

    Desu, M M

    2012-01-01

    One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria

  13. Sizing an isolated wind-solar-fuel cell generation system based on the particle swarm optimization method; Dimensionamiento de un sistema de generacion aislado eolico-solar-celda de combustible basado en el metodo de optimizacion de enjambre de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Huerta, V; Ramirez-Arredondo, Juan M. [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)]. E-mail: vsanchez@gdl.cinvestav.mx; Arriaga-Hurtado, L. G. [CIDETEQ, Queretaro (Mexico)

    2009-09-15

    Sizing an electric energy system requires an analysis of investment, maintenance and operating costs. In the case of a generation system that uses renewable sources, optimal capacity becomes more complex compared to a conventional system, because of the randomness of renewable resources (wind, solar) and the still high costs of wind and photovoltage generator modules. This work presents the optimal sizing of a wind-solar-fuel cell generation system, minimizing the costs of the system while satisfying the energy demands of an isolated charge. The optimization method used is based on an evolutionary programming technique known as particle swarms (PSO-particle swarm optimization). The generation of energy with a hybrid system is discussed, based on the profile of insolation and wind availability at the site, with the objective of satisfying a specific electric demand. [Spanish] El dimensionamiento de un sistema de generacion de energia electrica requiere un analisis de los costos de inversion, mantenimiento y operacion. En el caso de un sistema de generacion que utiliza fuentes renovables la capacidad optima resulta mas compleja con respecto a un sistema convencional, debido a la aleatoriedad de los recursos renovables (eolico, solar), y a los aun altos costos de generadores eolicos y modulos fotovoltaicos. En este trabajo se presenta el dimensionamiento optimo de un sistema de generacion eolico-solar-celda de combustible minimizando los costos del sistema que satisfaga la energia demandada por una carga aislada. El metodo de optimizacion utilizado esta basado en una tecnica de programacion evolutiva conocida como enjambre de particulas (PSO por sus siglas en ingles: particle swarm optimization). Se plantea la generacion de energia del sistema hibrido con base a la insolacion y el perfil del viento disponible en sitio, con objeto de satisfacer una demanda electrica determinada.

  14. Size-tunable TiO2 nanorod microspheres synthesised via a one-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells

    Science.gov (United States)

    Rui, Yichuan; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2013-11-01

    TiO2 microspheres assembled by single crystalline rutile TiO2 nanorods were synthesized by one-pot solvothermal treatment at 180 °C based on an aqueous-organic mixture solution containing n-hexane, distilled water, titanium n-butoxide and hydrochloric acid. The spheres had a radiative structure from the center, and their diameters were controlled in the range from 1 to 5 μm by adjusting the volume of the reactant water. Nitrogen adsorption-desorption isotherms showed that all the as-prepared microspheres had relatively high specific surface areas of about 50 m2 g-1. The 1 μm sized TiO2 nanorod microspheres were fabricated as a scattering overlayer in DSSCs, leading to a remarkable improvement in the power conversion efficiency: 8.22% of the bi-layer DSSCs versus 7.00% for the reference cell made of a single-layer film prepared from nanocrystalline TiO2. Such improvement was mainly attributed to the enhanced light harvesting and dye loading brought by the effective scattering centers.TiO2 microspheres assembled by single crystalline rutile TiO2 nanorods were synthesized by one-pot solvothermal treatment at 180 °C based on an aqueous-organic mixture solution containing n-hexane, distilled water, titanium n-butoxide and hydrochloric acid. The spheres had a radiative structure from the center, and their diameters were controlled in the range from 1 to 5 μm by adjusting the volume of the reactant water. Nitrogen adsorption-desorption isotherms showed that all the as-prepared microspheres had relatively high specific surface areas of about 50 m2 g-1. The 1 μm sized TiO2 nanorod microspheres were fabricated as a scattering overlayer in DSSCs, leading to a remarkable improvement in the power conversion efficiency: 8.22% of the bi-layer DSSCs versus 7.00% for the ref