WorldWideScience

Sample records for cell signalling pathways

  1. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  2. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review).

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2006-12-01

    Hedgehog, BMP/TGFbeta, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network, which plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis. Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) bind to PTCH1/PTCH or PTCH2 receptor to release Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1, JAG2 and SFRP1. GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to transient proliferation of Hedgehog target cells. Iguana homologs (DZIP1 and DZIP1L) and Costal-2 homologs (KIF7 and KIF27) are identified by comparative integromics. SHH-dependent parietal cell proliferation is implicated in gastric mucosal repair during chronic Helicobacter pylori infection. BMP-RUNX3 signaling induces IHH expression in surface differentiated epithelial cells of stomach and intestine. Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. Hedgehog signaling is frequently activated in esophageal cancer, gastric cancer and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of HHIP1/HHIP gene, encoding the Hedgehog inhibitor. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics. Small-molecule inhibitors for SMO or STK36 are suitable to be used for

  3. Cell signaling pathways and HIV-1 therapeutics.

    Science.gov (United States)

    He, Johnny J

    2011-06-01

    Host-virus interactions permeate every aspect of both virus life cycle and host response and involve host cell macromolecular machinery and viral elements. It is these intimate interactions that mandate the outcomes of the infection and pathogenesis. It is also these intimate interactions that lay the foundation for the development of pharmaceutical interventions. HIV-1 is no exception in these regards. In the first two decades, HIV/AIDS research has led to the successful development of a number of antiviral inhibitors and the landmark formulation of the suppressive therapy. It has become apparent that this therapy does not offer a complete solution to cure and eradicate the virus. Meanwhile, this therapy has changed the overall landscape of HIV-associated neurological disorders to a more common and prevalent form so-called minor cognitive motor disorder. Thus, there is an important and continued need for new anti-HIV therapeutics. We believe that this is an excellent opportunity to compile and present the latest works being done during the last few years in this exciting field of HIV-host interactions, particularly cell signaling pathways. We hope that this special issue composed of one brief report, eight thematic reviews, and two original articles will serve to foster the exchange of new scientific ideas on HIV-host interactions and anti-HIV therapy and eventually contribute to HIV/AIDS eradication.

  4. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  5. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  6. Signaling pathways in failing human heart muscle cells.

    Science.gov (United States)

    Drexler, H; Hasenfuss, G; Holubarsch, C

    1997-07-01

    Experimental studies have delineated important signaling pathways in cardiomyocytes and their alterations in heart failure; however, there is now evidence that these observations are not necessarily applicable to human cardiac muscle cells. For example, angiotensin II (A II) does not exert positive inotropic effects in human ventricular muscle cells, in contrast to observation in rats. Thus, it is important to elucidate cardiac signaling pathways in humans in order to appreciate the functional role of neurohumoral or mechanical stimulation in human myocardium in health and disease. In the present article, we review signal pathways in the failing human heart based on studies in human cardiac tissues and in vivo physiological studies related to A II, nitric oxide, and β-adrenergic stimulation. (Trends Cardiovasc Med 1997; 7:151-160). © 1997, Elsevier Science Inc.

  7. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  8. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  9. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  10. Planar Cell Polarity Signaling Pathway in Congenital Heart Diseases

    Directory of Open Access Journals (Sweden)

    Gang Wu

    2011-01-01

    Full Text Available Congenital heart disease (CHD is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP signaling pathway, responsible for tissue polarity in Drosophila and gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.

  11. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    Science.gov (United States)

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  12. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways.

    Science.gov (United States)

    Abetov, Danysh; Mustapova, Zhanar; Saliev, Timur; Bulanin, Denis; Batyrbekov, Kanat; Gilman, Charles P

    2015-12-01

    The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.

  13. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  14. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways.

    Science.gov (United States)

    Axelrod, J D; Miller, J R; Shulman, J M; Moon, R T; Perrimon, N

    1998-08-15

    In Drosophila, planar cell polarity (PCP) signaling is mediated by the receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling also requires Dsh and may utilize DFz2 as a receptor. Using a heterologous system, we show that Dsh is recruited selectively to the membrane by Fz but not DFz2, and this recruitment depends on the DEP domain but not the PDZ domain in Dsh. A mutation in the DEP domain impairs both membrane localization and the function of Dsh in PCP signaling, indicating that translocation is important for function. Further genetic and molecular analyses suggest that conserved domains in Dsh function differently during PCP and Wg signaling, and that divergent intracellular pathways are activated. We propose that Dsh has distinct roles in PCP and Wg signaling. The PCP signal may selectively result in focal Fz activation and asymmetric relocalization of Dsh to the membrane, where Dsh effects cytoskeletal reorganization to orient prehair initiation.

  15. Sonic Hedgehog signaling pathway in primary liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lian-Yi Guo; Pei Liu; Ying Wen; Wei Cui; Ying Zhou

    2014-01-01

    Objective:To investigate clinical significance ofSonicHedgehog(SHH) signaling pathway molecularShh,Smo andGli2 in primary hepatocellular carcinoma(HCC) tissue.Methods:A total of30HCC tissue samples were collected.Protein expression ofSHH signaling pathway moleculesShh,Smo andGli2 inHCC tissues and para - carcinoma tissue were detected by using immunohistochemical method.Cirrhosis and normal liver tissue specimens were observed as control to analyze the expression ofSHH signaling pathway molecularShh,Smo andGli2 mRNA inHCC tissues and corresponding para-carcinoma tissues and its relationship with the onset of HCC.Results:There was no expression ofShh,Smo andGli2 protein in normal liver tissue, while their positive rates were63.3%,76.7% and66.7% inHCC tissues, respectively, with asignificantly higher expression level than that in the para - carcinoma tissue(P0.05);Shh andSmo protein was detected in part of cirrhosis with positive expression, butGli2 protein was not observable in cirrhosis tissues.Conclusions:InHCC tissues, the high expression level ofSHH signaling pathway molecules signal peptide(Shh), membrane protein receiptor(Smo) and nuclear transcription molecular(Gli2) can be indicators of the onset of liver cancer.

  16. Control of microRNA biogenesis and transcription by cell signaling pathways

    OpenAIRE

    2011-01-01

    A limited set of cell-cell signaling pathways presides over the vast majority of animal developmental events. The typical raison d'etre for signal transduction is to control the transcription of protein-coding genes. However, with the recent appreciation of microRNAs, growing attention has been paid towards understanding how signaling pathways intertwine with microRNA-mediated regulation. This review highlights recent studies that uncover unexpected modes of microRNA regulation by cell signal...

  17. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  18. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  19. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.

    Science.gov (United States)

    Seda, Vaclav; Mraz, Marek

    2015-03-01

    The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.

  20. Cytosolic [Ca2+] signaling pathway in macula densa cells.

    Science.gov (United States)

    Peti-Peterdi, J; Bell, P D

    1999-09-01

    Previous micropuncture studies suggested that macula densa (MD) cells might detect variations in luminal sodium chloride concentration ([NaCl]l) through changes in cytosolic calcium ([Ca2+]c). To test this hypothesis, MD [Ca2+]c was measured with fluorescence microscopy using fura 2 in the isolated perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney. Tubules were bathed and perfused with a Ringer solution, [NaCl]l was varied and isosmotically replaced with N-methyl-D-glucamine cyclamate. Control [Ca2+]c, during perfusion with 25 mM NaCl and 150 mM NaCl in the bath, averaged 101. 6 +/- 8.2 nM (n = 21). Increasing [NaCl]l to 150 mM elevated [Ca2+]c by 39.1 +/- 5.2 nM (n = 21, P < 0.01). This effect was concentration dependent between zero and 60 mM [NaCl]l. The presence of either luminal furosemide or basolateral nifedipine or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a potent Cl- channel blocker, significantly reduced resting [Ca2+]c and abolished the increase in [Ca2+]c in response to increased [NaCl]l. Nifedipine failed to produce a similar inhibitory effect when added exclusively to the luminal perfusate. Also, 100 nM BAY K 8644, a voltage-gated Ca2+ channel agonist, added to the bathing solution increased [Ca2+]c by 33.2 +/- 8.1 nM (n = 5, P < 0.05). These observations suggest that MD cells may detect variations in [NaCl]l through a signaling pathway that includes Na+-2Cl--K+ cotransport, basolateral membrane depolarization via Cl- channels, and Ca2+ entry through voltage-gated Ca2+ channels.

  1. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    Science.gov (United States)

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science.

  2. Signalling pathways induced in cells exposed to medium from irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, F.M.; Maguire, P. (Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland)); McClean, B.; Seymour, C.; Mothersill, C. (St Luke' s Hospital, Dublin (Ireland))

    2008-12-15

    In recent years, radiation induced bystander effects have been reported in cells which were not themselves irradiated but were either in the vicinity of irradiated cells or exposed to medium from irradiated cells. The effects have been clearly shown to occur both in vivo and in vitro. This work has led to a paradigm shift in radiobiology over the last 5 - 10 years. The target theory of radiation induced effects is now being challenged because of an increasing number of studies which demonstrate non(DNA)-targeted effects. These effects appear to be particularly important at low doses. Considerable evidence now exists relating to radiation-induced bystander effects but the mechanisms involved in the transduction of the signal are still unclear. Cell - cell communication through gap junctions and / or secretion of a cytotoxic factor into the medium are thought to be involved in the transduction of the bystander signal. Oxidative metabolism has been shown to be important in both mechanisms. Signalling pathways leading to apoptosis, such as calcium, MAP kinase, mitochondrial and reactive oxygen species (ROS) signalling are discussed. The importance of oxidative metabolism and calcium signalling in bystander responses are demonstrated. Further investigations of these signalling pathways may aid in the identification of novel therapeutic targets. (orig.)

  3. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death.

    Science.gov (United States)

    Laborde, E

    2010-09-01

    Glutathione transferases (GSTs) are enzymes that catalyze the conjugation of glutathione (GSH) to a variety of electrophilic substances. Their best known role is as cell housekeepers engaged in the detoxification of xenobiotics. Recently, GSTs have also been shown to act as modulators of signal transduction pathways that control cell proliferation and cell death. Their involvement in cancer cell growth and differentiation, and in the development of resistance to anticancer agents, has made them attractive drug targets. This review is focused on the inhibition of GSTs, in particular GSTP1-1, as a potential therapeutic approach for the treatment of cancer and other diseases associated with aberrant cell proliferation.

  4. Lrp4 modulates extracellular integration of cell signaling pathways in development.

    Directory of Open Access Journals (Sweden)

    Atsushi Ohazama

    Full Text Available The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.

  5. Signalling pathways that inhibit the capacity of precursor cells for myelin repair.

    Science.gov (United States)

    Sabo, Jennifer K; Cate, Holly S

    2013-01-07

    In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  6. Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair

    Directory of Open Access Journals (Sweden)

    Jennifer K. Sabo

    2013-01-01

    Full Text Available In demyelinating disorders such as Multiple Sclerosis (MS, targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS. Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  7. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    Science.gov (United States)

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  8. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration.

    Science.gov (United States)

    Yang, Xianguang; Zhu, Lin; Zhao, Weiming; Shi, Yaohuang; He, Chuncui; Xu, Cunshuan

    2016-12-05

    P38MAPK signaling pathway was closely related to cell proliferation, apoptosis, cell differentiation, cell survival, cell death, and so on. However, the regulatory mechanism of P38MAPK signaling pathway in liver regeneration (LR) was unclear. In order to further reveal the roles of P38MAPK signaling pathway in rat liver regeneration, Ingenuity Pathway Analysis (IPA) software and related data sites were used to construct P38MAPK signaling pathway, and the pathway was confirmed by relevant documents literature. The expression changes of P38MAPK signaling pathway-related gene in eight type cells were further analyzed by Rat Genome 230 2.0 Array, and the results showed that 95 genes in P38MAPK signaling pathway had significant changes. H-cluster analysis showed that hepatocyte cell (HC), pit cell (PC), oval cell (OC) and biliary epithelial cell (BEC) are clustered together; and the same as Kupffer cell (KC), sinusoidal endothelial cell (SEC), dendritic cell (DC) and hepatic stellate cell (HSC). IPA software and expression analysis systematic explorer (EASE) were applied to functional enrichment analysis, and the results showed that P38MAPK signaling pathway was mainly involved in apoptosis, cell death, cell proliferation, cell survival, cell viability, activation, cell cycle progression, necrosis, synthesis of DNA and other physical activity during LR. In conclusion, P38MAPK signaling pathway regulated various physiological activities of LR through multiple signaling pathways.

  9. Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells.

    Directory of Open Access Journals (Sweden)

    Erxi Wu

    Full Text Available Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF, MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors. They were treated with PDGF-BB and analyzed for differential gene expression, in vitro proliferation and differential response to pharmacological effects. No genes were differentially expressed in the double null cells, suggesting minimal receptor-independent signaling. Protean differentiation and proliferation pathways are commonly regulated by PDGFRalpha, PDGFRbeta and PDGFRalpha/beta while each receptor is also responsible for regulating unique signaling pathways. Furthermore, some signaling is solely modulated through heterodimeric PDGFRalpha/beta.

  10. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    Science.gov (United States)

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  11. Teaching the Toolkit: A Laboratory Series to Demonstrate the Evolutionary Conservation of Metazoan Cell Signaling Pathways

    Science.gov (United States)

    LeClair, Elizabeth E.

    2008-01-01

    A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…

  12. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Michael J Nemeth; David M Bodine

    2007-01-01

    Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.

  13. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    Science.gov (United States)

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  15. Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity.

    Science.gov (United States)

    Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan

    2016-11-01

    The present study aims to evaluate whether repression of the Numb/Notch signaling pathway affects the radiosensitivity of human pancreatic cancer cell lines. Different doses of X-rays (0, 2, 3, 4, and 5 Gy) were applied to the PANC-1, SW1990, and MIA PaCa-2 human pancreatic cancer cell lines, and the Numb/Notch pathway inhibitor DAPT was added at different doses (0, 1, 3, and 5 μmol/l). MTT assay, colony formation assay, flow cytometry, scratch assay, and Transwell experiments were performed, and qRT-PCR and Western blot were conducted for the detection of Numb expression. Tumorigenicity assay in nude mice was carried out to verify the influence of blocker of the Numb/Notch signaling pathway on the radiosensitivity of xenograft tumors. The MTT assay, colony formation assay and flow cytometry experiments revealed that proliferation decreased as radiation dose increased. The viability of PANC-1 cells at 5 Gy, SW 1990 cells at 4 Gy and 5 Gy, and MIA PaCa-2 cells at 2-5 Gy was significantly lower than that of non-irradiated cells (all P cancer cells is associated with X-ray radiation and that inhibition of the Numb/Notch signaling pathway can enhance radiosensitivity, suggesting that inhibition of the Numb/Notch signaling pathway may serve as a potential target for clinical improvement of the radiosensitivity of pancreatic cancer.

  16. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Kim Ji Eun

    2012-04-01

    Full Text Available Abstract Background The phosphatidylinositol-3-kinase (PI3K-PKB, mitogen activated protein kinase (MEK-ERK and the mammalian target of rapamycin (mTOR- p70S6K, are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Methods Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Results Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Conclusion Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation.

  17. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    Science.gov (United States)

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P pathway enhances the effects of radiotherapy on the radiosensitivity of the lung cancer cell line H358, and thus the Numb/Notch pathway may be a new target of radiotherapy for lung cancer.

  18. A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

    Directory of Open Access Journals (Sweden)

    W. Seth Childers

    2014-12-01

    Full Text Available Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1. The strict unidirectional flow from histidine kinase (HK to the response regulator (RR, observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.

  19. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways

    Directory of Open Access Journals (Sweden)

    Renata Watanabe Costa

    2016-03-01

    Full Text Available Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.

  20. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  1. Signaling pathways and stem cells in uterus and fallopian tubes

    NARCIS (Netherlands)

    Y. Wang (Yongqian)

    2012-01-01

    textabstractDuring her fertile years, the endometrium of fertile women undergoes regular cycles of regeneration, differentiation and shedding, driven by changing concentrations of the steroid hormones estradiol and progesterone. In the present study, the role of Wnt/β-catenin signaling in relation t

  2. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  3. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    Science.gov (United States)

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  4. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells

    OpenAIRE

    2013-01-01

    Wnt morphogens released by neural precursor cells were recently reported to control blood–brain barrier (BBB) formation during development. Indeed, in mouse brain endothelial cells, activation of the Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, was shown to stabilize endothelial tight junctions (TJs) through transcriptional regulation of the expression of TJ proteins. Because Wnt proteins activate several distinct β-catenin-dependent and independent signaling path...

  5. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  6. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  7. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development

    Directory of Open Access Journals (Sweden)

    Kim YM

    2014-07-01

    Full Text Available Yong-Mi Kim,1 Michael Kahn2,3 1Children's Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics and Pathology, 2Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, 3Norris Comprehensive Cancer Research Center, University of Southern California, Los Angeles, CA, USA Abstract: Cancer stem cells (CSCs, also known as tumor initiating cells are now considered to be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. They have become a central focus in new drug development. Prospective identification, understanding the key pathways that maintain CSCs, and being able to target CSCs, particularly if the normal stem cell population could be spared, could offer an incredible therapeutic advantage. The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance of tissues and organs through their respective somatic stem cells and in the CSC/tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise to target CSCs. However, just like the sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling cascade and critically analyze therapeutic approaches at various stages of development. Keywords: beta-catenin, CBP, p300, wnt inhibition

  8. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    Directory of Open Access Journals (Sweden)

    Luca Fagnocchi

    2016-01-01

    Full Text Available Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.

  9. Intracellular signaling via ERK/MAPK completes the pathway for tubulogenic fibronectin in MDCK cells.

    Science.gov (United States)

    Liu, Zhao; Greco, Andres J; Hellman, Nathan E; Spector, June; Robinson, Jonathan; Tang, Oliver T; Lipschutz, Joshua H

    2007-02-16

    A classic in vitro model of branching morphogenesis utilizes the Madin-Darby canine kidney (MDCK) cell line. MDCK Strain II cells form hollow monoclonal cysts in a three-dimensional collagen matrix over the course of 10 days and tubulate in response to hepatocyte growth factor (HGF). We and our colleagues previously showed that activation of the extracellular-signal regulated kinase (ERK, aka MAPK) pathway is necessary and sufficient to induce tubulogenesis in MDCK cells. We also showed in a microarray study that one of the genes upregulated by HGF was the known tubulogene fibronectin. Given that HGF activates a multitude of signaling pathways, including ERK/MAPK, to test the intracellular regulatory pathway, we used two distinct inhibitors of ERK activation (U0126 and PD098059). Following induction of MDCK Type II cells with HGF, tubulogenic fibronectin mRNA was upregulated fourfold by real-time PCR, and minimal or no change in fibronectin expression was seen when HGF was added with either U0126 or PD098059. We confirmed these results using an MDCK cell line inducible for Raf, which is upstream of ERK. Following activation of Raf, fibronectin mRNA and protein expression were increased to a similar degree as was seen following HGF induction. Furthermore, MDCK Strain I cells, which originate from collecting ducts and have constitutively active ERK, spontaneously initiate tubulogenesis. We show here that MDCK Strain I cells have high levels of fibronectin mRNA and protein compared to MDCK Strain II cells. When U0126 and PD098059 were added to MDCK Strain I cells, fibronectin mRNA, and protein levels were decreased to levels seen in MDCK Strain II cells. These data allow us to complete what we believe is the first description of a tubulogenic pathway from receptor/ligand (HGF/CMET), through an intracellular signaling pathway (ERK/MAPK), to transcription and, finally, secretion of a critical tubuloprotein (fibronectin).

  10. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Reck, A; Beck, H C

    2017-01-01

    differentiation by BMP2 remains elusive. We investigated therefore the phosphoproteome of DFCs after the induction of the osteogenic differentiation with BMP2. In this study, phosphoproteins of the hedgehog "off" state were differentially expressed. Further analyses revealed that BMP2 induced the expression...... of repressors of the hedgehog-signaling pathway such as Patched 1 (PTCH1), Suppressor of Fused (SUFU), and Parathyroid Hormone-Related Peptide (PTHrP). Previous studies suggested that hedgehog proteins induce the osteogenic differentiation of mesenchymal stem cells via a paracrine pathway. Indian hedgehog (IHH....... In conclusion, our results suggest that BMP2 inhibits the hedgehog signaling after the induction of the osteogenic differentiation in DFCs....

  11. Xanthohumol inhibits the extracellular signal regulated kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Zdzisińska, Barbara; Dmoszyńska-Graniczka, Magdalena; Jeleniewicz, Witold; Kurzepa, Jacek; Gagoś, Mariusz; Stepulak, Andrzej

    2016-05-16

    Aberrant activation of the Ras/MEK/ERK signaling pathway has been frequently observed in non-small-cell lung carcinoma (NSCLC) and its important role in cancer progression and malignant transformation has been documented. Hence, the ERK1/2 kinase cascade becomes a potential molecular target in cancer treatment. Xanthohumol (XN, a prenylated chalcone derived from hope cones) is known to possess a broad spectrum of chemopreventive and anticancer activities. In our studies, the MTT and BrdU assays revealed that XN demonstrated greater antiproliferative activity against A549 lung adenocarcinoma cells than against the lung adenocarcinoma H1563 cell line. We observed that XN was able to suppress the activities of ERK1/2 and p90RSK kinases, followed by inhibition of phosphorylation and activation of the CREB protein. Additionally, the XN treatment of the cancer cells caused upregulation of key cell cycle regulators p53 and p21 as well as downregulation of cyclin D1. As a result, the cytotoxic effect of XN was attributed to the cell cycle arrest at G1 phase and induction of apoptosis indicated by increased caspase-3 activity. Thus, XN might be a promising anticancer drug candidate against lung carcinomas.

  12. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Ming-lei Han; Guo-hua Liu; Jin Guo; Shu-juan Yu; Jing Huang

    2016-01-01

    Retinal ganglion cell (RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB)-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H2O2)-induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H2O2. Western blot assay showed that in H2O2-damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H2O2-induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H2O2-induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway.

  13. Imipramine protects retinal ganglion cells from oxidative stress through the tyrosine kinase receptor B signaling pathway

    Directory of Open Access Journals (Sweden)

    Ming-lei Han

    2016-01-01

    Full Text Available Retinal ganglion cell (RGC degeneration is irreversible in glaucoma and tyrosine kinase receptor B (TrkB-associated signaling pathways have been implicated in the process. In this study, we attempted to examine whether imipramine, a tricyclic antidepressant, may protect hydrogen peroxide (H 2 O 2 -induced RGC degeneration through the activation of the TrkB pathway in RGC-5 cell lines. RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H 2 O 2 . Western blot assay showed that in H 2 O 2 -damaged RGC-5 cells, imipramine activated TrkB pathways through extracellular signal-regulated protein kinase/TrkB phosphorylation. TUNEL staining assay also demonstrated that imipramine ameliorated H 2 O 2 -induced apoptosis in RGC-5 cells. Finally, TrkB-IgG intervention was able to reverse the protective effect of imipramine on H 2 O 2 -induced RGC-5 apoptosis. Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the TrkB signaling pathway.

  14. LeY oligosaccharide upregulates DAG/PKC signaling pathway in the human endometrial cells.

    Science.gov (United States)

    Li, Yali; Ma, Keli; Sun, Ping; Liu, Shuai; Qin, Huamin; Zhu, Zhengmei; Wang, Xiaoqi; Yan, Qiu

    2009-11-01

    LeY oligosaccharide is stage specifically expressed by the embryo and uterine endometrium, and it plays important roles in embryo implantation. In addition to participating in the recognition and adhesion on fetal-maternal interface, LeY potentially regulates the expression of some implantation-related factors. However, it remains elusive whether it can mediate the involved signaling pathway. In this study, agarose-LeY beads were used to mimic the embryos, and the effects of LeY oligosaccharide on DAG/PKC signaling pathway was studied in human endometrial epithelial cells. Results showed that LeY could significantly trigger the activation of cPKCalpha and cPKCbeta2, and their translocation from the cytosol to the plasma membrane. The cellular DAG content was also upregulated, and the activation of PLCgamma1 was promoted. On the contrary, DAG/PKC signaling pathway was significantly inhibited when anti-LeY antibody was used after confirmation of LeY expression in human endometrial epithelial cells by immunohistochemistry and flow cytometry. These results suggest that LeY oligosaccharide acts as a signal molecule to modulate DAG/PKC signaling pathway.

  15. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Masayuki Takeda

    2013-06-01

    Full Text Available Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS. At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE-secreted alkaline phosphatase (SEAP (CRE-SEAP-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP and cAMP-response element-binding protein (CREB, as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3 inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  16. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...

  17. Activation of Sonic Hedgehog Signaling Pathway in S-type Neuroblastoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    周昱男; 戴若连; 毛玲; 夏远鹏; 姚玉芳; 杨雪; 胡波

    2010-01-01

    The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components- Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to ...

  18. The Wnt and Notch signalling pathways in the developing cochlea : Formation of hair cells and induction of regenerative potential

    NARCIS (Netherlands)

    Zak, Magdalena; Klis, Sjaak F L; Grolman, Wilko

    2015-01-01

    The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and

  19. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Shacka, J J; Sahawneh, M A; Gonzalez, J D; Ye, Y-Z; D'Alessandro, T L; Estévez, A G

    2006-09-01

    The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.

  20. TGF-β1/SMAD SIGNALING PATHWAY MEDIATES p53-DEPENDENT APOPTOSIS IN HEPATOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To determine whether transforming growth factor betal ( TGF-β1 )/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines. Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study. TGF-β31-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay. For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements. After transfection, cells were treated with TGF-β1, then assayed for luciferase activity. Results The apoptosis rate of HepG2 cell lines (48.51% ± 8.21% ) was significantly higher than control (12. 72% ±2. 18%, P <0. 05 ). But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines. The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4. 38) was significantly higher than control (1.00, P <0. 05). But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control. Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines. Smad4 is a central mediator of TGF-β1 signaling transdution pathway. TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.

  1. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders.

    Science.gov (United States)

    Al-Harthi, Lena

    2012-12-01

    Wnt signaling is a fundamental pathway in embryogenesis which is evolutionary conserved from metazoans to humans. Much of our understanding of Wnt signaling events emerged from key developmental studies in drosophila, zebra fish, xenopus, and mice. Considerable data now exists on the role of Wnt signaling beyond these developmental processes and in particular its role in health and disease. The focus of this special issue is on Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. This special issue is composed of six reviews and two original articles selected to highlight recent advances in the role of Wnt signaling in CNS embryonic development, in adult brain function, in neurodegenerative conditions such as Alzheimer's disease, schizophrenia, NeuroAIDS, and in gliomas. The finding that β-catenin can translocate to the nucleus where it binds to TCF/LEF transcription factors to regulate target gene expression was a seminal observation that linked β-catenin/LEF to T cell development and differentiation. We also provide a nostalgic look on recent advances in role of Wnts in T cell development and maturation. These reviews highlight the extensive body of work in these thematic areas as well as identify knowledge gaps, where appropriate. Understanding Wnt function under healthy and diseased conditions may provide a therapeutic resource, albeit it a challenging one, in diseases where dysfunctional and/or diminished Wnt signaling is a prominent player in the disease process.

  2. Semantic Mining based on graph theory and ontologies. Case Study: Cell Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Carlos R. Rangel

    2016-08-01

    Full Text Available In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease, and the main cells in each community. We analyze our approach in two cases: TGF-ß and the Alzheimer Disease.

  3. Activated T cell exosomes promote tumor invasion via Fas signaling pathway.

    Science.gov (United States)

    Cai, Zhijian; Yang, Fei; Yu, Lei; Yu, Zhou; Jiang, Lingling; Wang, Qingqing; Yang, Yunshan; Wang, Lie; Cao, Xuetao; Wang, Jianli

    2012-06-15

    Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.

  4. VLDL-activated cell signaling pathways that stimulate adrenal cell aldosterone production.

    Science.gov (United States)

    Tsai, Ying-Ying; Rainey, William E; Johnson, Maribeth H; Bollag, Wendy B

    2016-09-15

    Aldosterone plays an important role in regulating ion and fluid homeostasis and thus blood pressure, and hyperaldosteronism results in hypertension. Hypertension is also observed with obesity, which is associated with additional health risks, including cardiovascular disease. Obese individuals have high serum levels of very low-density lipoprotein (VLDL), which has been shown to stimulate aldosterone production; however, the mechanisms underlying VLDL-induced aldosterone production are still unclear. Here we demonstrate in human adrenocortical carcinoma (HAC15) cells that submaximal concentrations of angiotensin II and VLDL stimulate aldosterone production in an additive fashion, suggesting the possibility of common mechanisms of action. We show using inhibitors that VLDL-induced aldosterone production is mediated by the PLC/IP3/PKC signaling pathway. Our results suggest that PKC is upstream of the extracellular signal-regulated kinase (ERK) activation previously observed with VLDL. An understanding of the mechanisms mediating VLDL-induced aldosterone production may provide insights into therapies to treat obesity-associated hypertension.

  5. MAPK signaling pathways regulate mitochondrial-mediated apoptosis induced by isoorientin in human hepatoblastoma cancer cells.

    Science.gov (United States)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Wu, Wanqiang; Wang, Yutang; Liu, Xuebo

    2013-03-01

    Isoorientin (ISO) (CAS RN: 4261-42-1) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum. ISO is able to induce apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cells, however, the effects of ISO on MAPK signaling pathways remain unknown. The present study investigated the effects of ISO on this pathway, and the roles of MAPK kinases on mitochondrial-mediated apoptosis in HepG2 cells. The results showed that ISO induced cell death in a dose- and time-dependent manner, and induction apoptosis is main cause for ISO-induced cytotoxicity in HepG2 cells. ISO significantly inhibited the levels of ERK1/2 kinase and increased the expression of JNK and p38 kinases. Furthermore, U0126 (an ERK1/2 inhibitor) significantly enhanced the ISO-induced the Bax/Bcl-2 ratio, the release of cytochrome c to the cytosol fraction, and the levels of cleaved caspase-3. While SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) markedly prevented the expression of these proteins induced by ISO. Furthermore, the ROS inhibitor (NAC) notably promoted the inhibited effect of ISO on the ERK1/2 kinase. NAC also suppressed the p-JNK and p-p38, but failed to reverse the effects of ISO. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells through inactivating ERK1/2 kinase and activating JNK and p38 kinases, and ROS stimulated by ISO is able to activate the MAPK singaling pathway as the upstream signaling molecules. Initiating event of the mitochondrial-mediated apoptosis induced by ISO is MAPK signals.

  6. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  7. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  8. Biochanin A Modulates Cell Viability, Invasion, and Growth Promoting Signaling Pathways in HER-2-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vikas Sehdev

    2009-01-01

    Full Text Available Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.

  9. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    Science.gov (United States)

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  10. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells.

    Science.gov (United States)

    Makarev, Eugene; Fortney, Kristen; Litovchenko, Maria; Braunewell, Karl H; Zhavoronkov, Alex; Atala, Anthony

    2015-09-15

    Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway level, and provided examples of how pathway activity can be applied to identify iPSC line abnormalities or to predict in vitro differentiation potential. Our results indicate that pathway activation profiling is a promising strategy for evaluating the safety and potency of iPSC lines in translational medicine applications.

  11. Pancreatic stellate cells contribute pancreatic cancer pain via activation of sHH signaling pathway.

    Science.gov (United States)

    Han, Liang; Ma, Jiguang; Duan, Wanxing; Zhang, Lun; Yu, Shuo; Xu, Qinhong; Lei, Jianjun; Li, Xuqi; Wang, Zheng; Wu, Zheng; Huang, Jason H; Wu, Erxi; Ma, Qingyong; Ma, Zhenhua

    2016-04-05

    Abdominal pain is a critical clinical symptom in pancreatic cancer (PC) that affects the quality of life for PC patients. However, the pathogenesis of PC pain is largely unknown. In this study, we show that PC pain is initiated by the sonic hedgehog (sHH) signaling pathway in pancreatic stellate cells (PSCs), which is activated by sHH secreted from PC cells, and then, neurotrophic factors derived from PSCs mediate the pain. The different culture systems were established in vitro, and the expression of sHH pathway molecules, neurotrophic factors, TRPV1, and pain factors were examined. Capsaicin-evoked TRPV1 currents in dorsal root ganglion (DRG) neurons were examined by the patch-clamp technique. Pain-related behavior was observed in an orthotopic tumor model. sHH and PSCs increased the expression and secretion of TRPV1, SP, and CGRP by inducing NGF and BDNF in a co-culture system, also increasing TRPV1 current. But, suppressing sHH pathway or NGF reduced the expression of TRPV1, SP, and CGRP. In vivo, PSCs and PC cells that expressed high levels of sHH could enhance pain behavior. Furthermore, the blockade of NGF or TRPV1 significantly attenuated the pain response to mechanical stimulation compared with the control. Our results demonstrate that sHH signaling pathway is involved in PC pain, and PSCs play an essential role in the process greatly by inducing NGF.

  12. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways.

    Science.gov (United States)

    Liu, Mingli; Inoue, Koichi; Leng, Tiandong; Guo, Shanchun; Xiong, Zhi-gang

    2014-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca(2+) and Mg(2+) permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3→ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.

  13. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    Science.gov (United States)

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway.

  14. Thyroid hormone inhibits the proliferation of piglet Sertoli cell via PI3K signaling pathway.

    Science.gov (United States)

    Sun, Yan; Yang, WeiRong; Luo, HongLin; Wang, XianZhong; Chen, ZhongQiong; Zhang, JiaoJiao; Wang, Yi; Li, XiaoMin

    2015-01-01

    Accumulating researches show that thyroid hormone (TH) inhibits Sertoli cells (SCs) proliferation and stimulates their functional maturation in prepubertal rat testis, confirming that TH plays a key role in testicular development. However, the mechanism under the T3 regulation of piglet SC proliferation remains unclear. In the present study, in order to investigate the possible mechanism of T3 on the suppression of SC proliferation, the expression pattern of TRα1 and cell cycle-related molecules, effect of T3 on SC proliferation, and the role of phosphoinositide 3-kinase (PI3K)/Akt signaling pathway on the T3-mediated SC proliferation in piglet testis were explored. Our results demonstrated that TRα1 was expressed in all tested stages of SCs and decreased along with the ages. T3 inhibited the proliferation of SCs in a time- and dose-dependent manner, and T3 treatment downregulated the expressions of cell cycling molecules, such as cyclinA2, cyclinD1, cyclinE1, PCNA, and Skp2, but upregulated the p27 expression in SCs. Most importantly, the suppressive effects of T3 on SC proliferation seemed dependent on the inhibition of PI3K/Akt signaling pathway, and pre-stimulation of PI3K could enhance such suppressive effects. Together, our findings demonstrate that TH inhibits the proliferation of piglet SCs via the suppression of PI3K/Akt signaling pathway.

  15. Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of achilles tendinopathy.

    Science.gov (United States)

    Saunders, Colleen J; van der Merwe, Lize; Cook, Jill; Handley, Christopher J; Collins, Malcolm; September, Alison V

    2015-06-01

    The aim of this study was to investigate interactions between variants within genes encoding components of the collagen fibril and components of cell-signaling pathways within the extracellular matrix, and determine the relative contribution of these variants to Achilles tendinopathy risk in a polygenic model. A total of 339 asymptomatic control participants and 179 participants clinically diagnosed with Achilles tendinopathy were genotyped for variants within six genes encoding components of the collagen fibril and three genes encoding components of cell-signaling pathways. Logistic regression, stepwise selection, and receiver operating characteristic curve (ROC) analysis was used to select and evaluate genetic interactions and determine the relative contribution of these variants to overall genetic risk. The strongest, best fit polygenic risk model included the variables sex, three COL27A1 variants (rs4143245; rs1249744; rs946053), COL5A1 rs12722, CASP8 rs1045485, and CASP8 rs2824129 with an area under the ROC curve of 0.737 and the maximum sum of sensitivity and specificity indicators equal to 134%. Significant interactions between genes encoding components of the collagen fibril and genes encoding components of the cell-signaling pathways modify risk of Achilles tendinopathy.

  16. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  17. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    2013-08-01

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  18. Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT signaling pathway in UMR-106 osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    María Claudia Sandoval-Usme

    Full Text Available Recent studies have demonstrated that statins reduce cell viability and induce apoptosis in various types of cancer cells. The molecular mechanisms underlying these effects are poorly understood. The JAK/STAT pathway plays an important role in the regulation of proliferation and apoptosis in many tissues, and its deregulation is believed to be involved in tumorigenesis and cancer. The physiological activation of STAT proteins by GH is rapid but transient in nature and its inactivation is regulated mainly by the expression of SOCS proteins. UMR-106 osteosarcoma cells express a GH-responsive JAK2/STAT5 signaling pathway, providing an experimental model to study the influence of statins on this system. In this study we investigated the actions of simvastatin on cell proliferation, migration, and invasion on UMR-106 cells and examined whether alterations in GH-stimulated JAK/STAT/SOCS signaling may be observed. Results showed that treatment of osteosarcoma cells with simvastatin at 3 to 10 µM doses decreases cell proliferation, migration, and invasion in a time- and dose-dependent manner. At the molecular level, although the mechanisms used by simvastatin are not entirely clear, the effect of the statin on the reduction of JAK2 and STAT5 phosphorylation levels may partially explain the decrease in the GH-stimulated STAT5 transcriptional activity. This effect correlated with a time- and dose-dependent increase of SOCS-3 expression levels in cells treated with simvastatin, a regulatory role that has not been previously described. Furthermore, the finding that simvastatin is capable of inducing SOCS-3 and CIS genes expression shows the potential of the JAK/STAT pathway as a therapeutic target, reinforcing the efficacy of simvastatin as chemotherapeutic drug for the treatment of osteosarcoma.

  19. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    Science.gov (United States)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  20. NDRG1 overexpression promotes the progression of esophageal squamous cell carcinoma through modulating Wnt signaling pathway

    Science.gov (United States)

    Ai, Runna; Sun, Yulin; Guo, Zhimin; Wei, Wei; Zhou, Lanping; Liu, Fang; Hendricks, Denver T.; Xu, Yang; Zhao, Xiaohang

    2016-01-01

    ABSTRACT N-myc down-regulated gene 1 (NDRG1) has been shown to regulate tumor growth and metastasis in various malignant tumors and also to be dysregulated in esophageal squamous cell carcinoma (ESCC). Here, we show that NDRG1 overexpression (91.9%, 79/86) in ESCC tumor tissues is associated with poor overall survival of esophageal cancer patients. When placed in stable transfectants of the KYSE 30 ESCC cell line generated by lentiviral transduction with the ectopic overexpression of NDRG1, the expression of transducin-like enhancer of Split 2 (TLE2) was decreased sharply, however β−catenin was increased. Mechanistically, NDRG1 physically associates with TLE2 and β−catenin to affect the Wnt pathway. RNA interference and TLE2 overexpression studies demonstrate that NDRG1 fails to active Wnt pathway compared with isogenic wild-type controls. Strikingly, NDRG1 overexpression induces the epithelial mesenchymal transition (EMT) through activating the Wnt signaling pathway in ESCC cells, decreased the expression of E-cadherin and enhanced the expression of Snail. Our study elucidates a mechanism of NDRG1-regulated Wnt pathway activation and EMT via affecting TLE2 and  β-catenin expression in esophageal cancer cells. This indicates a pro-oncogenic role for NDRG1 in esophageal cancer cells whereby it modulates tumor progression. PMID:27414086

  1. Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways

    Institute of Scientific and Technical Information of China (English)

    Songzhu Michael AN; Qiang Peter DING; Ling-song LI

    2013-01-01

    One of the most exciting fields in biomedical research over the past few years is stem cell biology,and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development.Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome,the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns.In particular,the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery.Aberrations in these pathways result in various diseases,including cancer,fibrosis and degenerative diseases.A number of drug targets in stem cell signaling pathways have been identified.Among them,WNT and Hedgehog are two most important signaling pathways,which are the focus of this review.A hedgehog pathway inhibitor,vismodegib (Erivedge),has recently been approved by the US FDA for the treatment of skin cancer,while several drug candidates for the WNT pathway are entering clinical trials.We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines.Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities.As many of these events can be explained through molecular interactions,these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.

  2. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  3. Antiproliferation Effects of Curcumin on the STAT5 Signaling Pathway in K562 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan Chen; Hongli Liu; Weihong Chen

    2005-01-01

    cells. For the CML patient cells, the OD value of STAT5-DNA binding in the curcumin treated cells was less than that compared to untreated cells.CONCLUSION The antiproliferation effects of curcumin may partly be mediated through signal transduction and activation of transcription and may involve the STAT5 signaling pathway.

  4. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  5. Neural differentiation from embryonic stem cells in vitro :An overview of the signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jen-Hua Chuang; Li-Chu Tung; Yenshou Lin

    2015-01-01

    Neurons derived from embryonic stem cells (ESCs)have gained great merit in both basic research andregenerative medicine. Here we review and summarizethe signaling pathways that have been reported tobe involved in the neuronal differentiation of ESCs,particularly those associated with in vitro differentiation.The inducers and pathways explored include retinoicacid, Wnt/b-catenin, transforming growth factor/bonemorphogenetic protein, Notch, fibroblast growthfactor, cytokine, Hedgehog, c-Jun N-terminal kinase/mitogen-activated protein kinase and others. Someother miscellaneous molecular factors that have beenreported in the literature are also summarized anddiscussed. These include calcium, calcium receptor,calcineurin, estrogen receptor, Hox protein, ceramide,glycosaminioglycan, ginsenoside Rg1, opioids, two porechannel 2, nitric oxide, chemically defined medium, cellcellinteractions, and physical stimuli. The interaction orcrosstalk between these signaling pathways and factorswill be explored. Elucidating these signals in detail shouldmake a significant contribution to future progress in stemcell biology and allow, for example, better comparisonsto be made between differentiation in vivo and in vitro .Of equal importance, a comprehensive understandingof the pathways that are involved in the developmentof neurons from ESCs in vitro will also accelerate theirapplication as part of translational medicine.

  6. Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells.

    Science.gov (United States)

    Ponnurangam, Sivapriya; Dandawate, Prasad R; Dhar, Animesh; Tawfik, Ossama W; Parab, Rajashri R; Mishra, Prabhu Dutt; Ranadive, Prafull; Sharma, Rajiv; Mahajan, Girish; Umar, Shahid; Weir, Scott J; Sugumar, Aravind; Jensen, Roy A; Padhye, Subhash B; Balakrishnan, Arun; Anant, Shrikant; Subramaniam, Dharmalingam

    2016-01-19

    Cancer stem cells (CSCs) appear to explain many aspects of the neoplastic evolution of tumors and likely account for enhanced therapeutic resistance following treatment. Dysregulated Notch signaling, which affects CSCs plays an important role in pancreatic cancer progression. We have determined the ability of Quinomycin to inhibit CSCs and the Notch signaling pathway. Quinomycin treatment resulted in significant inhibition of proliferation and colony formation in pancreatic cancer cell lines, but not in normal pancreatic epithelial cells. Moreover, Quinomycin affected pancreatosphere formation. The compound also decreased the expression of CSC marker proteins DCLK1, CD44, CD24 and EPCAM. In addition, flow cytometry studies demonstrated that Quinomycin reduced the number of DCLK1+ cells. Furthermore, levels of Notch 1-4 receptors, their ligands Jagged1, Jagged2, DLL1, DLL3, DLL4 and the downstream target protein Hes-1 were reduced. The γ-secretase complex proteins, Presenilin 1, Nicastrin, Pen2, and APH-1, required for Notch activation also exhibited decreased expression. Ectopic expression of the Notch Intracellular Domain (NICD) partially rescued the cells from Quinomycin mediated growth suppression. To determine the effect of Quinomycin on tumor growth in vivo, nude mice carrying tumor xenografts were administered Quinomycin intraperitoneally every day for 21 days. Treatment with the compound significantly inhibited tumor xenograft growth, coupled with significant reduction in the expression of CSC markers and Notch signaling proteins. Together, these data suggest that Quinomycin is a potent inhibitor of pancreatic cancer that targets the stem cells by inhibiting Notch signaling proteins.

  7. Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells

    Science.gov (United States)

    Ponnurangam, Sivapriya; Dandawate, Prasad R.; Dhar, Animesh; Tawfik, Ossama W.; Parab, Rajashri R.; Mishra, Prabhu Dutt; Ranadive, Prafull; Sharma, Rajiv; Mahajan, Girish; Umar, Shahid; Weir, Scott J.; Sugumar, Aravind; Jensen, Roy A.; Padhye, Subhash B.; Balakrishnan, Arun; Anant, Shrikant; Subramaniam, Dharmalingam

    2016-01-01

    Cancer stem cells (CSCs) appear to explain many aspects of the neoplastic evolution of tumors and likely account for enhanced therapeutic resistance following treatment. Dysregulated Notch signaling, which affects CSCs plays an important role in pancreatic cancer progression. We have determined the ability of Quinomycin to inhibit CSCs and the Notch signaling pathway. Quinomycin treatment resulted in significant inhibition of proliferation and colony formation in pancreatic cancer cell lines, but not in normal pancreatic epithelial cells. Moreover, Quinomycin affected pancreatosphere formation. The compound also decreased the expression of CSC marker proteins DCLK1, CD44, CD24 and EPCAM. In addition, flow cytometry studies demonstrated that Quinomycin reduced the number of DCLK1+ cells. Furthermore, levels of Notch 1–4 receptors, their ligands Jagged1, Jagged2, DLL1, DLL3, DLL4 and the downstream target protein Hes-1 were reduced. The γ-secretase complex proteins, Presenilin 1, Nicastrin, Pen2, and APH-1, required for Notch activation also exhibited decreased expression. Ectopic expression of the Notch Intracellular Domain (NICD) partially rescued the cells from Quinomycin mediated growth suppression. To determine the effect of Quinomycin on tumor growth in vivo, nude mice carrying tumor xenografts were administered Quinomycin intraperitoneally every day for 21 days. Treatment with the compound significantly inhibited tumor xenograft growth, coupled with significant reduction in the expression of CSC markers and Notch signaling proteins. Together, these data suggest that Quinomycin is a potent inhibitor of pancreatic cancer that targets the stem cells by inhibiting Notch signaling proteins. PMID:26673007

  8. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Stine F; Satir, Peter

    2008-01-01

    Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present...... an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact...... with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration....

  9. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway.

    Science.gov (United States)

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; Yi, Wei; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism. Methods: DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling. Results: 0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT(+) cardiomyocytes (detected at the 28(th) day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation. Conclusion: Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway.

  10. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  11. Signal transduction pathway of nitric oxide inducing PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study signal transduction pathway of nitric oxideinducing death of PC12 cells.Methods: Cell survival rate was measured with MTT assay, and caspase-3 activity with caspase-3 assay kits after PC12 cells were incubated with sodium nitroprusside (SNP), caspase-3 inhibitor Ⅱ plus SNP or p38 inhibitor-SB203580 plus SNP.Results: SNP induced death of PC12 cells in dose- and time-dependent manner and enhanced caspase-3 activity gradually. Both caspase-3 inhibitor Ⅱ and SB203580 reduced cell death, but SB203580 reduced caspase-3 activity significantly.Conclusions: NO may induce death of PC12 cells through activation of p38 and caspase-3.

  12. Role of RhoA/Rho kinase signaling pathway in microgroove induced stem cell myogenic differentiation.

    Science.gov (United States)

    Li, Huaqiong; Wen, Feng; Wang, Xincai; Tan, Lay Poh

    2015-06-01

    In our previous report, the authors have demonstrated that direct laser machined microchannels would trigger upregulation of myogenic markers in human mesenchymal stem cells (hMSCs) through promotion of cell elongation. However, the molecular basis signaling pathways behind this observation remains unclear. In this work, three types of microchannels generated by femtosecond laser were utilized to investigate possible mechanisms behind the induction of hMSCs myogenesis by microchannels. The authors hypothesized that small G-proteins RhoA and Rac1 play a vital role on myogenesis of hMSCs through regulating cytoskeleton rearrangement, via cell tension signaling cascades. The RhoA and Rac1 activities were evaluated for cells cultured on the micropatterned substrates, using a flat unpatterned substrate as control. It was found that significant activation of RhoA GTPase was exhibited for cells cultured on narrow microchannels (20-20-20 and 30-30-20), while no obvious differences were obtained on wide ones (80-30-20). Meanwhile, no significant difference was found for Rac1 activities on all tested groups. To further deduce the role of RhoA signaling pathway in microchannel directed stem cell myogenesis, the effectors of Rho, Rho kinase (ROCK) was chosen to explore how cell shape regulate myogenesis of hMSCs cultured on laser micropatterned substrate. A pharmacological ROCK inhibitor, Y-27632, was used to treat the cells and the effect on RhoA activation was investigated. Our data on the role of RhoA/ROCK in regulating cell myogenic differentiation on lasered microchannels substrates may provide a mechanistic insight on hMSCs fate directed by substrate topography.

  13. Epigenetic Regulation of the ERβ Gene on the Estrogen Signal Transfection Pathway in Colon Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    翟荣林; 王国斌; 蔡开琳; 陶凯雄; 许飞; 张万里; 王智勇

    2010-01-01

    We studied the regulatory effects of the estragen receptorβ(ERβ)gene on the downstream estrogen signal transfection pathway in colon cancer cells and the possible mechanisms involved.A human ERβ gene recombinant expression plasmid,pEGFP-C1-ERβ,was constructed and transfected into the Caco-2 colon cancer cell line,a line with low ERβ gene expression.The expression of ERβ mRNA and protein was detected 72h after transfection.RT-PCR was used to examine the expression levels of the progesterone recepror(PR)gene ...

  14. Livin abrogates apoptosis of SPC-A1 cell by regulating JNKI signaling pathway.

    Science.gov (United States)

    Chen, Yu-Sheng; Li, Hong-Ru; Lin, Ming; Chen, Gang; Xie, Bao-Song; Xu, Neng-Luan; Lin, Li-Fang

    2010-06-01

    Livin, a novel member of inhibitors of apoptosis protein, is highly expressed in tumor tissues. It is a potential target in tumor therapy. Silencing its gene expression has been found to promote tumor cell apoptosis or increase tumor sensitivity to therapies. This paper studied the effect of livin anti-apoptotic activity and examined its molecular mechanisms. In the study, higher levels of cell apoptosis were measured by FACS in the experiment group with livin expression silenced than that in controls (P SPC-A1 by activating JNK1 signaling pathway and inhibiting caspase-3 activation.

  15. Cell viability modulation through changes of Ca(2+)-dependent signalling pathways.

    Science.gov (United States)

    Wójcik-Piotrowicz, Karolina; Kaszuba-Zwoińska, Jolanta; Rokita, Eugeniusz; Thor, Piotr

    2016-05-01

    The aim of the study was to determine the correlations between intracellular calcium ion level and a cell's ability to survive. The intracellular concentration of Ca(2+) ions, maintained through different mechanisms, plays an important role in signalling in cells. The deregulation of these mechanisms by various cell stressors (e.g. cytotoxic agents) can disturb Ca(2+) homeostasis and influence Ca(2+)-dependent signalling pathways in the cell. Perturbations of intracellular electrochemical equilibrium may lead to changes in cell function or even to cell death. According to some experimental results, one of the cell stressors may be exposure to magnetic fields (MF). Because of the wide distribution of MF sources in our environment, magnetic fields have recently been intensively examined in relation to the occurrence of cancer. Nevertheless, two questions still remain unanswered: Is the influence of MF on cells positive or negative, and what mechanism(s) underlie the effects of MF action on cells? Most studies focus on the influence of MF on Ca(2+) ion fluxes as calcium ions play the role of intracellular second messengers, triggering many signalling cascades. Physical models assuming the mechanisms generating the disturbance of ionic transport and/or the dysfunction of ion-protein complexes in cells due to MF action have been widely discussed in the literature, but a detailed explanation of experimental results is still awaited. The dynamics of the concentration of intracellular calcium ions can be detected by various methods, including optical and non-optical techniques. This review combines an insight into basic intracellular Ca(2+) regulative mechanisms and common techniques used to detect changes in Ca(2+) concentration inside the cell. The emphasis here is on the determination of Ca(2+) regulative mechanisms developed in non-excitable cells (e.g. U937 cells, HeLa, etc.), which are probably mainly involved in cell responses to external stress (e.g. MF stimuli).

  16. The inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by sulindac.

    Science.gov (United States)

    Tai, Wei-Ping; Hu, Pin-Jin; Wu, Jing; Lin, Xiang-Chun

    2014-01-01

    The aberrant activation of Wnt/β-catenin signaling plays important roles in the initial development of colon cancer. Sulindac is a commonly used non-steroidal anti-inflammatory drug. We demonstrated the effects of sulindac on growth inhibition, apoptosis induction, and Wnt/β-catenin signaling suppression in human colon cancer cells. Sulindac significantly inhibited proliferation of HT-29 colon cancer cells in a dose- and time-dependent manner. Sulindac was found to induce the apoptosis of HT-29 cells and inhibit the Wnt/β-catenin pathway. The inhibition was further confirmed by the decreased protein levels of β-catenin. The results indicate that sulindac may play a beneficial role in the comprehensive treatment of colon cancer.

  17. Effect of Trastuzumab on Notch-1 Signaling Pathway in Breast Cancer SK-BR3 Cells

    Institute of Scientific and Technical Information of China (English)

    Ming Han; Hua-yu Deng; Rong Jiang

    2012-01-01

    Objective:To investigate the effects and mechanisms of trastuzumab on Notch-1 pathway in breast cancer cells,recognizing the significance of Notch-1 signaling pathway in trastuzumab resistance.Methods:Immunocytochemistry staining and Western blotting were employed to justify the expression of Notch-1 protein in HER2-overexpressing SK-BR3 cells and HER2-non-overexpressing breast cancer MDA-MB-231 cells.Western blotting and reverse transcription PCR (RT-PCR) were used to detect the activated Notch-1 and Notch-1 target gene HES-1 mRNA expression after SK-BR3 cells were treated with trastuzumab.Double immunofluorescence staining and co-immunoprecipitation were used to analyze the relationship of Notch-1 and HER2 proteins.Results:The level of Notch-1 nuclear localization and activated Notch-1 proteins in HER2-overexpressing cells were significantly lower than in HER2-non-overexpressing cells (P<0.01),and the expressions of activated Notch-1 and HES-1 mRNA were obviously increased after trastuzumab treatment (P<1.05),but HER2 expression did not change significantly for trastuzumab treating (P>0.05).Moreover,Notch-1 was discovered to co-localize and interact with HER2 in SK-BR3 cells.Conclusion:Overexpression of HER2 decreased Notch-1 activity by the formation of a HER2-Notch1 complex,and trastuzumab can restore the activity of Notch-1 signaling pathway,which could be associated with cell resistance to trastuzumab.

  18. Signal pathways involved in emodin-induced contraction of smooth muscle cells from rat colon

    Institute of Scientific and Technical Information of China (English)

    Tao Ma; Qing-Hui Qi; Jian Xu; Zuo-Liang Dong; Wen-Xiu Yang

    2004-01-01

    AIM: To investigate the effects induced by emodin on single smooth muscle cells from rat colon in vitro, and to determine the signal pathways involved.METHODS: Cells were isolated from the muscle layers of Wistar rat colon by enzymatic digestion. Cell length was measured by computerized image micrometry. Intracellular Ca2+ ([Ca2+]i) signals were studied using the fluorescent Ca2+ indicator fluo-3 and confocal microscopy. PKCα distribution at rest state or after stimulation was measured with immunofluorescence confocal microscopy.RESULTS: (1) Emodin dose-dependently caused colonic smooth muscle cells contraction; (2) emodin induced an increase in intracellular Ca2+ concentration; (3) the contractile responses induced by emodin were respectively inhibited by preincubation of the cells with ML-7 (an inhibitorof MLCK)and calphostin C (an inhibitor of PKC); (4) Incubation of cells with emodin caused translocation of PKCα from cytosolic area to the membrane.CONCLUSION: Emodin has a direct contractile effect on colonic smooth muscle cell. This signal cascade induced by emodin is initiated by increased [Ca2+]i and PKCα translocation,which in turn lead to the activation of MLCK and the suppression of MLCP. Both of them contribute to the emodininduced contraction.

  19. Quantitative impedimetric NPY-receptor activation monitoring and signal pathway profiling in living cells.

    Science.gov (United States)

    te Kamp, Verena; Lindner, Ricco; Jahnke, Heinz-Georg; Krinke, Dana; Kostelnik, Katja B; Beck-Sickinger, Annette G; Robitzki, Andrea A

    2015-05-15

    Label-free and non-invasive monitoring of receptor activation and identification of the involved signal pathways in living cells is an ongoing analytic challenge and a great opportunity for biosensoric systems. In this context, we developed an impedance spectroscopy-based system for the activation monitoring of NPY-receptors in living cells. Using an optimized interdigital electrode array for sensitive detection of cellular alterations, we were able for the first time to quantitatively detect the NPY-receptor activation directly without a secondary or enhancer reaction like cAMP-stimulation by forskolin. More strikingly, we could show that the impedimetric based NPY-receptor activation monitoring is not restricted to the Y1-receptor but also possible for the Y2- and Y5-receptor. Furthermore, we could monitor the NPY-receptor activation in different cell lines that natively express NPY-receptors and proof the specificity of the observed impedimetric effect by agonist/antagonist studies in recombinant NPY-receptor expressing cell lines. To clarify the nature of the observed impedimetric effect we performed an equivalent circuit analysis as well as analyzed the role of cell morphology and receptor internalization. Finally, an antagonist based extensive molecular signal pathway analysis revealed small alterations of the actin cytoskeleton as well as the inhibition of at least L-type calcium channels as major reasons for the observed NPY-induced impedance increase. Taken together, our novel impedance spectroscopy based NPY-receptor activation monitoring system offers the opportunity to identify signal pathways as well as for novel versatile agonist/antagonist screening systems for identification of novel therapeutics in the field of obesity and cancer.

  20. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  1. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  2. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells

    Science.gov (United States)

    KANG, MI-HYE; KIM, IN-HYE; NAM, TAEK-JEO NG

    2014-01-01

    Phloroglucinol is a polyphenolic compound that is used to treat and prevent several human diseases, as it exerts beneficial biological activities, including anti-oxidant, anti-inflammatory and anticancer properties. The aim of the present study was to investigate the effects of phloroglucinol on apoptotic signaling pathways in HT-29 colon cancer cells. The results indicated that phloroglucinol suppressed cell viability and induced apoptosis in HT-29 cells in a concentration-dependent manner. Phloroglucinol treatment of HT-29 cells resulted in characteristic apoptosis-related changes: altered Bcl-2 family proteins, cytochrome c release, and activation of caspase-3 and caspase-8. This study also showed that proteins involved in apoptosis were stimulated by treatment with phloroglucinol. These findings demonstrated that phloroglucinol exerts anticancer activity in HT-29 colon cancer cells through induction of apoptosis. PMID:25070748

  3. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway.

    Science.gov (United States)

    Voskas, Daniel; Ling, Ling Sunny; Woodgett, James Robert

    2014-10-01

    The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.

  4. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    Science.gov (United States)

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  5. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  6. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    Science.gov (United States)

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  7. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  8. The role of the hedgehog/patched signaling pathway in epithelial stem cell proliferation:from fly to human

    Institute of Scientific and Technical Information of China (English)

    PARISIMICHAELJ; HAIFANLIN

    1998-01-01

    The hedgehog-patched(hh-ptc)intercellular signaling pathway has recently been shown to control the proliferation of epithelial stem cells in both Drosophila and Vertebrated.Mutant and ectopic expression analyses in Drosophila suggest that the HH protein diffuses from the signaling cells to promote the proliferation of nearby ovarian somatic stem cells by antagonizing the suppression of its receptor PTC towards the CI transcription factor in the stem cells.Consequently,the transcription of CIdependent genes leads to stem cell proliferation.This regulatory pathway appears to function also in vertebrates, where defects in ptc cause basal cell carcinoma,tumors of epidermal stem cell origin.Basal cell carcinoma can also be induced by ectopic expression of Sonic hedgehog (shh) or Glil,the vertebrate homolog of ci.These studies suggest the conservation of the hh signaling pathway in controlling epithelial stem cell divisions among different organisma.

  9. Low Expression of CAPON in Glioma Contributes to Cell Proliferation via the Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shangfeng Gao

    2016-11-01

    Full Text Available CAPON is an adapter protein for nitric oxide synthase 1 (NOS1. CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON and CAPON-S (short form of CAPON. Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation. In this study, we found that the protein levels of CAPON-S, but not than CAPON-L, were significantly decreased in glioma tissues. Therefore, we established lentivirus-mediated stable cell lines with CAPON-S overexpression or down-regulation, and investigated the role of CAPON-S in the proliferation of glioma cells by using CCK8, EdU, and flow cytometry assays. Overexpression of CAPON-S reduced the cell variability and the percentage of EdU-positive cells, and arrested the cells in the G1 phase in glioma cells. Silencing of CAPON by short-hairpin RNA showed the opposite effects. Furthermore, an intracellular signaling array revealed that overexpression of CAPON-S resulted in a remarkable reduction in the phosphorylation of Akt and S6 ribosomal protein in glioma cells, which was further confirmed by Western blot. These findings suggest that CAPON may function as a tumor suppressor in human brain glioma and that the inactivation of the Akt signaling pathway caused by CAPON-S overexpression may provide insight into the underlying mechanism of CAPON in glioma cell proliferation.

  10. Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics

    Directory of Open Access Journals (Sweden)

    He Qiu-Yan

    2011-06-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is usually overexpressed in nasopharyngeal carcinoma (NPC and is associated with pathogenesis of NPC. However, the downstream signaling proteins of EGFR in NPC have not yet been completely understood at the system level. The aim of this study was identify novel downstream proteins of EGFR signaling pathway in NPC cells. Results We analyzed EGFR-regulated phosphoproteome in NPC CNE2 cells using 2D-DIGE and mass spectrometry analysis after phosphoprotein enrichment. As a result, 33 nonredundant phosphoproteins including five known EGFR-regulated proteins and twenty-eight novel EGFR-regulated proteins in CNE2 were identified, three differential phosphoproteins were selectively validated, and two differential phosphoproteins (GSTP1 and GRB2 were showed interacted with phospho-EGFR. Bioinformatics analysis showed that 32 of 33 identified proteins contain phosphorylation modification sites, and 17 identified proteins are signaling proteins. GSTP1, one of the EGFR-regulated proteins, associated with chemoresistance was analyzed. The results showed that GSTP1 could contribute to paclitaxel resistance in EGF-stimulated CNE2 cells. Furthermore, an EGFR signaling network based on the identified EGFR-regulated phosphoproteins were constructed using Pathway Studio 5.0 software, which includes canonical and novel EGFR-regulated proteins and implicates the possible biological roles for those proteins. Conclusion The data not only can extend our knowledge of canonical EGFR signaling, but also will be useful to understand the molecular mechanisms of EGFR in NPC pathogenesis and search therapeutic targets for NPC.

  11. Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells.

    Science.gov (United States)

    McCarthy, Claire E; Duffney, Parker F; Gelein, Robert; Thatcher, Thomas H; Elder, Alison; Phipps, Richard P; Sime, Patricia J

    2016-12-01

    Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

  12. [Signal transudation pathways in parietal cells of the gastric mucosa in experimental stomach ulcer].

    Science.gov (United States)

    Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M

    2009-01-01

    The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.

  13. Neuronal c-Abl activation leads to induction of cell cycle and interferon signaling pathways

    Directory of Open Access Journals (Sweden)

    Schlatterer Sarah D

    2012-08-01

    Full Text Available Abstract Background Expression of active c-Abl in adult mouse forebrain neurons in the AblPP/tTA mice resulted in severe neurodegeneration, particularly in the CA1 region of the hippocampus. Neuronal loss was preceded and accompanied by substantial microgliosis and astrocytosis. In contrast, expression of constitutively active Arg (Abl-related gene in mouse forebrain neurons (ArgPP/tTA mice caused no detectable neuronal loss or gliosis, although protein expression and kinase activity were at similar levels to those in the AblPP/tTA mice. Methods To begin to elucidate the mechanism of c-Abl-induced neuronal loss and gliosis, gene expression analysis of AblPP/tTA mouse forebrain prior to development of overt pathology was performed. Selected results from gene expression studies were validated with quantitative reverse transcription PCR , immunoblotting and bromodeoxyuridine (BrdU labeling, and by immunocytochemistry. Results Two of the top pathways upregulated in AblPP/tTA mice with c-Abl expression for 2 weeks were cell cycle and interferon signaling. However, only the expression of interferon signaling pathway genes remained elevated at 4 weeks of c-Abl induction. BrdU incorporation studies confirm that, while the cell cycle pathway is upregulated in AblPP/tTA mice at 2 weeks of c-Abl induction, the anatomical localization of the pathway is not consistent with previous pathology seen in the AblPP/tTA mice. Increased expression and activation of STAT1, a known component of interferon signaling and interferon-induced neuronal excitotoxicity, is an early consequence of c-Abl activation in AblPP/tTA mice and occurs in the CA1 region of the hippocampus, the same region that goes on to develop severe neurodegenerative pathology and neuroinflammation. Interestingly, no upregulation of gene expression of interferons themselves was detected. Conclusions Our data suggest that the interferon signaling pathway may play a role in the pathologic processes

  14. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei-guo HU; Tao LIU; Jiong-xin XIONG; Chun-you WANG

    2007-01-01

    Aim: To investigate the expression of sonic hedgehog (SHH) and epidermal growth factor receptor (EGFR) signal molecules in pancreatic cancer cells, and to assess the inhibitory effects through the blockade of the SHH and EGFR signaling path- ways by cyclopamine and Iressa, respectively. Methods: The expression of SHH and EGFR in pancreatic cancer cell lines (PANC-1, SUIT-2, and ASPC-1) was de-tected by RT-PCR and Western blot analysis. After treatment with different con-centrations of cyclopamine, alone or in combination with Iressa, the antiproliferative effect on pancreatic cancer cells was analyzed by methyl thiazolyl tetrazolium assays. A flow cytometry analysis was used to detect the cellular cycle distribu-tion and apoptosis of pancreatic cancer cells. Results: All of the 3 pancreatic cancer cell lines expressed SHH, Smoothened (SMO), and EGFR. Cyclopamine could downregulate the expression of EGFR in all cell lines. Cyclopamine or Iressa could induce a growth inhibitory effect in a dose-dependent manner. Moreover,the combined use of 2.5 μmol/L cyclopamine and 1 μmol/L Iressa induced an enhanced inhibitory effect and a greater apoptosis rate than any agent alone. The percentage of the cell population of the G0/G1 and sub-G1 phases was significantly increased along with the increasing dose of cyclopamine and/or Iressa. Conclusion: The blockade of the sonic hedgehog signal pathway enhances the antiproliferative effect of the EGFR inhibitor through the downregulation of its expression in pancreatic cancer cells. The simultaneous blockade of SHH and EGFR signaling represents possible targets of new treatment strategies for pan-creatic carcinoma.

  15. Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway.

    Science.gov (United States)

    García Campelo, María Rosario; Alonso Curbera, Guillermo; Aparicio Gallego, Guadalupe; Grande Pulido, Enrique; Antón Aparicio, Luis Miguel

    2011-02-01

    Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartments. However the origins of the different histological types of primary lung cancer are not well understood. Stem cells are believed to be crucial players in tumour development and there is much interest in identifying those compartments that harbour stem cells involved in lung cancer. Although the role of stem cells in carcinogenesis is not well characterised, emerging evidence is providing new insights into this process. Numerous studies have indicated that lung cancer is not a result of a sudden transforming event but a multistep process in which a sequence of molecular changes result in genetic and morphological aberrations. The exact sequence of molecular events involved in lung carcinogenesis is not yet well understood, therefore deeper knowledge of the aberrant stem cell fate signalling pathway could be crucial in the development of new drugs against the advanced setting.

  16. Two frizzled planar cell polarity signals in the Drosophila wing are differentially organized by the Fat/Dachsous pathway.

    Directory of Open Access Journals (Sweden)

    Justin Hogan

    2011-02-01

    Full Text Available The regular array of distally pointing hairs on the mature Drosophila wing is evidence for the fine control of Planar Cell Polarity (PCP during wing development. Normal wing PCP requires both the Frizzled (Fz PCP pathway and the Fat/Dachsous (Ft/Ds pathway, although the functional relationship between these pathways remains under debate. There is strong evidence that the Fz PCP pathway signals twice during wing development, and we have previously presented a Bidirectional-Biphasic Fz PCP signaling model which proposes that the Early and Late Fz PCP signals are in different directions and employ different isoforms of the Prickle protein. The goal of this study was to investigate the role of the Ft/Ds pathway in the context of our Fz PCP signaling model. Our results allow us to draw the following conclusions: (1 The Early Fz PCP signals are in opposing directions in the anterior and posterior wing and converge precisely at the site of the L3 wing vein. (2 Increased or decreased expression of Ft/Ds pathway genes can alter the direction of the Early Fz PCP signal without affecting the Late Fz PCP signal. (3 Lowfat, a Ft/Ds pathway regulator, is required for the normal orientation of the Early Fz PCP signal but not the Late Fz PCP signal. (4 At the time of the Early Fz PCP signal there are symmetric gradients of dachsous (ds expression centered on the L3 wing vein, suggesting Ds activity gradients may orient the Fz signal. (5 Localized knockdown or over-expression of Ft/Ds pathway genes shows that boundaries/gradients of Ft/Ds pathway gene expression can redirect the Early Fz PCP signal specifically. (6 Altering the timing of ds knockdown during wing development can separate the role of the Ft/Ds pathway in wing morphogenesis from its role in Early Fz PCP signaling.

  17. Neovibsanin B increases extracellular matrix proteins in optic nerve head cells via activation of Smad signalling pathway.

    Science.gov (United States)

    Wang, Zhen; Xu, Wei; Rong, Ao; Lin, Yan; Qiu, Xu-Ling; Qu, Shen; Lan, Xian-Hai

    2015-01-01

    The present study demonstrates the effect of neovibsanin B on the synthesis and deposition of ECM proteins and the signalling pathways used in optic nerve head (ONH) astrocytes and lamina cribrosa (LC) cells. For investigation of the signalling pathway used by neovibsanin B, ONH cells were treated with neovibsanin B. Western blot and immunostaining analyses were used to examine the phosphorylation of proteins involved in Smad and non-Smad signalling pathway. The results revealed that ONH cells on treatment with neovibsanin B showed enhanced synthesis of extracellular matrix (ECM) proteins. Neovibsanin B induced phosphorylation of canonical signalling proteins, Smad2/3. However phosphorylation of non-canonical signalling proteins, extracellular signal-regulated kinases, p38, and c-Jun N-terminal kinases (JNK) 1/2 remained unaffected. There was also increase in co-localization of pSmad2/3 with Co-Smad4 in the nucleus of ONH astrocytes and LC cells indicating activation of the canonical Smad signalling pathway. Treatment of ONH cells with SIS3, inhibitor of Smad3 phosphorylation reversed the neovibsanin B stimulated ECM expression as well as activation of canonical pathway signalling molecules. In addition, inhibition of Smad2 or Smad3 using small interfering RNA (siRNA) also suppressed neovibsanin B stimulated ECM protein synthesis in ONH astrocytes and LC cells. Thus neovibsanin B utilizes the canonical Smad signalling pathway to stimulate ECM synthesis in human ONH cells. The neovibsanin B induced ECM synthesis and activation of the canonical Smad signalling pathway may be due to its effect on transforming growth factor-β2 (TGF-β2). However, further studies are under process to understand the mechanism.

  18. Neuropeptide FF activates ERK and NF kappa B signal pathways in differentiated SH-SY5Y cells.

    Science.gov (United States)

    Sun, Yu-long; Zhang, Xiao-yuan; He, Ning; Sun, Tao; Zhuang, Yan; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2012-11-01

    Neuropeptide FF (NPFF) has been reported to play important roles in regulating diverse biological processes. However, little attention has been focused on the downstream signal transduction pathway of NPFF. Here, we used the differentiated neuroblastoma cell line, dSH-SY5Y, which endogenously expresses hNPFF2 receptor, to investigate the signal transduction downstream of NPFF. In particular we investigated the regulation of the extracellular signal-regulated protein kinase (ERK) and the nuclear factor kappa B (NF-κB) pathways by NPFF in these cells. NPFF rapidly and transiently stimulated ERK. H89, a selective inhibitor of cyclic AMP-dependent protein kinase A (PKA), inhibited the NPFF-activated ERK pathway, indicating the involvement of PKA in the NPFF-induced ERK activation. Down-regulation of nitric oxide synthases also attenuated NPFF-induced ERK activation, suggesting that a nitric oxide synthase-dependent pathway is involved. Moreover, the core upstream components of the NF-κB pathway were also significantly activated in response to NPFF, suggesting that the NF-κB pathway is involved in the signal transduction pathway of NPFF. Collectively, these data demonstrate that nitric oxide synthases are involved in the signal transduction pathway of NPFF, and provide the first evidence for the interaction between NPFF and the NF-κB pathway. These advances in our interpretation of the NPFF pathway mechanism will aid the comprehensive understanding of its function and provide novel molecular insight for further study of the NPFF system.

  19. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  20. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  1. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways.

    Directory of Open Access Journals (Sweden)

    Roy Blum

    Full Text Available BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2, lipid metabolism (e.g., Srebp1 and cell migration (e.g., Areb6 and Rreb1. Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE: We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may

  2. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Xiangyang; Zhu, Fenfen; Zhao, Zhihui; Liu, Chang; Luo, Lan; Yin, Zhimin

    2011-10-01

    Arctigenin is a dibenzylbutyrolactone lignan isolated from Bardanae fructus, Arctium lappa L, Saussureamedusa, Torreya nucifera, and Ipomea cairica. It has been reported to exhibit anti-inflammatory activities, which is mainly mediated through its inhibitory effect on nuclear transcription factor-kappaB (NF-κB). But the role of arctigenin in JAK-STAT3 signaling pathways is still unclear. In present study, we investigated the effect of arctigenin on signal transducer and activator of transcription 3 (STAT3) pathway and evaluated whether suppression of STAT3 activity by arctigenin could sensitize cancer cells to a chemotherapeutic drug cisplatin. Our results show that arctigenin significantly suppressed both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Inhibition of STAT3 tyrosine phosphorylation was found to be achieved through suppression of Src, JAK1, and JAK2, while suppression of STAT3 serine phosphorylation was mediated by inhibition of ERK activation. Pervanadate reversed the arctigenin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, arctigenin can obviously induce the expression of the PTP SHP-2. Furthermore, the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to cisplatin-induced apoptosis. Arctigenin dramatically promoted cisplatin-induced cell death in cancer cells, indicating that arctigenin enhanced the sensitivity of cancer cells to cisplatin mainly via STAT3 suppression. These observations suggest a novel anticancer function of arctigenin and a potential therapeutic strategy of using arctigenin in combination with chemotherapeutic agents for cancer treatment.

  3. Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells.

    Science.gov (United States)

    Kong, Xiangfeng; Wang, Xiaoqiu; Yin, Yulong; Li, Xilong; Gao, Haijun; Bazer, Fuller W; Wu, Guoyao

    2014-11-01

    Insufficient placental growth is a major factor contributing to intrauterine growth retardation in mammals. There is growing evidence that putrescine produced from arginine (Arg) and proline via ornithine decarboxylase is a key regulator of angiogenesis, embryogenesis, as well as placental and fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that putrescine stimulates protein synthesis by activating the mechanistic target of rapamycin (mTOR) signaling pathway in porcine trophectoderm cell line 2 cells. The cells were cultured for 2 to 4 days in customized Arg-free Dulbecco modified Eagle Ham medium containing 0, 10, 25, or 50 μM putrescine or 100 μM Arg. Cell proliferation, protein synthesis, and degradation, as well as the abundance of total and phosphorylated mTOR, ribosomal protein S6 kinase 1, and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. Our results indicate that putrescine promotes cell proliferation and protein synthesis in a dose- and time-dependent manner, which was inhibited by difluoro-methylornithine (an inhibitor of ornithine decarboxylase). Moreover, supplementation of culture medium with putrescine increased the abundance of phosphorylated mTOR and its downstream targets, 4EBP1 and p70 S6K1 proteins. Collectively, these findings reveal a novel and important role for putrescine in regulating the mTOR signaling pathway in porcine placental cells. We suggest that dietary supplementation with or intravenous administration of putrescine may provide a new and effective strategy to improve survival and growth of embryos/fetuses in mammals.

  4. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhenni Zhang

    Full Text Available Baicalein, one of the major flavonids in Scutellaria baicalensis, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and related mechanism(s in glioma are still unclear. In this study, we thus utilized glioma cell lines U87MG and U251MG to explore the effect of baicalein. We found that administration of baicalein significantly inhibited migration and invasion of glioma cells. In addition, after treating with baicalein for 24 h, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2 and MMP-9 expression as well as proteinase activity in glioma cells. Conversely, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2 was increased in a dose-dependent manner. Moreover, baicalein treatment significantly decreased the phosphorylated level of p38, but not ERK1/2, JNK1/2 and PI3K/Akt. Combined treatment with a p38 inhibitor (SB203580 and baicalein resulted in the synergistic reduction of MMP-2 and MMP-9 expression and then increase of TIMP-1 and TIMP-2 expression; and the invasive capabilities of U87MG cells were also inhibited. However, p38 chemical activator (anisomycin could block these effects produced by baicalein, suggesting baicalein directly downregulate the p38 signaling pathway. In conclusion, baicalein inhibits glioma cells invasion and metastasis by reducing cell motility and migration via suppression of p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for glioma.

  5. IRE1α Signaling Pathways Involved in Mammalian Cell Fate Determination

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2016-02-01

    Full Text Available A diverse array of cellular stresses can lead to accumulation of misfolded or unfolded proteins in endoplasmic reticulum (ER, which subsequently elicits ER stress. Inositol-requiring enzyme 1α (IRE1α is the most sensitive of the three unfolded protein response (UPR branches which are triggered to cope with ER stress in mammalian cells. IRE1α signaling is quite context-specific on account of many adaptor and modulator proteins that directly interact with it, including heat shock proteins (HSPs, RING finger protein 13 (RNF13, poly (ADP-ribose polymerase 16 (PARP16, Bax/Bak, and Bax inhibitor-1 (BI-1. The activated IRE1α triggers different downstream pathways depending on the UPRosome formed by distinct modulator proteins. At the initial phase of ER stress, IRE1α-XBP1 axis functions as an adaptive response. While ER stress sustains or intensifies, signals shift to apoptotic responses. Furthermore, IRE1α signaling can be exploited to the development of a wide range of prevalent human diseases, with cancer the most characterized. Here we provide an overview of recent insights into the complex IRE1α signaling network which makes IRE1α an intriguing cell fate switch. Besides, the functional relevance is presented since IRE1α activation also participates in some other physiological processes beyond protein-folding status.

  6. Overactivation of Ras signaling pathway in CD133+ MPNST cells.

    Science.gov (United States)

    Borrego-Diaz, Emma; Terai, Kaoru; Lialyte, Kristina; Wise, Amanda L; Esfandyari, Tuba; Behbod, Fariba; Mautner, Victor F; Spyra, Melanie; Taylor, Sarah; Parada, Luis F; Upadhyaya, Meena; Farassati, Faris

    2012-07-01

    Cancer stem cells (CSCs) are believed to be the regenerative pool of cells responsible for repopulating tumors. Gaining knowledge about the signaling characteristics of CSCs is important for understanding the biology of tumors and developing novel anti-cancer therapies. We have identified a subpopulation of cells positive for CD133 (a CSC marker) from human primary malignant peripheral nerve sheath tumor (MPNST) cells which were absent in non-malignant Schwann cells. CD133 was also found to be expressed in human tissue samples and mouse MPNST cells. CD133+ cells were capable of forming spheres in non-adherent/serum-free conditions. The activation levels of Ras and its downstream effectors such as ERK, JNK, PI3K, p38K, and RalA were significantly increased in this population. Moreover, the CD133+ cells showed enhanced invasiveness which was linked to the increased expression of β-Catenin and Snail, two important proteins involved in the epithelial to mesenchymal transition, and Paxilin, a focal adhesion protein. Among other important characteristics of the CD133+ population, endoplasmic reticulum stress marker IRE1α was decreased, implying the potential sensitivity of CD133+ to the accumulation of unfolded proteins. Apoptotic indicators seemed to be unchanged in CD133+ cells when compared to the wild (unsorted) cells. Finally, in order to test the possibility of targeting CD133+ MPNST cells with Ras pathway pharmacological inhibitors, we exposed these cells to an ERK inhibitor. The wild population was more sensitive to inhibition of proliferation by this inhibitor as compared with the CD133+ cells supporting previous studies observing enhanced chemoresistance of these cells.

  7. TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.

    Science.gov (United States)

    Woodfield, George W; Horan, Annamarie D; Chen, Yizhen; Weigel, Ronald J

    2007-09-15

    Breast cancers expressing estrogen receptor-alpha (ERalpha) are associated with a favorable biology and are more likely to respond to hormonal therapy. In addition to ERalpha, other pathways of estrogen response have been identified including ERbeta and GPR30, a membrane receptor for estrogen, and the key mechanisms regulating expression of ERs and hormone response remain controversial. Herein, we show that TFAP2C is the key regulator of hormone responsiveness in breast carcinoma cells through the control of multiple pathways of estrogen signaling. TFAP2C regulates the expression of ERalpha directly by binding to the ERalpha promoter and indirectly via regulation of FoxM1. In so doing, TFAP2C controls the expression of ERalpha target genes, including pS2, MYB, and RERG. Furthermore, TFAP2C controlled the expression of GPR30. In distinct contrast, TFAP2A, a related factor expressed in breast cancer, was not involved in estrogen-mediated pathways but regulated expression of genes controlling cell cycle arrest and apoptosis including p21(CIP1) and IGFBP-3. Knockdown of TFAP2C abrogated the mitogenic response to estrogen exposure and decreased hormone-responsive tumor growth of breast cancer xenografts. We conclude that TFAP2C is a central control gene of hormone response and is a novel therapeutic target in the design of new drug treatments for breast cancer.

  8. Differential coupling of self-renewal signaling pathways in murine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Luca Orlando

    Full Text Available The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs, exhibiting properties similar to those of embryonic stem cells (ESCs, has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors.

  9. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.

    Directory of Open Access Journals (Sweden)

    Weijie Wu

    Full Text Available In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.

  10. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway.

    Science.gov (United States)

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-03-15

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation.

  11. Escin Chemosensitizes Human Pancreatic Cancer Cells and Inhibits the Nuclear Factor-kappaB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    A. Rimmon

    2013-01-01

    Full Text Available Background. There is an urgent need to develop new treatment strategies and drugs for pancreatic cancer that is highly resistant to radio-chemotherapy. Aesculus hippocastanum (the horse chestnut known in Chinese medicine as a plant with anti-inflammatory, antiedema, antianalgesic, and antipyretic activities. The main active compound of this plant is Escin (C54H84O23. Objective. To evaluate the effect of Escin alone and combined with chemotherapy on pancreatic cancer cell survival and to unravel mechanism(s of Escin anticancer activity. Methods. Cell survival was measured by XTT colorimetric assay. Synergistic effect of combined therapy was determined by CalcuSyn software. Cell cycle and induction of apoptosis were evaluated by FACS analysis. Expression of NF-κB-related proteins (p65, IκBα, and p-IκBα and cyclin D was evaluated by western blot analysis. Results. Escin decreased the survival of pancreatic cancer cells with IC50 = 10–20 M. Escin combined with gemcitabine showed only additive effect, while its combination with cisplatin resulted in a significant synergistic cytotoxic effect in Panc-1 cells. High concentrations of Escin induced apoptosis and decreased NF-κB-related proteins and cyclin D expression. Conclusions. Escin decreased pancreatic cancer cell survival, induced apoptosis, and downregulated NF-κB signaling pathway. Moreover, Escin sensitized pancreatic cancer cells to chemotherapy. Further translational research is required.

  12. Alterations in Cell Signaling Pathways in Breast Cancer Cells after Environmental Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K; McCutcheon-Maloney, S M; Bennett, L M

    2003-02-01

    Recent human epidemiological studies suggest that up to 75% of human cancers can be attributed to environmental exposures. Understanding the biologic impact of being exposed to a lifetime of complex environmental mixtures that may not be fully characterized is currently a major challenge. Functional endpoints may be used to assess the gross health consequences of complex mixture exposures from groundwater contamination, superfund sites, biologic releases, or nutritional sources. Such endpoints include the stimulation of cell growth or the induction of a response in an animal model. An environmental exposure that upsets normal cell growth regulation may have important ramifications for cancer development. Stimulating cell growth may alter an individual's cancer risk by changing the expression of genes and proteins that have a role in growth regulatory pathways within cells. Modulating the regulation of these genes and their products may contribute to the initiation, promotion or progression of disease in response to environmental exposure. We are investigating diet-related compounds that induce cell proliferation in breast cancer cell lines. These compounds, PhIP, Flor-Essence{reg_sign} and Essiac{reg_sign}, may be part of an everyday diet. PhIP is a naturally occurring mutagen that is formed in well-cooked muscle meats. PhIP consistently causes dose-dependent breast tumor formation in rats and consumption of well-done meat has been linked to increased risk of breast cancer in women. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics are complementary and alternative medicines used by women who have been diagnosed with breast cancer as an alternative therapy for disease treatment and prevention. The long-term goal of this work is to identify those cellular pathways that are altered by a chemical or biologic environmental exposure and understand how those changes correlate with and or predict changes in human health risk. This project addressed this goal

  13. Hormone signaling pathways as treatment targets in renal cell cancer (Review).

    Science.gov (United States)

    Czarnecka, Anna M; Niedzwiedzka, Magdalena; Porta, Camillo; Szczylik, Cezary

    2016-06-01

    Epidemiological, clinical, biochemical and genetic research has revealed that renal cell cancer (RCC) etiology is hormone-related. It was shown that hormone receptors are abnormally expressed in RCC cells. Abnormal endocrine stimulation also plays a significant role in RCC pathophysiology. Cellular proliferation, migration, angiogenesis, and drug resistance in RCC is modulated by para- and autocrine hormonal stimulation. In particular, RCC overexpression of gonadotropin-releasing hormone and its receptor was reported. On the contrary, corticotropin releasing hormone was reported to inhibit RCC cell proliferation and regulate angiogenesis. Overexpression of luteinizing hormone also promotes RCC tumor angiogenesis. Estrogen receptor α overexpression increases the transcriptional factor activity of hypoxia inducible factor HIF-1α, but estrogen receptor β has a cancer suppressive role. Glucocorticoid receptors and androgen receptor are markers of indolent RCC and assigned tumor suppressive activity. Proopiomelanocortin is upregulated in VHL-mutated renal cell carcinoma via Nur77 transcription factor signaling. In RCC, follicle-stimulating hormone receptor promotes angiogenesis and metastatic formation via VEGF release. Mineralocorticoid receptor overexpression promotes cell survival and increases RCC cell proliferation. Vitamin D receptor expression is downregulated or absent in RCC and differentiate subtypes of renal cell tumors. RAR-β promotes tumorigenesis but retinoic acid receptor γ expression correlates negatively with the TNM stage at diagnosis. Finally, progesterone receptor expression is negatively correlated with the cancer stage. Molecular data analysis revealed the possibility of renal cancer cell proliferation induction via hormone activated pathways. Inhibition of hormonal signaling may thus play a putative role in supportive therapies against this cancer type.

  14. hcrcn81 promotes cell proliferation through Wnt signaling pathway in colorectal cancer.

    Science.gov (United States)

    Chen, Yao; Jiang, Tingting; Shi, Lihong; He, Kunyan

    2016-01-01

    The objective of the study was to investigate the role of hcrcn81 gene in Wnt/β-catenin signaling pathway related to human colorectal cancer. A total of 30 pairs of human colorectal cancer tissues with control normal tissues were analyzed by qRT-PCR. The proliferation, apoptosis, cell cycle, cell colony and metastasis of LS174T(-hcrcn81), HCT116(-hcrcn81), LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) cells were tested, of which hcrcn81 was knockdown in LS174T, HCT116 cells and hcrcn81 was overexpressed in LoVo, SMMC-7721 cells. Besides, the mRNA and protein levels of hcrcn81, β-catenin, c-Myc, cyclinD1, GSK-3β and survivin in colon cancer cell lines were evaluated by qRT-PCR and western blot. The mRNA levels of β-catenin and Survivin were up-regulated in 76.7 % (23/30) and 63.3 % (19/30) of the tumor samples, respectively. hcrcn81 and GSK-3β mRNA expression levels were down-regulated in 20/30 (66.7 %) and 21/30 (70.0 %) of the tumor samples as compared to the adjacent normal tissues, respectively. Furthermore, in LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) cells, the mRNA and protein levels of β-catenin, c-Myc, cyclinD1 and Survivin were up-regulated, whereas those of GSK-3 were down-regulated. In LS174T(-hcrcn81) and HCT116(-hcrcn81) cells, the mRNA levels of β-catenin, c-Myc, cyclinD1 and Survivin were down-regulated, whereas GSK-3βmRNA was up-regulated. Cell proliferation in LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) groups was significantly enhanced (P LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) groups was significantly higher than that in the control groups (P LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) cells were significantly higher than that in the control groups (P LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) groups were significantly lower than that in the control groups (P LoVo(+hcrcn81) and SMMC-7721(+hcrcn81) groups than that in the control group (P < 0.05). hcrcn81 might promote carcinogenesis and progression through regulation of the Wnt/β-catenin signaling

  15. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Rozovski, Uri; Wu, Ji Yuan; Harris, David M; Liu, Zhiming; Li, Ping; Hazan-Halevy, Inbal; Ferrajoli, Alessandra; Burger, Jan A; O'Brien, Susan; Jain, Nitin; Verstovsek, Srdan; Wierda, William G; Keating, Michael J; Estrov, Zeev

    2014-06-12

    In chronic lymphocytic leukemia (CLL), stimulation of the B-cell receptor (BCR) triggers survival signals. Because in various cells activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway provides cells with survival advantage, we wondered whether BCR stimulation activates the JAK/STAT pathway in CLL cells. To stimulate the BCR we incubated CLL cells with anti-IgM antibodies. Anti-IgM antibodies induced transient tyrosine phosphorylation and nuclear localization of phosphorylated (p) STAT3. Immunoprecipitation studies revealed that anti-JAK2 antibodies coimmunoprecipitated pSTAT3 and pJAK2 in IgM-stimulated but not unstimulated CLL cells, suggesting that activation of the BCR induces activation of JAK2, which phosphorylates STAT3. Incubation of CLL cells with the JAK1/2 inhibitor ruxolitinib inhibited IgM-induced STAT3 phosphorylation and induced apoptosis of IgM-stimulated but not unstimulated CLL cells in a dose- and time-dependent manner. Whether ruxolitinib treatment would benefit patients with CLL remains to be determined.

  16. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival

    Science.gov (United States)

    Romorini, Leonardo; Garate, Ximena; Neiman, Gabriel; Luzzani, Carlos; Furmento, Verónica Alejandra; Guberman, Alejandra Sonia; Sevlever, Gustavo Emilio; Scassa, María Elida; Miriuka, Santiago Gabriel

    2016-01-01

    Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival. PMID:27762303

  17. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  18. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r...eceptors involved in recruitment of inflammatory cells. Authors Ben-Baruch A, Mic

  19. Inference Method for Developing Mathematical Models of Cell Signaling Pathways Using Proteomic Datasets.

    Science.gov (United States)

    Tian, Tianhai; Song, Jiangning

    2017-01-01

    The progress in proteomics technologies has led to a rapid accumulation of large-scale proteomic datasets in recent years, which provides an unprecedented opportunity and valuable resources to understand how living organisms perform necessary functions at systems levels. This work presents a computational method for designing mathematical models based on proteomic datasets. Using the mitogen-activated protein (MAP) kinase pathway as the test system, we first develop a mathematical model including the cytosolic and nuclear subsystems. A key step of modeling is to apply a genetic algorithm to infer unknown model parameters. Then the robustness property of mathematical models is used as a criterion to select appropriate rate constants from the estimated candidates. Moreover, quantitative information such as the absolute protein concentrations is used to further refine the mathematical model. The successful application of this inference method to the MAP kinase pathway suggests that it is a useful and powerful approach for developing accurate mathematical models to gain important insights into the regulatory mechanisms of cell signaling pathways.

  20. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    Directory of Open Access Journals (Sweden)

    Harris Pratsinis

    2015-01-01

    Full Text Available Intervertebral disc (IVD degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D organotypic milieu, comprising characteristic molecules of IVD’s extracellular matrix. In particular, annulus fibrosus (AF cells were cultured inside collagen type-I gels, while nucleus pulposus (NP cells in chondroitin sulfate A (CSA supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF, basic Fibroblast Growth Factor (bFGF, and Insulin-Like Growth Factor-I (IGF-I were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration.

  1. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM. The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p<0.01. Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p<0.01. Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.

  2. Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    De-Sheng Wang; Ke-Feng Dou; Kai-Zong Li; Zhen-Shun Song

    2004-01-01

    AIM: Intrahepatic extension is the main cause of liver failure and death in hepatocellular carcinoma patients. The small GTPase Rho and one of its effector molecules ROCK regulate cytoskeleton and actomyosin contractility, and play a crucial role in cell adhesion and motility. We investigated the role of small GTPase Rho in biological behaviors of hepatocellular carcinoma to demonstrate the importance of Rho in cancer invasion and metastasis.METHODS: Using Western blotting, we quantitated Rho protein expression in SMMC-7721 cells induced by Lysophosphatidic acid (LPA). Furthermore, we examined the role of Rho signaling in regulating the motile and invasiveproperties of tumor cells.RESULTS: Rho protein expression was stimulated by LPA.Using the Rhotekin binding assay to assess Rho activation,we observed that the level of GTP-bound Rho was elevated transiently after the addition of LPA, and Y-27632 decreased the level of active Rho. LPA enhanced the motility of tumor cells and facilitated their invasion. Rho played an essential role in the migratory process, as evidenced by the inhibition of migration and motility of cancer cells by a specific inhibitor of ROCK, Y-27632.CONCLUSION: The finding that invasiveness of hepatocellular carcinoma is facilitated by the Rho/Rho-kinase pathway is likely to be relevant to tumor progression and Y-27632 may be a new potential effective agent for the prevention of intrahepatic extension of human liver cancer.

  3. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  4. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis

    Science.gov (United States)

    Yotova, Iveta; Hsu, Emily; Do, Catherine; Gaba, Aulona; Sczabolcs, Matthias; Dekan, Sabine; Kenner, Lukas; Wenzl, Rene; Tycko, Benjamin

    2017-01-01

    Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared to stromal cells from normal endometrium. We validated and extended the Beadchip data using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-level and by an element-level classification for groups of CpGs in chromatin domains. Genes found to have DM included examples encoding transporters (SLC22A23), signaling components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family, HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endometrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing differential expression (DE), with the likelihood of DE increasing with the extent of the DM and its location in enhancer elements. Supporting functional relevance, treatment of stromal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global 5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, patterns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a consistent epigenetic signature in endometriosis stromal cells and nominate specific transcriptional and signaling pathways as therapeutic targets. PMID:28125717

  5. Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway

    Science.gov (United States)

    Yang, Kangning; Cao, Weipeng; Hao, Xiaohong; Xue, Xue; Zhao, Jing; Liu, Juan; Zhao, Yuliang; Meng, Jie; Sun, Baoyun; Zhang, Jinchao; Liang, Xing-Jie

    2013-01-01

    Although endohedral metallofullerenol [Gd@C82(OH)22]n nanoparticles have anti-tumor efficiency and mostly deposit in the bones of mice, how these nanoparticles act in bone marrow stromal cells (MSCs) remains largely unknown. Herein, we observed that [Gd@C82(OH)22]n nanoparticles facilitated the differentiation of MSCs toward osteoblasts, as evidenced by the enhancement of alkaline phosphatase (ALP) activity and mineralized nodule formation upon [Gd@C82(OH)22]n nanoparticle treatment. Mechanistically, the effect of [Gd@C82(OH)22]n nanoparticles on ALP activity was inhibited by the addition of noggin as an inhibitor of the BMP signaling pathway. Moreover, the in vivo results of the ovariectomized rats further indicated that [Gd@C82(OH)22]n nanoparticles effectively improved bone density and prevented osteoporosis.Although endohedral metallofullerenol [Gd@C82(OH)22]n nanoparticles have anti-tumor efficiency and mostly deposit in the bones of mice, how these nanoparticles act in bone marrow stromal cells (MSCs) remains largely unknown. Herein, we observed that [Gd@C82(OH)22]n nanoparticles facilitated the differentiation of MSCs toward osteoblasts, as evidenced by the enhancement of alkaline phosphatase (ALP) activity and mineralized nodule formation upon [Gd@C82(OH)22]n nanoparticle treatment. Mechanistically, the effect of [Gd@C82(OH)22]n nanoparticles on ALP activity was inhibited by the addition of noggin as an inhibitor of the BMP signaling pathway. Moreover, the in vivo results of the ovariectomized rats further indicated that [Gd@C82(OH)22]n nanoparticles effectively improved bone density and prevented osteoporosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33575a

  6. Impact of laminitis on the canonical Wnt signaling pathway in basal epithelial cells of the equine digital laminae.

    Directory of Open Access Journals (Sweden)

    Le Wang

    Full Text Available The digital laminae is a two layer tissue that attaches the distal phalanx to the inner hoof wall, thus suspending the horse's axial skeleton in the hoof capsule. This tissue fails at the epidermal:dermal junction in laminitic horses, causing crippling disease. Basal epithelial cells line the laminar epidermal:dermal junction, undergo physiological change in laminitic horses, and lose versican gene expression. Versican gene expression is purportedly under control of the canonical Wnt signaling pathway and is a trigger for mesenchymal-to-epithelial transition; thus, its repression in laminar epithelial cells of laminitic horses may be associated with suppression of the canonical Wnt signaling pathway and loss of the epithelial cell phenotype. In support of the former contention, we show, using laminae from healthy horses and horses with carbohydrate overload-induced laminitis, quantitative real-time polymerase chain reaction, Western blotting after sodium dodecylsulfate polyacrylamide gel electrophoresis, and immunofluorescent tissue staining, that positive and negative regulatory components of the canonical Wnt signaling pathway are expressed in laminar basal epithelial cells of healthy horses. Furthermore, expression of positive regulators is suppressed and negative regulators elevated in laminae of laminitic compared to healthy horses. We also show that versican gene expression in the epithelial cells correlates positively with that of β-catenin and T-cell Factor 4, consistent with regulation by the canonical Wnt signaling pathway. In addition, gene and protein expression of β-catenin correlates positively with that of integrin β4 and both are strongly suppressed in laminar basal epithelial cells of laminitic horses, which remain E-cadherin(+/vimentin(-, excluding mesenchymal transition as contributing to loss of the adherens junction and hemidesmosome components. We propose that suppression of the canonical Wnt signaling pathway, and

  7. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles.

    Science.gov (United States)

    Li, Ang; Qin, Lili; Zhu, Di; Zhu, Rongrong; Sun, Jing; Wang, Shilong

    2010-02-01

    Layered double hydroxide (LDH) nanoparticles are attractive as potential drug vectors for the targeting not only of tissues, but also of intracellular organelles, and particularly the acidic endolysosomes created after cell endocytosis. The purpose of this study was to investigate the ability of LDH nanoparticles designed as vectors to activate dendritic cells (DCs), as measured by various cellular functions. The study also explored the possible signaling pathway through which the LDH nanoparticles exerted their effects on the cellular functions of DCs. First, LDH nanoparticles with different ratios of Mg(OH)(2) to Al(OH)(3) (1:1, 2:1 and 3:1, called R1, R2 and R3 respectively) were optimized and had a hydrodynamic diameter of 57 nm with a zeta potential of +35 mV. Then, the efficient endocytosis of the optimized LDH nanoparticles by bone marrow-derived dendritic cells (MDDCs) was monitored by fluorescence-activated cell sorting. The effect of R1, R2 and R3 on the expression of the pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, and IL-12) and the co-stimulatory molecules (CD40, CD80, CD86, and MHC class II) in MDDCs was examined. The exposure of R1 caused a dose-dependent increase in the expression of TNF-alpha, IL-12, CD86 and CD40, while R2 and R3 did not up-regulate these cytokines and co-stimulatory molecules. Migration assays showed that R1 could increase the migration capacity of DCs to CCL21 and up-regulate the expression of CCR7. Furthermore, we found that R1 significantly increased the NF-kappaB expression in the nucleus (in a dose-dependent manner) and promoted the degradation of total IkappaBalpha levels, indicating that the NF-kappaB signaling pathway might involve in an R1-induced DC activation. Our results suggested that LDH nanoparticles, in the future, may function as a useful vector for ex vivo engineering to promote vaccine delivery in immune cells.

  8. PE-induced apoptosis in SMMC-7721 cells: Involvement of Erk and Stat signalling pathways

    Science.gov (United States)

    XUE, LI; LI, MING; CHEN, TENG; SUN, HAIFENG; ZHU, JIE; LI, XIA; WU, FENG; WANG, BIAO; LI, JUPING; CHEN, YANJIONG

    2014-01-01

    Emerging evidence indicates that the redistribution of phosphatidylethanolamine (PE) across the bilayer of the plasma membrane is an important molecular marker for apoptosis. However, the effect of PE on apoptosis and the underlying mechanism of PE remain unclear. In the current study, MTT and flow cytometric assays were used to examine the effects of PE on apoptosis in SMMC-7721 cells. The level of mitochondrial membrane potential (ΔΨm) and the expression of Bax, Bcl-2, caspase-3, phospho-Erk and phospho-Stat1/2 in SMMC-7721 cells that were exposed to PE were also investigated. The results showed that PE inhibited proliferation, caused G0/G1 phase cell cycle arrest and induced apoptosis in SMMC-7721 cells in a dose-dependent manner. Rhodamine 123 staining showed that the treatment of SMMC-7721 cells with different concentrations of PE for 24 h significantly decreased the level of ΔΨm and exerted dose-dependent effects. Using immunofluorescence and western blotting, we found that the expression of Bax was upregulated, whereas that of Bcl-2 was downregulated in PE-induced apoptotic cells. In addition, these events were accompanied by an increase in caspase-3 expression in a dose-dependent manner following PE treatment. PE-induced apoptosis was accompanied by a decrease in Erk phosphorylation and by the activation of Stat1/2 phosphorylation in SMMC-7721 cells. In conclusion, the results suggested that PE-induced apoptosis is involved in upregulating the Bax/Bcl-2 protein ratio and decreasing the ΔΨm. Moreover, the results showed that the Erk and Stat1/2 signalling pathways may be involved in the process of PE-induced apoptosis. PMID:24821075

  9. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis.

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Zhou, Yu-Hui; Jiang, Yi-Na; Zhang, Wei; Tang, Xiao-Jiang; Ren, Yu; Han, Shui-Ping; Liu, Pei-Jun; Xu, Jing; He, Jian-Jun

    2015-01-01

    Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.

  10. Overexpression of LRIG1 regulates PTEN via MAPK/MEK signaling pathway in esophageal squamous cell carcinoma

    Science.gov (United States)

    Jiang, Xiaofang; Li, Huiwu

    2016-01-01

    The present study aimed to evaluate the role of leucine-rich repeats and immunoglobulin-like domain protein 1 (LRIG1) in the regulation of phosphatase and tensin homolog (PTEN) expression in esophageal carcinogenesis. LRIG1 was overexpressed in esophageal squamous cell carcinoma (ESCC) cell lines, and the effect of LRIG1 overexpression on the mRNA and protein expression levels of PTEN was evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. Furthermore, the effects of LRIG1 overexpression on the cell cycle distribution and apoptosis of ESCC cells were examined by flow cytometry. Various cell signaling pathway inhibitors were used to assess the effects of LRIG1 on downstream signaling in ESCC cell lines. In addition, the association between LRIG1 and PTEN expression was examined in 48 samples from patients with ESCC. LRIG1 overexpression was demonstrated to downregulate PTEN expression in ESCC cell lines, and promote their proliferation and inhibit apoptosis. In addition, LRIG1-mediated suppression of PTEN expression was inhibited by the U0126 inhibitor, which suggests that LRIG1 may inhibit the activation of PTEN signaling molecules by triggering the mitogen-activated protein kinase (MAPK)/MAPK kinase 1 (MEK) signaling pathway. In conclusion, the present study demonstrated that overexpression of LRIG1 significantly and adversely affected the survival of ESCC cells, and that the MAPK/MEK signaling pathway may be responsible for the repression of PTEN expression and function. PMID:27698691

  11. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway

    OpenAIRE

    Zhou, Zhong-guang; Zhang, Chao-ying; Fei, Hong-xin; Zhong, Li-Li; Bai, Yun

    2015-01-01

    Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell c...

  12. Estrogen Stimulates Proliferation and Differentiation of Neural Stem/Progenitor Cells through Different Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Makiko Okada

    2010-10-01

    Full Text Available Our previous study indicated that both 17β-estradiol (E2, known to be an endogenous estrogen, and bisphenol A (BPA, known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs. The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2, which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1 the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2 the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane‑associated ERs.

  13. Effect of nerve regeneration factor on differentiation of PC12 cells and its signaling pathway

    Institute of Scientific and Technical Information of China (English)

    DING Fei; QIANG Liang; LIU Mei; GU Xingxing; GU Xiaosong

    2004-01-01

    The effects of nerve regeneration factor (NRF) on neuronal differentiation of PC12 cells and its signaling pathway are investigated by morphological observation and immunofluorescent cytochemical method, and the activity of ERK1/2 in NRF-treated PC12 cells in absence of serum is also studied by immuno-coprecipitation and Western blot analysis. The MEK1/2-specific inhibitor U0126, the broad-spectrum protein kinase C (PKC) inhibitor G6983 and tyrosine protein kinase (TPK) inhibitor genistein were used to determine the roles of the activation of ERK1/2 by NRF and the involvement of certain kinds of PKC or TPK receptor in this activation process. The results show that U0126 and G6983 inhibit the activation of ERK1/2 by NRF to different extents, while genistein has no effect on it, demonstrating that NRF remarkably induces neuronal differentiation of PC12 cells through activating ERK1/2 in a dose-dependent and time-dependent manner.

  14. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    Science.gov (United States)

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  15. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    Science.gov (United States)

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  16. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  17. Targeting CXCR1 on breast cancer stem cells: signaling pathways and clinical application modelling.

    Science.gov (United States)

    Brandolini, Laura; Cristiano, Loredana; Fidoamore, Alessia; De Pizzol, Maria; Di Giacomo, Erica; Florio, Tiziana Marilena; Confalone, Giuseppina; Galante, Angelo; Cinque, Benedetta; Benedetti, Elisabetta; Ruffini, Pier Adelchi; Cifone, Maria Grazia; Giordano, Antonio; Alecci, Marcello; Allegretti, Marcello; Cimini, Annamaria

    2015-12-22

    In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2. Recently, the IL-8/CXCR1 axis was proposed as an attractive pathway for the design of specific therapies against breast cancer stem cells. Reparixin, a powerful CXCR1 inhibitor, was effective in reducing in vivo the tumour-initiating population in several NOD/SCID mice breast cancer models, showing that the selective targeting of CXCR1 and the combination of reparixin and docetaxel resulted in a concomitant reduction of the bulk tumour mass and CSC population. The available data indicate that IL-8, expressed by tumour cells and induced by chemotherapeutic treatment, is a key regulator of the survival and self-renewal of the population of CXCR1-expressing CSC. Consequently, this investigation on the mechanism of action of the reparixin/paclitaxel combination, was based on the observation that reparixin treatment contained the formation of metastases in several experimental models. However, specific data on the formation of breast cancer brain metastases, which carry remarkable morbidity and mortality to a substantial proportion of advanced breast cancer patients, have not been generated. The obtained data indicate a beneficial use of the drug combination reparixin and paclitaxel to counteract brain tumour metastasis due to CSC, probably due to the combined effects of the two drugs, the pro-apoptotic action of paclitaxel and the cytostatic and anti-migratory effects of reparixin.

  18. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death.

    Science.gov (United States)

    Vanlerberghe, Greg C; Robson, Christine A; Yip, Justine Y H

    2002-08-01

    Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.

  19. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    Science.gov (United States)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  20. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia.

    Science.gov (United States)

    Díez, Paula; Lorenzo, Seila; Dégano, Rosa M; Ibarrola, Nieves; González-González, María; Nieto, Wendy; Almeida, Julia; González, Marcos; Orfao, Alberto; Fuentes, Manuel

    2016-04-01

    Chronic lymphocytic leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowly progressive indolent behaviour of CLL. Additionally, the antibody microarray results were validated by a LC-MS/MS quantification strategy and compared to a transcriptomic CLL database. In summary, this research displays the usefulness of proteomic strategies to globally evaluate the protein alterations in CLL cells and select the possible biomarkers to be further studied with larger sample sizes.

  1. Regulatory T Cells Resist Cyclosporine-Induced Cell Death via CD44-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Shannon M. Ruppert

    2015-01-01

    Full Text Available Cyclosporine A (CSA is an immunosuppressive agent that specifically targets T cells and also increases the percentage of pro-tolerogenic CD4+Foxp3+ regulatory T cells (Treg through unknown mechanisms. We previously reported that CD44, a receptor for the extracellular matrix glycosaminoglycan hyaluronan (HA, promotes Treg stability in IL-2-low environments. Here, we asked whether CD44 signaling also promotes Treg resistance to CSA. We found that CD44 cross-linking promoted Foxp3 expression and Treg viability in the setting of CSA treatment. This effect was IL-2 independent but could be suppressed using sc-355979, an inhibitor of Stat5-phosphorylation. Moreover, we found that inhibition of HA synthesis impairs Treg homeostasis but that this effect could be overcome with exogenous IL-2 or CD44-cross-linking. Together, these data support a model whereby CD44 cross-linking by HA promotes IL-2-independent Foxp3 expression and Treg survival in the face of CSA.

  2. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  3. Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-01-01

    Full Text Available Background and Aim. Tetramethylpyrazine (TMP, a major alkaloid isolated from Ligusticum chuanxiong, has been reported in hepatic fibrosis models. However, the action mechanism remains unclear. In the present study, effects of tetramethylpyrazine (TMP against hepatic stellate cell (HSC activation as well as the possible mechanisms were evaluated. Methods. Western blot assay was used to detect TMP effects on protein expression of Smo, Patched, Hhip, and Gli and to investigate the effects of TMP on Cyclin D1, Cyclin E1, CDK2, Bcl-2, Bax, and caspase expression with cyclopamine supplementation. Results. Our results showed that TMP significantly inhibits the expression of Cyclin D1, Cyclin E1, and Cyclin-dependent kinase CDK2 and changes the HSC cycle by inhibiting the proliferation of HSC. Moreover, TMP has also been shown to decrease the expression of Bcl-2 and increase the expression of Bax in HSC-T6 cells. Furthermore, TMP can inhibit the expression of connective tissue growth factor (CTGF, and the inhibitory effect was intensified after the application of joint treatment with TMP and cyclopamine. Conclusion. TMP may be an effective Hh signaling pathway inhibitor for hepatic fibrosis treatment.

  4. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

    Science.gov (United States)

    Hauser, Mark A; Schaeuble, Karin; Kindinger, Ilona; Impellizzieri, Daniela; Krueger, Wolfgang A; Hauck, Christof R; Boyman, Onur; Legler, Daniel F

    2016-01-19

    Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.

  5. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Yu Tang

    2012-01-01

    Full Text Available We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs between systemic lupus erythematosus (SLE and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  6. The phosphoinositide 3-kinase signalling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions

    Directory of Open Access Journals (Sweden)

    Samantha D Pauls

    2012-08-01

    Full Text Available The phosphoinositide 3-kinase (PI3K pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunogloblulin isotype switch, germinal center responses and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.

  7. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions.

    Science.gov (United States)

    Pauls, Samantha D; Lafarge, Sandrine T; Landego, Ivan; Zhang, Tingting; Marshall, Aaron J

    2012-01-01

    The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.

  8. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  9. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy

    OpenAIRE

    2013-01-01

    T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatme...

  10. MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol

    Institute of Scientific and Technical Information of China (English)

    Hao Chen; Zhi-Liang Jin; Hai Xu

    2016-01-01

    Objective: To study the involvement of MAPK MEK/ERK signaling transduction pathway in the apoptosis process of SW620 tumor cell line and the inhibition effect of resveratrol. Methods: SW620 cell lines were divided into 5 groups, namely, control group, PD98059 group, low-dose resveratrol group, mid-dose resveratrol group and high-dose resveratrol group. The inhibition rate of cell proliferation was detected by MTT method. The expression of apoptotic molecules and MEK/ERK signaling pathway related proteins were assayed by real-time PCR and Western blotting. Results: Compared with control group, the proliferation of cells treated with resveratrol was significantly inhibited. In the case of apoptotic molecules, the expression of Bax, Caspase 3 and Caspase 9 was increased significantly while the expression of anti-apoptotic molecule Bcl2 was decreased significantly in resveratrol groups with a dose-dependent manner. In the case of molecules in MEK/ERK signaling pathway, the expression of Ras, Raf, MEK and ERK1/2 was decreased significantly in resveratrol groups with a dose-dependent manner. Conclusions: PD98059 and resveratrol can effectively inhibit the proliferation of SW620 through inhibiting the MEK/ERK signaling pathway.

  11. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas.

    NARCIS (Netherlands)

    Muris, J.J.; Cillessen, S.A.; Vos, W.; Houdt, I.S. van; Kummer, J.A.; Krieken, J.H.J.M. van; Jiwa, N.M.; Jansen, P.A.M.; Kluin-Nelemans, H.C.; Ossenkoppele, G.J.; Gundy, C.; Meijer, C.J.M.; Oudejans, J.J.

    2005-01-01

    We used biopsy specimens of primary nodal diffuse large B-cell lymphoma (DLBCL) to investigate whether the inhibition of caspase 8 and/or 9 apoptosis signaling pathways predicts clinical outcome. Expression levels of cellular FLICE inhibitory protein (c-Flip) and numbers of active caspase 3-positive

  12. Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas

    NARCIS (Netherlands)

    Muris, JJF; Cillessen, SAGM; Vos, W; van Houdt, IS; Kummer, JA; van Krieken, JHJM; Jiwa, NM; Jansen, PM; Kluin-Nelemans, HC; Ossenkoppele, GJ; Gundy, C; Meijer, CJLM; Oudejans, JJ

    2005-01-01

    We used biopsy specimens of primary nodal diffuse large B-cell lymphoma (DLBCL) to investigate whether the inhibition of caspase 8 and/or 9 apoplosis signaling pathways predicts clinical outcome. Expression levels of cellular FLICE inhibitory protein (c-Flip) and numbers of active caspase 3-positive

  13. Hedgehog signaling pathway: A novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Afroz Abidi

    2014-01-01

    Full Text Available The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449, an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.

  14. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas.

    Science.gov (United States)

    Abidi, Afroz

    2014-01-01

    The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.

  15. GRK2 negatively regulates IGF-1R signaling pathway and cyclins' expression in HepG2 cells.

    Science.gov (United States)

    Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Bodzin, Adam S; Koch, Walter J; Doria, Cataldo

    2013-09-01

    G protein coupled receptor kinase 2 (GRK2) plays a central role in the regulation of a variety of important signaling pathways. Alternation of GRK2 protein level and activity casts profound effects on cell physiological functions and causes diseases such as heart failure, rheumatoid arthritis, and obesity. We have previously reported that overexpression of GRK2 has an inhibitory role in cancer cell growth. To further examine the role of GRK2 in cancer, in this study, we investigated the effects of reduced protein level of GRK2 on insulin-like growth factor 1 receptor (IGF-1R) signaling pathway in human hepatocellular carcinoma (HCC) HepG2 cells. We created a GRK2 knockdown cell line using a lentiviral vector mediated expression of GRK2 specific short hairpin RNA (shRNA). Under IGF-1 stimulation, HepG2 cells with reduced level of GRK2 showed elevated total IGF-1R protein expression as well as tyrosine phosphorylation of receptor. In addition, HepG2 cells with reduced level of GRK2 also demonstrated increased tyrosine phosphorylation of IRS1 at the residue 612 and increased phosphorylation of Akt, indicating a stronger activation of IGF-1R signaling pathway. However, HepG2 cells with reduced level of GRK2 did not display any growth advantage in culture as compared with the scramble control cells. We further detected that reduced level of GRK2 induced a small cell cycle arrest at G2/M phase by enhancing the expression of cyclin A, B1, and E. Our results indicate that GRK2 has contrasting roles on HepG2 cell growth by negatively regulating the IGF-1R signaling pathway and cyclins' expression.

  16. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases:Relevance to intracellular signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Elke Roeb; Anja-Katrin Bosserhoff; Sabine Hamacher; Bettina Jansen; Judith Dahmen; Sandra Wagner; Siegfried Matern

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9)on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells.METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases.RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05)and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly.Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1deactivates cell signaling pathways of MMP-2 and MMP-9involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1.CONCLUSION: Overexpressing functional TIMP-1-enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9.

  17. Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis.

    Science.gov (United States)

    Hang, Long; Blum, Arthur M; Kumar, Sangeeta; Urban, Joseph F; Mitreva, Makedonka; Geary, Timothy G; Jardim, Armando; Stevenson, Mary M; Lowell, Clifford A; Weinstock, Joel V

    2016-10-01

    Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis, suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors, many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A, CLEC9A, CLEC12A, and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis.

  18. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Zheng, Shao-Hui; Fujita, Koki; Sakai, Kokki

    2004-05-01

    Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.

  19. Nitric oxide acts through different signaling pathways in maturation of cumulus cell-enclosed mouse oocytes

    Directory of Open Access Journals (Sweden)

    M Abbasi

    2009-03-01

    Full Text Available ABSTRACT Background: Nitric oxide (NO have a dual action in mouse oocyte meiotic maturation which depends on its concentration, but the mechanisms by which it influences oocyte maturation has not been exactly clarified. In this study different signaling mechanisms which exist for in vitro maturation of meiosis was examined in cumulus cell-enclosed oocytes (CEOs after injection of pregnant mare's serum gonadotropin (PMSG to immature female mice. Methods: The CEOs were cultured in spontaneous maturation and hypoxanthine (HX arrested model. Results: Sodium nitroprusside (SNP, an NO donor, 10mM delayed germinal vesicle breakdown (GVBD significantly during the first 5 hrs of incubation and inhibited the formation of first polar body (PB1 at the end of 24 hrs of incubation. SNP (10-5M stimulated the meiotic maturation of oocytes significantly by overcoming the inhibition of HX. Sildenafil (a cGMP stimulator, 100 nM, had a significant inhibitory effects on both spontaneous meiotic maturation and HX-arrested meiotic maturation. Forskolin (an adenylate cyclase stimulator, 6µM and SNP (10mM had the same effects on GVBD. Forskolin reversed the SNP (10-5M stimulated meiotic maturation. Conclusion: These results suggest that differences in pathways are present between SNP-inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation in mouse oocytes

  20. Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways.

    Science.gov (United States)

    Scheinman, Eyal J; Rostoker, Ran; Leroith, Derek

    2013-07-15

    Hyperlipidemia and hypercholesterolemia have been found to be important factors in cancer development and metastasis. However, the metabolic mechanism and downstream cellular processes following cholesterol stimulation are still unknown. Here we tested the effect of cholesterol on MC-38 colon cancer cells. Using Illumina gene array technology we found a number of genes that were differentially expressed following short term (20-40 min) and longer term (between 2 and 5h) cholesterol stimulation. Three genes were consistently increased at these time points; c-Jun, Jun-B and the chemokine CXCL-1. We have previously shown that cholesterol stimulation leads to PI3K/Akt phosphorylation, and now demonstrated that cholesterol inhibits ERK1/2 phosphorylation; both effects reversed when cholesterol is depleted from lipid rafts using methyl-β-cyclodextrin (MBCD). In addition, vanadate, an inhibitor of phosphatases, reversed the cholesterol inhibition of ERK1/2 phosphorylation. Specific inhibition of p-Akt by wortmannin did not affect cholesterol's stimulation of the expression of c-Jun and Jun-B, however the vanadate effect of increasing p-ERK1/2, inhibited c-Jun expression, specifically, and the MBCD effect of increasing p-ERK and inhibiting p-Akt reduced c-Jun expression. In contrast MBCD and vanadate both enhanced Jun-B gene expression in the presence of cholesterol and elevation of ERK phosphorylation. Thus there is apparently, a differential signaling pathway whereby cholesterol enhances gene expression of the Jun family members.

  1. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    Science.gov (United States)

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-02

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC.

  2. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells

    Science.gov (United States)

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A.; Cheng, Bin

    2016-01-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  3. DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway.

    Science.gov (United States)

    Chen, H-H; Yu, H-I; Cho, W-C; Tarn, W-Y

    2015-05-21

    The DEAD-box RNA helicase DDX3 is a versatile protein involved in multiple steps of gene expression and various cellular signaling pathways. DDX3 mutations have been implicated in the wingless (Wnt) type of medulloblastoma. We show here that small interfering RNA-mediated DDX3 knockdown in various cell lines increased cell-cell adhesion but decreased cell-extracellular matrix adhesion. Moreover, DDX3 depletion suppressed cell motility and impaired directional migration in the wound-healing assay. Accordingly, DDX3-depleted cells exhibited reduced invasive capacities in vitro as well as reduced metastatic potential in mice. We also examined the mechanism underlying DDX3-regulated cell migration. DDX3 knockdown reduced the levels of both Rac1 and β-catenin proteins, and consequentially downregulated the expression of several β-catenin target genes. Moreover, we demonstrated that DDX3-regulated Rac1 mRNA translation, possibly through an interaction with its 5'-untranslated region, and affected β-catenin protein stability in an Rac1-dependent manner. Taken together, our results indicate the DDX3-Rac1-β-catenin regulatory axis in modulating the expression of Wnt/β-catenin target genes. Therefore, this report provides a mechanistic context for the role of DDX3 in Wnt-type tumors.

  4. Protecting Intestinal Epithelial Cell Number 6 against Fission Neutron Irradiation through NF-κB Signaling Pathway

    Science.gov (United States)

    Chang, Gong-Min; Gao, Ya-Bing; Wang, Shui-Ming; Xu, Xin-Ping; Zhao, Li; Zhang, Jing; Li, Jin-Feng; Wang, Yun-Liang; Peng, Rui-Yun

    2015-01-01

    The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4Gy group, and neutron irradiation of 4Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells. PMID:25866755

  5. Protecting Intestinal Epithelial Cell Number 6 against Fission Neutron Irradiation through NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Gong-Min Chang

    2015-01-01

    Full Text Available The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4Gy group, and neutron irradiation of 4Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells.

  6. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages

    Science.gov (United States)

    Ling, Guang Sheng; Bennett, Jason; Woollard, Kevin J.; Szajna, Marta; Fossati-Jimack, Liliane; Taylor, Philip R.; Scott, Diane; Franzoso, Guido; Cook, H. Terence; Botto, Marina

    2014-01-01

    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin αM (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.

  7. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth

    Directory of Open Access Journals (Sweden)

    Helwig Jean-Jacques

    2009-12-01

    Full Text Available Abstract Background Human clear cell renal cell carcinoma (CRCC remains resistant to therapies. Recent advances in Hypoxia Inducible Factors (HIF molecular network led to targeted therapies, but unfortunately with only limited clinical significance. Elucidating the molecular processes involved in kidney tumorigenesis and resistance is central to the development of improved therapies, not only for kidney cancer but for many, if not all, cancer types. The oncogenic PI3K/Akt, NF-kB and MAPK pathways are critical for tumorigenesis. The sonic hedgehog (SHH signaling pathway is crucial to normal development. Results By quantitative RT-PCR and immunoblot, we report that the SHH signaling pathway is constitutively reactivated in tumors independently of the von Hippel-Lindau (VHL tumor suppressor gene expression which is inactivated in the majority of CRCC. The inhibition of the SHH signaling pathway by the specific inhibitor cyclopamine abolished CRCC cell growth as assessed by cell counting, BrdU incorporation studies, fluorescence-activated cell sorting and β-galactosidase staining. Importantly, inhibition of the SHH pathway induced tumor regression in nude mice through inhibition of cell proliferation and neo-vascularization, and induction of apoptosis but not senescence assessed by in vivo studies, immunoblot and immunohistochemistry. Gli1, cyclin D1, Pax2, Lim1, VEGF, and TGF-β were exclusively expressed in tumors and were shown to be regulated by SHH, as evidenced by immunoblot after SHH inhibition. Using specific inhibitors and immunoblot, the activation of the oncogenic PI3K/Akt, NF-kB and MAPK pathways was decreased by SHH inhibition. Conclusions These findings support targeting SHH for the treatment of CRCC and pave the way for innovative and additional investigations in a broad range of cancers.

  8. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Sigrid Rosin-Steiner

    2006-01-01

    Full Text Available As we previously demonstrated in human hepatocellular carcinoma (HepG2 cells, ethanol at low concentration triggers the Fas apoptotic pathway. However, its role in other intracellular signaling pathways remains unknown. Therefore, the aim of the present study was to evaluate the role of low concentration of ethanol on different intracellular signaling pathways. For this purpose, HepG2 cells were treated with 1 mM ethanol for 10 min and the phosphorylation state of protein kinases was determined. In addition, the mRNA levels of transcription factors and genes associated with the Fas apoptotic pathway were determined. Our data demonstrated that ethanol-induced phosphorylation of protein kinases modulates both anti-apoptotic and pro-apoptotic mechanisms in HepG2 cells. Pro-apoptosis resulted mainly from the strong inhibition of the G-protein couple receptor signaling pathway. Moreover, the signal transduction initiated by ethanol-induced protein kinases phosphorylation lead to increased expression of the transcription factors with subsequent expression of genes associated with the Fas apoptotic pathway (Fas receptor, Fas ligand, FADD and caspase 8. These results indicate that low concentration of ethanol exert their effect by predominant activation of pro-apoptotic events that can be divided in two phases. An early phase characterized by a rapid transient effect on protein kinases phosphorylation, after 10 min exposure, with subsequent increased expression of transcription factors for up to 6 hr. This early phase is followed by a second phase associated with increased gene expression that began after 6 hr and persisted for more than 24 hr. This information provided a novel insight into the mechanisms of action of ethanol (1mM in human hepatocellular carcinoma cells.

  9. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway.

    Science.gov (United States)

    Wang, Chang; Ruan, Ting; Liu, Jiyan; He, Bin; Zhou, Qunfang; Jiang, Guibin

    2015-05-18

    Perfluorinated iodine alkanes (PFIs) are used widely in the organic fluorine industry. Increased production of PFIs has caused environmental health concerns. To evaluate the potential endocrine-disrupting effect of PFIs, we investigated the effects of perfluorooctyl iodide (PFOI) on steroidogenesis in human adrenocortical carcinoma cells (H295R). Levels of aldosterone, cortisol, 17β-estradiol, and testosterone were measured in H295R culture medium upon treatment with perfluorooctanoic acid (PFOA) and PFIs. Expression of 10 steroidogenic genes (StAR, HMGR, CYP11A1, 3βHSD2, 17βHSD, CYP17, CYP21, CYP11B1, CYP11B2, and CYP19) was measured by real-time polymerase chain reaction. Levels of cyclic adenosine monophosphate (cAMP) and adenylate cyclase (AC) activity were measured to understand the underlying mechanism of steroidogenic perturbations. Levels of production of aldosterone, cortisol, and 17β-estradiol were elevated significantly, and the level of testosterone generation decreased upon treatment with 100 μM PFOI. Similar to the effect induced by forskolin (AC activator), expression of all 10 genes involved in the synthesis of steroid hormones was upregulated significantly upon exposure to 100 μM PFOI. PFOA had no effect on steroid hormone production or steroidogenic gene expression even though it is highly structurally similar with PFOI. Therefore, the terminal -CF2I group in PFOI could be a critical factor for mediation of steroidogenesis. PFOI increased AC activity and cAMP levels in H295R cells, which implied an underlying mechanism for the disturbance of steroidogenesis. These data suggest that PFOI may act as an AC activator, thereby stimulating steroidogenesis by activating a cAMP signaling pathway.

  10. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    DEFF Research Database (Denmark)

    Serup, Palle; Gustavsen, Carsten; Klein, Tino;

    2012-01-01

    extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can...

  11. Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells

    Science.gov (United States)

    Alexandrova, Elena; Nassa, Giovanni; Corleone, Giacomo; Buzdin, Anton; Aliper, Alexander M.; Terekhanova, Nadezhda; Shepelin, Denis; Zhavoronkov, Alexander; Tamm, Michael; Milanesi, Luciano; Weisz, Alessandro

    2016-01-01

    Background Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (ppromoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology. PMID:26863634

  12. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  13. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc.

  14. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    Science.gov (United States)

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  15. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  16. Refractoriness of interferon-beta signaling through NOD1 pathway in mouse respiratory epithelial cells using the anticancer xanthone compound

    Institute of Scientific and Technical Information of China (English)

    Zaifang; Yu; Jarrod; D; Predina; Guanjun; Cheng

    2013-01-01

    AIM:To explore the possibility that nucleotide oligomerization domain 1(NOD1) pathway involved in refractoriness of interferon-β signaling in mouse respiratory epithelial cells induced by the anticancer xanthone compound,5,6-dimethylxanthenone-4-acetic acid(DMXAA).METHODS:C10 mouse bronchial epithelial cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum,2 mmol/L glutamine,100 units/mL penicillin,100 g/mL streptomycin.Pathogen-free female BALB/c mice were used to explore the mechanisms of refractoriness of interferon-signaling.Mouse thioglycollate-elicited peritoneal macrophages,bone marrow derived macrophages and bone marrow derived dendritic cells were collected and cultured.The amount of interferon(IFN)-inducible protein-10(IP10/CXCL10),macrophage chemotactic protein(MCP1/CCL2) and interleukin(IL)-6 secreted by cells activated by DMXAA was quantified using enzyme-linked immunosorbent assay kits according to the instructions of the manufacturers.Total RNA was isolated from cells or nasal epithelium with RNeasy Plus Mini Kit,and cDNA was synthesized.Gene expression was checked using Applied Biosystems StepOne Real-Time Polymerase Chain Reaction System.Transfection of small interfering RNA(siRNA) control,NOD1 duplexed RNA oligonucleotides,and high-mobility group box 1/2/3(HMGB1/2/3) siRNA was performed using siRNA transfection reagent.RESULTS:DMXAA activates IFN-β pathway with high level of IFN-β dependent antiviral genes including 2’,5’-oligoadenylate synthetase 1 and myxovirus resistance 1 in mouse thioglycollate-elicited peritoneal macrophages,bone marrow derived macrophages and bone marrow derived dendritic cells.Activation of IFN-β by DMXAA involved in NOD1,but not HMGB1/2/3 signal pathway demonstrated by siRNA.NOD1 pathway plays an important role in refractoriness of IFN-β signaling induced by DMXAA in mouse C10 respiratory epithelial cells and BALB/c mice nasal epithelia.These data indicate that DMXAA

  17. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  18. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  19. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    Science.gov (United States)

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  20. Temporal Perturbation of the Wnt Signaling Pathway in the Control of Cell Reprogramming Is Modulated by TCF1

    Directory of Open Access Journals (Sweden)

    Francesco Aulicino

    2014-05-01

    Full Text Available Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the “Wnt-off” state can be considered an early reprogramming marker.

  1. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Mohd S. [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Enteric and Food Microbiology Laboratory, Laboratory Sciences Division, International Center for Diarrhoeal Disease Research, Bangladesh, P.O. Box 128, Dhaka 1000 (Bangladesh); Tsuyama, Naohiro [Department of Analytical Molecular Medicine and Devices, Division of Frontier Medical Science, Graduate School of Medical Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553 (Japan); Obata, Masanori [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Ishikawa, Hideaki, E-mail: hishika@yamaguchi-u.ac.jp [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan)

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  2. Growth hormone pathways signaling for cell proliferation and survival in hippocampal neural precursors from postnatal mice

    OpenAIRE

    Devesa, Pablo; Agasse, Fabienne; Xapelli, Sara; Almengló, Cristina; Devesa, Jesús; Malva, Joao O.; Arce, Víctor M

    2014-01-01

    Background Accumulating evidence suggests that growth hormone (GH) may play a major role in the regulation of postnatal neurogenesis, thus supporting the possibility that it may be also involved in promoting brain repair after brain injury. In order to gain further insight on this possibility, in this study we have investigated the pathways signaling the effect of GH treatment on the proliferation and survival of hippocampal subgranular zone (SGZ)-derived neurospheres. Results Our results dem...

  3. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.

    Science.gov (United States)

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M

    2013-09-06

    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  4. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development.

    Science.gov (United States)

    Barry, Evan R; Camargo, Fernando D

    2013-04-01

    Tissue regeneration is vital to the form and function of an organ. At the core of an organs' ability to self-renew is the stem cell, which maintains homeostasis, and repopulates injured or aged tissue. Tissue damage can dramatically change the dimensions of an organ, and during regeneration, an organ must halt growth once the original tissue dimensions have been restored. Therefore, stem cells must give rise to the appropriate number of differentiated progeny to achieve homeostasis. How this tissue-size checkpoint is regulated and how tissue size information relayed to stem cell compartments is unclear, however, it is likely that these mechanisms are altered during the course of tumorigenesis. An emerging signaling cascade, the Hippo Signaling Pathway, is a broadly conserved potent organ size regulator [1]. However, this pathway does not act alone. A number of examples demonstrate crosstalk between Hippo and other signaling pathways including Wnt, Tgfβ and Notch, with implications for stem cell biology. Here, we focus on these interactions primarily in the context of well characterized stem cell populations.

  5. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells.

    Science.gov (United States)

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Wu, Wei-Chi; Hsu, Jason; Weng, Shih-Ting; Lin, Tsai-Leng; Liu, Chun-Yi; Hseu, Ruey-Shyang; Huang, Ching-Tsan

    2008-04-01

    Ganoderma lucidum, a medicinal fungus is thought to possess and enhance a variety of human immune functions. An immuno-modulatory protein, Ling Zhi-8 (LZ-8) isolated from G. lucidum exhibited potent mitogenic effects upon human peripheral blood lymphocytes (PBL). However, LZ-8-mediated signal transduction in the regulation of interleukin-2 (IL-2) gene expression within human T cells is largely unknown. Here we cloned the LZ-8 gene of G. lucidum, and expressed the recombinant LZ-8 protein (rLZ-8) by means of a yeast Pichia pastoris protein expression system. We found that rLZ-8 induces IL-2 gene expression via the Src-family protein tyrosine kinase (PTK), via reactive oxygen species (ROS), and differential protein kinase-dependent pathways within human primary T cells and cultured Jurkat T cells. In essence, we have established the nature of the rLZ-8-mediated signal-transduction pathways, such as PTK/protein kinase C (PKC)/ROS, PTK/PLC/PKCalpha/ERK1/2, and PTK/PLC/PKCalpha/p38 pathways in the regulation of IL-2 gene expression within human T cells. Our current results of analyzing rLZ-8-mediated signal transduction in T cells might provide a potential application for rLZ-8 as a pharmacological immune-modulating agent.

  6. The Mechanism of Adaptation of Breast Cancer Cells to Hypoxia: Role of AMPK/mTOR Signaling Pathway.

    Science.gov (United States)

    Sorokin, D V; Scherbakov, A M; Yakushina, I A; Semina, S E; Gudkova, M V; Krasil'nikov, M A

    2016-02-01

    We studied the mechanisms of adaptation of human breast cancer cells MCF-7 to hypoxia and analyzed the role of AMPK/mTOR signaling pathway in the maintenance of cell proliferation under hypoxic conditions. It was found that long-term culturing (30 days or more) of MCF-7 cells under hypoxic conditions induced their partial adaptation to hypoxia. Cell adaptation to hypoxia was associated with attenuation of hypoxia-dependent AMPK induction with simultaneous constitutive activation of mTOR and Akt. These findings suggest that these proteins can be promising targets for targeted therapy of tumors developing under hypoxic conditions.

  7. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation.

    Science.gov (United States)

    Chowdhury, Indrajit; Thomas, Kelwyn; Zeleznik, Anthony; Thompson, Winston E

    2016-05-01

    Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs.

  8. Epidermal growth factor receptor (EGFR-RAS signaling pathway in penile squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hong-Feng Gou

    Full Text Available Penile Squamous Cell Carcinoma (SCC is a rare cancer with poor prognosis and limited response to conventional chemotherapy. The genetic and epigenetic alterations of Epidermal Growth Factor Receptor (EGFR-RAS-RAF signaling in penile SCC are unclear. This study aims to investigate four key members of this pathway in penile SCC. We examined the expression of EGFR and RAS-association domain family 1 A (RASSF1A as well as the mutation status of K-RAS and BRAF in 150 cases of penile SCC. EGFR and RASSF1A expression was evaluated by immunohistochemistry. KRAS mutations at codons 12 and 13, and the BRAF mutation at codon 600 were analyzed on DNA isolated from formalin fixed paraffin embedded tissues by direct genomic sequencing. EGFR expression was positive in all specimens, and its over-expression rate was 92%. RASSF1A expression rate was only 3.42%. Significant correlation was not found between the expression of EGFR or RASSF1A and tumor grade, pT stage or lymph node metastases. The detection of KRAS and BRAF mutations analysis was performed in 94 and 83 tumor tissues, respectively. We found KRAS mutation in only one sample and found no BRAF V600E point mutation. In summary, we found over-expression of EGFR in the majority cases of penile SCC, but only rare expression of RASSF1A, rare KRAS mutation, and no BRAF mutation in penile SCC. These data suggest that anti-EGFR agents may be potentially considered as therapeutic options in penile SCC.

  9. Activation of Wnt signaling pathway by AF1q enriches stem-like population and enhance mammosphere formation of breast cells.

    Science.gov (United States)

    Tse, Charlotte Olivia; Kim, Soojin; Park, Jino

    2017-03-18

    Wnt signaling pathway is believed to be responsible for control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state. Moreover, dysregulated Wnt signaling pathway is strongly associated with several diseases including cancer. Previously, we have shown that AF1q associates with a poor prognosis in leukemia, myelodysplastic syndromes, multiple myeloid, ovarian cancer, and breast cancer. Also, AF1q plays a pivotal role as an oncogene and metastasis enhancer in breast cancer via activation of Wnt signaling pathway. AF1q is highly expressed in stem cells, and this expression is diminished by differentiation. To understand the role of AF1q in stem-like population, we examined stem-like cells derived from breast cells which dysregulated Wnt signaling pathway by alteration of AF1q expression. The effect of Wnt signaling pathway by AF1q on EMT marker expression, stem cell marker expression, and sphere formation was determined. Activated Wnt signaling pathway by AF1q enriched stem-like population showed enhanced sphere formation ability. Interestingly, Wnt signaling pathway inhibitor, Quercetin, decreased the sphere formation in these cells. These results suggest that AF1q would have a role as an enhancer in generation of stem-like population through activation of Wnt signaling pathway.

  10. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)

    2012-11-16

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  11. Modulation of tumor cell stiffness and migration by type IV collagen through direct activation of integrin signaling pathway.

    Science.gov (United States)

    Chen, Sheng-Yi; Lin, Jo-Shi; Yang, Bei-Chang

    2014-08-01

    Excessive collagen deposition plays a critical role in tumor progression and metastasis. To understand how type IV collagen affects mechanical stiffness and migration, low-collagen-IV-expressing transfectants of B16F10, U118MG, and Huh7 (denoted shCol cells) were established by the lentiviral-mediated delivery of small interfering RNA against type IV-α1 collagen (Col4A1). Although having similar growth rates, shCol cells showed a flatter morphology compared to that of the corresponding controls. Notably, knocking down the Col4A1 gene conferred the cells with higher levels of elasticity and lower motility. Exposure to blocking antibodies against human β1 integrin or α2β1 integrin or the pharmacological inhibition of Src and ERK activity by PP1 and U0126, respectively, effectively reduced cell motility and raised cell stiffness. Reduced Src and ERK activities in shCol cells indicate the involvement of a collagen IV/integrin signaling pathway. The forced expression of β1 integrin significantly stimulated Src and ERK phosphorylation, reduced cell stiffness, and accelerated cell motility. In an experimental metastasis assay using C57BL/6 mice, B16F10 shCol cells formed significantly fewer and smaller lung nodules, confirming the contribution of collagen to metastasis. In summary, the integrin signaling pathway activated in a tumor environment with collagen deposition is responsible for low cell elasticity and high metastatic ability.

  12. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  13. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yunguang [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zheng Siyuan [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J. [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Carbone, David P. [Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zhao Zhongming, E-mail: zhongming.zhao@vanderbilt.edu [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Lu Bo, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  14. Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of human CD161(hi) CD8α⁺ semi-invariant T cells.

    Science.gov (United States)

    Turtle, Cameron J; Delrow, Jeff; Joslyn, Rochelle C; Swanson, Hillary M; Basom, Ryan; Tabellini, Laura; Delaney, Colleen; Heimfeld, Shelly; Hansen, John A; Riddell, Stanley R

    2011-09-08

    Type 17 programmed CD161(hi)CD8α(+) T cells contribute to mucosal immunity to bacteria and yeast. In early life, microbial colonization induces proliferation of CD161(hi) cells that is dependent on their expression of a semi-invariant Vα7.2(+) TCR. Although prevalent in adults, CD161(hi)CD8α(+) cells exhibit weak proliferative and cytokine responses to TCR ligation. The mechanisms responsible for the dichotomous response of neonatal and adult CD161(hi) cells, and the signals that enable their effector function, have not been established. We describe acquired regulation of TCR signaling in adult memory CD161(hi)CD8α(+) T cells that is absent in cord CD161(hi) cells and adult CD161(lo) cells. Regulated TCR signaling in CD161(hi) cells was due to profound alterations in TCR signaling pathway gene expression and could be overcome by costimulation through CD28 or innate cytokine receptors, which dictated the fate of their progeny. Costimulation with IL-1β during TCR ligation markedly increased proinflammatory IL-17 production, while IL-12-induced Tc1-like function and restored the response to TCR ligation without costimulation. CD161(hi) cells from umbilical cord blood and granulocyte colony stimulating factor-mobilized leukaphereses differed in frequency and function, suggesting future evaluation of the contribution of CD161(hi) cells in hematopoietic stem cell grafts to transplant outcomes is warranted.

  15. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2012-01-01

    Full Text Available Several pharmacological agents acting on monoamine neurotransmission are used for the management of mental illnesses. Regulation of PI3K/AKT and GSK3 pathways may constitute an important signaling center in the subcellular integration of the synaptic neurotransmission. The pathways also modulate neuronal cell proliferation, migration, and plasticity. There are evidences to suggest that inflammation of neuron contributes to the pathology of depression. Inflammatory activation of neuron contributes to the loss of glial elements, which are consistent with pathological findings characterizing the depression. A mechanism of anti-inflammatory reactions from antidepressant medications has been found to be associated with an enhancement of heme oxygenase-1 expression. This induction in brain is also important in neuroprotection and neuroplasticity. As enzymes involved in cell survival and neuroplasticity are relevant to neurotrophic factor dysregulation, the PI3K/AKT/GSK3 may provide an important signaling for the neuroprotection in depression. In this paper, we summarize advances on the involvement of the PI3K/AKT/GSK3 pathways in cell signaling of neuronal cells in mental illnesses.

  16. Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway.

    Science.gov (United States)

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman; Germot, Agnès

    2015-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.

  17. Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Neuronal Differentiation by Enhancing the Wnt Signaling Pathway in an Alzheimer's Disease Model.

    Science.gov (United States)

    Oh, Se Hee; Kim, Ha Na; Park, Hyun-Jung; Shin, Jin Young; Lee, Phil Hyu

    2015-01-01

    Neurogenesis in the subgranular zone of the hippocampal dentate gyrus may act as an endogenous repair mechanism in Alzheimer's disease (AD), and the Wnt signaling pathway has been suggested to closely modulate neurogenesis in amyloid-β (Aβ)-related AD models. The present study investigated whether mesenchymal stem cells (MSCs) would modulate hippocampal neurogenesis via modulation of the Wnt signaling pathway in a model of AD. In Aβ-treated neuronal progenitor cells (NPCs), the coculture with MSCs increased significantly the expression of Ki-67, GFAP, SOX2, nestin, and HuD compared to Aβ treatment alone. In addition, MSC treatment in Aβ-treated NPCs enhanced the expression of β-catenin and Ngn1 compared to Aβ treatment alone. MSC treatment in Aβ-treated animals significantly increased the number of BrdU-ir cells in the hippocampus at 2 and 4 weeks compared to Aβ treatment alone. In addition, quantitative analysis showed that the number of BrdU and HuD double-positive cells in the dentate gyrus was significantly higher in the MSC-treated group than in controls or after Aβ treatment alone. These results demonstrate that MSC administration significantly augments hippocampal neurogenesis and enhances the differentiation of NPCs into mature neurons in AD models by augmenting the Wnt signaling pathway. The use of MSCs to modulate endogenous adult neurogenesis may have a significant impact on future strategies for AD treatment.

  18. Role of Activin-A and Myostatin and Their Signaling Pathway in Human Myometrial and Leiomyoma Cell Function

    Science.gov (United States)

    Islam, Md Soriful; Catherino, William H.; Protic, Olga; Janjusevic, Milijana; Gray, Peter Clarke; Giannubilo, Stefano Raffaele; Ciavattini, Andrea; Lamanna, Pasquale; Tranquilli, Andrea Luigi; Petraglia, Felice

    2014-01-01

    Context: Uterine leiomyomas are highly prevalent benign tumors of premenopausal women and the most common indication for hysterectomy. However, the exact etiology of this tumor is not fully understood. Objective: The objective of the study was to evaluate the role of activin-A and myostatin and their signaling pathways in human myometrial and leiomyoma cells. Design: This was a laboratory study. Setting: Myometrial and leiomyoma cells (primary and cell lines) were cultured in vitro. Patients: The study included premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Interventions: Primary myometrial and leiomyoma cells and/or cell lines were treated with activin-A (4 nM) and myostatin (4 nM) for different days of interval (to measure proliferation rate) or 30 minutes (to measure signaling molecules) or 48 hours to measure proliferating markers, extracellular matrix mRNA, and/or protein expression by real-time PCR, Western blot, and/or immunocytochemistry. Results: We found that activin-A and myostatin significantly reduce cell proliferation in primary myometrial cells but not in leiomyoma cells as measured by a CyQUANT cell proliferation assay kit. Reduced expression of proliferating cell nuclear antigen and Ki-67 were also observed in myometrial cells in response to activin-A and myostatin treatment. Activin-A also significantly increased mRNA expression of fibronectin, collagen1A1, and versican in primary leiomyoma cells. Finally, we found that activin-A and myostatin activate Smad-2/3 signaling but do not affect ERK or p38 signaling in both myometrial and leiomyoma cells. Conclusions: This study results suggest that activin-A and myostatin can exert antiproliferative and/or fibrotic effects on these cell types via Smad-2/3 signaling. PMID:24606069

  19. Multiple signalling pathways mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Sakai, Kokki

    2003-02-01

    The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.

  20. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer.

    Science.gov (United States)

    Song, Lele; Li, Yuemin; He, Baoming; Gong, Yuan

    2015-09-01

    Colorectal cancer (CRC) was ranked third in morbidity and mortality in the United States in 2013. Although substantial progress has been made in surgical techniques and postoperative chemotherapy in recent years, the prognosis for colon cancer is still not satisfactory, mainly because of cancer recurrence and metastasis. The latest studies have shown that cancer stem cells (CSCs) play important roles in cancer recurrence and metastasis. Drugs that target CSCs might therefore have great therapeutic potential in prevention of cancer recurrence and metastasis. The wingless-int (Wnt) signaling pathway in CSCs has been suggested to play crucial roles in colorectal carcinogenesis, and has become a popular target for anti-CRC therapy. Dysregulation of the Wnt signaling pathway, mostly by inactivating mutations of the adenomatous polyposis coli tumor suppressor or oncogenic mutations of β-catenin, has been implicated as a key factor in colorectal tumorigenesis. Abnormal increases of β-catenin levels represents a common pathway in Wnt signaling activation and is also observed in other human malignancies. These findings highlight the importance of developing small-molecule drugs that target the Wnt pathway. Herein we provide an overview on the current development of small molecules that target the Wnt pathway in colorectal CSCs and discuss future research directions.

  1. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    Science.gov (United States)

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  2. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways.

    Science.gov (United States)

    Nafar, F; Clarke, J P; Mearow, K M

    2017-01-23

    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted.

  3. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  4. Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Tao Sun; Jing-hui Li; Ning Zhao; Yong Wang; Hua-lin Yu

    2015-01-01

    Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw-ley rats was clamped for 60 seconds.Dazhui (GV14) andMingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres-sion of serum inlfammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These ifndings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  5. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  6. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    Science.gov (United States)

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  7. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  8. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie;

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  9. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2016-11-28

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.Oncogene advance online publication, 28 November 2016; doi:10.1038/onc.2016.421.

  10. Novel approaches to target NF-κB and other signaling pathways in cancer stem cells.

    Science.gov (United States)

    Ukaji, Tamami; Umezawa, Kazuo

    2014-09-01

    Recently cancer tissue is considered to consist of large number of balk cancer cells and a small number of cancer stem cells. After surgery, radiotherapy, or chemotherapy, most cancer cells are removed, but if there are still very small number of cancer stem cells left. They may form the similar tumor again. So removal of cancer stem cells is considered to be important for future cancer therapy. In one hand, NF-κB is the transcription factor that promotes expressions of various inflammatory cytokines and apoptosis inhibitory proteins. Cancer cells often possess constitutively activated NF-κB that often provides excess survival and therapeutic resistance in cancer cells. We have discovered DHMEQ as a specific inhibitor of NF-κB. This compound was found to be more active in cancer stem cells than in balk cancer cells. In breast cancer cells both PI3K-Akt and NF-κB pathways appear in the survival of cancer stem cells.

  11. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells.

    Science.gov (United States)

    Sun, Yu; Tang, Shusheng; Jin, Xi; Zhang, Chaoming; Zhao, Wenxia; Xiao, Xilong

    2013-12-01

    Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.

  12. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2.

    Science.gov (United States)

    Shirakawa, Aiko-Konno; Liao, Fang; Zhang, Hongwei H; Hedrick, Michael N; Singh, Satya P; Wu, Dianqing; Farber, Joshua M

    2010-11-01

    Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2(-/-) mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.

  13. Trichosanthin suppresses the proliferation of glioma cells by inhibiting LGR5 expression and the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Miao, Junjie; Jiang, Yilin; Wang, Dongliang; Zhou, Jingru; Fan, Cungang; Jiao, Feng; Liu, Bo; Zhang, Jun; Wang, Yangshuo; Zhang, Qingjun

    2015-12-01

    Studies have indicated that trichosanthin (TCS), a bioactive protein extracted and purified from the tuberous root of Trichosanthes kirilowii (a well‑known traditional Chinese medicinal plant), produces antitumor effects on various types of cancer cells. However, the effects of TCS on glioma cells are poorly understood. The objective of this study was to investigate the antitumor effects of TCS on the U87 and U251 cell lines. The in vitro effects of TCS on these two cell lines were determined using a Cell Counting Kit‑8 (CCK‑8) assay, Annexin V‑FITC staining, DAPI staining, Transwell assays, terminal deoxynucleotidyl transferase‑mediated dUTP nick end‑labeling (TUNEL) assays, 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethyl‑imidacarbocyanine iodide (JC‑1) staining and western blotting, which was utilized to assess the expression of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (LGR5) and key proteins in the Wnt/β‑catenin signaling pathway. Our data indicated that TCS inhibited the proliferation of glioma cells in a dose‑ and time‑dependent manner and played a role in inhibiting glioma cell invasion and migration. Additional investigation revealed that the expression levels of LGR5 and of key proteins in the Wnt/β‑catenin signaling pathway were markedly decreased after TCS treatment. The results suggest that TCS may induce apoptosis in glioma cells by targeting LGR5 and repressing the Wnt/β‑catenin signaling pathway. In the future, in vivo experiments should be conducted to examine the potential use of this compound as a novel therapeutic agent for gliomas.

  14. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  15. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  16. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway.

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y M; Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L; Bernards, Rene; Barbacid, Mariano

    2014-10-21

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism.

  17. The Wnt/β-catenin signaling pathway is involved in the antitumor effect of fulvestrant on rat prolactinoma MMQ cells.

    Science.gov (United States)

    Cao, Lei; Gao, Hua; Li, Ping; Gui, Songbai; Zhang, Yazhuo

    2014-06-01

    Although an antiestrogen treatment for estrogen-dependent diseases, such as breast cancers, has been reported, the effect of this endocrine therapy on prolactinomas and its possible mechanism are unclear. This study investigates the antitumor effect of fulvestrant, which is a new estrogen receptor antagonist, on rat prolactinoma MMQ cells and the possible roles of the Wnt/β-catenin signaling pathway that is involved in this antitumor effect. To investigate the antitumor effect of fulvestrant, the effects of exposure to gradient doses of fulvestrant (0, 0.04, 1, 25, and 625 nM) on the proliferation of cells and the secretion of prolactin (PRL) were studied. Then, the expression levels of the Wnt/β-catenin signaling pathway-related proteins β-catenin and Wnt inhibitory factor-1 (WIF-1) were measured to investigate their possible roles in the antitumor effect of fulvestrant. The cells were also treated with decitabine (10 μM) to investigate the epigenetic mechanism of WIF-1 expression. The proliferation of MMQ cells and the secretion of PRL were suppressed by fulvestrant in a dose-dependent manner (up to 57.0 ± 3.9 % and 51.2 ± 4.9 %, respectively). β-Catenin expression was downregulated and was positively correlated with ER-α expression (P<0.01). As a tumor suppressor, WIF-1 expression was upregulated and was negatively correlated with ER-α expression (P<0.01). Furthermore, WIF-1 expression was upregulated via the hypomethylation of the promoter by decitabine, and cellular proliferation was correspondingly suppressed (37.8 ± 4.3 %). Antitumor effect of fulvestrant was partially disrupted by SB 216763 via activation of the Wnt/β-catenin pathway. In conclusion, through the Wnt/β-catenin signaling pathway, fulvestrant can suppress the proliferation of MMQ cells and the secretion of PRL.

  18. The Association of CXC Receptor 4 Mediated Signaling Pathway with Oxaliplatin-Resistant Human Colorectal Cancer Cells

    Science.gov (United States)

    Huang, Cheng-Yi; Kuo, Yi-Hung; Tung, Shui-Yi; Shen, Chien-Heng; Hsieh, Yung-Yu; Teng, Chih-Chuan; Lee, Kam-Fai; Chen, Te-Chuan; Lee, Ko-Chao; Kuo, Hsing-Chun

    2016-01-01

    The stromal cell–derived factor-1 (SDF-1)/CXC receptor 4 (CXCR4) axis plays an important role in tumor angiogenesis and invasiveness in colorectal cancer (CRC) progression. In addition, metastatic CRC remains one of the most difficult human malignancies to treat because of its chemoresistant behavior. However, the mechanism by which correlation occurs between CXCR4 and the clinical response of CRC to chemotherapy remains unknown. We generated chemoresistant cells with increasing doses of oxaliplatin (OXA) and 5-Fluorouracil (5FU) to develop resistance at a clinical dose. We found that the putative markers did not change in the parental cells, but HCT-116/OxR and HCT-116/5-FUR were more aggressive and had higher tumor growth (demonstrated by wound healing, chemotaxis assay, and a nude mice xenograft model) with the use of oxaliplatin. Apoptosis induced by oxaliplatin treatment was significantly decreased in HCT-116/OxR compared to the parental cells. Moreover, HCT-116/OxR cells displayed increased levels of p-gp, p-Akt p-ERK, p-IKBβ, CXCR4, and Bcl-2, but they also significantly inhibited the apoptotic pathways when compared to the parental strain. We evaluated the molecular mechanism governing the signaling pathway associated with anti-apoptosis activity and the aggressive status of chemoresistant cells. Experiments involving specific inhibitors demonstrated that the activation of the pathways associated with CXCR4, ERK1/2 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/Akt is critical to the functioning of the HCT-116/OxR and HCT-116/5-FUR characteristics of chemosensitivity. These findings elucidate the mechanism of CXCR4/PI3K/Akt downstream signaling and provide strategies to inhibit CXCR4 mediated signaling pathway in order to overcome CRC’s resistance to chemotherapy. PMID:27668882

  19. Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 Cells by activating the MAPK signaling pathway.

    Science.gov (United States)

    Go, Hiroe; Hwang, Hye-Jung; Nam, Taek-Jeong

    2011-06-01

    Seaweed extracts show diverse bioactivities, such as antioxidant and antitumor activity. Capsosiphon fulvescens is a green alga that is abundant along the southwest coast of South Korea. Although it is consumed for its purported health-enhancing properties, particularly as a treatment for stomach disorders and hangovers, the health effects of dietary C. fulvescens remain unclear. We extracted polysaccharides from C. fulvescens (Cf-PS), investigated their effects on the proliferation of rat small intestinal epithelial IEC-6 cells, and determined the signaling cascade involved. We cultured IEC-6 cells in the presence of Cf-PS, which stimulated cell proliferation in a dose-dependent manner, and analyzed the Wnt and MAPK signaling pathways, which are related to cell proliferation. Cf-PS treatment induced the translocation of β-catenin, an effector of the Wnt signaling pathway, from the cytosol to the nucleus and increased the expression of cyclinD1 and c-myc. Cf-PS also induced ERK1/2 phosphorylation, which is activated by mitogenic and proliferative stimuli such as growth factors, but the phosphorylation of JNK and p38 was not enhanced. Our results show that Cf-PS regulates proliferation via stimulating the nuclear translocation of β-catenin and ERK1/2 activation in intestinal epithelial cells.

  20. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  1. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  2. A novel Lyn-protein kinase Cδ/ε-protein kinase D axis is activated in B cells by signalosome-independent alternate pathway BCR signaling.

    Science.gov (United States)

    Guo, Benchang; Rothstein, Thomas L

    2013-06-01

    BCR signaling initiates multiple activities critical for B-cell function. Recently, we identified an alternate BCR signaling pathway, induced by IL-4, that is signalosome-independent, unlike the classical signalosome-dependent pathway, and that leads to activation of the MAP kinase, ERK. Here we questioned whether alternate pathway signaling extends to other key downstream events, especially protein kinase D (PKD) activation. We found that in murine spleen-derived B cells the IL-4-induced alternate pathway for BCR signaling results in PKD and PKD substrate phosphorylation, and that alternate pathway phosphorylation of HDAC5/7 and other key substrates requires PKD. Furthermore, we found that tyrosine phosphorylation of PKCδ/ε occurs as a result of alternate but not classical pathway signaling and is required for phosphorylation of PKD and PKD substrates. This result identifies PKCδ/ε tyrosine phosphorylation as a unique outcome of the alternate pathway. The alternate pathway is mediated by Lyn that is not required for classical pathway signaling and we found that Lyn associates directly with PKCδ/ε and is required for phosphorylation of PKCδ/ε and of PKD. These findings indicate that IL-4 influences B-cell activation by inducing a novel signaling pathway from BCR to Lyn to PKCδ/ε to PKD.

  3. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-01-15

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  4. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells

    OpenAIRE

    Li, Yazhou; Tweedie, David; Mattson, Mark P.; Holloway, Harold W.; Greig, Nigel H.

    2010-01-01

    Increasing evidence suggests that glucagon-like peptide-1 (GLP-1), an incretin hormone of current interest in type 2 diabetes, is neuroprotective in both cell culture and animal models. To characterize the neuroprotective properties of GLP-1 and associated underlying mechanisms, we over-expressed the GLP-1 receptor (R) on human neuroblastoma SH-SY5Y cells to generate a neuronal culture system featuring enhanced GLP-1R signaling. In GLP-1R over-expressing SH-SY5Y (SH-hGLP-1R#9) cells, GLP-1 an...

  5. Molecular pathways of human adrenocortical carcinoma - translating cell signalling knowledge into diagnostic and treatment options.

    Science.gov (United States)

    Szyszka, Paulina; Grossman, Ashley B; Diaz-Cano, Salvador; Sworczak, Krzysztof; Dworakowska, Dorota

    2016-01-01

    Adrenocortical carcinoma is associated with a low cure rate and a high recurrence rate. The prognosis is poor, and at diagnosis 30-40% of cases are already metastatic. The current therapeutic options (surgical resection, followed by adjuvant mitotane treatment +/- chemotherapy) are limited, and the results remain unsatisfactory. Key molecular events that contribute to formation of adrenocortical cancer are IGF2 overexpression, TP53-inactivating mutations, and constitutive activation of the Wnt/b-catenin signalling pathway via activating mutations of the b-catenin gene. The underlying genetic causes of inherited tumour syndromes have provided insights into molecular pathogenesis. The increased occurrence of adrenocortical tumours in Li-Fraumeni and Beckwith-Wiedemann syndromes, and Carney complex, has highlighted the roles of specific susceptibility genes: TP53, IGF2, and PRKAR1A, respectively. Further studies have confirmed that these genes are also involved in sporadic tumour cases. Crucially, transcriptome-wide studies have determined the differences between malignant and benign adrenocortical tumours, providing potential diagnostic tools. In conclusion, enhancing our understanding of the molecular events of adrenocortical tumourigenesis, especially with regard to the signalling pathways that may be disrupted, will greatly contribute to improving a range of available diagnostic, prognostic, and treatment approaches. (Endokrynol Pol 2016; 67 (4): 427-440).

  6. The Wnt signaling pathway in cancer.

    Science.gov (United States)

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  7. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  8. DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yaofeng Li

    2015-03-01

    Full Text Available Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K/Akt, the target of rapamycin (TOR and the extracellular signal-regulated kinase (ERK pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  9. The HMGB1 signaling pathway activates the inflammatory response in Schwann cells.

    Science.gov (United States)

    Man, Li-Li; Liu, Fan; Wang, Ying-Jie; Song, Hong-Hua; Xu, Hong-Bo; Zhu, Zi-Wen; Zhang, Qing; Wang, Yong-Jun

    2015-10-01

    Schwann cells are not only myelinating cells, but also function as immune cells and express numerous innate pattern recognition receptors, including the Toll-like receptors. Injury to peripheral nerves activates an inflammatory response in Schwann cells. However, it is unclear whether specific endogenous damage-associated molecular pattern molecules are involved in the inflammatory response following nerve injury. In the present study, we demonstrate that a key damage-associated molecular pattern molecule, high mobility group box 1 (HMGB1), is upregulated following rat sciatic nerve axotomy, and we show colocalization of the protein with Schw-ann cells. HMGB1 alone could not enhance expression of Toll-like receptors or the receptor for advanced glycation end products (RAGE), but was able to facilitate migration of Schwann cells. When Schwann cells were treated with HMGB1 together with lipopolysaccharide, the expression levels of Toll-like receptors and RAGE, as well as inflammatory cytokines were upregulated. Our novel findings demonstrate that the HMGB1 pathway activates the inflammatory response in Schwann cells following peripheral nerve injury.

  10. Ovarian Germline Stem Cells (OGSCs and the Hippo Signaling Pathway Association with Physiological and Pathological Ovarian Aging in Mice

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-07-01

    Full Text Available Background: The Hippo signaling pathway plays fundamental roles in stem cell maintenance in a variety of tissues and has thus implications for stem cell biology. Key components of this recently discovered pathway have been shown to be associated with primordial follicle activation. However, whether the Hippo signaling pathway plays a role in the development of Ovarian Germline Stem Cells (OGSCs during physiological and pathological ovarian aging in mice is unknown. Methods: Mice at the age of 7 days (7D, or of 2, 10, or 20 months (2M, 10M, 20M and mice at 2M treated with TPT and CY/BUS drugs were selected as physiological and pathological ovarian aging models, respectively. Immunohistochemistry was used to assess the development of follicles, and the co-localization of genes characteristic of OGSCs with MST1, LATS2 and YAP1 was assessed by immunofluorescence, western blotting and real-time PCR methods. Results: The Hippo signal pathway and MVH/OCT4 genes were co-expressed in the mouse ovarian cortex. The level and co-localization of LATS2, MST1, MVH, and OCT4 were significantly decreased with increased age, but YAP1 was more prevalent in the mouse ovarian cortex of 2M mice than 7D mice and was not observed in 20M mice. Furthermore, YAP1, MVH, and OCT4 were gradually decreased after TPT and CY/BUS treatment, and LATS2 mRNA and protein up-regulation persisted in TPT- and CY/BUS-treated mice. However, the expression of MST1 was lower in the TPT and CY/BUS groups compared with the control group. In addition, pYAP1 protein showed the highest expression in the ovarian cortexes of 7D mice compared with 20M mice, and the value of pYAP1/YAP1 decreased from 7D to 20M. Moreover, pYAP1 decreased in the TPT- and CY/BUS-treated groups, but the value of pYAP1/YAP1 increased in these groups. Conclusion: Taken together, our results show that the Hippo signaling pathway is associated with the changes that take place in OGSCs during physiological and pathological

  11. Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jingyi Hou

    2016-01-01

    Full Text Available Synovium-derived mesenchymal stromal cells (SMSCs may play an important role in the pathogenesis of rheumatoid arthritis (RA and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs. Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications.

  12. Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway.

    Science.gov (United States)

    Lee, Hyun-Shik; Bong, Yong-Sik; Moore, Kathryn B; Soria, Kathleen; Moody, Sally A; Daar, Ira O

    2006-01-01

    An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.

  13. Effects of Inhibiting JAK on Invasion and Metastasis of the Human Breast Cancer Cells through ERK Signaling Transduction Pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Hong-fang Chen; Hua-yu Deng

    2009-01-01

    Objective: To explore the effects of Janus activated kinase (JAK) inhibitor AG490 on the phosphorylation of extracellular signal regulated protein kinase (ERK) in human breast cancer cells MDA-MB-231 and the roles of JAK in the invasion and metastasis of the human breast cancer cells through ERK signaling transduction pathways.Methods: MDA-MB-231 cells were treated with 20 (mol/L, 40 (mol/L, 80 (mol/L Janus kinase inhibitor AG490 for 24, 48 and 72 h. Proliferation and adhesion of MDA-MB-231 cells to matrigel were measured with MTT assay. When treated with 40 (mol/L AG490 for 24 h, the expressions of P-ERK and MMP-9 of cells were detected by Western-blot and invasion and metastasis of MDA-MB-231 cells were evaluated with transwell chamber.Results: After being treated with 20 (mol/L, 40 (mol/L, 80 (mol/L AG490 for 24, 48 and 72 h, the proliferation of MDA-MB-231 cells was inhibited in a dose-and time-dependent manner. MDA-MB-231 cells treated with 40 (mol/L AG490 for 30, 60, 90 and 120 min resulted in the increasing adhesion of cells to Matrigel in a time-dependent manner. However, capacity of adhesion in the group treated with AG490 was significantly decreased in comparison with the control group (P<0.01). The expression level of P-ERK and MMP-9 were decreased when treated with AG490. After treatment with 40 (mol/L AG490, in invasion assay, the number of cells in AG490 treated group to migrate to filter coated with Matrigel was reduced compared with control group (P<0.05). Meanwhile, in migration assay, the number of cells in AG490 treated group to migrate to filter was also decreased compared with control group (P<0.05).Conclusion: Our study indicates that JAK kinase could affect the activity of ERK signal transduction pathway through the phosphorylation of ERK. The inhibitory effects of JAK kinase on MMP-9 expression and invasion of breast cancer cells were associated with the down-regulation of the ERK signaling pathway.

  14. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy

    Science.gov (United States)

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-01-01

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5′ adenosine monophosphate-activated protein kinase, extracellular signal–regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical. PMID:28300756

  15. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  16. [Rhein lysinate induces apoptosis in breast cancer SK-Br-3 cells by inhibiting HER-2 signal pathway].

    Science.gov (United States)

    Lin, Ya-Jun; Huang, Yun-Hong; Zhen, Yong-Zhan; Liu, Xiu-Jun; Zhen, Yong-Su

    2008-11-01

    This study is to investigate the effect of rhein lysinate on inducing human breast cancer cell line SK-Br-3 apoptosis and the role of HER-2 signal pathway in the apoptosis. MTT assay was used to detect SK-Br-3 cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression and the protein phosphorylation of HER-2 signal pathway were detected by Western blotting. The level of HER-2 mRNA was detected by RT-PCR and the level of HER-2 expression was also detected by immunofluorescence cytochemical methods. The results showed that rhein lysinate remarkably inhibited breast cancer SK-Br-3 cell proliferation. The IC50 value for 48 h treatment was 85 micromol x L(-1). Apoptosis in SK-Br-3 cells was induced by rhein lysinate in a dose dependent manner. The protein expressions of HER-2, NF-KB, and the protein phosphorylation of HER-2 were downregulated, however the protein expression of p53 and p21 was upregulated after rhein lysinate treatment. The level of HER-2 mRNA decreased by using RT-PCR assay and the level of HER-2 expression was also decreased by using immunofluorescence cytochemical assay after rhein lysinate treatment. It can be concluded that rhein lysinate could inhibit SK-Br-3 cell proliferation and induce apoptosis. HER-2/NF-kappaB/p53/p21 signal pathway might be involved in this process. Rhein lysinate has a good prospect to be an adjuvant chemotherapeutic drug.

  17. The Role of MEKK3 Signaling Pathway in the Resistance of Breast Cancer Cells to TNF-(alpha)-Mediated Apoptosis

    Science.gov (United States)

    2005-05-01

    breast cancer cell lines and in primary breast cancer tissues (2-3). Activated signal transduction pathways including the mitogen-activated protein ...TNF-induced NF-kappaB activation. Nat Immunol 2: 620-4. 12. Qin, X.F., D.S. An, I.S. Chen, and D. Baltimore. 2003. Inhibiting HIV -1 infection in...human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5 . Proc Natl Acad Sci U S A 100: 183-8. 13. Huang, Q. Jianhua Yang

  18. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Science.gov (United States)

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  19. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    Science.gov (United States)

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  20. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Directory of Open Access Journals (Sweden)

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  1. ROLE OF PI3K-AKT-mTOR AND Wnt SIGNALING PATHWAYS IN G1-S TRANSITION OF CELL CYCLE IN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    LAKSHMIPATHI eVADLAKONDA

    2013-04-01

    Full Text Available The PI3K–Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR is a highly deregulated pathway in cancers. There is a reciprocal relation between the Akt phosphorylation and mTOR complexes. Akt phosphorylated at T308 activates mTORC1 by inhibition of the tuberous sclerosis complex (TSC1/2, where as mTORC2 is recognized as the kinase that phosphorylates Akt at S473. Recent developments in the research on regulatory mechanisms of autophagy places mTORC1 mediated inhibition of autophagy at the central position in activation of proliferation and survival pathways in cells. Autophagy is a negative regulator of Wnt signaling pathway and the downstream effectors of Wnt signaling pathway, cyclin D1 and the c-Myc, are the key players in initiation of cell cycle and regulation of the G1-S transition in cancer cells. Production of reaction oxygen species (ROS, a common feature of a cancer cell metabolism, activates several downstream targets like the transcription factors FoxO, which play key roles in promoting the progression of cell cycle. A model is presented on the role of PI3K -Akt - mTOR and Wnt pathways in regulation of the progression of cell cycle through Go-G1-and S phases.

  2. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Benoit Langlois

    Full Text Available BACKGROUND: The low-density lipoprotein receptor-related protein-1 (LRP-1 is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. METHODOLOGY/PRINCIPAL FINDINGS: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. CONCLUSIONS: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.

  3. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  4. Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Taissia G Popova

    Full Text Available Rift valley fever virus (RVFV infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK and downstream transcriptional factors [STAT1 (Y701, ATF2 (T69/71, MSK1 (S360 and CREB (S133]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46 correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473, along with phosphorylation of FOX 01/03 (T24/31 which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.

  5. WLS inhibits melanoma cell proliferation through the β-catenin signalling pathway and induces spontaneous metastasis.

    Science.gov (United States)

    Yang, Pei-Tzu; Anastas, Jamie N; Toroni, Rachel A; Shinohara, Michi M; Goodson, Jamie M; Bosserhoff, Anja K; Chien, Andy J; Moon, Randall T

    2012-12-01

    Elevated levels of nuclear β-catenin are associated with higher rates of survival in patients with melanoma, raising questions as to how ß-catenin is regulated in this context. In the present study, we investigated the formal possibility that the secretion of WNT ligands that stabilize ß-catenin may be regulated in melanoma and thus contributes to differences in ß-catenin levels. We find that WLS, a conserved transmembrane protein necessary for WNT secretion, is decreased in both melanoma cell lines and in patient tumours relative to skin and to benign nevi. Unexpectedly, reducing endogenous WLS with shRNAs in human melanoma cell lines promotes spontaneous lung metastasis in xenografts in mice and promotes cell proliferation in vitro. Conversely, overexpression of WLS inhibits cell proliferation in vitro. Activating β-catenin downstream of WNT secretion blocks the increased cell migration and proliferation observed in the presence of WLS shRNAs, while inhibiting WNT signalling rescues the growth defects induced by excess WLS. These data suggest that WLS functions as a negative regulator of melanoma proliferation and spontaneous metastasis by activating WNT/β-catenin signalling.

  6. Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway

    Directory of Open Access Journals (Sweden)

    Kang Y

    2016-12-01

    Full Text Available Yanting Kang,1,2,* Wanle Hu,3,* Encheng Bai,1,2 Hailun Zheng,1 Zhiguo Liu,1 Jianzhang Wu,1 Rong Jin,2 Chengguang Zhao,1 Guang Liang1 1Chemical Biology Research Center, School of Pharmaceutical Sciences, 2Department of Epidemiology, First Affiliated Hospital, 3Department of Coloproctology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China *These authors contributed equally to this work Abstract: Fluorouracil (5-FU is the most commonly used chemotherapeutic agent for gastric cancer (GC. However, the occurrence of resistance to 5-FU treatment poses a major problem for its clinical efficacy. In this study, we found that the NFκB-signaling pathway can mediate 5-FU resistance in GC cells. We developed a 5-FU-resistant GC cell line named SGCR/5-FU and found that the 5-FU-induced resistance increased cytosolic IκBα degradation and promoted NFκB nuclear translocation in GC cells. These findings were further confirmed by the activation of the NFκB survival-signaling pathway in clinical specimens. Curcumin, a natural compound, can reverse 5-FU resistance and inhibits proliferation in GC cells by downregulating the NFκB-signaling pathway. Moreover, it can also decrease the expression level of TNFα messenger RNA. Flow cytometry and Western blot analysis results showed that the combination of curcumin and 5-FU caused synergistic inhibition of growth and induction of potent apoptosis in the resistant cancer cell lines in vitro. In conclusion, our results demonstrate that the combination of 5-FU and curcumin could be further developed as a potential therapy for human GC. Keywords: 5-FU, curcumin, NFκB, drug resistance, gastric cancer

  7. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells.

    Science.gov (United States)

    Yi, Tingfang; Zhai, Bo; Yu, Yonghao; Kiyotsugu, Yoshikawa; Raschle, Thomas; Etzkorn, Manuel; Seo, Hee-Chan; Nagiec, Michal; Luna, Rafael E; Reinherz, Ellis L; Blenis, John; Gygi, Steven P; Wagner, Gerhard

    2014-05-27

    Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4-mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4-mediated phosphoproteome, including construction of kinase-substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.

  8. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells.

    Science.gov (United States)

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic; You, Hyung-Keun

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway.

  9. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Directory of Open Access Journals (Sweden)

    Binod Kumar

    2016-11-01

    Full Text Available Kaposi’s sarcoma associated herpesvirus (KSHV is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS, integrins (α3β1, αVβ3 and αVβ5, and EphA2 receptor tyrosine kinase (EphA2R. This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR, inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of

  10. KSHV Entry and Trafficking in Target Cells—Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics

    Science.gov (United States)

    Kumar, Binod; Chandran, Bala

    2016-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) is etiologically associated with human endothelial cell hyperplastic Kaposi’s sarcoma and B-cell primary effusion lymphoma. KSHV infection of adherent endothelial and fibroblast cells are used as in vitro models for infection and KSHV enters these cells by host membrane bleb and actin mediated macropinocytosis or clathrin endocytosis pathways, respectively. Infection in endothelial and fibroblast cells is initiated by the interactions between multiple viral envelope glycoproteins and cell surface associated heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), and EphA2 receptor tyrosine kinase (EphA2R). This review summarizes the accumulated studies demonstrating that KSHV manipulates the host signal pathways to enter and traffic in the cytoplasm of the target cells, to deliver the viral genome into the nucleus, and initiate viral gene expression. KSHV interactions with the cell surface receptors is the key platform for the manipulations of host signal pathways which results in the simultaneous induction of FAK, Src, PI3-K, Rho-GTPase, ROS, Dia-2, PKC ζ, c-Cbl, CIB1, Crk, p130Cas and GEF-C3G signal and adaptor molecules that play critical roles in the modulation of membrane and actin dynamics, and in the various steps of the early stages of infection such as entry and trafficking towards the nucleus. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins are also recruited to assist in viral entry and trafficking. In addition, KSHV interactions with the cell surface receptors also induces the host transcription factors NF-κB, ERK1/2, and Nrf2 early during infection to initiate and modulate viral and host gene expression. Nuclear delivery of the viral dsDNA genome is immediately followed by the host innate responses such as the DNA damage response (DDR), inflammasome and interferon responses. Overall, these studies form the initial framework for further studies of simultaneous targeting of

  11. Expression of conserved signalling pathway genes during spontaneous vascular differentiation of R1 embryonic stem cells and in Py-4-1 endothelial cells

    Indian Academy of Sciences (India)

    Kavitha Siva; K Gokul; Maneesha S Inamdar

    2007-12-01

    Embryonic stem (ES) cells are an invaluable model for identifying subtle phenotypes as well as severe outcomes of perturbing gene function that may otherwise result in lethality. However, though ES cells of different origins are regarded as equally pluripotent, their in vitro differentiation potential varies, suggesting that their response to developmental signals is different. The R1 cell line is widely used for gene manipulation due to its good growth characteristics and highly efficient germline transmission. Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently used theme, resulting in context-dependent outcomes during development. Perturbing these pathways can result in severe and possibly lethal developmental phenotypes often due to primary cardiovascular defects. We report that during early spontaneous differentiation of R1 cells, Notch-1 and the Wnt target Brachyury are active whereas the Shh receptor is not detected. This expression pattern is similar to that seen in a mouse endothelial cell line. This temporal study of expression of genes representative of all three pathways in ES cell differentiation will aid in further analysis of cell signalling during vascular development.

  12. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  13. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway.

    Science.gov (United States)

    Wen, Jing; Zhao, Yuyan; Guo, Lei

    2016-01-01

    Orexins are a class of peptides which have a potent influence on a broad variety of cancer cells. Autophagy is closely associated with tumors; however, its function is not yet completely understood. In this study, we aimed to determine whether orexin A induces autophagy in HCT‑116 human colon cancer cells and to elucidate the molecular mechanisms involved. For this purpose, HCT‑116 cells were treated with orexin A, and cell viability was then measured by MTT assay, and apoptosis was determined by flow cytometry. The expression levels of autophagy‑related proteins were measured by western blot analysis. Quantitative analysis of autophagy following acridine orange (AO) staining was performed using fluorescence microscopy, and cellular morphology was observed under a transmission electron microscope. In addition, the HCT‑116 cells were treated with the extracellular signal‑regulated kinase (ERK) inhibitor, U0126, or the autophagy inhibitor, chloroquine, in combination with orexin A in order to examine the activation of ERK. We found that orexin A significantly inhibited the viability of the HCT‑116 cells. Both autophagy and apoptosis were activated during the orexin A‑induced death of HCT‑116 cells. When the HCT‑116 cells were treated with orexin A for 24 h, an accumulation of punctate microtubule-associated protein-1 light chain 3 (LC3) and an increase in LC3‑Ⅱ protein levels were also detected, indicating the activation of autophagy. Moreover, orexin A upregulated ERK phosphorylation; however, U0126 or chloroquine abrogated ERK phosphorylation and decreased autophagy, compared to treatment with orexin A alone. Therefore, our findings demonstratedm that orexin A induced autophagy through the ERK pathway in HCT‑116 human colon cancer cells. The inhibition of autophagy may thus prove to be an effective strategy for enhancing the antitumor potential of orexin A as a treatment for colon cancer.

  14. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway

    Institute of Scientific and Technical Information of China (English)

    Jianhui LIU; Fei YIN; Lixia GUO; Xiaohong DENG; Yinhe HU

    2009-01-01

    Aim:Oxidative stress plays a critical role in the pathogenic cascade leading to neuronal degeneration in AD.Consequently,the induction of endogenous antioxidative proteins by antioxidants seems to be a very reasonable strategy for delaying the disease's progression.In previous work,we identified the neurotrophic and neuroprotective effects of geniposide,which result from the activation of glucagon-like peptide 1 receptor (GLP-1R).In this study,we explore the role of PI3 kinase sig-naling pathway in the neuroprotection of geniposide in PC12 cells.Methods: Cell viability was determined by MTr assay.Apoptosis was detected by Hoechst and PI double staining.The protein expression of Bcl-2 and phosphorylation of Akt308,Akt473,GSK-3β,and PDK1 was measured by Western blot.Results: Geniposide induced the expression of the antiapoptotic protein Bcl-2,which inhibited apoptosis in PC12 cells induced by H2O2,and this effect could be inhibited by preincubation with LY294002,a selective inhibitor of PI3K.Further-more,geniposide enhanced the phosphorylation of Akt308,Akt473,GSK-3β and PDK1 under conditions of oxidative stress.Conclusion: These results demonstrate that the PI3K signaling pathway is involved in the neuroprotection of geniposide in PC12 cells against the oxidative damage induced by H202 in PC12 cells.

  15. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer.

    Science.gov (United States)

    Zheng, Lu; Gong, Wei; Liang, Ping; Huang, XiaoBing; You, Nan; Han, Ke Qiang; Li, Yu Ming; Li, Jing

    2014-05-01

    This study aims to investigate effects of alpha-fetoprotein (AFP)-activated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on hepatocellular carcinoma cell proliferation. Active cirrhosis patients after hepatitis B infection (n = 20) and viral hepatitis patients with hepatocellular carcinoma (HCC) (n = 20) were selected as the subjects of the present study. Another 20 healthy subjects were selected as the control group. The serum AFP expression and liver tissue PI3K and Akt gene mRNA expression were detected. The hepatoma cell model HepG2 which had a stable expression of AFP gene was used. Real-time quantitative PCR and Western blot and other methods were used to analyze the intracellular PI3K and Akt protein levels. Compared with control group and cirrhosis group, the serum AFP levels in HCC group significantly increased, and the tissue PI3K and Akt mRNA expression also significantly increased. HepG2 cells were intervened using AFP, in which the PIK and Akt protein expression significantly increased. After intervention by use of AFP monoclonal antibodies or LY294002 inhibitor, the PIK and Akt protein expression in HepG2 cell was significantly decreased (P AFP can promote the proliferation of hepatoma cells via activation of PI3K/Akt signaling pathway.

  16. Matrine reduces the proliferation and invasion of colorectal cancer cells via reducing the activity of p38 signaling pathway.

    Science.gov (United States)

    Ren, Hongtao; Zhang, Shuqun; Ma, Hongbing; Wang, Yali; Liu, Di; Wang, Xijing; Wang, Zhongwei

    2014-12-01

    Matrine has been used in anti-inflammatory and anti-cancer therapies for a long time. However, the anti-metastatic effect and related mechanism(s) in colorectal cancer (CRC) are still unclear. In this study, we investigated whether the administration of matrine could inhibit the proliferation, motility, and invasion of human CRC cells via regulating p38 signaling pathway. Results showed that matrine inhibited migration and invasion of CRC cells in vitro and in vivo. Additionally, after being treated with matrine for 24 h, the expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 as well as proteinase activity in CRC cells were reduced in a dose-dependent manner. Moreover, matrine reduced the phosphorylation level of p38 obviously. Combined treatment with p38 inhibitor (SB203580) and matrine resulted in a synergistic reduction of invasion as well as MMP-2/-9 expression in CRC cells. It was also found that matrine inhibited the proliferation and metastasis of CRC tumor in vivo. In conclusion, p38 signaling pathway may involve in matrine's inhibitory effects on migration and invasion of CRC cells by reducing the expression of MMP-2/-9, suggesting that matrine may be a potential therapeutic agent for CRC.

  17. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Han, Sheng; Peng, Rui; Wang, Xing; Yang, Xin-Xiang; Yang, Ren-Jie; Jiao, Chen-Yu; Ding, Dong; Ji, Gu-Wei; Li, Xiang-Cheng, E-mail: drxcli@njmu.edu.cn

    2015-03-06

    Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Taken together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC. - Highlights: • FAM83D is up-regulated in HCC tissues and cell lines. • Ectopic expression of FAM83D promotes HCC cell proliferation and colony formation. • Depletion of FAM83D inhibits HCC cell proliferation and colony formation. • FAM83D activates the MEK/ERK signaling pathway in HCC.

  18. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway.

    Science.gov (United States)

    Xue, Di; Ma, Yan; Li, Min; Li, Yanan; Luo, Haixia; Liu, Xiaoming; Wang, Yujiong

    2015-01-15

    Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.

  19. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway

    Science.gov (United States)

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2016-01-01

    Carbon nanomaterials are becoming increasingly significant in biomedical fields since they exhibit exceptional physicochemical and biocompatible properties. Today, the stem cells offer potentially new therapeutic approaches in tissue engineering and regenerative medicine. However, the induction of differentiation into specific lineages remains challenging, which provoked us to explore the biomedical applications of carbon nanomaterials in stem cells. In this study, we investigated the interactions between graphene/single-walled carbon nanotube (G/SWCNT) hybrids and rat mesenchymal stem cells (rMSCs) and focused on the proliferation and differentiation of rMSCs treated with G/SWCNT hybrids. Cell viability and morphology were evaluated using cell counting kit-8 assay and immunofluorescence staining, respectively. Osteogenic differentiation evaluated by alkaline phosphatase activity of MSCs proved to be higher after treatment with G/SWCNT hybrids, and the mineralized matrix nodule formation was also enhanced. In addition, the expression levels of osteogenic-associated genes were upregulated, while the adipocyte-specific markers were downregulated. Consistent with these results, we illustrated that the effect of G/SWCNT hybrids on the process of osteogenic differentiation of rMSCs can be modulated by activating the p38 signaling pathway and inhibiting the extracellular signal-regulated kinase 1/2 pathway. Nevertheless, our study suggests that carbon nanomaterials offer a promising platform for regenerative medicine in the near future.

  20. Roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Kun Wu; Yao Li; Yan Zhao; Yu-Juan Shan; Wei Xia; Wei-Ping Yu; Lan Zhao

    2002-01-01

    AIM: To investigate the roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS: Human gastric cancer SGC-7901 cells were treated with VES at 5, 10, 20 mg@L-1, succinic acid and vitamin E as vehicle control and condition media only as untreated (UT) control. Apoptotic morphology was observed by DAPI staining. Western blot analysis was applied to measure the expression of Fas, FADD and caspase-8 proteins. After the cells were transiently transfected with Fas and FADD antisense oligonucleotides, respectively, caspase-8 activity was determined by flurometric method.RESULTS: The morphologically apoptotic changes were observed after VES treatment by DAPI staining. 23.7 % and 89.6 % apoptosis occurred after 24 h and 48 h of 20 mg@L-1 VES treatment, respectively. The protein levels of Fas, FADD and caspase-8 were evidently increased in a dose-dependent manner after 24 h of VES treatment. The blockage of Fas by transfection with Fas antisense oligonucleotides obviously inhibited the expression of FADD protein. After SGC-7901 cells were transfected with Fas and FADD antisense oligonucleotides, caspase-8 activity was obviously decreased (P<0.01), whereas Fas blocked more than FADD.CONCLUSION: VES-induced apoptosis in human gastric cancer SGC-7901 cells involves Fas signaling pathway including the interaction of Fas, FADD and caspase-8.

  1. A Novel Role for Matrix Metalloproteinases In Regulating Mammary Stem Cell Function via the Wnt Signaling Pathway

    Science.gov (United States)

    Kessenbrock, Kai; Dijkgraaf, Gerrit J. P.; Lawson, Devon A.; Littlepage, Laurie E.; Shahi, Payam; Pieper, Ursula; Werb, Zena

    2013-01-01

    SUMMARY The microenvironment provides cues that control the behavior of epithelial stem and progenitor cells. Here, we identify matrix metalloproteinase-3 (MMP3) as a novel regulator of Wnt signaling and mammary stem cell (MaSC) activity. We show that MMP3 overexpression promotes hyperplastic epithelial growth, surprisingly, in a non-proteolytic manner via its hemopexin (HPX) domain. We demonstrate that MMP3-HPX specifically binds and inactivates Wnt5b, a non-canonical Wnt ligand that inhibits canonical Wnt signaling and mammary epithelial outgrowth in vivo. Indeed, transplants overexpressing MMP3 display increased canonical Wnt signaling, demonstrating that MMP3 is an extracellular regulator of the Wnt signaling pathway. MMP3-deficient mice exhibit decreased MaSC populations and diminished mammary reconstituting activity, while MMP3 overexpression elevates MaSC function indicating that MMP3 is necessary for the maintenance of MaSCs. Our study reveals a novel mechanism by a microenvironmental protease that regulates Wnt signaling and impacts adult epithelial stem cell function. PMID:23871604

  2. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  3. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid.

    Science.gov (United States)

    Quintal-Tun, Fausto; Muñoz-Sánchez, J Armando; Ramos-Díaz, Ana; Escamilla-Bencomo, Armando; Martínez-Estévez, Manuel; Exley, Christopher; Hernández-Sotomayor, S M Teresa

    2007-02-01

    Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.

  4. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    Science.gov (United States)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles

  5. Perichondrium mesenchymal stem cells inhibit the growth of breast cancer cells via the DKK-1/Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Li, Min; Cai, Hui; Yang, Ya; Zhang, Jia; Sun, Kai; Yan, Yan; Qu, Hangying; Wang, Weiwei; Wang, Jiansheng; Duan, Xiaoyi

    2016-08-01

    In recent years, mesenchymal stem cells (MSCs), which possess the ability to specifically home to tumor sites, with the potential of multi-directional differentiation and low immunogenicity, have been reported to inhibit the growth of various types of tumors. In the present study, we isolated MSCs from the rib perichondrium (PMSCs). By comparing PMSCs with bone marrow‑derived mesenchymal stem cells (BMSCs), we demonstrated that PMSCs present biological characteristics similar to those of BMSCs. Furthermore, we explored the effect and antitumor mechanism of PMSCs in rat SHZ-88 breast cancer cells. The growth, migration and invasion of the SHZ-88 cells were significantly inhibited, and the Wnt/β-catenin pathway and its target genes were downregulated in the SHZ-88 cells by PMSC-conditioned medium. The expression level of dickkopf-1 (DKK-1) was higher in the PMSCs than that noted in the SHZ-88 cells. Neutralization of DKK-1 in the PMSC‑conditioned medium attenuated the inhibitory effects of PMSCs on SHZ-88 cells. Therefore, PMSC-secreted DKK-1 is involved in the inhibition of SHZ-88 cell growth, migration and invasion, via the Wnt/β‑catenin signaling pathway. In addition, we demonstrated that PMSCs inhibited the growth of breast cancer in vivo and prolonged the survival time of tumor‑bearing rats. PMSCs inhibited the growth of transplanted breast tumors through the Wnt/β-catenin signaling pathway. In conclusion, our data confirmed that MSCs derived from the perichondrium present biological characteristics similar to those of BMSCs and inhibit the growth of breast cancer cells through the Wnt/β-catenin signaling pathway in vitro and in vivo. DKK-1 secreted by PMSCs played a vital role in controlling the Wnt/β-catenin signaling pathway in breast cancer.

  6. LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway

    Science.gov (United States)

    Xiao, Deshen; Lai, Weiwei; Pan, Yu; Jiang, Yiqun; Chen, Ling; Mao, Chao; Zhou, Jian; Xi, Sichuan; Cao, Ya; Liu, Shuang; Tao, Yongguang

    2016-01-01

    Basal cell carcinomas (BCC) of the skin are the most common of human cancers. The noncanonical NF-κB pathway is dependent on IKKα. However, the role of IKKα in BCC has not been elucidated. We show here that IKKα is expressed in the nucleus in BCC and non-malignant diseases. Nuclear IKKα could directly bind to the promoters of inflammation factors and LGR5, a stem cell marker, in turn, upregulating LGR5 expression through activation of STAT3 signaling pathway during cancer progression. Activation of STAT3 signaling pathway contributes LGR5 expression in dependent of IKKα after the interplay between STAT3 and IKKα. Meanwhile knockdown of IKKα inhibits tumor growth and transition of epithelial stage to mescheme stage. Taken together, we demonstrate that IKKα functions as a bone fide chromatin regulator in BCC, whose promoted expression contributes to oncogenic transformation via promoting expression stemness- and inflammatory- related genes. Our finding reveals a novel viewpoint for how IKKα may involve in BCCs tumor progression in the inflammatory microenvironment. PMID:27049829

  7. Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kyo Won Seo

    Full Text Available Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC, is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS. When VSMC was stimulated with MS (0-10% strain, 60 cycles/min, both production and gelatinolytic activity of MMP-2, but not MMP-9, were increased in a force-dependent manner. MS-enhanced MMP-2 expression and activity were inhibited by molecular inhibition of Akt using Akt siRNA as well as by PI3K/Akt inhibitors, LY293002 and AI, but not by MAPK inhibitors such as PD98059, SP600125 and SB203580. MS also increased Akt phosphorylation in VSMC, which was attenuated by AG1295, a PDGF receptor (PDGFR inhibitor, but not by inhibitors for other receptor tyrosine kinase including EGF, IGF, and FGF receptors. Although MS activated PDGFR-α as well as PDGFR-β in VSMC, MS-induced Akt phosphorylation was inhibited by molecular deletion of PDGFR-β using siRNA, but not by inhibition of PDGFR-α. Collectively, our data indicate that MS induces MMP-2 production in VSMC via activation of Akt pathway, that is mediated by activation of PDGFR-β signaling pathways.

  8. A Pathway Switch Directs BAFF Signaling to Distinct NFκB Transcription Factors in Maturing and Proliferating B Cells

    Directory of Open Access Journals (Sweden)

    Jonathan V. Almaden

    2014-12-01

    Full Text Available BAFF, an activator of the noncanonical NFκB pathway, provides critical survival signals during B cell maturation and contributes to B cell proliferation. We found that the NFκB family member RelB is required ex vivo for B cell maturation, but cRel is required for proliferation. Combined molecular network modeling and experimentation revealed Nfkb2 p100 as a pathway switch; at moderate p100 synthesis rates in maturing B cells, BAFF fully utilizes p100 to generate the RelB:p52 dimer, whereas at high synthesis rates, p100 assembles into multimeric IκBsome complexes, which BAFF neutralizes in order to potentiate cRel activity and B cell expansion. Indeed, moderation of p100 expression or disruption of IκBsome assembly circumvented the BAFF requirement for full B cell expansion. Our studies emphasize the importance of p100 in determining distinct NFκB network states during B cell biology, which causes BAFF to have context-dependent functional consequences.

  9. Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines.

    Directory of Open Access Journals (Sweden)

    Elena R Virtue

    Full Text Available Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses. Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system.

  10. The Mammary Epithelial Cell Secretome and its Regulation by Signal Transduction Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Waters, Katrina M.; Kathmann, Loel E.; Camp, David G.; Wiley, H. S.; Smith, Richard D.; Thrall, Brian D.

    2008-02-01

    Extracellular proteins released by mammary epithelial cells are critical mediators of cell communication, proliferation and organization, yet the actual spectrum of proteins released by any given cell (the secretome) is poorly characterized. To define the set of proteins secreted by human mammary epithelial cells (HMEC), we combined analytical and computational approaches to define a secretome protein set based upon probable biological significance. Analysis of HMEC-conditioned medium by liquid chromatography-mass spectrometry resulted in identification of 889 unique proteins, of which 151 were found to be specifically enriched in the extracellular compartment when compared with a database of proteins expressed in whole HMEC lysates. Additional high mass accuracy analysis revealed 36 proteins whose extracellular abundance increased after treatment with phorbol ester (PMA), a protein kinase C agonist and general secretagogue. Many of the PMA stimulated proteins have been reported to be aberrantly expressed in human cancers and appear to be co-regulated as multigene clusters. By inhibiting PMA-mediated transactivation of the epidermal growth factor receptor (EGFR), a pathway critically required for normal HMEC function, we found that the secretion of specific matrix metalloproteases were also coordinately regulated through EGFR transactivation. This study demonstrates a tiered strategy by which extracellular proteins can be identified and progressively assigned to classes of increasing confidence and regulatory importance.

  11. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  12. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.

    Science.gov (United States)

    Morris, Melody K; Saez-Rodriguez, Julio; Clarke, David C; Sorger, Peter K; Lauffenburger, Douglas A

    2011-03-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.

  13. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.

    Directory of Open Access Journals (Sweden)

    Melody K Morris

    2011-03-01

    Full Text Available Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL, converts a prior knowledge network (obtained from literature or interactome databases into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a generating experimentally testable biological hypotheses concerning pathway crosstalk, (b establishing capability for quantitative prediction of protein activity, and (c prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.

  14. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways.

    Science.gov (United States)

    Nie, W; Deters, A M

    2013-01-01

    Xyloglucans (XGs) of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw) and copper complex precipitation (TSc). Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT) and fibroblasts (NHDF) in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  15. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  16. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway

    Science.gov (United States)

    Wang, Ye; Yang, Qi-Wei; Yang, Qing; Zhou, Tie; Shi, Min-Feng; Sun, Chen-Xia; Gao, Xiu-Xia; Cheng, Yan-Qiong; Cui, Xin-Gang; Sun, Ying-Hao

    2017-01-01

    Disordered copper metabolism plays a critical role in the development of various cancers. As a nanomedicine containing copper, cuprous oxide nanoparticles (CONPs) exert ideal antitumor pharmacological effects in vitro and in vivo. Prostate cancer is a frequently diagnosed male malignancy prone to relapse, and castration resistance is the main reason for endocrine therapy failure. However, whether CONPs have the potential to treat castration-resistant prostate cancer is still unknown. Here, using the castration-resistant PC-3 human prostate cancer cell line as a model, we report that CONPs can selectively induce apoptosis and inhibit the proliferation of cancer cells in vitro and in vivo without affecting normal prostate epithelial cells. CONPs can also attenuate the stemness of cancer cells and inhibit the Wnt signaling pathway, both of which highlight the great potential of CONPs as a new clinical castration-resistant prostate cancer therapy.

  17. Spinosad induces autophagy of Spodoptera frugiperda Sf9 cells and the activation of AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Yang, Mingjun; Hao, Youwu; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-05-01

    Spinosad, a high-selectivity neural toxin, has been widely used in agricultural production. However, the mode of action of spinosad on insect non-neural cells is not yet clear and hence requires further investigation. Therefore, to reveal the cytotoxic mechanisms of spinosad, we investigated whether and how it can induce autophagic cell death. After treating Sf9 cells with spinosad, the resulting autophagosome was observed by transmission electron microscopy and monodansylcadaverine staining. Interestingly, spinosad induced the accumulation of Beclin-1, degradation of p62, and intensification of LC3-B formation and translocation and thus autophagy, whereas, 3-MA treatment reverted the phenotype. Under ATP depletion conditions, spinosad induced autophagy of Sf9 cells and activation of the AMPK/mTOR signaling pathway.

  18. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    Science.gov (United States)

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-05

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, PMigration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis.

  19. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway.

    Science.gov (United States)

    Amonyingcharoen, Sumet; Suriyo, Tawit; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1-40 µM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth.

  20. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li

    2013-01-01

    Full Text Available Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP cation channel superfamily are candidate calcium influx channels. NFκB activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1 in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca2+]i in HuH-7 cells. The increase in [Ca2+]i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca2+]i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NFκB activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NFκB activation was dependent on the calcium gradient and TRPV1. The rapid NFκB activation by S-[6]-gingerol was associated with an increase in mRNA levels of NFκB-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins.

  1. The associated regulators and signal pathway in rILl-16/CD4 mediated growth regulation in Jurkat cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    IL-16 is a ligand and chemotactic factor for CD4+ T cells. IL-16 inhibits the CD3 mediated lymphocyteactivation and proliferation. The effects of IL-16 on the target cells are dependent on the cell type, thepresence of co-activators etc. To understand the regulation function and mechanism of IL-16 on targetcells, we used a 130 a.a. recombinant IL-16 to study its effects on the growth of Jurkat T leukemia cellsin vitro. We found that the rIL-16 stimulated the proliferation of Jurkat cells at low dose (10-9M), butinhibited the growth of the cells at higher concentration (10-5M). Results showed that 10-5 M of rIL-16treatment induced an enhanced apoptosis in Jurkat cells. The treatment blocked the expression of FasL, butup-regulated the c-myc and Bid expression in the cells. Pre-treatment of PKC inhibitor or MEK1 inhibitormarkedly increased or decreased the rIL-16 induced growth-inhibiting effects on Jurkat cells, respectively.The results suggested that the rIL-16 might be a regulator for the growth or apoptosis of Jurkat cells ata dose-dependent manner. The growth-inhibiting effects of rIL-16 might be Fas/FasL independent, but,associated with the activation of PKC, up-regulated expression of c-Myc and Bid, and the participation ofthe ERK signal pathway in Jurkat cells.

  2. Activation of the FGF signaling pathway and subsequent induction of mesenchymal stem cell differentiation by inorganic polyphosphate

    Directory of Open Access Journals (Sweden)

    Yumi Kawazoe, Shinichi Katoh, Yuichiro Onodera, Takao Kohgo, Masanobu Shindoh, Toshikazu Shiba

    2008-01-01

    Full Text Available Inorganic polyphosphate [poly(P] is a biopolymer existing in almost all cells and tissues, although its biological functions in higher eukaryotes have not been completely elucidated. We previously demonstrated that poly(P enhances the function of fibroblast growth factors (FGFs by stabilizing them and strengthening the affinity between FGFs and their cell surface receptors. Since FGFs play crucial roles in bone regeneration, we further investigated the effect of poly(P on the cell differentiation of human stem cells via FGF signaling systems. Human dental pulp cells (HDPCs isolated from human dental pulp show the characteristics of multipotent mesenchymal stem cells (MSCs. HDPCs secreted FGFs and the proliferation of HDPCs was shown to be enhanced by treatment with poly(P. Cell surface receptor-bound FGF-2 was stably maintained for more than 40 hours in the presence of poly(P. The phosphorylation of ERK1/2 was also enhanced by poly(P. The effect of poly(P on the osteogenic differentiation of HDPCs and human MSCs (hMSCs were also investigated. After 5 days of treatment with poly(P, type-I collagen expression of both cell types was enhanced. The C-terminal peptide of type-I collagen was also released at higher levels in poly(P-treated HDPCs. Microarray analysis showed that expression of matrix metalloproteinase-1 (MMP1, osteopontin (OPN, osteocalcin (OC and osteoprotegerin was induced in both cell types by poly(P. Furthermore, induced expression of MMP1, OPN and OC genes in both cells was confirmed by real-time PCR. Calcification of both cell types was clearly observed by alizarin red staining following treatment with poly(P. The results suggest that the activation of the FGF signaling pathway by poly(P induces both proliferation and mineralization of stem cells.

  3. Trauma-hemorrhagic shock-induced pulmonary epithelial and endothelial cell injury utilizes different programmed cell death signaling pathways.

    Science.gov (United States)

    Barlos, Dimtrios; Deitch, Edwin A; Watkins, Anthony C; Caputo, Frank J; Lu, Qi; Abungu, Billy; Colorado, Iriana; Xu, Da-Zhong; Feinman, Rena

    2009-03-01

    Intestinal ischemia after trauma-hemorrhagic shock (T/HS) results in gut barrier dysfunction and the production/release of biologically active and tissue injurious factors in the mesenteric lymph, which, in turn, causes acute lung injury and a systemic inflammatory state. Since T/HS-induced lung injury is associated with pulmonary endothelial and epithelial cell programmed cell death (PCD) and was abrogated by mesenteric lymph duct ligation, we sought to investigate the cellular pathways involved. Compared with trauma-sham shock (T/SS) rats, a significant increase in caspase-3 and M30 expression was detected in the pulmonary epithelial cells undergoing PCD, whereas apoptosis-inducing factor (AIF), but not caspase-3, was detected in endothelial cells undergoing PCD. This AIF-mediated pulmonary endothelial PCD response was validated in an in situ femoral vein assay where endothelial cells were found to express AIF but not caspase-3. To complement these studies, human umbilical vein endothelial cell (HUVEC), human lung microvascular endothelial cell (HLMEC), and human alveolar type II epithelial cell (A549) lines were used as in vitro models. T/HS lymph induced the nuclear translocation of AIF in HUVEC and HLMEC, and caspase inhibition in these cells did not afford any cytoprotection. For proof of principle, AIF silencing in HUVEC reversed the cytotoxic effects of T/HS on cell viability and DNA fragmentation. In A549 cells, T/HS lymph activated caspase-3-mediated apoptosis, which was partially abrogated by N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). Additionally, T/HS lymph did not cause the nuclear translocation of AIF in A549 cells. Collectively, T/HS-induced pulmonary endothelial PCD occurs via an AIF-dependent caspase-independent pathway, whereas epithelial cells undergo apoptosis by a caspase-dependent pathway.

  4. A comparison of the signal pathways between the TNF alpha- and oridonin-induced murine L929 fibrosarcoma cell death.

    Directory of Open Access Journals (Sweden)

    Huang,Jian

    2005-12-01

    Full Text Available

    Oridonin, an active component isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, we compared the signal transduction pathways between TNFalpha-and oridonin-induced L929 cell death. Oridonin and TNFalpha initiated apoptotic morphologic changes, but DNA fragmentation was found in TNFalpha-treated L929 cells but not in oridonin-treated ones. The pan-caspase inhibitor (z-VAD-fmk, caspase-8 inhibitor (z-IETD-fmk and caspase-3 inhibitor (z-DEVD-fmk augmented oridonin-and TNFalpha-induced cell death. However, the caspase-9 inhibitor (z-LEHD-fmk only increased oridonin-induced L929 cell death. Moreover, poly (ADPribose polymerase (PARP was cleaved in oridonin-treated L929 cells but not in the TNFalpha-treated groups, and the caspase-3 inhibitor (z-DEVD-fmk failed to inhibit PARP cleavage. These results showed that only oridonin-induced L929 cell death required PARP degradation in a caspase-3 independent manner. In addition, oridonin increased the ratio of Bax/Bcl-2 protein expression, but TNFalpha did not. TNFalpha induced p38 and ERK activation, whereas oridonin triggered only ERK activation. We also investigated the effect of oridonin on intracellular TNFalpha expression, and found that oridonin augmented endogenous pro-TNFalpha expression and its upstream protein IkB phosphorylation. These results indicated that although oridonin promoted endogenous pro-TNFalpha expression, a great difference existed between the signal pathways through which TNFalpha-and oridonin-induced cell death.

  5. The role of the SLAM-SAP signaling pathway in the modulation of CD4+ T cell responses.

    Science.gov (United States)

    Vilar, M L L V; Frutuoso, M S; Arruda, S M; Lima, D M; Bezerra, C S; Pompeu, M M L

    2011-04-01

    The signaling lymphocytic activation molecule (SLAM), present on the surface of hematopoietic cells, can regulate some events of the immune responses. This modulatory action is associated with the capacity of SLAM to interact with an intracytoplasmic adapter, such as SLAM-associated protein (SAP). SLAM is constitutively expressed in most of these cells, is rapidly induced after antigenic or inflammatory stimuli, and participates in the immunological synapse. Defects in the function of the SLAM-SAP pathway contribute to immunological abnormalities, resulting in autoimmune diseases, tumors of the lymphoid tissues and inadequate responses to infectious agents. Initially, the role of SLAM was investigated using an anti-SLAM monoclonal antibody (α-SLAM mAb) identified as an agonist of the SLAM-SAP pathway, which could induce the production of interferon-γ and could redirect the immune response to a T helper 1 (Th1) cell profile. However, in this review we postulate that the SLAM-SAP pathway primarily induces a Th2 response and secondarily suppresses the Th1 response.

  6. Effects of eccentric exercise on toll-like receptor 4 signaling pathway in peripheral blood mononuclear cells.

    Science.gov (United States)

    Fernandez-Gonzalo, Rodrigo; De Paz, José A; Rodriguez-Miguelez, Paula; Cuevas, María J; González-Gallego, Javier

    2012-06-01

    This study aimed to investigate the response of the toll-like receptor 4 (TLR4) signaling pathway to an acute bout of eccentric exercise, and to assess whether eccentric training attenuated the effects induced by acute eccentric exercise. Twenty men (22.4 ± 0.5 yr) were divided into a control group (CG, n = 8) and a training group (TG, n = 12). Both groups performed two acute eccentric bouts on a squat machine in a 9-wk interval. During this time, TG followed a 6-wk eccentric training program (3 session/wk; 3-5 sets of 10 repetitions with loads ranging between the 40 and 50% of maximal isometric voluntary contraction). CD14, TLR4, and TNF-α mRNA levels, and CD14, TLR4, myeloid differentiation factor 88, tumor necrosis factor receptor-associated factor 6, TIR-domain-containing adapter-inducing interferon-β, phospho-IκB kinases, phospho-IκB, phospho-ERK-1/2, and TNF-α protein concentration were measured in peripheral blood mononuclear cells, before, immediately, and 2 h after each eccentric bout. The first acute eccentric bout triggered a proinflammatory response mediated by an upregulation of all of the factors measured within the TLR4 signaling pathway. Following the training period and after the second acute bout, CG showed a similar proinflammatory response than that seen after the first bout. However, the eccentric training intervention decreased significantly the protein concentration of all factors analyzed in TG compared with results obtained after the first bout. These results suggest that the TLR4-signaling pathway plays a critical role in the proinflammatory response seen after acute eccentric exercise. This response was attenuated after an eccentric training program through myeloid differentiation factor 88-dependent and -independent pathways.

  7. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  8. Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 "Don't Eat Me" Signals.

    Science.gov (United States)

    McCracken, Melissa N; Cha, Adriel C; Weissman, Irving L

    2015-08-15

    Recent advances with immunotherapy agents for the treatment of cancer have provided remarkable, and in some cases, curative results. Our laboratory has identified CD47 as an important "don't eat me" signal expressed on malignant cells. Blockade of the CD47:SIRP-α axis between tumor cells and innate immune cells (monocytes, macrophages, and dendritic cells) increases tumor cell phagocytosis in both solid tumors (including, but not limited to, bladder, breast, colon, lung, and pancreatic) and hematologic malignancies. These phagocytic innate cells are also professional antigen-presenting cells (APC), providing a link from innate to adaptive antitumor immunity. Preliminary studies have demonstrated that APCs present antigens from phagocytosed tumor cells, causing T-cell activation. Therefore, agents that block the CD47:SIRP-α engagement are attractive therapeutic targets as a monotherapy or in combination with additional immune-modulating agents for activating antitumor T cells in vivo.

  9. Immunohistochemical analysis of the mechanistic target of rapamycin and hypoxia signalling pathways in basal cell carcinoma and trichoepithelioma.

    Directory of Open Access Journals (Sweden)

    Tjinta Brinkhuizen

    Full Text Available BACKGROUND: Basal cell carcinoma (BCC is the most common cancer in Caucasians. Trichoepithelioma (TE is a benign neoplasm that strongly resembles BCC. Both are hair follicle (HF tumours. HFs are hypoxic microenvironments, therefore we hypothesized that hypoxia-induced signalling pathways could be involved in BCC and TE as they are in other human malignancies. Hypoxia-inducible factor 1 (HIF1 and mechanistic/mammalian target of rapamycin (mTOR are key players in these pathways. OBJECTIVES: To determine whether HIF1/mTOR signalling is involved in BCC and TE. METHODS: We used immunohistochemical staining of formalin-fixed paraffin-embedded BCC (n = 45 and TE (n = 35 samples to assess activity of HIF1, mTORC1 and their most important target genes. The percentage positive tumour cells was assessed manually in a semi-quantitative manner and categorized (0%, 80%. RESULTS: Among 45 BCC and 35 TE examined, expression levels were respectively 81% and 57% (BNIP3, 73% and 75% (CAIX, 79% and 86% (GLUT1, 50% and 19% (HIF1α, 89% and 88% (pAKT, 55% and 61% (pS6, 15% and 25% (pMTOR, 44% and 63% (PHD2 and 44% and 49% (VEGF-A. CAIX, Glut1 and PHD2 expression levels were significantly higher in TE when only samples with at least 80% expression were included. CONCLUSIONS: HIF and mTORC1 signalling seems active in both BCC and TE. There are no appreciable differences between the two with respect to pathway activity. At this moment immunohistochemical analyses of HIF, mTORC1 and their target genes does not provide a reliable diagnostic tool for the discrimination of BCC and TE.

  10. Gallic acid induces necroptosis via TNF-α signaling pathway in activated hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya Ju Chang

    Full Text Available Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA, a natural phenolic acid widely found in gallnuts, tea leaves and various fruits, possesses several bioactivities against inflammation, oxidation, and carcinogenicity. The beneficial effect of GA on the reduction of animal hepatofibrosis has been indicated due to its antioxidative property. However, the cytotoxicity of GA autoxidation causing cell death has also been reported. Herein, we postulated that GA might target activated hepatic stellate cells (aHSCs, the cell type responsible for hepatofibrosis, to mitigate the process of fibrosis. The molecular cytotoxic mechanisms that GA exerted on aHSCs were then analyzed. The results indicated that GA elicited aHSC programmed cell death through TNF-α-mediated necroptosis. GA induced significant oxidative stress through the suppression of catalase activity and the depletion of glutathione (GSH. Elevated oxidative stress triggered the production of TNF-α facilitating the undergoing of necroptosis through the up-regulation of key necroptotic regulatory proteins TRADD and receptor-interacting protein 3 (RIP3, and the inactivation of caspase-8. Calmodulin and calpain-1 activation were engaged, which promoted subsequent lysosomal membrane permeabilization (LMP. The TNF-α antagonist (SPD-304 and the RIP1 inhibitor (necrostatin-1, Nec-1 confirmed GA-induced TNFR1-mediated necroptosis. The inhibition of RIP1 by Nec-1 diverted the cell death from necroptosis to apoptosis, as the activation of caspase 3 and the increase of cytochrome c. Collectively, this is the first report indicating that GA induces TNF signaling-triggered necroptosis in aHSCs, which may offer an alternative strategy for the amelioration of liver fibrosis.

  11. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Directory of Open Access Journals (Sweden)

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  12. JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of Pituitary Tumor Transforming Gene 1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xu-Liang [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China); Wei, Wu; Xu, Hong-Liang; Zhang, Mei-Xiang; Qin, Xiao-Qi; Shi, Wen-Zhi; Jiang, Zhi-Ping [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Chen, Yi-Jian [Department of Hematology, The First Affiliated Hospital, GanNan Medical University, GanZhou 341000 (China); Chen, Fang-Ping, E-mail: xychenfp@2118.cn [Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China)

    2010-08-06

    Research highlights: {yields} AG490, a member of tyrosine kinase inhibitors, could inhibit the JAK2V617F/STAT5 signaling pathway in HEL cell which harbor JAK2V617F mutation. {yields} Inhibition of the JAK2V617F/STAT5 signaling pathway inhibited the growth of HEL cells. {yields} JAK2V617F mutation promotes cell proliferation through activation of PTTG1 expression. {yields} JAK2V617F/STAT5 signaling pathway regulate PTTG1 expression at transcriptional level. -- Abstract: Gain-of-function mutations of JAK2 play crucial roles in the development of myeloproliferative neoplasms; however, the underlying downstream events of this activated signaling pathway are not fully understood. Our experiment was designed and performed to address one aspect of this issue. Here we report that AG490, a potent JAK2V617F kinase inhibitor, effectively inhibits the proliferation of HEL cells. Interestingly, AG490 also decreases the expression of PTTG1, a possible target gene of the aberrant signaling pathway, in a dose- and time-dependent manner. Furthermore, the promoter activity analyses reveal that the inhibition of the PTTG1 expression is affected at the transcriptional level. Thus, our results suggest that the JAK2V617F/STAT5 signaling pathway promotes cell proliferation through the transcriptional activation of PTTG1.

  13. Modulation of TCR-mediated signaling pathway by thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2).

    Science.gov (United States)

    Saitoh, S; Kosugi, A; Noda, S; Yamamoto, N; Ogata, M; Minami, Y; Miyake, K; Hamaoka, T

    1995-12-15

    Thymic shared antigen-1 (TSA-1) is a glycosyl-phosphatidylinositol (GPI)-anchored differentiation Ag expressed on murine lymphocytes, and is identical to stem cell Ag-2 (Sca-2). Using newly established mAb against TSA-1/Sca-2, we have previously shown that surface TSA-1 expression is induced upon activation in T cells, and that anti-TSA-1 inhibits IL-2 production induced by anti-CD3 stimulation in T cell hybridomas. In the present study, we have analyzed the functional role of TSA-1 during T cell activation using normal T cells, T cell hybridomas, and transfected Jurkat cell lines that expressed either GPI-anchored or transmembrane form of TSA-1. Anti-TSA-1 inhibited IL-2 production from normal T cells stimulated with soluble anti-CD3 plus accessory cells. Anti-TSA-1 exhibited the inhibitory effect on T cells, but not on accessory cells, because anti-TSA-1 inhibited IL-2 production in Jurkat cells transfected with TSA-1 cDNA, but not in control transfectant. A transmembrane form of TSA-1 was expressed in Jurkat cells by fusing the extracellular portion of TSA-1 to the transmembrane and cytoplasmic regions of the class 1 Db. The analysis using this transfectant revealed that anti-TSA-1-mediated inhibition of IL-2 production did not require the GPI anchor of TSA-1. Finally, in addition to the inhibition of IL-2 production, tyrosine phosphorylation of CD3 zeta-chains observed following TCR stimulation, one of the important early activation events, was markedly reduced by anti-TSA-1. These results imply that TSA-1/Sca-2 plays an important regulatory role in the TCR signaling pathway of activated T cells in addition to its role in T cell differentiation.

  14. Puerarin suppresses proliferation of endometriotic stromal cells partly via the MAPK signaling pathway induced by 17ß-estradiol-BSA.

    Directory of Open Access Journals (Sweden)

    Wen Cheng

    Full Text Available BACKGROUND: Puerarin is a major isoflavonoid compound extracted from Radix puerariae. It has a weak estrogenic action by binding to estrogen receptors (ERs. In our early clinical practice to treat endometriosis, a better therapeutic effect was achieved if the formula of traditional Chinese medicine included Radix puerariae. The genomic and non-genomic effects of puerarin were studied in our Lab. This study aims to investigate the ability of puerarin to bind competitively to ERs in human endometriotic stromal cells (ESCs, determine whether and how puerarin may influence phosphorylation of the non-genomic signaling pathway induced by 17ß-estradiol conjugated to BSA (E(2-BSA. METHODOLOGY: ESCs were successfully established. Binding of puerarin to ERs was assessed by a radioactive competitive binding assay in ESCs. Activation of the signaling pathway was screened by human phospho-kinase array, and was further confirmed by western blot. Cell proliferation was analyzed according to the protocol of CCK-8. The mRNA and protein levels of cyclin D1, Cox-2 and Cyp19 were determined by real-time PCR and western blotting. Inhibitor of MEK1/2 or ER antagonist was used to confirm the involved signal pathway. PRINCIPAL FINDINGS: Our data demonstrated that the total binding ability of puerarin to ERs on viable cells is around 1/3 that of 17ß-estradiol (E(2. E(2-BSA was able to trigger a rapid, non-genomic, membrane-mediated activation of ERK1/2 in ESCs and this phenomenon was associated with an increased proliferation of ESCs. Treating ESCs with puerarin abrogated the phosphorylation of ERK and significantly decreased cell proliferation, as well as related gene expression levels enhanced by E(2-BSA. CONCLUSIONS/SIGNIFICANCE: Puerarin suppresses proliferation of ESCs induced by E(2-BSA partly via impeding a rapid, non-genomic, membrane-initiated ERK pathway, and down-regulation of Cyclin D1, Cox-2 and Cyp19 are involved in the process. Our data further show

  15. Nuclear Factor-κB Signaling Pathway Constitutively Activated in Esophageal Squamous Cell Carcinoma Cell Lines and Inhibition of Growth of Cells by Small Interfering RNA

    Institute of Scientific and Technical Information of China (English)

    Fang TIAN; Wei-Dong ZANG; Wei-Hong HOU; Hong-Tao LIU; Le-Xun XUE

    2006-01-01

    Although constitutive nuclear factor (NF)-κB activation has been reported in many human tumors, the role of the NF-κB pathway in esophageal squamous cell carcinoma (ESCC) has not been known.In this study, NF-κB pathway in two ESCC cell lines was investigated using immunocytochemistry, Western blot and reverse transcription-polymerase chain reaction. The activation of NF-κB DNA binding was determined by electrophoretic mobility-shift assay. RNA interference was used to specifically inhibit the expression of p65. Growth of cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.The results showed that p50, p65, Iκ Bα, p-Iκ Bα and Iκ B kinase β were expressed and mainly localized in the cytoplasm. Reverse transcription-polymerase chain reaction results showed the constitutive expressions of p50, p65 and Iκ Bα mRNA in the two ESCC cell lines. Furthermore, the nuclear extracts revealed that p50 and p65 translocated to the nucleus had DNA-binding activity. Finally, small interfering RNA of p65 decreased the expression of p65, and the viability of cells transfected with p65 small interfering RNA was significantly suppressed at the same concentration of 5-fluorouracil (P<0.05) compared to untransfected cells. The results of this study showed that there was the constitutively activated NF-κB signaling pathway in the ESCC cell lines. RNA interference targeting at p65 increased the sensitivity of the ESCC cell lines to 5-fluorouracil,suggesting that NF-κB might be a good target for cancer treatment.

  16. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xionggao [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Department of Ophthalmology, Hainan Medical College, Haikou (China); Wei, Yantao; Ma, Haizhi [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China); Zhang, Shaochong, E-mail: zhshaochong@163.com [State Key Ophthalmic Laboratory, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (China)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  17. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells.

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-03-14

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.

  18. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-01-01

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/− germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse. PMID:28290521

  19. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/β-catenin signaling pathway in HCT116 cells.

    Science.gov (United States)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju; Kim, Chul Young; Nho, Chu Won

    2012-11-16

    Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/β-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/β-catenin signaling by disrupting the interaction between β-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the β-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/β-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/β-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  20. Beta-adrenergic signals regulate cardiac differentiation of mouse embryonic stem cells via mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yan, Lihui; Jia, Zhuqing; Cui, Jingjing; Yang, Hongtao; Yang, Huangtian; Zhang, Yongzhen; Zhou, Chunyan

    2011-08-01

    As embryonic stem cell-derived cardiomyocytes (ESC-CMs) have the potential to be used in cell replacement therapy, an understanding of the signaling mechanisms that regulate their terminal differentiation is imperative. In previous studies, we discovered the presence of adrenergic and muscarinic receptors in mouse embryonic stem cells (ESCs). However, little is known about the role of these receptors in cardiac differentiation and development, which is critically important in cardiac physiology and pharmacology. Here, we demonstrated that a β-adrenergic receptor (β-AR) agonist significantly enhanced cardiac differentiation as indicated by a higher percentage of beating embryoid bodies and a higher expression level of cardiac markers. Application of β1-AR and β2-AR antagonists partly abolished the effect of the β-AR agonist. In addition, by administering selective inhibitors we found that the effect of β-AR was driven via p38 mitogen-activated protein kinase and extracellular-signal regulated kinase pathway. These findings suggest that ESCs are also a target for β-adrenergic regulation and β-adrenergic signaling plays a role in ESC cardiac differentiation.

  1. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  2. Loco signaling pathway in longevity.

    Science.gov (United States)

    Lin, Yuh-Ru; Parikh, Hardik; Park, Yongkyu

    2011-05-01

    Despite the various roles of regulator of G protein signaling (RGS) protein in the G protein signaling pathway that have been defined, the function of RGS has not been characterized in longevity signaling pathways. We found that reduced expression of Loco, a Drosophila RGS protein, resulted in a longer lifespan of flies with stronger resistance to stress, higher MnSOD activity and increased fat content. In contrast, overexpression of the loco gene shortened the fly lifespan significantly, lowered stress resistance and reduced fat content, also indicating that the RGS domain containing GTPase-activating protein (GAP) activity is related to the regulation of longevity. Interestingly, expressional changes of yeast RGS2 and rat RGS14, homologs to the fly Loco, also affected oxidative stress resistance and longevity in the respective species. It is known that Loco inactivates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase (AC) and RGS14 interacts with activated H-Ras and Raf-1 kinases, which subsequently inhibits ERK phosphorylation. We propose that Loco/RGS14 protein may regulate stress resistance and longevity as an activator in AC-cAMP-PKA pathway and/or as a molecular scaffold that sequesters active Ras and Raf from Ras•GTP-Raf-MEK-ERK signaling pathway. Consistently, our data showed that downregulation of Loco significantly diminishes cAMP amounts and increases p-ERK levels with higher resistance to the oxidative stress.

  3. Pathogenic lifestyles of E. coli pathotypes in a standarized epithelial cell model influence inflammatory signaling pathways and cytokines secretion

    Directory of Open Access Journals (Sweden)

    Javier Sanchez-Villamil

    2016-10-01

    cytokine regulation; and (iii the intracellular bacteria that induce the highest pathways activation and cytokines secretion by using different activation mechanisms. This study provides a comprehensive analysis of how the different pathogenesis schemes of E. coli pathotypes manipulate inflammatory signaling pathways, which leads to a specific proinflammatory cytokine secretion in a cell model infection that reproduce the hallmarks of infection of each pathotype.

  4. Activated Ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells

    Directory of Open Access Journals (Sweden)

    Jun eGong

    2014-06-01

    Full Text Available The development of wild-type, unmodified Type 3 Dearing (T3D strain reovirus as an anticancer agent has currently expanded to 32 clinical trials (both completed and ongoing involving reovirus in the treatment of cancer. It has been more than 30 years since the potential of reovirus as an anticancer agent was first identified in studies that demonstrated the preferential replication of reovirus in transformed cell lines but not in normal cells. Later investigations have revealed the involvement of activated Ras signaling pathways (both upstream and downstream and key steps of the reovirus infectious cycle in promoting preferential replication in cancer cells with reovirus-induced cancer cell death occurring through necrotic, apoptotic, and autophagic pathways. There is increasing evidence that reovirus-induced antitumor immunity involving both innate and adaptive responses also contributes to therapeutic efficacy though this discussion is beyond the scope of this article. Here we review our current understanding of the mechanism of oncolysis contributing to the broad anticancer activity of reovirus. Further understanding of reovirus oncolysis is critical in enhancing the clinical development and efficacy of reovirus.

  5. AM404 inhibits NFAT and NF-κB signaling pathways and impairs migration and invasiveness of neuroblastoma cells.

    Science.gov (United States)

    Caballero, Francisco J; Soler-Torronteras, Rafael; Lara-Chica, Maribel; García, Victor; Fiebich, Bernd L; Muñoz, Eduardo; Calzado, Marco A

    2015-01-01

    N-Arachidonoylphenolamine (AM404), a paracetamol lipid metabolite, is a modulator of the endocannabinoid system endowed with pleiotropic activities. AM404 is a dual agonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1) and the Cannabinoid Receptor type 1 (CB₁) and inhibits anandamide (AEA) transport and degradation. In addition, it has been shown that AM404 also exerts biological activities through TRPV1- and CB₁ -independent pathways. In the present study we have investigated the effect of AM404 in the NFAT and NF-κB signaling pathways in SK-N-SH neuroblastoma cells. AM404 inhibited NFAT transcriptional activity through a CB₁- and TRPV1-independent mechanism. Moreover, AM404 inhibited both the expression of COX-2 at transcriptional and post-transcriptional levels and the synthesis of PGE₂. AM404 also inhibited NF-κB activation induced by PMA/Ionomycin in SK-N-SH cells by targeting IKKβ phosphorylation and activation. We found that Cot/Tlp-2 induced NFAT and COX-2 transcriptional activities were inhibited by AM404. NFAT inhibition paralleled with the ability of AM404 to inhibit MMP-1, -3 and -7 expression, cell migration and invasion in a cell-type specific dependent manner. Taken together, these data reveal that paracetamol, the precursor of AM404, can be explored not only as an antipyretic and painkiller drug but also as a co-adjuvant therapy in inflammatory and cancer diseases.

  6. Involvement of CDX2 in the cross talk between TNF-α and Wnt signaling pathway in the colon cancer cell line Caco-2

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Anders Krüger; Bzorek, Michael

    2014-01-01

    influence on the Wnt signaling-related genes and progression of colorectal cancer. Although several inflammatory signaling pathways, including TNF-α, have been reported to promote Wnt/β-catenin activity and development of cancer, the underlying molecular mechanisms remain unclear. The aim was to investigate...... the signaling pathways involved in the TNF-α-mediated downregulation of CDX2, and its influence on Wnt/β-catenin signaling components in colon cancer cells. The expression of TNF-α and CDX2 at the invasive front were evaluated by immunohistochemical staining and showed reduced CDX2-positive cells in tumor...... buddings in areas with TNF-α expression in the surrounding inflammatory cells. In vitro studies revealed that TNF-α treatment showed a dose-dependent decrease of CDX2 messenger RNA (mRNA) and protein expression in Caco-2 cells. Inhibition of nuclear factor-kappaB or p38 pathways showed...

  7. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines.

    Science.gov (United States)

    Van Dross, Rukiyah; Xue, Yue; Knudson, Alexandra; Pelling, Jill C

    2003-11-01

    Apigenin is a nonmutagenic chemopreventive agent found in fruits and green vegetables. In this study, we used two different epithelial cell lines (308 mouse keratinocytes and HCT116 colon carcinoma cells) to determine the effect of apigenin on the mitogen-activated protein kinase (MAPK) cascade. Apigenin induced a dose-dependent phosphorylation of both extracellular signal-regulated protein kinase (ERK) and p38 kinase but had little effect on the phosphorylation of c-jun amino terminal kinase (JNK). We used immunoprecipitation-coupled kinase assays to show that apigenin increased the kinase activity of ERK and p38 but not JNK. Consistent with these results, we found that apigenin induced a 7.4-fold induction in the phosphorylation of Elk, the downstream phosphorylation target of ERK kinase. Similarly, apigenin induced a 3.2-fold induction in the phosphorylation of activating transcription factor-2, the downstream phosphorylation target of p38 kinase. Little change was observed in the phosphorylation of c-jun, the phosphorylation target of JNK. These data suggest that part of the chemopreventive activity of apigenin may be mediated by its ability to modulate the MAPK cascade.

  8. Dysregulation of the TGF-β Postreceptor Signaling Pathway in Cell Lines Derived from Primary or Metastatic Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    奚玲; 胡伟; 孟力; 周剑峰; 卢运萍; 王常玉; 马丁

    2004-01-01

    Summary: Transforming growth factor-beta (TGF-β) may cause cell cycle arrest, terminal differentiation, or apoptosis in most normal epithelial cells, whereas most malignant cell lines are resistant to TGF-β. Mechanisms of resistance to TGF-β caused by modulation of cell cycle regulators and/or inactivation of components of the TGF-β signaling transduction pathway such as C-myc and Smad4are not well understood. To investigate the potential association between loss of sensitivity to TGFβ and expression status of transforming growth factor receptor Ⅱ (TβR Ⅱ ), Smad4, CDC25A and C-myc in 14 cell lines derived from ovarian cancer, the expression levels of these genes were detected by semi-quantitative RT-PCR. Normal ovarian surface tissues were used as controls. The expression of TβR Ⅱ was detectable in all of 14 cell lines. The expression of Smad4 was decreased in 10 cell lines and 9 cell lines overexpressed CDC25A, as compared to normal controls. CDC25A gene was overexpressed with 88 % (8/9) in tumorigenic cell lines as determined by xenografts in nude mice, and only in 20 % (1/5) of non-tumorigenic cell lines (P<0.05). C-myc was not overexpressed in any of these cell lines. The loss of sensitivity to TGF-β of cell lines derived from ovarian cancers may be related to a decreased expression of Smad4, which mediates TGF-β induced growth inhibition, and/or an overexpression of CDC25A. This overexpression of CDC25A correlates with increased tumorigenicity of ovarian cancer cell lines. The loss of sensitivity to TGF-β is not associated with a lack of TβR Ⅱ.

  9. SHh-Gli1 signaling pathway promotes cell survival by mediating baculoviral IAP repeat-containing 3 (BIRC3) gene in pancreatic cancer cells.

    Science.gov (United States)

    Gan, Huizhong; Liu, Hua; Zhang, Hui; Li, Yueyue; Xu, Xiaorong; Xu, Xuanfu; Xu, Jianming

    2016-07-01

    The abnormally activated hedgehog (Hh) signaling pathway is involved in the regulation of proliferation and apoptosis in pancreatic cancer cells, while its exact molecular mechanism is not clear. The purpose of this study was to investigate the regulatory effect of Hh signaling pathway on the transcription of BIRC3 gene and its underlying mechanism in pancreatic cancer cells, as well as the relationship between the Gli1-dependent BIRC3 transcription and cell survival. Firstly, we examined the effect of knockdown or overexpression of Hh on BIRC3 messenger RNA (mRNA) expression by real-time RT-PCR. Then, the regulatory mechanism of Gli1 to BIRC3 gene transcription was investigated by XChIP-PCR and luciferase assays. Finally, the cell survival mediated by the Gli1-dependent BIRC3 transcription was studied by MTT and annexin V-FITC/propidiumiodide (PI) assays. We found that the expression level of BIRC3 mRNA was positively correlated to SHh/Gli1 signaling activation in three pancreatic cancer cell lines. The XChIP-PCR and luciferase assays data showed that the transcription factor Gli1 bound to some enhancers within the promoter regions of BIRC3 gene and promoted gene transcription. The cell proliferation was increased significantly by SHh/Gli1 expression while the apoptotic rate was reduced under the same condition. Moreover, BIRC3 knockdown inhibited cell proliferation and survival induced by SHh overexpression. Our study reveals that Gli1 promoted transcription of BIRC3 gene via cis-acting elements and the SHh-Gli1 signaling pathway maintained cell survival partially through this Gli1-dependent BIRC3 model in pancreatic cancer cells.

  10. Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.

    Science.gov (United States)

    Werden, Steven J; McFadden, Grant

    2010-04-01

    Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.

  11. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway.

    Science.gov (United States)

    Ko, Hyeonseok; Kim, Jee Min; Kim, Sun-Joong; Shim, So Hee; Ha, Chang Hoon; Chang, Hyo Ihl

    2015-10-01

    Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.

  12. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  13. Amniotic fluid may act as a transporting pathway for signaling molecules and stem cells during the embryonic development of amniotes.

    Science.gov (United States)

    Tong, Xinglong

    2013-11-01

    Amniotic fluid (AF) is formed at the very early stages of pregnancy, and is present throughout embryonic development of amniotes. It is well-known that AF provides a protective sac around the fetus that allows fetal movement and growth, and prevents mechanical and thermal shock. However, a growing body of evidence has shown that AF contains a number of proteins and peptides, including growth factors and cytokines, which potently affect cellular growth and proliferation. In addition, pluripotent stem cells have recently been identified in AF. Herein, this article reviews the biological properties of AF during embryonic development and speculates that AF may act as a transporting pathway for signaling molecules and stem cells during amniote embryonic development. Defining this novel function of AF is potentially significant for further understanding embryonic development and regenerative medicine, preventing genetic diseases, and developing therapeutic options for human malignancies.

  14. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Jing-Xuan Pan; Ke Ding; Cheng-Yan Wang

    2012-01-01

    Niclosamide,an oral antihelminthic drug,has been used to treat tapeworm infection for about 50 years.Niclosamide is also used as a molluscicide for water treatment in schistosomiasis control programs.Recently,several groups have independently discovered that niclosamide is also active against cancer cells,but its precise mechanism of antitumor action is not fully understood.Evidence supports that niclosamide targets multiple signaling pathways (NF-κB,Wnt/β-catenin,Notch,ROS,mTORC1,and Stat3),most of which are closely involved with cancer stem cells.The exciting advances in elucidating the antitumor activity and the molecular targets of this drug will be discussed.A method for synthesizing a phosphate pro-drug of niclosamide is provided.Given its potential antitumor activity,clinical trials for niclosamide and its derivatives are warranted for cancer treatment.

  15. Downregulation of steroid hormone receptor expression and activation of cell signal transduction pathways induced by a chiral nonylphenol isomer in mouse sertoli TM4 cells.

    Science.gov (United States)

    Liu, Xiaozhen; Nie, Shaoping; Yu, Qiang; Wang, Xiaoyin; Huang, Danfei; Xie, Mingyong

    2017-02-01

    Nonylphenols (NPs) are considered as important environmental toxicants and potential endocrine disrupting compounds which can disrupt male reproductive system. 4-[1-Ethyl-1-methylhexy] phenol (4-NP65 ) is one of the main isomers of technical nonylphenol mixtures. In the present study, effect of NPs was evaluated from an isomer-specific viewpoint using 4-NP65 . Decreased mRNA expression levels of estrogen receptor (ER)-α, ER-β, androgen receptor (AR) and progesterone receptor (PR) were observed in the cells exposed to 4-NP65 for 24 h. Furthermore, 4-NP65 treatment evoked significant decrease in protein expression levels of ER-α and ER-β. Levels of mullerian inhibiting substance and transferrin were found to change significantly in 4-NP65 challenged cells. Additionally, JNK1/2-MAPK pathway was activated due to 4-NP65 exposure, but not ERK1/2 and p38-MAPK pathways. Meanwhile, 4-NP65 increased the p-Akt level and showed no effects on the Akt level which indicated that Akt pathway was activated by 4-NP65 . In conclusion, these findings have shown that 4-NP65 exposure affected expression of cell receptors and cell signaling pathways in Sertoli TM4 cells. We proposed that molecular mechanism of reproductive damage in Sertoli cells induced by NPs may be mediated by cell receptors and/or cell signal transduction pathways, and that the effects were dependent on the side chain of NP isomers. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 469-476, 2017.

  16. Gas6 Delays Senescence in Vascular Smooth Muscle Cells through the PI3K/ Akt/FoxO Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Cheng-wei Jin

    2015-02-01

    Full Text Available Background/Aims: Growth arrest-specific protein 6 (Gas6 is a cytokine that can be synthesized by a variety of cell types and secreted into the extracellular matrix. Previous studies have confirmed that Gas6 is involved in certain pathophysiological processes of the cardiovascular system through binding to its receptor, Axl. In the present study, we investigated the role of Gas6 in cellular senescence and explored the mechanisms underlying its activity. Methods: We used vascular smooth muscle cells (VSMCs to create two cellular senescence models, one for replicative senescence (RS and one for induced senescence (IS, to test the hypothesis that Gas6 delays senescence. Results: Gas6-treated cells appear relatively younger compared with non-Gas6-treated cells. In particular, Gas6-treated cells displayed decreased staining for SA-β-Gal, fewer G1 phase cells, and decreased levels of p16INK4a and p21Cip1 expression; conversely, Gas6-treated cells displayed more S phase cells and significantly increased proliferation indexes. Furthermore, in both the IS and RS models with Gas6 treatment, the levels of PI3K, p-Akt, and p-FoxO3a decreased following Axl inhibition by R428; similarly, the levels of p-Akt and p-FoxO3a also decreased following PI3K inhibition by LY294002. Conclusion: Gas6/Axl signaling is essential for delaying the cellular senescence process regulated by the PI3K/Akt/FoxO signaling pathway.

  17. The Root Hair Assay Facilitates the Use of Genetic and Pharmacological Tools in Order to Dissect Multiple Signalling Pathways That Lead to Programmed Cell Death

    OpenAIRE

    Joanna Kacprzyk; Aoife Devine; McCabe, Paul F.

    2014-01-01

    The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy an...

  18. Targeting Tuberculosis and HIV Infection-Specific Regulatory T Cells with MEK/ERK Signaling Pathway Inhibitors

    Science.gov (United States)

    Lieske, Nora V.; Tonby, Kristian; Kvale, Dag; Dyrhol-Riise, Anne M.; Tasken, Kjetil

    2015-01-01

    Human regulatory T cells (Tregs) are essential in maintaining immunological tolerance and suppress effector T cells. Tregs are commonly up-regulated in chronic infectious diseases such as tuberculosis (TB) and human immunodeficiency virus (HIV) infection and thereby hamper disease-specific immune responses and eradication of pathogens. The MEK/ERK signaling pathway is involved in regulation of the FoxP3 transcription factor, which directs a lineage-specific transcriptional program to define Tregs and control their suppressive function. Here, we aimed to target activation of disease-specific Tregs by inhibition of the MEK/ERK signaling pathway based on the hypothesis that this would improve anti-HIV and anti-TB immunity. Stimulation of T cells from untreated TB (n = 12) and HIV (n = 8) patients with disease-specific antigens in vitro in the presence of the MEK inhibitor (MEKI) trametinib (GSK1120212) resulted in significant down-regulation of both FoxP3 levels (MFI) and fractions of resting (CD45RA+FoxP3+) and activated (CD45RA−FoxP3++) Tregs. MEKI also reduced the levels of specific T effector cells expressing the pro-inflammatory cytokines (IFN-γ, TNF-α and IL-2) in both HIV and TB patients. In conclusion, MEKIs modulate disease antigen-specific Treg activation and may have potential application in new treatment strategies in chronic infectious diseases where reduction of Treg activity would be favorable. Whether MEKIs can be used in current HIV or TB therapy regimens needs to be further investigated. PMID:26544592

  19. Targeting Tuberculosis and HIV Infection-Specific Regulatory T Cells with MEK/ERK Signaling Pathway Inhibitors.

    Directory of Open Access Journals (Sweden)

    Nora V Lieske

    Full Text Available Human regulatory T cells (Tregs are essential in maintaining immunological tolerance and suppress effector T cells. Tregs are commonly up-regulated in chronic infectious diseases such as tuberculosis (TB and human immunodeficiency virus (HIV infection and thereby hamper disease-specific immune responses and eradication of pathogens. The MEK/ERK signaling pathway is involved in regulation of the FoxP3 transcription factor, which directs a lineage-specific transcriptional program to define Tregs and control their suppressive function. Here, we aimed to target activation of disease-specific Tregs by inhibition of the MEK/ERK signaling pathway based on the hypothesis that this would improve anti-HIV and anti-TB immunity. Stimulation of T cells from untreated TB (n = 12 and HIV (n = 8 patients with disease-specific antigens in vitro in the presence of the MEK inhibitor (MEKI trametinib (GSK1120212 resulted in significant down-regulation of both FoxP3 levels (MFI and fractions of resting (CD45RA+FoxP3+ and activated (CD45RA-FoxP3++ Tregs. MEKI also reduced the levels of specific T effector cells expressing the pro-inflammatory cytokines (IFN-γ, TNF-α and IL-2 in both HIV and TB patients. In conclusion, MEKIs modulate disease antigen-specific Treg activation and may have potential application in new treatment strategies in chronic infectious diseases where reduction of Treg activity would be favorable. Whether MEKIs can be used in current HIV or TB therapy regimens needs to be further investigated.

  20. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells.

    Science.gov (United States)

    Siaussat, David; Bozzolan, Françoise; Porcheron, Patrick; Debernard, Stéphane

    2008-05-01

    The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.

  1. Roles of PINK1, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical Notch signaling pathway.

    Science.gov (United States)

    Lee, Kyu-Sun; Wu, Zhihao; Song, Yan; Mitra, Siddhartha S; Feroze, Abdullah H; Cheshier, Samuel H; Lu, Bingwei

    2013-12-15

    The self-renewal versus differentiation choice of Drosophila and mammalian neural stem cells (NSCs) requires Notch (N) signaling. How N regulates NSC behavior is not well understood. Here we show that canonical N signaling cooperates with a noncanonical N signaling pathway to mediate N-directed NSC regulation. In the noncanonical pathway, N interacts with PTEN-induced kinase 1 (PINK1) to influence mitochondrial function, activating mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling. Importantly, attenuating noncanonical N signaling preferentially impaired the maintenance of Drosophila and human cancer stem cell-like tumor-forming cells. Our results emphasize the importance of mitochondria to N and NSC biology, with important implications for diseases associated with aberrant N signaling.

  2. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeongmin Song

    2007-04-01

    Full Text Available The vigorous cytokine response of immune cells to Gram-negative bacteria is primarily mediated by a recognition molecule, Toll-like receptor 4 (TLR4, which recognizes lipopolysaccharide (LPS and initiates a series of intracellular NF-kappaB-associated signaling events. Recently, bladder epithelial cells (BECs were reported to express TLR4 and to evoke a vigorous cytokine response upon exposure to LPS. We examined intracellular signaling events in human BECs leading to the production of IL-6, a major urinary cytokine, following activation by Escherichia coli and isolated LPS. We observed that in addition to the classical NF-kappaB-associated pathway, TLR4 triggers a distinct and more rapid signaling response involving, sequentially, Ca(2+, adenylyl cyclase 3-generated cAMP, and a transcriptional factor, cAMP response element-binding protein. This capacity of BECs to mobilize secondary messengers and evoke a more rapid IL-6 response might be critical in their role as first responders to microbial challenge in the urinary tract.

  3. Aquaporin 5 expression inhibited by LPS via p38/JNK signaling pathways in SPC-A1 cells.

    Science.gov (United States)

    Shen, Yao; Chen, Zhihong; Wang, Yuehong; Song, Zhenju; Zhang, Ziqiang; Jin, Meiling; Wang, Xiangdong; Bai, Chunxue

    2010-05-31

    Proper H(2)O to mucin ratio of airway mucus is important for mucociliary clearance. Recent studies suggest that decreased aquaporin 5 (AQP5) is correlated with increased staining of MUC5AC in submucosal glands of COPD patients. Lipopolysaccharide (LPS) is one of the major insults in airway mucin secretion in COPD. In this study, changes in both AQP5 and MUC5AC expression levels in SPC-A1, a human airway submucosal gland cell line, were quantified after exposure of the cells to LPS. AQP5 transcription and protein expression were decreased while MUC5AC expression was increased by LPS exposure in SPC-A1 cells. Further studies revealed that AQP5 expression was down-regulated via the p38/JNK signaling pathway, while MUC5AC was up-regulated through the EGFR-p38/JNK pathway. Therefore, p38 and JNK may become promising targets to preserve AQP5 expression and prevent MUC5AC over-expression to restore proper H(2)O to mucin ratio of the airway mucus, which may be beneficial to the clinical management of COPD patients.

  4. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    cells that harbor stem cell features, with an underexpression of Shh mRNA and an overexpression of Smoh mRNA. Blockade of the Shh signaling pathway may be a potential therapeutic strategy for hepatocarcinogenesis.Keywords: sonic hedgehog, hepatocellular carcinoma, stem cells, CD133+ cells, liver cancer, Hepa 1–6 cells

  5. Cytotoxic effects of TBBPA and its interactions with signalling pathways in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Strack, S.; Sander, M.; Detzel, T.; Krug, H.F. [Forschungszentrum Kalsruhe (Germany). Inst. fuer Toxikologie und Genetik; Kuch, B. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau und Wasserguetewirtschaft

    2004-09-15

    Toxic effects of TBBPA published so far have been recently reviewed by Birnbaum and Staskal The LC{sub 50} indicating the acute toxicity in vivo due to a single oral dose in mice and rats were higher than 4 to 5 g/kg, however, systematically long-term in vivo studies are missing. Weak estrogenic effects have been described by Meerts et al., demonstrating for TBBPA less pronounced activity than for other brominated bisphenols. The same group described competitive interactions in vitro with human transthyretin (TTR). In binding affinity assays they could demonstrate that TBBPA binds to TTR ten times more effectively than T{sub 4}. However, the available toxicological data are still extremely limited. For a comprehensive risk assessment valid data are insufficient. The aim of this study was to evaluate possible cytotoxic effects, and to gain insights into the underlying molecular mechanisms respectively the corresponding cellular signalling processes. This approach would allow to identify sensitive end-points of cellular toxicological responses. For these molecular toxicological investigations established cell lines should be used, in order to have a suitable model for appropriate toxicological studies.

  6. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways.

    Science.gov (United States)

    Govey, Peter M; Jacobs, Jon M; Tilton, Susan C; Loiselle, Alayna E; Zhang, Yue; Freeman, Willard M; Waters, Katrina M; Karin, Norman J; Donahue, Henry J

    2014-06-03

    Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.

  7. COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Marie Boutant

    Full Text Available BACKGROUND: The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. METHODOLOGY/PRINCIPAL FINDINGS: Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1 gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1 via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2 in human islets and rat β-cells providing a feedback loop. CONCLUSIONS/SIGNIFICANCE: Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2.

  8. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways

    Science.gov (United States)

    Boutant, Marie; Ramos, Oscar Henrique Pereira; Tourrel-Cuzin, Cécile; Movassat, Jamileh; Ilias, Anissa; Vallois, David; Planchais, Julien; Pégorier, Jean-Paul; Schuit, Frans; Petit, Patrice X.; Bossard, Pascale; Maedler, Kathrin; Grapin-Botton, Anne; Vasseur-Cognet, Mireille

    2012-01-01

    Background The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. Methodology/Principal Findings Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop. Conclusions/Significance Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2. PMID:22292058

  9. Logical modelling of Drosophila signalling pathways.

    Science.gov (United States)

    Mbodj, Abibatou; Junion, Guillaume; Brun, Christine; Furlong, Eileen E M; Thieffry, Denis

    2013-09-01

    A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways.

  10. Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chia-Lung Tsai

    2012-08-01

    Full Text Available Stress-induced phosphoprotein 1 (STIP1, a cochaperone that organizes other chaperones, heat shock proteins (HSPs, was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP receptor, ALK2 (activin A receptor, type II-like kinase 2, was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3, promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.

  11. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Martin Weiss

    Full Text Available One of the promising possibilities of the clinical application of cold plasma, so-called cold atmospheric plasma (CAP, is its application on malignant cells and cancer tissue using its anti-neoplastic effects, primarily through the delivery of reactive oxygen and nitrogen species (ROS, RNS. In this study, we investigated the impact of CAP on cellular proliferation and consecutive molecular response mechanisms in established prostate cancer (PC cell lines. PC cells showed a significantly reduced cell growth following CAP treatment as a result of both an immediate increase of intracellular peroxide levels and through the induction of apoptosis indicated by annexin V assay, TUNEL assay, and the evaluation of changes in nuclear morphology. Notably, co-administration of N-acetylcysteine (NAC completely neutralized CAP effects by NAC uptake and rapid conversion to glutathione (GSH. Vitamin C could not counteract the CAP induced effects on cell growth. In summary, relatively short treatments with CAP of 10 seconds were sufficient to induce a significant inhibition of cancer proliferation, as observed for the first time in urogenital cancer. Therefore, it is important to understand the mode of CAP related cell death and clarify and optimize CAP as cancer therapy. Increased levels of peroxides can alter redox-regulated signaling pathways and can lead to growth arrest and apoptosis. We assume that the general intracellular redox homeostasis, especially the levels of cellular GSH and peroxidases such as peroxiredoxins affect the outcome of the CAP treatment.

  12. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways.

    Science.gov (United States)

    Weiss, Martin; Gümbel, Denis; Hanschmann, Eva-Maria; Mandelkow, Robert; Gelbrich, Nadine; Zimmermann, Uwe; Walther, Reinhard; Ekkernkamp, Axel; Sckell, Axel; Kramer, Axel; Burchardt, Martin; Lillig, Christopher H; Stope, Matthias B

    2015-01-01

    One of the promising possibilities of the clinical application of cold plasma, so-called cold atmospheric plasma (CAP), is its application on malignant cells and cancer tissue using its anti-neoplastic effects, primarily through the delivery of reactive oxygen and nitrogen species (ROS, RNS). In this study, we investigated the impact of CAP on cellular proliferation and consecutive molecular response mechanisms in established prostate cancer (PC) cell lines. PC cells showed a significantly reduced cell growth following CAP treatment as a result of both an immediate increase of intracellular peroxide levels and through the induction of apoptosis indicated by annexin V assay, TUNEL assay, and the evaluation of changes in nuclear morphology. Notably, co-administration of N-acetylcysteine (NAC) completely neutralized CAP effects by NAC uptake and rapid conversion to glutathione (GSH). Vitamin C could not counteract the CAP induced effects on cell growth. In summary, relatively short treatments with CAP of 10 seconds were sufficient to induce a significant inhibition of cancer proliferation, as observed for the first time in urogenital cancer. Therefore, it is important to understand the mode of CAP related cell death and clarify and optimize CAP as cancer therapy. Increased levels of peroxides can alter redox-regulated signaling pathways and can lead to growth arrest and apoptosis. We assume that the general intracellular redox homeostasis, especially the levels of cellular GSH and peroxidases such as peroxiredoxins affect the outcome of the CAP treatment.

  13. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  14. Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells.

    Science.gov (United States)

    Shieh, Jiunn-Min; Chen, Yung-Chan; Lin, Ying-Chao; Lin, Jia-Ni; Chen, Wei-Chih; Chen, Yang-Yuan; Ho, Chi-Tang; Way, Tzong-Der

    2013-07-03

    Demethoxycurcumin (DMC), curcumin (Cur), and bisdemethoxycurcumin (BDMC) are major forms of curcuminoids found in the rhizomes of turmeric. This study examined the effects of three curcuminoid analogues on breast cancer cells. The results revealed that DMC demonstrated the most potent cytotoxic effects on breast cancer MDA-MB-231 cells. Compared with estrogen receptor (ER)-positive or HER2-overexpressing breast cancer cells, DMC demonstrated the most efficient cytotoxic effects on triple-negative breast cancer (TNBC) cells. However, nonmalignant MCF-10A cells were unaffected by DMC treatment. The study showed that DMC activated AMPK in TNBC cells. Once activated, AMPK inhibited eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) signaling and mRNA translation via mammalian target of rapamycin (mTOR) and decreased the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). DMC also targeted multiple AMPK downstream pathways. Among these, the dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mTOR inhibition. Moreover, DMC suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation. In addition, DMC also sustained epidermal growth factor receptor (EGFR) activation by suppressing the phosphatases, PP2a and SHP-2. These results suggest that DMC is a potent AMPK activator that acts through a broad spectrum of anti-TNBC activities.

  15. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway.

    Science.gov (United States)

    Chu, Lan-Feng; Wang, Wei-Ti; Ghanta, Vithal K; Lin, Chi-Hsin; Chiang, Yung-Yen; Hsueh, Chi-Mei

    2008-11-06

    Conditioned medium (CM) collected from cultures of ischemic microglia, astrocytes, and neurons were protective to astrocytes under the in vitro ischemic condition (deprivation of oxygen, glucose and serum). Molecular and signaling pathway(s) responsible for the CMs protective activity were investigated. Results showed that CMs from the ischemic microglia (MCM), astrocytes (ACM) and neurons (NCM) contained glial cell line-derived neurotrophic factor (GDNF), which protects astrocytes against the in vitro ischemia. Expression of extra cellular signal-regulated kinase (ERK1/2) and nuclear factor-kappa B (NF-kB) by GDNF led to the inhibition of apoptosis of the ischemic astrocytes in a caspase 3-independent manner. However, CMs- and GDNF-mediated protection of the ischemic astrocytes was protein kinase B (Akt) independent. These results provided mechanistic data regarding how GDNF- and CMs-mediated protection of the ischemic astrocytes is taking place. These observations provide information for the use of GDNF and GDNF containing CMs in the control of cerebral ischemia.

  16. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  17. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  18. Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    So EC

    2014-02-01

    Full Text Available Edmund Cheung So,1,2 Yu-Xuan Lin,3 Chi Hao Tseng,1 Bo-Syong Pan,3 Ka-Shun Cheng,2 Kar-Lok Wong,2 Lyh-Jyh Hao,4 Yang-Kao Wang,5 Bu-Miin Huang2 1Department of Anesthesia, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan; 2Department of Anesthesia, China Medical University, Taichung, Taiwan; 3Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; 4Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Veteran General Hospital Tainan Branch Tainan, Taiwan; 5Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan Purpose: The present study aims to investigate how midazolam, a sedative drug for clinical use with cytotoxicity on neuronal and peripheral tissues, induced apoptosis in MA-10 mouse Leydig tumor cells. Methods: The apoptotic effect and underlying mechanism of midazolam to MA-10 cells were investigated by flow cytometry assay and Western blotting methods. Results: Data showed that midazolam induced the accumulation of the MA-10 cell population in the sub-G1 phase and a reduction in the G2/M phase in a time- and dose-dependent manner, suggesting an apoptotic phenomenon. Midazolam could also induce the activation of caspase-8, -9, and -3 and poly (ADP-ribose polymerase proteins. There were no changes in the levels of Bax and cytochrome-c, whereas Bid was significantly decreased after midazolam treatment. Moreover, midazolam decreased both pAkt and Akt expression. In addition, midazolam stimulated the phosphorylation of p38 and c-Jun NH2-terminal kinase but not extracellular signal-regulated kinase. Conclusion: Midazolam could induce MA-10 cell apoptosis through the activation of caspase cascade, the inhibition of pAkt pathway, and the induction of p38 and c-Jun NH2-terminal kinase pathways. Keywords: midazolam, apoptosis, MA-10 cell, caspase, Akt, MAPKs

  19. Impact of high glucose and AGEs on cultured kidney-derived cells. Effects on cell viability, lysosomal enzymes and effectors of cell signaling pathways.

    Science.gov (United States)

    Peres, Giovani B; Schor, Nestor; Michelacci, Yara M

    2017-04-01

    We have previously reported decreased expression and activities of lysosomal cathepsins B and L in diabetic kidney. Relevant morphological changes were observed in proximal tubules, suggesting that these cells are implicated in the early stages of the disease. The aim of the present study was to investigate the mechanisms that lead to these changes. The effects of high glucose (HG) and advanced glycation end products (AGEs) on cell viability, lysosomal enzymes and other effectors of cell signaling of cultured kidney cells were studied. HG increased viable mesangial cells (ihMC) in 48 h, while epithelial tubular cells were not affected (LLC-PK1 and MDCK). In contrast, the number of viable cells was markedly decreased, for all cell lines, by AGE-BSA. Concerning lysosomal enzymes, the main cysteine-protease expressed by these cells was cathepsin B, and its concentration was much higher in epithelial than in mesangial cells. Exposure to HG had no effect on the cathepsin B activity, but AGE-BSA caused a marked decrease in LLC-PK1, and increased the enzyme activities in the other cell lines. The levels of nitric oxide (NO) was increased by AGE-BSA in all cell lines, suggesting oxidative stress, and Western blotting has shown that, among the investigated proteins, cathepsin B, mTOR and transcription factor EB (TFEB) were the most significantly affected by exposure to AGE-BSA. As mTOR induces anabolism and inhibits autophagy, and TFEB is a master transcription factor for lysosomal enzymes, it is possible that this pathway plays a role in the inhibition of lysosomal enzymes in proximal tubule cells.

  20. Breast cancer cells can switch between estrogen receptor alpha and ErbB signaling and combined treatment against both signaling pathways postpones development of resistance

    DEFF Research Database (Denmark)

    Sonne-Hansen, Katrine; Norrie, Ida C; Emdal, Kristina Bennet

    2010-01-01

    The majority of breast cancers are estrogen responsive, but upon progression of disease other growth promoting pathways are activated, e.g., the ErbB receptor system. The present study focuses on resistance to the pure estrogen antagonist fulvestrant and strategies to treat resistant cells or even...... could be abrogated by combined therapy targeting both receptor systems. Thus, the present study indicates that upon development of antiestrogen resistance, antiestrogen treatment should be continued in combination with signal transduction inhibitors. Further, upfront combination of endocrine therapy...... circumvent development of resistance. Limited effects were observed when targeting EGFR and ErbB2 with the monoclonal antibodies cetuximab, trastuzumab, and pertuzumab, whereas the pan-ErbB inhibitor CI-1033 selectively inhibited growth of fulvestrant resistant cell lines. CI-1033 inhibited Erk but not Akt...

  1. Distinct signalling pathways of murine histamine H1- and H4-receptors expressed at comparable levels in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Silke Beermann

    Full Text Available Histamine (HA is recognized by its target cells via four G-protein-coupled receptors, referred to as histamine H1-receptor (H1R, H2R, H3R, and H4R. Both H1R and H4R exert pro-inflammatory functions. However, their signal transduction pathways have never been analyzed in a directly comparable manner side by side. Moreover, the analysis of pharmacological properties of the murine orthologs, representing the main targets of pre-clinical research, is very important. Therefore, we engineered recombinant HEK293 cells expressing either mouse (mH1R or mH4R at similar levels and analyzed HA-induced signalling in these cells. HA induced intracellular calcium mobilization via both mH1R and mH4R, with the mH1R being much more effective. Whereas cAMP accumulation was potentiated via the mH1R, it was reduced via the mH4R. The regulation of both second messengers via the H4R, but not the H1R, was sensitive to pertussis toxin (PTX. The mitogen-activated protein kinases (MAPKs ERK 1/2 were massively activated downstream of both receptors and demonstrated a functional involvement in HA-induced EGR-1 gene expression. The p38 MAPK was moderately activated via both receptors as well, but was functionally involved in HA-induced EGR-1 gene expression only in H4R-expressing cells. Surprisingly, in this system p38 MAPK activity reduced the HA-induced gene expression. In summary, using this system which allows a direct comparison of mH1R- and mH4R-induced signalling, qualitative and quantitative differences on the levels of second messenger generation and also in terms of p38 MAPK function became evident.

  2. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus.

    Directory of Open Access Journals (Sweden)

    Nicolas Richerioux

    Full Text Available Marek's Disease Virus (MDV is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs. Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell

  3. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    Directory of Open Access Journals (Sweden)

    Ya-Qin Hou

    2016-01-01

    Full Text Available Juglanthraquinone C (JC, a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  4. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    Science.gov (United States)

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels. PMID:26682007

  5. miR-150 suppresses the proliferation and tumorigenicity of leukemia stem cells by targeting the Nanog signaling pathway

    Directory of Open Access Journals (Sweden)

    Dan-dan Xu

    2016-11-01

    Full Text Available Proliferation, a key feature of cancer cells, accounts for the majority of cancer-related diseases resulting in mortality. MicroRNAs (miRNAs plays important post-transcriptional modulation roles by acting on multiple signaling pathways, but the underlying mechanism in proliferation and tumorigenicity is unclear. Here, we identified the role of miR-150 in proliferation and tumorigenicity in leukemia stem cells (LSCs (CD34+CD38- cells. miR-150 expression was significantly down-regulated in LSCs from leukemia cell lines and clinical samples. Functional assays demonstrated that increased miR-150 expression inhibited proliferation and clonal and clonogenic growth, enhanced chemosensitivity, and attenuated tumorigenic activity of LSCs in vitro. Transplantation animal studies revealed that miR-150 overexpression progressively abrogates tumour growth. Immunohistochemistry assays demonstrated that miR-150 overexpression enhanced caspase-3 level and reduced Ki-67 level. Moreover, luciferase reporter assays indicated Nanog is a direct and functional target of miR-150. Nanog silencing using small interfering RNA recapitulated anti-proliferation and tumorigenicity inhibition effects. Furthermore, miR-150 directly down-regulated the expression of other cancer stem cell factors including Notch2 and CTNNB1. These results provide insights into the specific biological behaviour of miR-150 in regulating LSC proliferation and tumorigenicity. Targeting this miR-150/Nanog axis would be a helpful therapeutic strategy to treat acute myeloid leukemia.

  6. TGF-β signaling pathways in cancers

    Directory of Open Access Journals (Sweden)

    Beata Talar

    2013-09-01

    Full Text Available TGF-β is a multifunctional cytokine involved in growth, cell differentiation and maintenanceof tissue homeostasis. In addition, TGF-β plays a key role in the pathogenesis of many diseases, including cancer. TGF-β-induced signaling pathways have either tumor-suppression or tumor-promoting effects in a cancer-type-specific and stage-dependent manner. TGF-β at an early stage of cancer development induces signaling pathways involved in inhibitionof cell proliferation, induction of differentiation, apoptosis or autophagy, suppression of angiogenesis and inflammation. At a later stage of disease, TGF-β exerts metastasis-promoting activity associated with epithelial-to-mesenchymal transition, modulation of cancer microenvironment and extracellular matrix components, inflammation and immune suppression. Furthermore, the TGF-β pathways play a pivotal role in the maintenance of stem cell-like properties of tumor cells. The pleiotropic action of TGF-β during tumorigenesis depends on interactions with different signaling pathways, including Hedgehog, WNT, PI3K--AKT, NOTCH, INF-γ, TNF-α, and RAS-ERK.

  7. [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway

    Directory of Open Access Journals (Sweden)

    Sung Ok Kim

    2013-01-01

    Full Text Available To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP activities; transepithelial electrical resistance (TER and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO- 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells.

  8. Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation

    Science.gov (United States)

    Huan, Yang W.; Bengtsson, Rebecca J.; MacIntyre, Neil; Guthrie, Jack; Finlayson, Heather; Smith, Sionagh H.; Archibald, Alan L.; Ait-Ali, Tahar

    2017-01-01

    Lawsonia intracellularis is an obligate intracellular bacterial pathogen that causes proliferative enteropathy (PE) in pigs. L. intracellularis infection causes extensive intestinal crypt cell proliferation and inhibits secretory and absorptive cell differentiation. However, the affected host upstream cellular pathways leading to PE are still unknown. β-catenin/Wnt signalling is essential in maintaining intestinal stem cell (ISC) proliferation and self-renewal capacity, while Notch signalling governs differentiation of secretory and absorptive lineage specification. Therefore, in this report we used immunofluorescence (IF) and quantitative reverse transcriptase PCR (RTqPCR) to examine β-catenin/Wnt and Notch-1 signalling levels in uninfected and L. intracellularis infected pig ileums at 3, 7, 14, 21 and 28 days post challenge (dpc). We found that while the significant increase in Ki67+ nuclei in crypts at the peak of L. intracellularis infection suggested enhanced cell proliferation, the expression of c-MYC and ASCL2, promoters of cell growth and ISC proliferation respectively, was down-regulated. Peak infection also coincided with enhanced cytosolic and membrane-associated β-catenin staining and induction of AXIN2 and SOX9 transcripts, both encoding negative regulators of β-catenin/Wnt signalling and suggesting a potential alteration to β-catenin/Wnt signalling levels, with differential regulation of the expression of its target genes. We found that induction of HES1 and OLFM4 and the down-regulation of ATOH1 transcript levels was consistent with the increased Notch-1 signalling in crypts at the peak of infection. Interestingly, the significant down-regulation of ATOH1 transcript levels coincided with the depletion of MUC2 expression at 14 dpc, consistent with the role of ATOH1 in promoting goblet cell maturation. The lack of significant change to LGR5 transcript levels at the peak of infection suggested that the crypt hyperplasia was not due to the expansion

  9. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles

    Science.gov (United States)

    Wu, Jingfang; Li, Wenyan; Lin, Chen; Chen, Yan; Cheng, Cheng; Sun, Shan; Tang, Mingliang; Chai, Renjie; Li, Huawei

    2016-01-01

    This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle. PMID:27435629

  10. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway

    OpenAIRE

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; YI, WEI; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate ...

  11. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway.

    Science.gov (United States)

    Xu, Pin; Rosen, Kenneth M; Hedstrom, Kristian; Rey, Osvaldo; Guha, Sushovan; Hart, Courtney; Corfas, Gabriel

    2013-07-01

    Upon peripheral nerve injury, specific molecular events, including increases in the expression of selected neurotrophic factors, are initiated to prepare the tissue for regeneration. However, the mechanisms underlying these events and the nature of the cells involved are poorly understood. We used the injury-induced upregulation of glial cell-derived neurotrophic factor (GDNF) expression as a tool to gain insights into these processes. We found that both myelinating and nonmyelinating Schwann cells are responsible for the dramatic increase in GDNF expression after injury. We also demonstrate that the GDNF upregulation is mediated by a signaling cascade involving activation of Schwann cell purinergic receptors, followed by protein kinase C signaling which activates protein kinase D (PKD), which leads to increased GDNF transcription. Given the potent effects of GDNF on survival and repair of injured peripheral neurons, we propose that targeting these pathways may yield therapeutic tools to treat peripheral nerve injury and neuropathies.

  12. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Shi Shu-liang

    2011-08-01

    Full Text Available Abstract Background Rab GTPases function as modulators in intracellular transport. Rab5a, a member of the Rab subfamily of small GTPases, is an important regulator of vesicle traffic from the plasma membrane to early endosomes. Recent findings have reported that Rab5a gene was involved in the progression of cancer. In the present study, we investigated the effect of Rab5a on cervical cancer invasion and metastasis and the molecular mechanism underlying the involvement of Rab5a. Methods Rab5a expression was assessed by immunohistochemical analysis on a cervical cancer tissue microarray. RNA interference (RNAi was performed to knock down the endogenous expression of Rab5a gene in HeLa and SiHa cells. Cell motility was evaluated using invasion assay and wound migration assay in vitro. The expression levels of integrin-associated molecules were detected by Western blot and immunofluorescence. Results We found that Rab5a was expressed at a high level in cervical cancer tissues. Silencing of Rab5a expression significantly decreased cancer cell motility and invasiveness. The down-regulation of integrin-associated focal adhesion signaling molecules was further detected in Rab5a knockdown cells. Meanwhile, active GTP-bound Rac1, Cdc42, and RhoA were also down-regulated, accompanied with the reduction in the number and size of filopodia and lamellipodia. Conclusions Taken together, these data suggest that Rab5a functions in regulating the invasion phenotype, and we propose that this regulation may be via integrin-mediated signaling pathway in cervical cancer cells.

  13. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    James E Krolopp

    2016-12-01

    Full Text Available Myokines are specialized cytokines that are secreted from skeletal muscle (SKM in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15 is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5 were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.

  14. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Biomedical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Xia, Mingyu [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2013-03-08

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.

  15. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

    Directory of Open Access Journals (Sweden)

    Rob D Catalano

    Full Text Available The prostaglandin endoperoxide synthase (PTGS pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG E(2. PTGS2 expression and PGE(2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2 regulate endometrial tumour growth is unknown. Here we investigated (a the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3 and PGE receptors (PTGER1-4 in endometrial adenocarcinomas compared with normal endometrium and (b the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.

  16. Wnt/Ca2+ signaling pathway: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Antara De

    2011-01-01

    The non-canonical Wnt/Ca2+ signaling cascade is less characterized than their canonical counterpart,the Wnt/β-catenin pathway.The non-canonical Wnt signaling pathways are diverse,defined as planer cell polarity pathway,Wnt-RAP1 signaling pathway,Wnt-Ror2 signaling pathway,Wnt-PKA pathway,Wnt-GSK3MT pathway,Wnt-aPKC pathway,Wnt-RYK pathway,Wnt-mTOR pathway,and Wnt/calcium signaling pathway.All these pathways exhibit a considerable degree of overlap between them.The Wnt/Ca2+ signaling pathway was deciphered as a crucial mediator in development.However,now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena.Many aspects of Wnt/Ca2+ pathway are yet enigmatic.This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca2+ signaling pathway.

  17. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  18. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling.

    Science.gov (United States)

    Scherbakov, Alexander M; Sorokin, Danila V; Tatarskiy, Victor V; Prokhorov, Nikolay S; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2016-04-01

    Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the

  19. The Expression of Markers Related to Ovarian Germline Stem Cells in the Mouse Ovarian Surface Epithelium and the Correlation with Notch Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zezheng Pan

    2015-12-01

    Full Text Available Background/Aims: Ovarian germline stem cells (OGSCs have been shown to mainly exist in the ovarian surface epithelium (OSE, but the activity changes of germline stem cells during different reproductive stages and the potential regulatory signaling pathway are still unknown. The Notch signaling pathway plays a key role in cell development, primordial follicles and stem cell proliferation. However, whether it plays a role in the proliferation of OGSCs is unknown. Here, we analyzed the activity changes of germline stem cells and the correlation between germline stem cells and the Notch signaling pathway. Methods: The expression of germline stem cell markers Mvh, Ooc4 and the Notch molecules Notch1, Hes1, and Hes5 were detected during 3 days (3d, and 2, 12, 20 months (2m, 12m, 20m mouse ovarian surface epithelium samples. DAPT, a specific inhibitor of the Notch pathway, was used to observe the influence of Notch signaling in the germline stem cells. Results: The results showed that the levels of MVH and OCT4 decreased substantially with reproductive age in ovarian surface epithelium, and the same tendency was detected in the Notch signaling molecules Notch1, Hes1 and Hes5. Dual-IF results showed that the germline stem cell markers were co-expressed with Notch molecules in the ovarian surface epithelium. While, the expression of MVH and OCT4 were reduced when the ovaries were treated with DAPT and the levels were attenuated with increasing dose of DAPT. Conclusion: Taken together, our results indicate that the viability of OGSCs decreased with the age of the mouse ovaries, and the activity of OGSCs in the ovarian surface epithelium may be related to the Notch signaling pathway.

  20. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway.

    Science.gov (United States)

    Chen, Jiayu; Chen, Jiaqi; Li, Zhaoyun; Liu, Chibo; Yin, Lihui

    2014-08-01

    This study aims to explore the apoptotic function of apigenin on the gastric cancer cells and the related mechanism. The gastric cancer cell lines HGC-27 and SGC-7901, and normal gastric epithelial cell line GES1 were treated with different concentrations of apigenin. Cell proliferation was tested. Morphological changes of the apoptotic cells were observed after Hoechst33342 staining. The apoptosis rate of the gastric cancer cells were measured with flow cytometry. Changes of the cell cycle were explored. The mitochondrial membrane potential changes were analyzed after JC-1 staining. Bcl-2 family proteins and caspases-3 expression with apigenin treatment was analyzed by real-time PCR. Cell proliferation of HGC-27 and SGC-7901 was inhibited by apigenin, and the inhibition was dose-time-dependent. Gastric carcinoma cells treated by apigenin had no obvious cell cycle arrest, but were observed with the higher apoptosis rate and the typical apoptotic morphological changes of the cell nucleus. JC-1 staining showed that apigenin could reduce mitochondrial membrane potential of gastric carcinoma cells. Real-time PCR results showed that apigenin significantly increased caspase-3 and Bax expression level, and down-regulated Bcl-2 expression in a dose-dependent manner in gastric carcinoma cells. However, the GES1 was almost not affected by apigenin treatment. Apigenin can inhibit cell lines HGC-27 and SGC-7901 proliferation in a time and dose-dependent manner, reduce anti-apoptotic protein Bcl-2 levels, enhance apoptosis-promoting protein Bax level, result in mitochondrial membrane potential decreasing and caspase-3 enzyme activating, then lead to cell apoptosis.

  1. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways.

    Science.gov (United States)

    Zhang, J; Zhu, L X; Cheng, X; Lin, Y; Yan, P; Peng, B

    2015-06-01

    Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide

  2. Rac1/β-Catenin Signalling Pathway Contributes to Trophoblast Cell Invasion by Targeting Snail and MMP9

    Directory of Open Access Journals (Sweden)

    Minghua Fan

    2016-03-01

    Full Text Available Background/Aims: Preeclampsia is an idiopathic and serious complication during gestation in which placental trophoblast cells differentiate into several functional subtypes, including highly invasive extravillous trophoblasts (EVTs. Although the cause and pathogenesis of preeclampsia have remained unclear, numerous studies have suggested that the inadequacy of EVT invasion leads to imperfect uterine spiral artery remodelling, which plays a crucial role in the development of preeclampsia. Rac1, or Ras-related C3 botulinum toxin substrate 1, was found to be a key regulator of the migration, invasion uand apoptosis of various tumour cells. Because EVTs share similar invasive and migratory biological behaviours with malignant cells, this study aimed to determine whether the Rac1 signalling pathway affects trophoblast invasion and is thus involved in the pathogenesis of preeclampsia. Methods: We measured the activity of Rac1 and its downstream targets, β-catenin, Snail and MMP9 in placental tissues from patients experiencing a normal pregnancy and those with preeclampsia. Furthermore, we treated HTR-8/SVneo cells with a shRNA Rac1 vector and the β-catenin inhibitor IWP-2 and explored Rac1 signalling pathway activation as well as the effects of Snail and β-catenin on trophoblast invasion. Results: In placental samples from patients experiencing a normal pregnancy and those with preeclampsia, active Rac1 levels and MMP9 protein and mRNA levels were significantly decreased in term pregnancy samples compared to early pregnancy samples. Lower levels were found in preeclampsia samples than in normal term pregnancy samples, and these levels significantly declined in severe preeclampsia samples compared with mild preeclampsia samples. Further analyses demonstrated that both Rac1 shRNA and the β-catenin inhibitor significantly suppressed MMP9 and Snail activation in trophoblasts, thus impairing trophoblast invasion. Notably, silencing Rac1 down

  3. Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated Op18/stathmin signaling pathway in association with cell cycle.

    Science.gov (United States)

    Lin, Xuechi; Tang, Min; Tao, Yongguang; Li, Lili; Liu, Sufang; Guo, Lili; Li, Zijian; Ma, Xiaoqian; Xu, Juan; Cao, Ya

    2012-06-01

    The MAPKs are activated by a variety of cellular stimuli to participate in a series of signaling cascades and mediate diverse intracellular responses. One potential target of the MAPKs is Op18/stathmin, a molecule that acts as an integrator of diverse cell signaling pathways and regulates the dynamics of microtubules, which are involved in modulating a variety of cellular processes, including cell cycle progression and cell growth. Our study focused on the regulation of the MAPK-mediated Op18/stathmin signaling pathway, which is triggered by the Epstein-Barr virus-encoded latent membrane protein 1 ( LMP1) oncogene in nasopharyngeal carcinoma cells. The results showed that the activity of MAPK, which was induced by LMP1, varied with cell cycle progression; LMP1 upregulated phosphorylation of ERK during the G(1)/S phase, but negatively regulated phosphorylation of ERK during the G(2)/M phase. We found that the regulation of Op18/stathmin signaling by LMP1 was mainly mediated through ERK. The inhibition of LMP1 expression attenuated the interaction of ERK with Op18/stathmin and promoted microtubule depolymerization. These findings indicate the existence of a new cell cycle-associated signaling pathway in which LMP1 regulates ERK-mediated Op18/stathmin signaling.

  4. Divergent signaling pathways regulate IL-12 production induced by different species of Lactobacilli in human dendritic cells.

    Science.gov (United States)

    Amar, Yacine; Rizzello, Valeria; Cavaliere, Riccardo; Campana, Stefania; De Pasquale, Claudia; Barberi, Chiara; Oliveri, Daniela; Pezzino, Gaetana; Costa, Gregorio; Meddah, Aicha Tirtouil; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-07-01

    Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases.

  5. Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2016-01-01

    Full Text Available Overcoming temozolomide (TMZ resistance is a great challenge in glioblastoma (GBM treatment. Nicotinamide phosphoribosyltransferase (NAMPT is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp. alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.

  6. Identification of a novel immunoregulatory signaling pathway exploited by M. tuberculosis in dendritic cells

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Schoof, Erwin; Søndergaard, Jonas Nørskov;

    to the highly sophisticated infectious machinery employed by the bacterium. The dendritic cell (DC) plays a crucial role in shaping the nature of the immune response after exposure to pathogens, and the interaction between M. tuberculosis and the dendritic cell is of profound importance for the course...

  7. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway.

    Science.gov (United States)

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-10-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (pFGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation.

  8. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  9. T Cell Receptor Signaling Pathways:New Targets for Herpes Simplex Virus

    Institute of Scientific and Technical Information of China (English)

    You-jia CAO; Ya-peng LI; Ying-chi ZHANG; Cui-zhu ZHANG

    2008-01-01

    Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection.HSV exists life-long in a latent form in sensory neurons with intermittent reactivation,in despite of host immune surveillance.While abundant evidence for HSV interfering with innate immune responses so as to favor the replication and propagation of the virus,several lines of evidence declare that HSV attenuates adaptive immunity by various mechanisms,including but not limited to the ablation of antigen presentation,induction of apoptosis,and interruption of cellular signaling.In this review,we will focus on the perturbative role of HSV in Tcells signaling.

  10. Cucurmosin induces apoptosis of BxPC-3 human pancreatic cancer cells via inactivation of the EGFR signaling pathway.

    Science.gov (United States)

    Zhang, Baoming; Huang, Heguang; Xie, Jieming; Xu, Chunsen; Chen, Minghuang; Wang, Congfei; Yang, Aiqin; Yin, Qiang

    2012-03-01

    Pancreatic cancer remains the fourth most common cause of cancer-related death in the United States. Potent therapeutic strategies are urgently needed for pancreatic cancer. Cucurmosin is a novel type 1 ribosome-inactivating protein (RIP) isolated from the sarcocarp of Cucurbita moschata (pumpkin). Due to its cytotoxicity, cucurmosin can inhibit tumor cell proliferation through induction of apoptosis on tumor cells, but the specific mechanism is still unclear. We explored the function of cucurmosin in BxPC-3 pancreatic cancer cells using multiple cellular and molecular approaches such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), Western blotting and transmission electron microscopy for observing typical changes and formation of apoptotic bodies. We found that cucurmosin inhibited the proliferation of BxPC-3 cells in a time- and dose-dependent manner, and increased the cell population in the G0-G1 phase. With increasing concentration of cucurmosin, the expression of EGFR, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, P70S6K-α, p-P70S6K-α, 4E-BP1 and p-4E-BP1 at the protein level was decreased, whereas the expression of p-Bad and caspase-9 was elevated. However, the mRNA expression of EGFR did not change. These findings suggest that cucurmosin can down-regulate the expression of EGFR by targeting. Cucurmosin induces the apoptosis of BxPC-3 pancreatic cancer cells via the PI3K/Akt/mTOR signaling pathway.

  11. Pseudoephedrine inhibits T-cell activation by targeting NF-κB, NFAT and AP-1 signaling pathways.

    Science.gov (United States)

    Fiebich, Bernd L; Collado, Juan A; Stratz, Cristian; Valina, Christian; Hochholzer, Willibald; Muñoz, Eduardo; Bellido, Luz M

    2012-02-01

    Pseudoephedrine (PSE) is a stereoisomer of ephedrine that is commonly used as a nasal decongestant in combination with other anti-inflammatory drugs for the symptomatic treatment of some common pathologies such as common cold. Herein, we describe for the first time the effects of PSE on T-cell activation events. We found that PSE inhibits interleukin-2 (IL-2) and tumor necrosis factor (TNF) alpha-gene transcription in stimulated Jurkat cells, a human T-cell leukemia cell line. To further characterize the inhibitory mechanisms of PSE at the transcriptional level, we examined the transcriptional activities of nuclear factor kappa B (NF-κB), nuclear factor of activated T cells (NFAT), and activator protein-1 (AP-1) transcription factors and found that PSE inhibited NF-κB-dependent transcriptional activity without affecting either the phosphorylation, the degradation of the cytoplasmic NF-κB inhibitory protein, IκBα or the DNA-binding activity. However, phosphorylation of the p65/RelA subunit was clearly inhibited by PSE in stimulated cells. In addition, PSE inhibited the transcriptional activity of NFAT without interfering with the calcium-induced NFAT dephosphorylation event, which represents the major signaling pathway for its activation. NFAT cooperates with c-Jun, a compound of the AP-1 complex, to activate target genes, and we also found that PSE inhibited both JNK activation and AP-1 transcriptional activity. These findings provide new mechanistic insights into the potential immunomodulatory activities of PSE and highlight their potential in designing novel therapeutic strategies to manage inflammatory diseases.

  12. Regulation of signaling pathways involved in lupeol induced inhibition of proliferation and induction of apoptosis in human prostate cancer cells.

    Science.gov (United States)

    Prasad, Sahdeo; Nigam, Nidhi; Kalra, Neetu; Shukla, Yogeshwer

    2008-12-01

    Prostate cancer (PCa) is the most frequently diagnosed noncutaneous cancer and the leading cause of cancer related deaths in men in the United States and many other Asian countries. Dietary factors are considered as a strategic agent to control the risk of PCa. Lupeol, a triterpene, present in fruits and medicinal plants, has been shown to possess many pharmacological properties including anticancer effects. Here, effect of lupeol on cell proliferation and cell death was evaluated using human PCa cells, PC-3. In MTT assay, lupeol inhibited the cell proliferation (12-71%) in dose (50-800 microM) and time dependent manner. Flow-cytometric analysis of cell-cycle revealed that an antiproliferative effect of lupeol (400-600 microM) is associated with an increase in G(2)/M-phase arrest (34-58%). RT-PCR analysis showed that lupeol-induced G2/M-phase arrest was mediated through the inhibition of cyclin regulated signaling pathway. Lupeol inhibited the expression of cyclin B, cdc25C, and plk1 but induced the expression of 14-3-3sigma genes. However no changes were observed in the expression of gadd45, p21(waf1/cip1) and cdc2 genes. Results of western blot showed that lupeol regulates the phosphorylation of cdc2 (Tyr15) and cdc25C (Ser198). Further, on increase of lupeol exposure to PC-3 cells an induction of apoptosis was recorded, which was associated with upregulation of bax, caspase-3, -9, and apaf1 genes and down regulation of antiapoptotic bcl-2 gene. The role of caspase-induced apoptosis was confirmed by increase in reactive oxygen species, loss of mitochondrial membrane potential followed by DNA fragmentation. Thus, our study suggests that lupeol possess novel antiproliferative and apoptotic potential against PCa.

  13. Signalling pathways involved in antitumoral effects of VIP in human renal cell carcinoma A498 cells: VIP induction of p53 expression.

    Science.gov (United States)

    Vacas, Eva; Muñoz-Moreno, Laura; Fernández-Martínez, Ana B; Bajo, Ana M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2014-08-01

    Vasoactive intestinal peptide (VIP) decreases cell proliferation through PI3K signalling and prevents tumour progression in clear renal cell carcinoma (RCC). Here we analyzed the signalling pathways that mediate such VIP effects by using human RCC A498 cells. The effects of treatment with 1 μM VIP and/or specific protein kinase inhibitors such as H89, Wortmannin and PD98059 were studied by cell adhesion assay, ELISA of VEGF165 and ROS production assays. Semiquantitative RT-PCR and western blot were performed to study p53 expression. VIP increased cell adhesion and ROS production, and decreased VEGF165 secretion through PI3K signalling. Moreover, VIP increased nuclear expression of tumour suppressor p53. VIP effects could be blocked by cell incubation with a specific p53 inhibitor, cyclin pifithrin-α hydrobromide (CPFT-αH). In conclusion, this study provides a p53-dependent mechanism by which VIP regulates cell proliferation in RCC development. It supports a potential usefulness of VIP in new therapies of RCC.

  14. Rapamycin reverses NPM-ALK-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis.

    Science.gov (United States)

    Gu, L; Gao, J; Li, Q; Zhu, Y P; Jia, C S; Fu, R Y; Chen, Y; Liao, Q K; Ma, Z

    2008-11-01

    The anaplastic lymphoma kinase (ALK) is an oncogene product involved in hematopoietic and non-hematopoietic malignancies. Recent studies have demonstrated that nucleophosmin (NPM)-ALK, originated from the fusion of NPM and ALK genes, causes cell transformation through diverse mechanisms. Here, we show a novel mechanism by which NPM-ALK transforms lymphoid tumor cells to become resistant to glucocorticoid (GC) or dexamethasone (Dex) treatment. Transformed BaF3 cells by NPM-ALK were much more resistant to Dex compared with their parental cells, and concurrently had a constitutive activation of mammalian target of rapamycin (mTOR) signaling, as evidenced by hyperphosphorylation of its downstream effectors, p70 S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The mTOR inhibitor rapamycin suppressed activation of p70S6K in BaF3/NPM-ALK cells and reversed GC resistance by synergistically inhibiting mTOR signaling pathway, enhancing cell cycle arrest at G(1) phase and promoting apoptotic cell death. In conclusion, our data indicate that the ALK fusion kinase, NPM-ALK, induces GC resistance by activating mTOR signaling, and addition of mTOR inhibitors to the chemotherapeutic regimen of ALK+ lymphomas may improve the prognosis.

  15. The Importance of the Canonical Wnt Signaling Pathway in the Porcine Endometrial Stromal Stem/Progenitor Cells: Implications for Regeneration

    Science.gov (United States)

    Bukowska, Joanna; Ziecik, Adam Janusz; Laguna, Joanna; Gawronska-Kozak, Barbara

    2015-01-01

    The regenerative ability of the endometrium is strongly associated with the presence of adult stem/progenitor cells. Purposes of the present study were (1) to establish the presence of stem/progenitor cells in porcine endometrial stroma using a clonogenic assay and (2) to investigate whether the canonical Wnt pathway affects the potential of stem/progenitor cells to undergo self-renewal or differentiation. The utility of endometrial stromal clones as a model for stem/progenitor studies was evaluated based on these cells' increased expression of mesenchymal stem cell (MSC) marker genes, including CD29, CD73, CD90, and CD105, compared with primary cultured cells. Small molecules were introduced to activate (BIO) or inhibit (XAV939) the canonical Wnt pathway during stromal clone formation. Cloning efficiency assays revealed that activation of the Wnt/β-catenin pathway promoted formation of more differentiated small clones. Moreover, activation of the Wnt/β-catenin pathway decreased, whereas inhibition of the pathway increased MSC marker expression. Additionally, we confirmed the importance of canonical Wnt pathway stimulation in endometrial stromal cells through observing the appropriate changes in β-catenin cellular localization. These data indicate that modulation of the canonical Wnt pathway effects the process of regeneration in the porcine endometrium during the course of the estrous cycle. PMID:26414529

  16. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  17. Signalling pathways in pemphigus vulgaris.

    Science.gov (United States)

    Li, Xiaoguang; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-03-01

    Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.

  18. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells.

    Science.gov (United States)

    Speckmann, Thilo; Sabatini, Paul V; Nian, Cuilan; Smith, Riley G; Lynn, Francis C

    2016-02-01

    Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.

  19. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao-Hsin [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Hung, Chi-Jr; Huang, Tsui-Hsien [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China)

    2014-10-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP.

  20. A 3-D Model of Signaling and Transport Pathways in Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Quong, A A; Westbrook, C K

    2005-04-01

    A 3-dimensional computer model was developed to simulate the spatial and chemical evolution of calcium ions inside an array of human epithelial kidney cells. This is a prototype model, intended to develop a methodology to incorporate much more complex interactions of metabolic and other processes within many types of cells and lead to increased ability to predict cellular responses to disease as well as to chemical and biological warfare situations. Preliminary tests of the model are described.

  1. Lung carcinoma signaling pathways activated by smoking

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  2. Location-specific effect of microbiota and MyD88-dependent signaling on Wnt/β-catenin pathway and intestinal stem cells.

    Science.gov (United States)

    Moossavi, Shirin

    2014-01-01

    Intestinal homeostasis depends on the proper activity of the intestinal stem cells (ISCs) and an appropriate host response to the normal resident microbiota. The question on the effect of microbiota on ISCs behavior has not been addressed yet. Canonical Wnt pathway and ISC gene expression signature was compared in germfree vs. conventional and MyD88(-/-) vs. Myd88(+/+) mice based on publicly available gene expression data sets. Microbiota and MyD88-dependent signaling have distinct effects on the Wnt pathway and ISC at gene expression level. In addition, the effect of microbiota and MyD88-dependent signaling on Wnt pathway and ISCs show regional variation. The net effect of microbiota on Wnt pathway and ISCs cannot be inferred from the available data. Nonetheless, the data are suggestive of a potential regulatory mechanism of the Wnt pathway by the microbiota and plausibly by any alteration in the microbiota composition.

  3. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    Science.gov (United States)

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT.

  4. Structural alteration of cell surface heparan sulfate through the stimulation of the signaling pathway for heparan sulfate 6-O-sulfotransferase-1 in mouse fibroblast cells.

    Science.gov (United States)

    Nishida, Mitsutaka; Kozakai, Takeru; Nagami, Keitaro; Kanamaru, Yoshihiro; Yabe, Tomio

    2014-01-01

    Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3 h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues.

  5. A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells

    Directory of Open Access Journals (Sweden)

    Witte Owen N

    2001-06-01

    Full Text Available Abstract Background Bruton's tyrosine kinase (Btk is essential for B cell development and function. Mutations of Btk elicit X-linked agammaglobulinemia in humans and X-linked immunodeficiency in the mouse. Btk has been proposed to participate in B cell antigen receptor-induced signaling events leading to activation of phospholipase C-γ2 (PLCγ2 and calcium mobilization. However it is unclear whether Btk activation is alone sufficient for these signaling events, and whether Btk can activate additional pathways that do not involve PLCγ2. To address such issues we have generated Btk:ER, a conditionally active form of the kinase, and expressed it in the PLCγ2-deficient DT40 B cell line. Results Activation of Btk:ER was sufficient to induce multiple B cell signaling pathways in PLCγ2-sufficient DT40 cells. These included tyrosine phosphorylation of PLCγ2, mobilization of intracellular calcium, activation of extracellular signal-regulated kinase (ERK and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinase (MAPK pathways, and apoptosis. In DT40 B cells deficient for PLCγ2, Btk:ER activation failed to induce the signaling events described above with the consequence that the cells failed to undergo apoptosis. Conclusions These data suggest that Btk:ER regulates downstream signaling pathways primarily via PLCγ2 in B cells. While it is not known whether activated Btk:ER precisely mimics activated Btk, this conditional system will likely facilitate the dissection of the role of Btk and its family members in a variety of biological processes in many different cell types.

  6. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells

    Institute of Scientific and Technical Information of China (English)

    Qiyu Wang; Shuhong Huang; Ling Yang; Ling Zhao; Yuxia Yin; Zhongzhen Liu; Zheyu Chen; Hongwei Zhang

    2008-01-01

    The Sonic hedgehog (SHh) pathway plays a critical role in normal embryogenesis and carcinogenesis, but its function in cancer cells treated with 5-fluorouracil (5-FU) remains unknown. We examined the expression of a subset of SHh signaling pathway genes, including SHh, SMO, PTC1, Su(Fu) and HIP in human hepatocellular carcinoma (HCC) cell lines,Hep3B and HepG2, treated with 5-FU by reverse transcriptionpolymerase chain reaction. Using trypan blue analysis,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, we also detected the apoptosis of Hep3B cells resulting from the transfection of pCS2-Gli1 expression vector combined with 5-FU treatment.The motility of the cells was detected by scratch wound closure assay. The expression and subcellular location of PTC1 protein in Hep3B cells treated by 5-FU were also investigated by Western blot analysis and immunofluorescent microscopy. The results indicated that the expression of SHh pathway target molecules at both messenger RNA and protein levels are evidently down-regulated in Hep3B cells treated with 5-FU. The overexpression of Gli1 restores cell viability and, to some extent, the migration abilities inhibited by 5-FU.Furthermore, 5-FU treatment affects the subcellular localization of PTC1 protein, a key member in SHh signaling pathway. Our data showed that the down-regulation of SHh signaling pathway activity was involved in 5-FU-induced apoptosis and the inhibition of motility in hedgehog-activated HCC cell lines. This implies that the combination of SHh signaling pathway inhibitor and 5-FU-based chemotherapy might represent a more promising strategy against HCC.

  7. Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway.

    Science.gov (United States)

    Mizuno, Katsuhiko; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2011-03-01

    Oral helminthic mebendazole (MBZ) has been reported to cause liver injury with inflammatory responses. However, the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether MBZ and other helminthic drugs increase the release of pro-inflammatory cytokines and chemokines using human monocytic cells. The release of interleukin (IL)-8 and tumor necrosis factor (TNF) α from human monocytic THP-1 cells was significantly increased by treatment with MBZ, albendazole (ABZ), fenbendazole (FBZ), or oxibendazole (OBZ), but not by albendazole sulfoxide or praziquantel, suggesting that MBZ and structurally similar drugs can stimulate monocytes and increase the release of pro-inflammatory cytokines. MBZ also significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) 1/2 in THP-1 cells. Pretreatment with the MAP kinase/ERK kinase 1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by MBZ, ABZ, FBZ, or OBZ treatment in THP-1 cells, but the p38 mitogen-activated protein kinase inhibitor SB203580 or JNK1/2 inhibitor SP600125 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with MBZ and structurally similar drugs. In conclusion, the release of inflammatory mediators by MBZ might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to hepatotoxicity.

  8. Basophil stimulation and signaling pathways.

    Science.gov (United States)

    Knol, Edward F; Gibbs, Bernhard F

    2014-01-01

    Despite growing use of flow cytometry to analyze the functional characteristics of primary basophils the intracellular signaling cascades that control their ability to elaborate various inflammatory mediators and cytokines remain comparatively obscure. Additionally, some studies require the analysis of pro-allergic and inflammatory mediators, such as histamine, LTC4, and various basophil-derived cytokines (e.g., IL-4 and IL-13). Elucidation of intracellular signaling proteins by Western blotting, cytosolic free calcium concentration by spectrofluorophotometry, and detection of mediator releases, as well as analysis of gene expressions by RT-PCR, generally require relatively large numbers of purified basophils. In selected assays, flow cytometry can enable the analysis of relatively low cell numbers and purity for the expression of intracellular signaling proteins or measurement of cytosolic free calcium concentrations by basophil-specific gating strategies. Unfortunately, many aspects of signal transduction relevant to human basophils cannot be readily extrapolated from the use of basophil or mast cell lines. This chapter therefore focuses on how to employ primary human basophils for studying mediator releases and signaling characteristics.

  9. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways.

    Science.gov (United States)

    Um, Moonkyoung; Lodish, Harvey F

    2006-03-01

    The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.

  10. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways.

    Science.gov (United States)

    Jubelin, Grégory; Taieb, Frédéric; Duda, David M; Hsu, Yun; Samba-Louaka, Ascel; Nobe, Rika; Penary, Marie; Watrin, Claude; Nougayrède, Jean-Philippe; Schulman, Brenda A; Stebbins, C Erec; Oswald, Eric

    2010-09-30

    The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G₁/S and G₂/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21(waf1) and p27(kip1). Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.

  11. miR-15a/16 Enhances Radiation Sensitivity of Non-Small Cell Lung Cancer Cells by Targeting the TLR1/NF-κB Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Fengming [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China); Radiation Oncology Department, Tianjin Hospital, Tianjin (China); Yue, Xiao [Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin (China); Ren, Gang; Li, Hongqi; Ping, Li; Wang, Yingjie [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China); Xia, Tingyi, E-mail: xiatingyi1959@163.com [Radiation Oncology Department, PLA Airforce General Hospital, Beijing (China)

    2015-01-01

    Purpose: Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Methods and Materials: Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. Results: First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3′UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. Conclusions: We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

  12. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways.

    Science.gov (United States)

    Massimiani, M; Vecchione, L; Piccirilli, D; Spitalieri, P; Amati, F; Salvi, S; Ferrazzani, S; Stuhlmann, H; Campagnolo, L

    2015-05-01

    Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.

  13. Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shoujiao Ye

    2016-01-01

    Full Text Available In the study, type 2 diabetic rat model was established using streptozotocin (STZ combined with a high-fat diet, and the rats were divided into control and diabetic groups. Diabetic groups were further divided into nonintervening, simvastatin, Didang Decoction (DDD early-phase intervening, DDD mid-phase intervening, and DDD late-phase intervening groups. The expression level of MLCK was detected using Western Blot analysis, and the levels of cyclic adenosine monophosphate (cAMP, protein kinase C (PKC, and protein kinase A (PKA were examined using Real Time PCR. Under the electron microscope, the cells in the early-DDD-intervention group and the simvastatin group were significantly more continuous and compact than those in the diabetic group. Compared with the control group, the expression of cAMP-1 and PKA was decreased in all diabetic groups, whereas the expression of MLCK and PKC was increased in early- and mid-phase DDD-intervening groups (P<0.05; compared with the late-phase DDD-intervening group, the expression of cAMP-1 and PKA was higher, but the level of MLCK and PKC was lower in early-phase DDD-intervening group (P<0.05. In conclusion, the early use of DDD improves the permeability of vascular endothelial cells by regulating the MLCK signaling pathway.

  14. Rhein lysinate inhibits monocyte adhesion to human umbilical vein endothelial cells by blocking p38 signaling pathway.

    Science.gov (United States)

    Lin, Yajun; Zhen, Yongzhan; Liu, Jiang; Wei, Jie; Tu, Ping; Hu, Gang

    2013-11-01

    The objective of this study was to investigate the effect of rhein lysinate (RHL) on monocyte adhesion and its mechanism. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the growth inhibition by drugs. The monocyte chemoattractant protein (MCP)-1 levels were assayed using MCP-1 ELISA. The expression of proteins was detected by Western blotting analysis. The results indicated that RHL inhibited monocyte adhesion in a dose- and time-dependent manner. RHL (<20 μmol/L) and lipopolysaccharide (LPS) had no effect on viability of human umbilical vein endothelial cells. Therefore, 20 μmol/L RHL was selected for this study. RHL inhibited secretion of MCP-1 induced by LPS and expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1. In the meantime, both RHL and p38 inhibitor (SB203580) inhibited phosphorylation of p38 and mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK-2) and transcription and expression of ICAM-1 and VCAM-1. In conclusion, RHL inhibits the transcription and expression of ICAM-1 and VCAM-1 by the p38/MAPKAPK-2 signaling pathway, and the effect of RHL on transcription and expression of ICAM-1 and VCAM-1 is similar to p38 inhibitor. RHL could be a prophylactic drug for atherosclerosis.