WorldWideScience

Sample records for cell sheet engineering

  1. Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Directory of Open Access Journals (Sweden)

    Vince Beachley

    2014-08-01

    Full Text Available A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications.

  2. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Ma, Dongyang [Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou 730052 (China); Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Chen, Fulin, E-mail: chenfl@nwu.edu.cn [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China)

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  3. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    International Nuclear Information System (INIS)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin; Chen, Fulin

    2013-01-01

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects

  4. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  5. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.

    Science.gov (United States)

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-12-14

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.

  6. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    Science.gov (United States)

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  8. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Andrea Cochis

    2018-04-01

    Full Text Available A possible strategy in regenerative medicine is cell-sheet engineering (CSE, i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS. The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na2SO4 and PBS. MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3 and endothelial murine cells (MS1, and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  9. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.

    Science.gov (United States)

    Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L

    2017-06-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb

  10. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Science.gov (United States)

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  11. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    OpenAIRE

    Costa, M.; Cerqueira, Mariana Teixeira; Santos, T. C.; Marques, Belém Sampaio; Ludovico, Paula; Marques, A. P.; Pirraco, Rogério P.; Reis, R. L.

    2017-01-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditi...

  12. N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering

    Directory of Open Access Journals (Sweden)

    Bernadette K. Madathil

    2014-01-01

    Full Text Available Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty.

  13. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  14. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  15. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Directory of Open Access Journals (Sweden)

    Jin H

    2014-05-01

    Full Text Available Han Jin,1 Kai Zhang,2 Chunyan Qiao,1 Anliang Yuan,1 Daowei Li,1 Liang Zhao,1 Ce Shi,1 Xiaowei Xu,1 Shilei Ni,1 Changyu Zheng,3 Xiaohua Liu,4 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People’s Republic of China; 3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 4Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USAAbstract: Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2 gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al nanocomposites plus human BMP-2 complementary(cDNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI

  16. Porcine Dental Epithelial Cells Differentiated in a Cell Sheet Constructed by Magnetic Nanotechnology

    Directory of Open Access Journals (Sweden)

    Wataru Koto

    2017-10-01

    Full Text Available Magnetic nanoparticles (MNPs are widely used in medical examinations, treatments, and basic research, including magnetic resonance imaging, drug delivery systems, and tissue engineering. In this study, MNPs with magnetic force were applied to tissue engineering for dental enamel regeneration. The internalization of MNPs into the odontogenic cells was observed by transmission electron microscopy. A combined cell sheet consisting of dental epithelial cells (DECs and dental mesenchymal cells (DMCs (CC sheet was constructed using magnetic force-based tissue engineering technology. The result of the iron staining indicated that MNPs were distributed ubiquitously over the CC sheet. mRNA expression of enamel differentiation and basement membrane markers was examined in the CC sheet. Immunostaining showed Collagen IV expression at the border region between DEC and DMC layers in the CC sheet. These results revealed that epithelial–mesenchymal interactions between DEC and DMC layers were caused by bringing DECs close to DMCs mechanically by magnetic force. Our study suggests that the microenvironment in the CC sheet might be similar to that during the developmental stage of a tooth bud. In conclusion, a CC sheet employing MNPs could be developed as a novel and unique graft for artificially regenerating dental enamel.

  17. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    Science.gov (United States)

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  18. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  19. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  20. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  1. A flexible thermoresponsive cell culture substrate for direct transfer of keratinocyte cell sheets.

    Science.gov (United States)

    Praveen, Wulligundam; Madathil, Bernadette K; Sajin Raj, R S; Kumary, T V; Anil Kumar, P R

    2017-10-25

    Most cell sheet engineering systems require a support or carrier to handle the harvested cell sheets. In this study, polyethylene terephthalate-based overhead projection transparency sheets (OHPS) were subjected to surface hydrolysis by alkali treatment to increase pliability and hydrophilicity and enable poly(N-isopropylacrylamide-co-glycidylmethacrylate) copolymer (NGMA) coating to impart thermoresponsiveness. NGMA was applied on the modified OHPS by the technique of spin coating using an indigenously designed spin coater. The spin coating had the advantage of using low volumes of the polymer and a reduced coating time. The surface chemistry and thermoresponsive coating was analyzed by Fourier transform infrared spectroscopy and water contact angle. Human keratinocyte cells were cultured on the spin coated surface and scaffold-free cell sheets were successfully harvested by simple variation of temperature. These cell sheets were found to be viable, exhibited epithelial characteristic and cell-cell contact as confirmed by positive immunostaining for ZO-1. The integrity and morphology of the cell sheet was confirmed by stereomicroscopy and E-SEM. These results highlight the potential of the NGMA spin coated modified OHPS to serve as a thermoresponsive culture surface-cum-flexible transfer tool.

  2. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  3. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  4. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    Science.gov (United States)

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  5. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Science.gov (United States)

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.

    Science.gov (United States)

    van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C

    2018-06-01

    Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.

  7. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.

    Science.gov (United States)

    Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li

    2017-03-23

    We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.

  8. Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: a case report.

    Science.gov (United States)

    Okuda, Kazuhiro; Momose, Manabu; Murata, Masashi; Saito, Yoshinori; lnoie, Masukazu; Shinohara, Chikara; Wolff, Larry F; Yoshie, Hiromasa

    2004-04-01

    Human cultured gingival epithelial sheets were used as an autologous grafting material for regenerating gingival tissue in the maxillary left and mandibular right quadrants of a patient with chronic desquamative gingivitis. Six months post-surgery in both treated areas, there were gains in keratinized gingiva and no signs of gingival inflammation compared to presurgery. In the maxillary left quadrant, preoperative histopathologic findings revealed the epithelium was separated from the connective tissue and inflammatory cells were extensive. After grafting with the gingival epithelial sheets, inflammatory cells were decreased and separation between epithelium and connective tissue was not observed. The human cultured gingival epithelial sheets fabricated using tissue engineering technology showed significant promise for gingival augmentation in periodontal therapy.

  9. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  10. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.

    Science.gov (United States)

    Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2017-02-01

    To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  14. Evaluation of cell sheet application on one wall bone defect in Macaca nemestrina through periostin expression

    Science.gov (United States)

    Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.

    2017-08-01

    Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.

  15. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site.

    Science.gov (United States)

    Wang, Zhifa; Weng, Yanming; Lu, Shengjun; Zong, Chunlin; Qiu, Jianyong; Liu, Yanpu; Liu, Bin

    2015-08-01

    To analyze the effects of platelet-rich fibrin (PRF) on mesenchymal stem cells (MSCs) in vitro and investigate in vivo bone formation by MSC sheets with PRF. Cell proliferation and expression of osteogenesis-related genes within MSC sheets were assessed upon exposure to PRF from the same donors. We then injected MSC sheet fragments with or without PRF subcutaneously in nude mice and assessed bone formation by micro-computed tomography and histological analyses. PRF significantly stimulated MSC proliferation and osteogenesis in vitro. MSC sheets injected with or without PRF formed new bone, but those with PRF produced significantly more and denser bone. MSC sheets can be used to generate tissue engineered bone upon injection, and PRF increases the osteogenic capacity of MSC sheets in vitro and in vivo. © 2014 Wiley Periodicals, Inc.

  17. Avidin-biotin-based approach to forming heterotypic cell clusters and cell sheets on a gas-permeable membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, M; Ozawa, T; Montagne, K; Kojima, N; Ishii, R; Sakai, Y [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yamaguchi, S; Nagamune, T [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ushida, T, E-mail: mzh0026@auburn.edu [Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-09-15

    Implantation of sheet-like liver tissues is a promising method in hepatocyte-based therapies, because angiogenesis is expected to occur upon implantation from the surrounding tissues. In this context, we introduce here a new methodology for the formation of a functional thick hepatic tissue usable for cell sheet technology. First, we report the formation of composite tissue elements in suspension culture. Composite elements were composed of human hepatoma Hep G2 cells and mouse NIH/3T3 fibroblasts which are important modulators for thick-tissue formation. To overcome the very low attachment and organization capability between different cells in suspension, we synthesized a new cell-to-cell binding molecule based on the avidin-biotin binding system that we previously applied to attach hepatocytes on artificial substrata. This newly synthesized biotin-conjugated biocompatible anchoring molecule was inserted in the plasma membrane of both cell types. NIH/3T3 cells were further conjugated with avidin and incubated with biotin-presenting Hep G2 cells to form highly composite tissue elements. Then, we seeded those elements on highly gas-permeable membranes at their closest packing density to induce the formation of a thick, composite, functional hepatic tissue without any perfusion. This methodology could open a new way to engineer implantable thick liver tissue sheets where different cell types are spatially organized and well supplied with oxygen.

  18. Careers "Fact Sheets" for clinical engineering & biomedical technology.

    Science.gov (United States)

    Pacela, A F

    1991-01-01

    Three Careers "Fact Sheets" include information on CE and BMET job titles, job descriptions, and certification. These materials are intended to aid in furthering professional recognition for Clinical Engineers and BMETs, and may be useful in communicating with Administration or Human Resources departments.

  19. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Fu-Chen [Department of Health Developing and Health Marketing, Kainan University, Taiwan (China); Lin, Chi-Chang, E-mail: chichang31@thu.edu.tw [Department of Chemical and Materials Engineering, Tunghai University, Taiwan (China); Lai, Wen-Fu T., E-mail: Laitw@tmu.edu.tw [Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan (China)

    2014-12-01

    Electrospun fiber sheets with various orientations (random, partially aligned, and aligned) and smooth and roughened casted membranes were prepared. Hydroxyapatite (HA) crystals were in situ formed on these material surfaces via immersion in 10 × simulated body fluid solution. The size and morphology of the resulting fibers were examined using scanning electron microscopy. The average diameter of the fibers ranged from 225 ± 25 to 1050 ± 150 nm depending on the electrospinning parameters. Biological experiment results show that human adipose-derived stem cells exhibit different adhesion and osteogenic differentiation on the three types of fiber. The cell proliferation and osteogenic differentiation were best on the aligned fibers. Similar results were found for phosphorylated focal adhesion kinase expression. Electrospun poly(lactic acid) aligned fibers mineralized with HA crystals provide a good environment for cell growth and osteogenic differentiation and thus have great potential in the tissue engineering field. - Highlights: • hADSCs show higher adhesion and proliferation on HA-precipitate electrospun fiber sheets than those of the control membranes. • HA-mineralized fiber groups greatly improve cell growth and increase FAK and p-FAK expressions. • HA-precipitate electrospun fiber sheets present higher ALP and OC activity through the study periods. • Electrospun PLA fiber mineralized with HA provides a good environment for cell growth and osteogenic differentiation. • A simple immersion of electrospun fibers in 10 × SBF are a potential matrix for bone tissue engineering.

  1. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  3. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    Science.gov (United States)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  4. Transplantation of periodontal ligament cell sheets expressing human β-defensin-3 promotes anti-inflammation in a canine model of periodontitis

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-01-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β-defensin-3 (HBD-3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti-inflammatory effect of periodontal tissue engineered by HBD-3 gene-modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD-3. The effect of the cell sheets on anti-inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD-3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD-3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti-inflammatory effect. PMID:28944821

  5. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine.

    Science.gov (United States)

    Elloumi-Hannachi, I; Yamato, M; Okano, T

    2010-01-01

    Cell sheet technology (CST) is based on the use of thermoresponsive polymers, poly(N-isopropylacrylamide) (PIPAAm). The surface of PIPAAms is formulated in such a way as to make its typical thickness <100 nm. In this review, we first focus on how the methods of PIPAAm-grafted surface preparations and functionalization are important to be able to harvest a functional cell sheet, to be further transplanted. Then, we present aspects of tissue mimics and three-dimensional reconstruction of a tissue in vitro. Finally, we give an overview of clinical applications and clinically relevant animal experimentations of the technology, such as cardiomyopathy, visual acuity, periodonty, oesophageal ulcerations and type 1 diabetes.

  6. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  7. Transplantation of periodontal ligament cell sheets expressing human β‑defensin‑3 promotes anti‑inflammation in a canine model of periodontitis.

    Science.gov (United States)

    Zhu, Minwen; Miao, Bo; Zhu, Jianhua; Wang, Haiyan; Zhou, Zengtong

    2017-11-01

    Periodontitis is a chronic oral inflammatory disease caused by microorganisms. Human β‑defensin‑3 (HBD‑3) is an endogenous antimicrobial peptide that inhibits a broad spectrum of microorganisms. Cell sheet technology has been widely applied in tissue and organ reconstructions. In the current study, it was aimed to investigate the anti‑inflammatory effect of periodontal tissue engineered by HBD‑3 gene‑modified periodontal ligament cell (PDLC) sheets, and to identify a suitable method of promoting the regeneration of periodontal tissues. Western blot analysis and antimicrobial tests were used to confirm the expression of HBD‑3. The effect of the cell sheets on anti‑inflammatory activity and bone remodeling in a dog model of periodontitis was demonstrated by immunohistochemistry. The results demonstrated that the transfected PDLCs stably expressed HBD‑3. Periodontal pathogens were susceptible to the antimicrobial activity of the cell sheets. In addition, the cell sheets relieved the bone resorption caused by inflammation in the in vivo model. HBD‑3 may potentially be applied in the treatment of periodontitis and may function as osteogenic promoter via its anti‑inflammatory effect.

  8. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    Science.gov (United States)

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  9. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  10. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    Science.gov (United States)

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  11. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  12. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  13. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes.

    Science.gov (United States)

    Kawecki, Marek; Kraut, Małgorzata; Klama-Baryła, Agnieszka; Łabuś, Wojciech; Kitala, Diana; Nowak, Mariusz; Glik, Justyna; Sieroń, Aleksander L; Utrata-Wesołek, Alicja; Trzebicka, Barbara; Dworak, Andrzej; Szweda, Dawid

    2016-06-01

    In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.

  14. Human platelet lysate supports the formation of robust human periodontal ligament cell sheets.

    Science.gov (United States)

    Tian, Bei-Min; Wu, Rui-Xin; Bi, Chun-Sheng; He, Xiao-Tao; Yin, Yuan; Chen, Fa-Ming

    2018-04-01

    The use of stem cell-derived sheets has become increasingly common in a wide variety of biomedical applications. Although substantial evidence has demonstrated that human platelet lysate (PL) can be used for therapeutic cell expansion, either as a substitute for or as a supplement to xenogeneic fetal bovine serum (FBS), its impact on cell sheet production remains largely unexplored. In this study, we manufactured periodontal ligament stem cell (PDLSC) sheets in vitro by incubating PDLSCs in sheet-induction media supplemented with various ratios of PL and FBS, i.e. 10% PL without FBS, 7.5% PL + 2.5% FBS, 5% PL + 5% FBS, 2.5% PL + 7.5% FBS or 10% FBS without PL. Cultures with the addition of all the designed supplements led to successful cell sheet production. In addition, all the resultant cellular materials exhibited similar expression profiles of matrix-related genes and proteins, such as collagen I, fibronectin and integrin β1. Interestingly, the cell components within sheets generated by media containing both PL and FBS exhibited improved osteogenic potential. Following in vivo transplantation, all sheets supported significant new bone formation. Our data suggest that robust PDLSC sheets can be produced by applying PL as either an alternative or an adjuvant to FBS. Further examination of the relevant influences of human PL that benefit cell behaviour and matrix production will pave the way towards optimized and standardized conditions for cell sheet production. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  16. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  17. Applications of chitosan-based thermo-sensitive copolymers for harvesting living cell sheet

    International Nuclear Information System (INIS)

    Chen, J.-P.; Yang, T.-F.

    2008-01-01

    A thermo-sensitive chitosan-based copolymer hydrogel was used for harvesting living cell sheets. The hydrogel was tested for harvesting 3T3 cells after carrying out cell culture at 37 deg. C and incubating the confluent cells at 20 deg. C for spontaneous detachment of cell sheets from hydrogel surface without enzyme treatment. Results from cell viability assay and microscopy observations demonstrated that cells could attach to the hydrogel surface and maintain high viability and proliferation ability. Cell detachment efficiency from the hydrogel was about 80%. The detached cell sheet retained high viability and could proliferate again after transferred to a new culture surface

  18. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  19. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  20. Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.

    Science.gov (United States)

    Honjo, Ken-ichi; Yamamoto, Toshiro; Adachi, Tetsuya; Amemiya, Takeshi; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2015-01-01

    Mesenchymal stem cells (MSC) are transplanted for periodontal tissue regeneration, and the periodontal ligament (PDL) is regenerated using a cultured cell sheet. This cultured cell sheet is prepared using PDL-derived cells, growth factors, and amniotic membrane (AM). Dental pulp (DP)-derived cells can be easily obtained from extracted wisdom teeth, proliferate rapidly, and are less susceptible to bacterial infection than PDL-derived cells. Thus, to prepare a novel cell sheet, DP-derived cells were cultured on AM as a culture substrate for immunohistochemical examination. Wisdom teeth extracted from three adults were cut along the cement-enamel border. DP tissue was collected, minced, and primarily cultured. After three or four passage cultures, DP-derived cells were cultured on AM, followed by hematoxylin-eosin (H-E) and immunofluorescence staining. DP-derived cells cultured on AM formed a layered structure. Cells positive for vimentin, Ki-67, ZO-1, desmoplakin, CD29, 44, 105 or 146, STRO-1, collagen IV or VII or laminin 5 or α5 chain were localized. DP-derived cells proliferated on AM, while retaining the properties of DP, which allowed the cultured cell sheet to be prepared. In addition, the cultured cell sheet contained MSC, which suggests its potential application in periodontal tissue regeneration.

  1. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  2. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  3. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  4. An invention of thermo-responsive polymer surface, yielding cell sheet based regenerative therapies in cardiology and ophthalmology

    Directory of Open Access Journals (Sweden)

    Sawa Y

    2015-12-01

    Full Text Available The Invention: In vitro cell culture methodologies provide a conducive environment for the cells taken out of their native environment to grow and proliferate in a non-physiological environment, the culture dish. Research experiments have been focusing on various criteria for assessing how far it is possible to recapitulate the native extra-cellular environment in vitro. Scaffolds, culture media, growth factors and cell surface modified culture dishes are some of the components that provide a conducive environment for in vitro cell culture. Cells that are grown in culture dishes using conventional methodologies are usually detached using enzymatic treatment with Trypsin, Collagenase etc [1], to be transplanted when it comes to a clinical or experimental application. Such enzymes used in separating the cells may have some damaging effects to the cell membranes which might impair the cell function [1]. However, cells if can be grown as a monolayer and be harvested as a contiguous cell sheet, it is considered suitable for transplantation in certain specific applications. In addition to that, if enzymatic digestion which has some detrimental effects on the detached cells could be avoided, that is an added advantage. The work by Prof. Okano and team from the Tokyo Women's Medical University, Japan, on thermo-responsive polymer surfaces has yielded a solution which has both the advantages viz., detachability of cells grown as a monolayer in the form of a cell sheet, that too without the use of enzymes. Their research into biomaterials for more than two decades has yielded a thermo-responsive polymer, the poly(N-isopropylacrylamide (PIPAAm [1] coated culture dish for cell sheet engineering. In their technology, PIPAAm is polymerized and grafted to tissue culture polystyrene (TCPS dishes. Cells have been found to grow confluent on PIPAAm-TCPS at 37 °C. Once confluent as a monolayer, by merely reducing the temperature of the PIPAAm-TCPS to 20 °C, it

  5. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M; ChangWei; Xu Jiahua; Yu Xiaojun

    2012-01-01

    One of the major challenges in the fabrication of tissue engineered scaffolds is the ability of the scaffold to biologically mimic autograft-like tissues. One of the alternate approaches to achieve this is by the application of cell seeded scaffolds with optimal porosity and mechanical properties. However, the current approaches for seeding cells on scaffolds are not optimal in terms of seeding efficiencies, cell penetration into the scaffold and more importantly uniform distribution of cells on the scaffold. Also, recent developments in scaffold geometries to enhance surface areas, pore sizes and porosities tend to further complicate the scenario. Cell sheet-based approaches for cell seeding have demonstrated a successful approach to generate scaffold-free tissue engineering approaches. However, the method of generating the temperature responsive surface is quite challenging and requires carcinogenic reagents and gamma rays. Therefore, here, we have developed temperature responsive substrates by layer-by-layer self assembly of smart polymers. Multilayer thin films prepared from tannic acid and poly N-isopropylacrylamide were fabricated based on their electrostatic and hydrogen bonding interactions. Cell attachment and proliferation studies on these thin films showed uniform cell attachment on the substrate, matching tissue culture plates. Also, the cells could be harvested as cell patches and sheets from the scaffolds, by reducing the temperature for a short period of time, and seeded onto porous scaffolds for tissue engineering applications. An enhanced cell seeding efficiency on scaffolds was observed using the cell patch-based technique as compared to seeding cells in suspension. Owing to the already pre-existent cell–cell and cell–extracellular matrix interactions, the cell patch showed the ability to reattach rapidly onto scaffolds and showed enhanced ability to proliferate and differentiate into a bone-like matrix. (paper)

  6. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  7. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production.

    Science.gov (United States)

    Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan

    2017-03-01

    The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    Science.gov (United States)

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zhongshan Wang,1 Guangsheng Wu,2,3 Mengying Wei,4 Qian Liu,1 Jian Zhou,1 Tian Qin,1 Xiaoke Feng,1 Huan Liu,1 Zhihong Feng,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, 2State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, 4Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS/hyaluronic acid (HA nanoparticles (NPs to deliver microRNA-21 (miR-21, which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel

  10. Biodegradable porous sheet-like scaffolds for soft-tissue engineering using a combined particulate leaching of salt particles and magnetic sugar particles.

    Science.gov (United States)

    Hu, Chengzhi; Tercero, Carlos; Ikeda, Seiichi; Nakajima, Masahiro; Tajima, Hirotaka; Shen, Yajing; Fukuda, Toshio; Arai, Fumihito

    2013-07-01

    Scaffolds serving as artificial extracellular matrixes (ECMs) play a pivotal role in the process of tissue regeneration by providing optimal cellular environments for penetration, ingrowth, and vascularization. Stacks of sheet-like scaffold can be engineered to become artificial ECMs, suggesting a great potential for achieving complex 3-D tissue regeneration to support cell survival and growth. In this study, we proposed and investigated a combined particulate leaching of magnetic sugar particles (MSPs) and salt particles for the development of a sheet-like scaffold. MSPs were fabricated by encapsulating NdFeB particles inside sugar spheres and were controlled using magnetic fields as a porogen to control pore size, pore structure and pore density while fabricating the scaffold. We studied the influence of the strength of the magnetic fields in controlling the coating thickness of the unmagnetized MSPs during the fabrication of the sheet-like scaffolds. The experimental relationship between magnetic flux density and the thickness of the MSP layer was illustrated. Furthermore, we investigated the infiltration capacity of different concentrations of poly(L-lactide-co-ɛ-caprolactone) (PLCL) as a scaffold material on MSP clusters. Following polymer casting and removal of the sugar template, spherical pores were generated inside the scaffolds. Cultivation of NIH/3T3 fibroblasts on the fabricated scaffold proves that the proposed method can be applied in the cell sheet fabrication. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  12. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  13. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    Science.gov (United States)

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    Science.gov (United States)

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  15. Cell Factory Engineering

    DEFF Research Database (Denmark)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies......-review provides general strategy guides for the broad range of applications of rational engineering of cell factories....

  16. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    Science.gov (United States)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  17. Exogenous ROS-induced cell sheet transfer based on hematoporphyrin-polyketone film via a one-step process.

    Science.gov (United States)

    Koo, Min-Ah; Lee, Mi Hee; Kwon, Byeong-Ju; Seon, Gyeung Mi; Kim, Min Sung; Kim, Dohyun; Nam, Ki Chang; Park, Jong-Chul

    2018-04-01

    To date, most of invasive cell sheet harvesting methods have used culture surface property variations, such as wettability, pH, electricity, and magnetism, to induce cell detachment. These methods that rely on surface property changes are effective when cell detachment prior to application is necessary, but of limited use when used for cell sheet transfer to target regions. The study reports a new reactive oxygen species (ROS)-induced strategy based on hematoporphyrin-incorporated polyketone film (Hp-PK film) to transfer cell sheets directly to target areas without an intermediate harvesting process. After green LED (510 nm) irradiation, production of exogenous ROS from the Hp-PK films induces cell sheet detachment and transfer. The study suggests that ROS-induced cell detachment property of the Hp-PK film is closely related to conformational changes of extracellular matrix (ECM) proteins. Also, this strategy with the Hp-PK film can be applied by regulating production rate of exogenous ROS in various types of cells, including fibroblasts, mesenchymal stem cells and keratinocytes. In conclusion, ROS-induced method using the Hp-PK film can be used for one-step cell sheet transplantation and has potential in biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle

    NARCIS (Netherlands)

    Sukho, Panithi; Boersema, Geesien S A; Cohen, Abigael; Kops, Nicole; Lange, Johan F; Kirpensteijn, Jolle; Hesselink, Jan Willem; Bastiaansen-Jenniskens, Yvonne M; Verseijden, Femke

    2017-01-01

    The most dreaded complication of colorectal surgery is anastomotic leakage. Adipose tissue-derived stem cell sheets (ASC sheets) prepared from temperature-responsive culture surfaces can be easily transplanted onto tissues. These sheets are proposed to improve cell transplant efficiency and enhance

  19. The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models.

    Directory of Open Access Journals (Sweden)

    Alaa T Alshareeda

    Full Text Available Hepatocellular carcinoma (HCC is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs on the development of the HCC model and on different liver parameters such as albumin and urea.Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs and human bone marrow mesenchymal stromal cells (BM-MSCs on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel.HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC.Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2

  20. Co-cultures and cell sheet engineering as relevant tools to improve the outcome of bone tissue engineering strategies

    OpenAIRE

    Pirraco, Rogério

    2011-01-01

    Taking into consideration the complex biology of bone tissue it is quite clear that the understanding of the cellular interactions that regulate the homeostasis and regeneration of this remarkable tissue is essential for a successful Tissue Engineering strategy. The in vitro study of these cellular interactions relies on co-culture systems, a tremendously useful methodology where two or more cell types are cultured at the same time. Such strategy increases the complexity of typ...

  1. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process...

  2. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.

    Science.gov (United States)

    Wang, Ling; Wu, Yaobin; Hu, Tianli; Guo, Baolin; Ma, Peter X

    2017-09-01

    Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been

  3. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating

    NARCIS (Netherlands)

    Di Giacomo, Francesco; Shanmugam, Santhosh; Fledderus, Henri; Bruijnaers, Bardo J.; Verhees, Wiljan J.H.; Dorenkamper, Maarten S.; Veenstra, Sjoerd C.; Qiu, Weiming; Gehlhaar, Robert; Merckx, Tamara; Aernouts, Tom; Andriessen, Ronn; Galagan, Yulia

    2018-01-01

    Scalable sheet-to-sheet slot die coating processes have been demonstrated for perovskite solar cells and modules. The processes have been developed on 6 in. × 6 in. glass/ITO substrates for two functional layers: the perovskite photo-active layer and the Spiro-OMeTAD hole transport layer. Perovskite

  4. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy.

    Science.gov (United States)

    Amat, Fernando; Keller, Philipp J

    2013-05-01

    Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  5. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps.

    Science.gov (United States)

    Sharma, Puja; Ng, Colin; Jana, Aniket; Padhi, Abinash; Szymanski, Paige; Lee, Jerry S H; Behkam, Bahareh; Nain, Amrinder S

    2017-09-15

    Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence-based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell-cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology. © 2017 Sharma et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  7. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy.

    Science.gov (United States)

    Parikumar, Periasamy; Haraguchi, Kazutoshi; Senthilkumar, Rajappa; Abraham, Samuel Jk

    2018-01-01

    Transplantation of in vitro expanded human corneal endothelial precursors (HCEP) cells using a nanocomposite (D25-NC) gel sheet as supporting material in bovine's cornea has been earlier reported. Herein we report the transplantation of HCEP cells derived from a cadaver donor cornea to three patients using the NC gel sheet. In three patients with bullous keratopathy, one after cataract surgery, one after trauma and another in the corneal graft, earlier performed for congenital corneal dystrophy, not amenable to medical management HCEP cells isolated from a human cadaver donor cornea in vitro expanded using a thermoreversible gelation polymer (TGP) for 26 days were divided into three equal portions and 1.6 × 10 5 HCEP cells were injected on to the endothelium of the affected eye in each patient using the D25-NC gel sheet as a supporting material. The sheets were removed after three days. The bullae in the cornea disappeared by the 3 rd -11 th post-operative day in all the three patients. Visual acuity improved from Perception of light (PL)+/Projection of rays (PR)+ to Hand movements (HM)+ in one of the patients by post-operative day 3 which was maintained at 18 months follow-up. At 18 months follow-up, in another patient the visual acuity had improved from HM+ to 6/60 while in the third patient, visual acuity remained HM+ as it was prior to HCEP transplantation. There were no adverse effects during the follow-up in any of the patients.

  8. Effects of RGD immobilization on light-induced cell sheet detachment from TiO{sub 2} nanodots films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kui; Wang, Tiantian [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Yu, Mengliu [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Wan, Hongping [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Lin, Jun [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wang, Huiming, E-mail: hmwang1960@hotmail.com [The Affiliated Stomatologic Hospital, Zhejiang University, Hangzhou 310003 (China); The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003 (China)

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine–glycine–aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO{sub 2} nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO{sub 2} nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO{sub 2} nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest. - Highlights: • RGD immobilization on TiO{sub 2} nanodots film favors light-induced cell sheet detachment. • Physically adsorbed RGD detaches from the film through ultraviolet illumination. • RGD detachment promotes cells and cell sheets detachment.

  9. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  10. Preparation and characterization of carbon nanofibrous/hydroxyapatite sheets for bone tissue engineering.

    Science.gov (United States)

    Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H

    2017-07-01

    Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Engineered cell-cell communication via DNA messaging

    Directory of Open Access Journals (Sweden)

    Ortiz Monica E

    2012-09-01

    Full Text Available Abstract Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.

  12. Fuel cell technology for classroom instruction. Basic principles, experiments, work sheets. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Cornelia; Hoeller, Stefan; Kueter, Uwe

    2009-07-01

    This book provides a clear introduction and overview to fuel cell technology and its associated subject areas. Examples of experiments using solar cells, electrolysis and fuel cells convey the knowledge for forthcoming tests in an understandable manner. The preparation of classroom experiments is made considerably easier for the teacher thanks to the experiment work sheets. These contain the necessary information concerning the material, set-up and execution of the experiment, and questions for evaluation purposes. Online-Shop The training documents and student work sheets combine the basic knowledge, questions and answers, and are ideal for copying. A comprehensive glossary at the end of the book explains all the important technical terms. (orig.)

  13. The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to the heart with enhanced therapeutic effects.

    Science.gov (United States)

    Narita, Takuya; Shintani, Yasunori; Ikebe, Chiho; Kaneko, Masahiro; Harada, Narumi; Tshuma, Nomathamsanqa; Takahashi, Kunihiko; Campbell, Niall G; Coppen, Steven R; Yashiro, Kenta; Sawa, Yoshiki; Suzuki, Ken

    2013-09-20

    Clinical application of skeletal myoblast transplantation has been curtailed due to arrhythmogenicity and inconsistent therapeutic benefits observed in previous studies. However, these issues may be solved by the use of a new cell-delivery mode. It is now possible to generate "cell-sheets" using temperature-responsive dishes without artificial scaffolds. This study aimed to validate the safety and efficacy of epicardial placement of myoblast-sheets (myoblast-sheet therapy) in treating heart failure. After coronary artery ligation in rats, the same numbers of syngeneic myoblasts were transplanted by intramyocardial injection or cell-sheet placement. Continuous radio-telemetry monitoring detected increased ventricular arrhythmias, including ventricular tachycardia, after intramyocardial injection compared to the sham-control, while these were abolished in myoblast-sheet therapy. This effect was conjunct with avoidance of islet-like cell-cluster formation that disrupts electrical conduction, and with prevention of increased arrhythmogenic substrates due to exaggerated inflammation. Persistent ectopic donor cells were found in the lung only after intramyocardial injection, strengthening the improved safety of myoblast-sheet therapy. In addition, myoblast-sheet therapy enhanced cardiac function, corresponding to a 9.2-fold increase in donor cell survival, compared to intramyocardial injection. Both methods achieved reduced infarct size, decreased fibrosis, attenuated cardiomyocyte hypertrophy, and increased neovascular formation, in association with myocardial upregulation of a group of relevant molecules. The pattern of these beneficial changes was similar between two methods, but the degree was more substantial after myoblast-sheet therapy. The cell-sheet technique enhanced safety and therapeutic efficacy of myoblast-based therapy, compared to the current method, thereby paving the way for clinical application. Copyright © 2012 Elsevier Ireland Ltd. All rights

  14. CellNet: Network Biology Applied to Stem Cell Engineering

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  15. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Toivola, Minna; Ahlskog, Fredrik; Lund, Peter [Laboratory of Advanced Energy Systems, Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 4100, FIN-02015 TKK (Finland)

    2006-11-06

    Direct integration of dye-sensitized solar cells (DSSC) onto industrial sheet metals has been studied. The stability of the metals, including zinc-coated and plain carbon steel, stainless steel and copper in a standard iodine electrolyte was investigated with soaking and encapsulation tests. Stainless and carbon steel showed sufficient stability and were used as the cell counter-electrodes, yielding cells with energy conversion efficiencies of 3.6% and 3.1%, respectively. A DSSC built on flexible steel substrates is a promising approach especially from the viewpoint of large-scale, cost-effective industrial manufacturing of the cells. (author)

  17. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  18. Initial rigid response and softening transition of highly stretchable kirigami sheet materials.

    Science.gov (United States)

    Isobe, Midori; Okumura, Ko

    2016-04-27

    We study, experimentally and theoretically, the mechanical response of sheet materials on which line cracks or cuts are arranged in a simple pattern. Such sheet materials, often called kirigami (the Japanese words, kiri and gami, stand for cut and paper, respectively), demonstrate a unique mechanical response promising for various engineering applications such as stretchable batteries: kirigami sheets possess a mechanical regime in which sheets are highly stretchable and very soft compared with the original sheets without line cracks, by virtue of out-of-plane deformation. However, this regime starts after a transition from an initial stiff regime governed by in-plane deformation. In other words, the softness of the kirigami structure emerges as a result of a transition from the two-dimensional to three-dimensional deformation, i.e., from stretching to bending. We clarify the physical origins of the transition and mechanical regimes, which are revealed to be governed by simple scaling laws. The results could be useful for controlling and designing the mechanical response of sheet materials including cell sheets for medical regeneration and relevant to the development of materials with tunable stiffness and mechanical force sensors.

  19. Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system.

    Science.gov (United States)

    Wang, Yingwei; Zhang, Jianhua; Qin, Zixi; Fan, Zepei; Lu, Cheng; Chen, Baoxin; Zhao, Jupeng; Li, Xiaojuan; Xiao, Fei; Lin, Xi; Wu, Zheng

    2018-05-01

    Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1 + cell and c-kit + cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis. This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity

  20. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  1. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electron-Beam Induced Grafting of Isopropylacrylamide to a Poly(Ethylene-Terephthalate) Membrane for Cell Sheet Detachment, and Fuel Cell Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, L; Al-Sheikhly, M [Department of Materials Science and Engineering, College Park, MD (United States)

    2012-09-15

    Using high-energy irradiation initiation, isopropylacrylamide (IPAA) was grafted to a porous membrane dish composed of poly(ethylene terephthalate) (PET). IPPA demonstrates a transition from a hydrophobic to a hydrophilic structure with a simple change in temperature. The dishes were used for cell grow. Cells generally grow in an environment set at 37 deg. C, at which the IPAA polymer exhibits its hydrophobic structure. IPAA was attached uniformly to a cell culture surface, and cells were able to grow on top of the IPAA while it was in its hydrophobic state. Cells were easily removed from the surface of the dishes after changing the temperature below the LCST of IPAA. By changing the temperature polymer altered its structure to a hydrophilic state and no longer provided a suitable surface for the cells to adhere to. This caused the cells to lift off the culture surface without the use of a destructive enzyme such as trypsin or dispase. These cell sheets are useful to cell sheet engineering because the cells will retain both their extracellular matrix (ECM) and cell-to-cell junctions, which are normally lost in the harvest of cells. Poly(tetrafluoroethylene-co-hexefluoropropylene) (FEP) is a material under investigation as a polymer electrolyte membrane for fuel cells. In order to make it ionically conductive, styrene was grafted to it and then subsequently sulfonated. Grafting of styrene to FEP was performed by simultaneous irradiation of the monomer and substrate to initiate the reaction, followed by a heat treatment to allow the reaction to undergo propagation. The effects of dose rate and heat treatment time on the weight percent yield of grafting and uniformity as a function of depth in the substrate was investigated. A 38.5 wt% graft was obtained after a 50 kGy dose of electron irradiation at a dose rate of 2,8 Gy/pulse and post-irradiation heat treatment of 60 deg. C for three hours. FTIR analysis of 10 {mu}m sections of material grafted under these

  3. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    Science.gov (United States)

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.

  4. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    Science.gov (United States)

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  5. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    Science.gov (United States)

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  6. Dissecting engineered cell types and enhancing cell fate conversion via CellNet

    Science.gov (United States)

    Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.

    2014-01-01

    SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792

  7. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  8. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  9. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  11. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  12. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  13. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  15. Engineering Robustness of Microbial Cell Factories.

    Science.gov (United States)

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineered cell manipulation for biomedical application

    CERN Document Server

    Akashi, Misturu; Matsusaki, Michiya

    2014-01-01

    This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engin...

  17. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  18. Quantifying stretching and rearrangement in epithelial sheet migration

    International Nuclear Information System (INIS)

    Lee, Rachel M; Nordstrom, Kerstin N; Losert, Wolfgang; Kelley, Douglas H; Ouellette, Nicholas T

    2013-01-01

    Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D m in 2 , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density. (paper)

  19. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  20. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells

    NARCIS (Netherlands)

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great

  1. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  3. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Directory of Open Access Journals (Sweden)

    Julien Barthes

    2014-01-01

    Full Text Available In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  4. Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application

    Science.gov (United States)

    Durán, Marcela; Andrade, Patricia F.; Durán, Nelson; Luzo, Angela C. M.; Fávaro, Wagner J.

    2015-05-01

    It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 μg/mL In vivo study with GO suspended in water (100 μg/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases.

  5. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.; Schroll, R. D.; Vella, D.; Adda-Bedia, M.; Cerda, E. A.

    2011-01-01

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  6. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.

    2011-10-31

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  7. Better Solar Cells and Manufacturing Processes Using NREL's Ultrafast Quantum Efficiency Method (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    Fact sheet on the FlashQE system, a 2011 R&D 100 Award winner. A solid-state optical system by NREL and Tau Science measures solar cell quantum efficiency in less than a second, enabling a suite of new capabilities for solar cell manufacturers.

  8. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  9. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  10. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  11. Methodologies for analysis of patterning in the mouse RPE sheet

    Science.gov (United States)

    Boatright, Jeffrey H.; Dalal, Nupur; Chrenek, Micah A.; Gardner, Christopher; Ziesel, Alison; Jiang, Yi; Grossniklaus, Hans E.

    2015-01-01

    Purpose Our goal was to optimize procedures for assessing shapes, sizes, and other quantitative metrics of retinal pigment epithelium (RPE) cells and contact- and noncontact-mediated cell-to-cell interactions across a large series of flatmount RPE images. Methods The two principal methodological advances of this study were optimization of a mouse RPE flatmount preparation and refinement of open-access software to rapidly analyze large numbers of flatmount images. Mouse eyes were harvested, and extra-orbital fat and muscles were removed. Eyes were fixed for 10 min, and dissected by puncturing the cornea with a sharp needle or a stab knife. Four radial cuts were made with iridectomy scissors from the puncture to near the optic nerve head. The lens, iris, and the neural retina were removed, leaving the RPE sheet exposed. The dissection and outcomes were monitored and evaluated by video recording. The RPE sheet was imaged under fluorescence confocal microscopy after staining for ZO-1 to identify RPE cell boundaries. Photoshop, Java, Perl, and Matlab scripts, as well as CellProfiler, were used to quantify selected parameters. Data were exported into Excel spreadsheets for further analysis. Results A simplified dissection procedure afforded a consistent source of images that could be processed by computer. The dissection and flatmounting techniques were illustrated in a video recording. Almost all of the sheet could be routinely imaged, and substantial fractions of the RPE sheet (usually 20–50% of the sheet) could be analyzed. Several common technical problems were noted and workarounds developed. The software-based analysis merged 25 to 36 images into one and adjusted settings to record an image suitable for large-scale identification of cell-to-cell boundaries, and then obtained quantitative descriptors of the shape of each cell, its neighbors, and interactions beyond direct cell–cell contact in the sheet. To validate the software, human- and computer

  12. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    Science.gov (United States)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  13. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits.

    Science.gov (United States)

    Wang, Zhifa; Hu, Hanqing; Li, Zhijin; Weng, Yanming; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-04-01

    Techniques that use sheets of cells have been successfully used in various types of tissue regeneration, and platelet-rich fibrin (PRF) can be used as a source of growth factors to promote angiogenesis. We have investigated the effects of the combination of PRF and sheets of mesenchymal stem cells (MSC) from bone marrow on the restoration of bone in critical-size calvarial defects in rabbits to find out whether the combination promotes bony healing. Sheets of MSC and PRF were prepared from the same donor. We then implanted the combined MSC and PRF in critical-size calvarial defects in rabbits and assessed bony restoration by microcomputed tomography (microCT) and histological analysis. The results showed that PRF significantly increased bony regeneration at 8 weeks after implantation of sheets of MSC and PRF compared with sheets of MSC alone (p=0.0048). Our results indicate that the combination of sheets of MSC and PRF increases bone regeneration in critical-size calvarial defects in rabbits, and provides a new way to improve skeletal healing. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  16. Thermoresponsive polyurethane/siloxane membrane for wound dressing and cell sheet transplantation: In-vitro and in-vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Rezapour-Lactoee, Alireza [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Yeganeh, Hamid, E-mail: h.yeganeh@ippi.ac.ir [Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Ostad, Seyed Nasser, E-mail: ostadnas@sina.tums.ac.ir [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar St, Enqelab Sq, Tehran 1417614411 (Iran, Islamic Republic of); Gharibi, Reza [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Mazaheri, Zohreh [Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of)

    2016-12-01

    Polyurethane/siloxane based wound dressing for transferring fibroblast cell sheet to wounded skin and ability to provide an optimum condition for cellular activity at damaged tissue was prepared in this research. The dressing was made thermoresponsive, via the introduction of a poly(N-isopropyl acrylamide) copolymer into the backbone of dressing. The ability of membrane for adhesion, growth, and proliferation of fibroblast cells was improved via surface modification with gelatin. The optimized dressing exhibited appropriate tensile strength (4.5 MPa) and elongation at break (80%) to protect wound against physical forces. Due to controlled equilibrium water absorption of about 89% and water vapor transmission rate of 2040 g/m{sup 2} day, the dressing could maintain the favorable moist environment over moderate to high exuding wounds. The grown cell sheet on dressing membrane could easily roll up from the surface just with lowering the temperature. The in vivo study of the wound dressed with cell loaded membrane confirmed the accelerated healing and production of tissue with complete re-epithelization, enhanced vascularization, and increased collagen deposition on the damaged area. - Highlights: • Versatile polymerization procedure to prepare wound dressing membranes • Improved cytocompatibility to support growth and proliferation of seeded fibroblasts • Utilizing thermoresponsive characteristic to transfer cell sheet to damaged tissue • Excellent physicomechanical properties of dressings to protect wound bed • Excellent fluid handling to provide moist environment over wounded tissue.

  17. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  18. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  19. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  20. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  1. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond".

    Science.gov (United States)

    Hashimoto, Hiroyuki; Tamaki, Tetsuro; Hirata, Maki; Uchiyama, Yoshiyasu; Sato, Masato; Mochida, Joji

    2016-01-01

    Background. Significant and/or complete rupture in the musculotendinous junction (MTJ) is a challenging lesion to treat because of the lack of reliable suture methods. Skeletal muscle-derived multipotent stem cell (Sk-MSC) sheet-pellets, which are able to reconstitute peripheral nerve and muscular/vascular tissues with robust connective tissue networks, have been applied as a "bio-bond". Methods. Sk-MSC sheet-pellets, derived from GFP transgenic-mice after 7 days of expansion culture, were detached with EDTA to maintain cell-cell connections. A completely ruptured MTJ model was prepared in the right tibialis anterior (TA) of the recipient mice, and was covered with sheet-pellets. The left side was preserved as a contralateral control. The control group received the same amount of the cell-free medium. The sheet-pellet transplantation (SP) group was further divided into two groups; as the short term (4-8 weeks) and long term (14-18 weeks) recovery group. At each time point after transplantation, tetanic tension output was measured through the electrical stimulation of the sciatic nerve. The behavior of engrafted GFP(+) tissues and cells was analyzed by fluorescence immunohistochemistry. Results. The SP short term recovery group showed average 64% recovery of muscle mass, and 36% recovery of tetanic tension output relative to the contralateral side. Then, the SP long term recovery group showed increased recovery of average muscle mass (77%) and tetanic tension output (49%). However, the control group showed no recovery of continuity between muscle and tendon, and demonstrated increased muscle atrophy, with coalescence to the tibia during 4-8 weeks after operation. Histological evidence also supported the above functional recovery of SP group. Engrafted Sk-MSCs primarily formed the connective tissues and muscle fibers, including nerve-vascular networks, and bridged the ruptured tendon-muscle fiber units, with differentiation into skeletal muscle cells, Schwann cells

  2. Comprehensive Small Engine Repair.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  3. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  4. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  5. In vitro synthesis of tensioned synoviocyte bioscaffolds for meniscal fibrocartilage tissue engineering.

    Science.gov (United States)

    Warnock, Jennifer J; Baker, Lindsay; Ballard, George A; Ott, Jesse

    2013-12-03

    Meniscal injury is a common cause of lameness in the dog. Tissue engineered bioscaffolds may be a treatment option for meniscal incompetency, and ideally would possess meniscus- like extracellular matrix (ECM) and withstand meniscal tensile hoop strains. Synovium may be a useful cell source for meniscal tissue engineering because of its natural role in meniscal deficiency and its in vitro chondrogenic potential. The objective of this study is to compare meniscal -like extracellular matrix content of hyperconfluent synoviocyte cell sheets ("HCS") and hyperconfluent synoviocyte sheets which have been tensioned over wire hoops (tensioned synoviocyte bioscaffolds, "TSB") and cultured for 1 month. Long term culture with tension resulted in higher GAG concentration, higher chondrogenic index, higher collagen concentration, and type II collagen immunoreactivity in TSB versus HCS. Both HCS and TSB were immunoreactive for type I collagen, however, HCS had mild, patchy intracellular immunoreactivity while TSB had diffuse moderate immunoreactivity over the entire bisocaffold. The tissue architecture was markedly different between TSB and HCS, with TSB containing collagen organized in bands and sheets. Both HCS and TSB expressed alpha smooth muscle actin and displayed active contractile behavior. Double stranded DNA content was not different between TSB and HCS, while cell viability decreased in TSB. Long term culture of synoviocytes with tension improved meniscal- like extra cellular matrix components, specifically, the total collagen content, including type I and II collagen, and increased GAG content relative to HCS. Future research is warranted to investigate the potential of TSB for meniscal tissue engineering.

  6. Cell surface engineering with polyelectrolyte multilayer thin films.

    Science.gov (United States)

    Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L

    2011-05-11

    Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society

  7. Spread-sheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1998-01-01

    A spread-sheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spread-sheet are used to confirm the proper US DOT classification when offering radioactive material packages for transport. The user must input to the spread-sheet the mass of the material being classified, the physical form (liquid or not) and the activity of each regulated nuclide. The spread-sheet uses these inputs to calculate two general values: 1)the specific activity of the material and a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material. If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three low specific activity designations (LSA-I, LSA-II, LSA-III, or not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity). This spread-sheet has proven to be an invaluable aid for shippers of radioactive materials at the Idaho National Engineering and Environmental Laboratory. (authors)

  8. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  9. Disintegration of liquid sheets

    Science.gov (United States)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  10. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    Science.gov (United States)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  11. Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia

    Directory of Open Access Journals (Sweden)

    Philipp Koehler

    2012-01-01

    Full Text Available B-cell chronic lymphocytic leukaemia (B-CLL remains an incurable disease due to the high risk of relapse, even after complete remission, raising the need to control and eliminate residual tumor cells in long term. Adoptive T cell therapy with genetically engineered specificity is thought to fulfil expectations, and clinical trials for the treatment of CLL are initiated. Cytolytic T cells from patients are redirected towards CLL cells by ex vivo engineering with a chimeric antigen receptor (CAR which binds to CD19 on CLL cells through an antibody-derived domain and triggers T cell activation through CD3ζ upon tumor cell engagement. Redirected T cells thereby target CLL cells in an MHC-unrestricted fashion, secret proinflammatory cytokines, and eliminate CD19+ leukaemia cells with high efficiency. Cytolysis of autologous CLL cells by patient's engineered T cells is effective, however, accompanied by lasting elimination of healthy CD19+ B-cells. In this paper we discuss the potential of the strategy in the treatment of CLL, the currently ongoing trials, and the future challenges in the adoptive therapy with CAR-engineered T cells.

  12. Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty.

    Science.gov (United States)

    García-Gareta, Elena; Hua, Jia; Rayan, Faizal; Blunn, Gordon W

    2014-06-01

    Aseptic loosening in total joint replacements (TJRs) is mainly caused by osteolysis which leads to a reduction of the bone stock necessary for implant fixation in revision TJRs. Our aim was to develop bone tissue-engineered constructs based on scaffolds of clinical relevance in revision TJRs to reconstitute the bone stock at revision operations by using a perfusion bioreactor system (PBRS). The hypothesis was that a PBRS will enhance mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation and will provide an even distribution of MSCs throughout the scaffolds when compared to static cultures. A PBRS was designed and implemented. Scaffolds, silicon substituted hydroxyapatite granules and calcium-phosphate coated porous TiAl6V4 cylinders, were seeded with MSCs and cultured either in static conditions or in the PBRS at 0.75 mL/min. Statistically significant increased cell proliferation and alkaline phosphatase activity was found in samples cultured in the PBRS. Histology revealed a more even cell distribution in the perfused constructs. SEM showed that cells arranged in sheets. Long cytoplasmic processes attached the cells to the scaffolds. We conclude that a novel tissue engineering approach to address the issue of poor bone stock at revision operations is feasible by using a PBRS.

  13. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications.

    Science.gov (United States)

    Thirumala, Sreedhar; Gimble, Jeffrey M; Devireddy, Ram V

    2013-06-25

    The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000) in water with 0.5× PBS (~150mOsm). This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs). The results indicated that the addition (evenly spread) of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5) over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell-cell and cell-extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C) within minutes.

  14. Stem cell engineering a WTEC global assessment

    CERN Document Server

    Loring, Jeanne; McDevitt, Todd; Palecek, Sean; Schaffer, David; Zandstra, Peter

    2014-01-01

    This book describes a global assessment of stem cell engineering research, achieved through site visits by a panel of experts to leading institutes, followed by dedicated workshops. The assessment made clear that engineers and the engineering approach with its quantitative, system-based thinking can contribute much to the progress of stem cell research and development. The increased need for complex computational models and new, innovative technologies, such as high-throughput screening techniques, organ-on-a-chip models and in vitro tumor models require an increasing involvement of engineers and physical scientists. Additionally, this book will show that although the US is still in a leadership position in stem cell engineering, Asian countries such as Japan, China and Korea, as well as European countries like the UK, Germany, Sweden and the Netherlands are rapidly expanding their investments in the field. Strategic partnerships between countries could lead to major advances of the field and scalable expansi...

  15. Optimal Design of Sheet Pile Wall Embedded in Clay

    Science.gov (United States)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  16. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Directory of Open Access Journals (Sweden)

    Kosuke Saito

    Full Text Available Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL. We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs, which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST. Culture medium was transplanted as a control (NT. In the mouse experiment, facial-nerve-palsy (FNP scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  17. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Science.gov (United States)

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.

  18. Toward engineering functional organ modules by additive manufacturing

    International Nuclear Information System (INIS)

    Marga, Francoise; Jakab, Karoly; Gabor, Forgacs; Khatiwala, Chirag; Shepherd, Benjamin; Dorfman, Scott; Hubbard, Bradley; Colbert, Stephen

    2012-01-01

    Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts. (topical review)

  19. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  20. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  1. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.

    Science.gov (United States)

    Grimm, Daniela; Egli, Marcel; Krüger, Marcus; Riwaldt, Stefan; Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Wise, Petra; Infanger, Manfred; Mann, Vivek; Sundaresan, Alamelu

    2018-03-29

    Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.

  2. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  3. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  4. Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ram V. Devireddy

    2013-06-01

    Full Text Available The thermoresponsive behavior of a Methylcellulose (MC polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000 in water with 0.5× PBS (~150mOsm. This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs. The results indicated that the addition (evenly spread of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5 over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell–cell and cell–extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C within minutes.

  5. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  6. How to prevent contamination with Candida albicans during the fabrication of transplantable oral mucosal epithelial cell sheets

    Directory of Open Access Journals (Sweden)

    Ryo Takagi

    2015-06-01

    Full Text Available We have utilized patients' own oral mucosa as a cell source for the fabrication of transplantable epithelial cell sheets to treat limbal stem cell deficiency and mucosal defects after endoscopic submucosal dissection of esophageal cancer. Because there are abundant microbiotas in the human oral cavity, the oral mucosa was sterilized and 40 μg/mL gentamicin and 0.27 μg/mL amphotericin B were added to the culture medium in our protocol. Although an oral surgeon carefully checked each patient's oral cavity and although candidiasis was not observed before taking the biopsy, contamination with Candida albicans (C. albicans was detected in the conditioned medium during cell sheet fabrication. After adding 1 μg/mL amphotericin B to the transportation medium during transport from Nagasaki University Hospital to Tokyo Women's Medical University, which are 1200 km apart, no proliferation of C. albicans was observed. These results indicated that the supplementation of transportation medium with antimycotics would be useful for preventing contamination with C. albicans derived from the oral mucosa without hampering cell proliferation.

  7. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  8. Engineering the Polyketide Cell Factory

    DEFF Research Database (Denmark)

    Mølgaard, Louise

    sufficient titers. To improve the production of polyketides biological engineering principles have been applied for the development and engineering of microbial polyketide cell factories. The two biological hosts used for heterologous polyketide production were Aspergillus nidulans and Saccharomyces...... phosphopantetheinylase (PPTase). This versatile vector system can easily be used for expression of other polyketides of interest as well as extended to express whole gene clusters. After achieving proof of principle in terms of expression, the polyketide cell factory must be optimized. The optimization can be achieved...... characterization in bioreactors revealed that the yields of 6-MSA on biomass increased albeit not significantly. As a result of this it may be argued that there is still more work to be done in terms of model building in A. nidulans. Utilizing another well-established cell factory S. cerevisiae the capabilities...

  9. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  10. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  11. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  12. Variation simulation for compliant sheet metal assemblies with applications

    Science.gov (United States)

    Long, Yufeng

    Sheet metals are widely used in discrete products, such as automobiles, aircraft, furniture and electronics appliances, due to their good manufacturability and low cost. A typical automotive body assembly consists of more than 300 parts welded together in more than 200 assembly fixture stations. Such an assembly system is usually quite complex, and takes a long time to develop. As the automotive customer demands products of increasing quality in a shorter time, engineers in automotive industry turn to computer-aided engineering (CAE) tools for help. Computers are an invaluable resource for engineers, not only to simplify and automate the design process, but also to share design specifications with manufacturing groups so that production systems can be tooled up quickly and efficiently. Therefore, it is beneficial to develop computerized simulation and evaluation tools for development of automotive body assembly systems. It is a well-known fact that assembly architectures (joints, fixtures, and assembly lines) have a profound impact on dimensional quality of compliant sheet metal assemblies. To evaluate sheet metal assembly architectures, a special dimensional analysis tool need be developed for predicting dimensional variation of the assembly. Then, the corresponding systematic tools can be established to help engineers select the assembly architectures. In this dissertation, a unified variation model is developed to predict variation in compliant sheet metal assemblies by considering fixture-induced rigid-body motion, deformation and springback. Based on the unified variation model, variation propagation models in multiple assembly stations with various configurations are established. To evaluate the dimensional capability of assembly architectures, quantitative indices are proposed based on the sensitivity matrix, which are independent of the variation level of the process. Examples are given to demonstrate their applications in selecting robust assembly

  13. Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects

    Directory of Open Access Journals (Sweden)

    Yongsun Kim

    2016-01-01

    Full Text Available Multipotent mesenchymal stem cells (MSCs and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL/β-tricalcium phosphate (β-TCP are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP activity of osteogenic Ad-MSCs (O-MSCs and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs. The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering.

  14. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  15. Assembly of cells and vesicles for organ engineering

    International Nuclear Information System (INIS)

    Taguchi, Tetsushi

    2011-01-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  16. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a “bio-bond”

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hashimoto

    2016-07-01

    Full Text Available Background. Significant and/or complete rupture in the musculotendinous junction (MTJ is a challenging lesion to treat because of the lack of reliable suture methods. Skeletal muscle-derived multipotent stem cell (Sk-MSC sheet-pellets, which are able to reconstitute peripheral nerve and muscular/vascular tissues with robust connective tissue networks, have been applied as a “bio-bond”. Methods. Sk-MSC sheet-pellets, derived from GFP transgenic-mice after 7 days of expansion culture, were detached with EDTA to maintain cell–cell connections. A completely ruptured MTJ model was prepared in the right tibialis anterior (TA of the recipient mice, and was covered with sheet-pellets. The left side was preserved as a contralateral control. The control group received the same amount of the cell-free medium. The sheet-pellet transplantation (SP group was further divided into two groups; as the short term (4–8 weeks and long term (14–18 weeks recovery group. At each time point after transplantation, tetanic tension output was measured through the electrical stimulation of the sciatic nerve. The behavior of engrafted GFP+ tissues and cells was analyzed by fluorescence immunohistochemistry. Results. The SP short term recovery group showed average 64% recovery of muscle mass, and 36% recovery of tetanic tension output relative to the contralateral side. Then, the SP long term recovery group showed increased recovery of average muscle mass (77% and tetanic tension output (49%. However, the control group showed no recovery of continuity between muscle and tendon, and demonstrated increased muscle atrophy, with coalescence to the tibia during 4–8 weeks after operation. Histological evidence also supported the above functional recovery of SP group. Engrafted Sk-MSCs primarily formed the connective tissues and muscle fibers, including nerve-vascular networks, and bridged the ruptured tendon–muscle fiber units, with differentiation into skeletal

  17. Silicon Sheet Quality is Improved By Meniscus Control

    Science.gov (United States)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  18. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  20. Synthesis of nanometre-thick MoO3 sheets

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  1. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  2. Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets.

    Science.gov (United States)

    Ryu, Seungmi; Yoo, Jin; Jang, Yeongseon; Han, Jin; Yu, Seung Jung; Park, Jooyeon; Jung, Seon Yeop; Ahn, Kyung Hyun; Im, Sung Gap; Char, Kookheon; Kim, Byung-Soo

    2015-10-27

    Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.

  3. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  4. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Cell engineering: spearheading the next generation in healthcare

    International Nuclear Information System (INIS)

    Jayasinghe, Suwan N

    2008-01-01

    Manipulating living mammalian cells present fascinating possibilities for a plethora of applications within our healthcare. These imply several possibilities in tissue engineering and regenerative medicine, to those of a therapeutic nature. The physical sciences are increasingly playing a pivotal role in this endeavour by both advancing existing cell engineering technology and pioneering new protocols for the creation of biologically viable structures. In this paper, the author introduces several direct needle/channel/orifice-based cell engineering protocols, currently undergoing intense investigation for a whole host of bio-applications. Hence, each protocol's advantages and disadvantages are clearly identified, whilst recognizing their future biological and engineering challenges. In conclusion, a few selected biotechnological applications present possibilities where these protocols could undergo focused exploration. Successful development of these bio-protocols sees the emergence of unique future strategies within a clinical environment having far-reaching consequences for our healthcare

  6. Cell engineering: spearheading the next generation in healthcare

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, Suwan N [BioPhysics Group, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)], E-mail: s.jayasinghe@ucl.ac.uk

    2008-09-01

    Manipulating living mammalian cells present fascinating possibilities for a plethora of applications within our healthcare. These imply several possibilities in tissue engineering and regenerative medicine, to those of a therapeutic nature. The physical sciences are increasingly playing a pivotal role in this endeavour by both advancing existing cell engineering technology and pioneering new protocols for the creation of biologically viable structures. In this paper, the author introduces several direct needle/channel/orifice-based cell engineering protocols, currently undergoing intense investigation for a whole host of bio-applications. Hence, each protocol's advantages and disadvantages are clearly identified, whilst recognizing their future biological and engineering challenges. In conclusion, a few selected biotechnological applications present possibilities where these protocols could undergo focused exploration. Successful development of these bio-protocols sees the emergence of unique future strategies within a clinical environment having far-reaching consequences for our healthcare.

  7. Cell engineering: spearheading the next generation in healthcare.

    Science.gov (United States)

    Jayasinghe, Suwan N

    2008-09-01

    Manipulating living mammalian cells present fascinating possibilities for a plethora of applications within our healthcare. These imply several possibilities in tissue engineering and regenerative medicine, to those of a therapeutic nature. The physical sciences are increasingly playing a pivotal role in this endeavour by both advancing existing cell engineering technology and pioneering new protocols for the creation of biologically viable structures. In this paper, the author introduces several direct needle/channel/orifice-based cell engineering protocols, currently undergoing intense investigation for a whole host of bio-applications. Hence, each protocol's advantages and disadvantages are clearly identified, whilst recognizing their future biological and engineering challenges. In conclusion, a few selected biotechnological applications present possibilities where these protocols could undergo focused exploration. Successful development of these bio-protocols sees the emergence of unique future strategies within a clinical environment having far-reaching consequences for our healthcare.

  8. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    Science.gov (United States)

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Skeletal Myoblast Cell Sheet Implantation Ameliorates Both Systolic and Diastolic Cardiac Performance in Canine Dilated Cardiomyopathy Model.

    Science.gov (United States)

    Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Kawaguchi, Naomasa; Nakatani, Satoshi; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki

    2016-02-01

    Improving both systolic and diastolic function may be the most important factor in treating heart failure. In this study, we hypothesized that cell-sheet transplantation could improve these function in the damaged heart. We generated a dilated cardiomyopathy model in beagles by continuous ventricle pacing at 240 beats per minute. After 4 weeks, the beagles underwent skeletal myoblast cell sheet transplantation (SMCST) or a sham operation, and rapid ventricle pacing continued for an additional 4 weeks. Six of the e8 beagles treated by SMCST were still alive 4 weeks after the procedure. We evaluated SMCST's cardiotherapeutic effects by comparing beagles treated by SMCST with beagles that underwent a sham operation (control, n = 5). Diastolic function, as well as systolic function improved significantly in the SMCST group as compared with the sham group (control vs SMCST group, median [interquartile range]: E/E', 16 [0.9] vs 11 [1.0]; P dilated cardiomyopathy heart.

  10. Load Test in Sheet Pile

    OpenAIRE

    Luis Orlando Ibanez

    2016-01-01

    In this work, are discussed experiences in the use of mathematical modeling and testing in hydraulic engineering structures. For this purpose the results of load tests in sheet pile, evaluating horizontal and vertical deformations that occur in the same exposed. Comparisons between theoretical methods for calculating deformations and mathematical models based on the Finite Element Method are established. Finally, the coincidence between the numerical model and the results of the load test ful...

  11. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  12. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  13. Perspectives for Cell-homing Approaches to Engineer Dental Pulp.

    Science.gov (United States)

    Galler, Kerstin M; Widbiller, Matthias

    2017-09-01

    Sufficient proof is available today to demonstrate that dental pulp tissue engineering is possible. The body of evidence was generated mainly on cell transplantation; however, because of several severe problems afflicted with this approach, it might not be feasible for a clinical setting in the near future. More recently, cell homing has been proposed as a viable alternative. We suggest a modification of the tissue engineering paradigm, where resident cells are attracted by endogenous, dentin-derived growth factors that further induce cell proliferation and differentiation and a bioactive scaffold material laden with these growth factors that serves as a template for tissue formation. This article highlights the latest developments regarding scaffold materials, stem cells, and dentin-derived growth factors specifically for a cell-homing approach to engineer dental pulp and summarizes new ideas. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Lü

    Full Text Available Tumor engineering is defined as the construction of three-dimensional (3D tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480 had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510 had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments.

  15. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  16. Up-scaling perovskite solar cell manufacturing from sheet-to-sheet to roll-to-roll: challenges and solutions

    Science.gov (United States)

    Di Giacomo, Francesco; Galagan, Yulia; Shanmugam, Santhosh; Gorter, Harrie; van den Bruele, Fieke; Kirchner, Gerwin; de Vries, Ike; Fledderus, Henri; Lifka, Herbert; Veenstra, Sjoerd; Aernouts, Tom; Groen, Pim; Andrissen, Ronn

    2017-08-01

    Organometallic halide perovskite solar cells (PSCs) are extremely promising novel materials for thin-film photovoltaics, exhibiting efficiencies over 22% on glass and over 17% on foil 1, 2 . First, a sheet-to-sheet (S2S) production of PSCs and modules on 152x152 mm2 substrates was established, using a combination of sputtering, e-beam evaporation, slot die coating and thermal evaporation (average PCE of 14.6 +/- 1.3 % over 64 devices, more than 10% initial PCE on modules). Later the steps towards a roll-to-roll production will be investigated, starting from the optimization of the stack to make it compatible with a faster production at low temperature. A water based SnOx nanoparticles dispersion was used as solution processable ETL, and the deposition process was scaled-up from spin coating to R2R slot die coating on a 300 mm wide roll of PET/ITO. R2R production is often carried out in ambient atmosphere and involve the use of large volumes of materials, thus a first point is the development of a green solvent and precursor system for the perovskite layer to prevent the emission of toxic compound in the environment. The first results on device fabrication are encouraging, which allow partial R2R manufacturing of flexible PSC (R2R coating of SnOx and perovskite, S2S for Spiro-OMeTAD and gold) with stabilized PCE of 12.6%, a remarkable value for these novel devices. This result can be considered an important milestone towards the production of efficient, low cost, lightweight, flexible PSC on large area.

  17. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    Science.gov (United States)

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  18. Advances in Cell Transplantation Therapy for Diseased Myocardium

    Directory of Open Access Journals (Sweden)

    Outi M. Villet

    2011-01-01

    Full Text Available The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

  19. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  20. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  1. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    International Nuclear Information System (INIS)

    Teichmann, Juliane; Valtink, Monika; Funk, Richard H W; Engelmann, Katrin; Nitschke, Mirko; Pette, Dagmar; Gramm, Stefan; Werner, Carsten; Härtel, Frauke V; Noll, Thomas

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. (paper)

  2. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    Science.gov (United States)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  3. Tendon and ligament as novel cell sources for engineering the knee meniscus.

    Science.gov (United States)

    Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A

    2016-12-01

    The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    Science.gov (United States)

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modeling an emittance-dominated elliptical sheet beam with a 212-dimensional particle-in-cell code

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2005-01-01

    Modeling a 3-dimensional (3-D) elliptical beam with a 212-D particle-in-cell (PIC) code requires a reduction in the beam parameters. The 212-D PIC code can only model the center slice of the sheet beam, but that can still provide useful information about the beam transport and distribution evolution, even if the beam is emittance dominated. The reduction of beam parameters and resulting interpretation of the simulation is straightforward, but not trivial. In this paper, we describe the beam parameter reduction and emittance issues related to the initial beam distribution. As a numerical example, we use the case of a sheet beam designed for use with a planar traveling-wave amplifier for high power generator for RF ranging from 95 to 300GHz [Carlsten et al., IEEE Trans. Plasma Sci. 33 (2005) 85]. These numerical techniques also apply to modeling high-energy elliptical bunches in RF accelerators

  6. Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol–gel for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Dumont, Jacques [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium)

    2013-03-01

    Molybdenum films are investigated on stainless steel substrates coated with polysilazane based sol–gel and SiO{sub x} layers for flexible CIGS solar cell applications. Thermal stability of the multilayer has been studied. The thickness of polysilazane films are significantly reduced (17%) after heat treatment suggesting a thermal degradation. Four different microstructures were found for Mo films by varying argon total pressure from 2.6 × 10{sup −1} Pa to 2.6 Pa. It was shown that continuous films, low sheet resistance (0.5 Ω/□) and well facetted grains can be achieved when Mo films are deposited on heated substrates at homologous temperature, T of 0.2. - Highlights: ► Steel sheet is functionalized for Cu[Inx,Ga(1 − x)Se2] solar cells. ► Varying deposition pressure impacts the microstructure of Mo films. ► High thermal stability of the sol gel based barrier layer has been investigated. ► Low sheet resistance and continuous Mo films have been obtained at 550°C. ► Thermal stability of functionalized steel sheets at 550°C has been investigated.

  7. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Science.gov (United States)

    Shin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT) incorporated photocrosslinkable gelatin methacrylate (GelMA) hydrogel. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework is the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity. PMID:23363247

  8. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  9. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  10. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  11. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model.

    Science.gov (United States)

    Chen, Guangnan; Fang, Tingting; Qi, Yiying; Yin, Xiaofan; Di, Tuoyu; Feng, Gang; Lei, Zhong; Zhang, Yuxiang; Huang, Zhongming

    2016-10-01

    Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.

  12. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  13. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and

  16. Engineered matrices for skeletal muscle satellite cell engraftment and function.

    Science.gov (United States)

    Han, Woojin M; Jang, Young C; García, Andrés J

    2017-07-01

    Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  17. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  18. Engine Test Cell Aeroacoustics and Recommendations

    National Research Council Canada - National Science Library

    Tam, Christopher

    2007-01-01

    Ground testing of turbojet engines in test cells necessarily involves very high acoustic amplitudes, often enough and severe enough that testing is interrupted and facility hardware and test articles are damaged...

  19. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Engineering the work function of buckled boron α-sheet by lithium adsorption: a first-principles investigation.

    Science.gov (United States)

    Zheng, Bing; Yu, Hai-tao; Xie, Ying; Lian, Yong-fu

    2014-11-26

    First-principles density functional theory calculations were performed to study the effect of Li adsorption on the structural and electronic properties, particularly the work function, of boron α-sheet. The calculated binding energies indicated that boron α-sheet could be well stabilized by the adsorption of Li atoms. Furthermore, the work functions of Li-adsorbed boron α-sheets were observed to decrease drastically with increasing Li coverage. The work functions are lower than that of Mg and even, for some of them, lower than that of Ca, indicating a considerable potential application of Li-adsorbed boron α-sheets as field-emission and electrode materials. Based on the calculated geometric and electronic structures, we discuss in details some possible aspects affecting the work function. The Li coverage dependence of the work functions of Li-adsorbed boron α-sheets was further confirmed by electrostatic potential analyses. The relationship between the work function variation and the Fermi and vacuum energy level shifts was also discussed, and we observed that the variation of the work function is primarily associated with the shift of the Fermi energy level. It is the surface dipole formed by the interaction between adatoms and substrate that should be responsible for the observed variation of the work function, whereas the increasing negative charge and rumpling for boron α-sheet only play minor roles. Additionally, the effect of Li adatoms on the work function of boron α-sheet was confirmed to be much stronger than that of graphene or a graphene double layer.

  1. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  2. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  3. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  4. Service Cart For Engines

    Science.gov (United States)

    Ng, Gim Shek

    1995-01-01

    Cart supports rear-mounted air-cooled engine from Volkswagen or Porsche automobile. One person removes, repairs, tests, and reinstalls engine of car, van, or home-built airplane. Consists of framework of wood, steel, and aluminum components supported by four wheels. Engine lifted from vehicle by hydraulic jack and gently lowered onto waiting cart. Jack removed from under engine. Rear of vehicle raised just enough that engine can be rolled out from under it. Cart easily supports 200-lb engine. Also used to hold transmission. With removable sheet-metal top, cart used as portable seat.

  5. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Science.gov (United States)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  6. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  7. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Science.gov (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  8. Engineering three-dimensional cell mechanical microenvironment with hydrogels

    International Nuclear Information System (INIS)

    Huang Guoyou; Wang Lin; Han Yulong; Zhang Qiancheng; Xu Feng; Lu Tianjian; Wang Shuqi; Wu Jinhui

    2012-01-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed. (topical review)

  9. Nanoscale tissue engineering: spatial control over cell-materials interactions

    Science.gov (United States)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  10. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  11. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  12. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.

    Science.gov (United States)

    Franck, Debra; Gil, Eun Seok; Adam, Rosalyn M; Kaplan, David L; Chung, Yeun Goo; Estrada, Carlos R; Mauney, Joshua R

    2013-01-01

    Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results

  13. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.

    Science.gov (United States)

    Chou, Chih-Ling; Rivera, Alexander L; Williams, Valencia; Welter, Jean F; Mansour, Joseph M; Drazba, Judith A; Sakai, Takao; Baskaran, Harihara

    2017-09-15

    roll-up method, we have developed large scale MSC based tissue-engineered cartilage that shows microscale structural organization and enhanced compressive properties compared to current tissue engineered constructs. Tissue engineered cartilage constructs made with human mesenchymal stem cells (hMSCs), scaffolds and bioactive factors are a promising solution to treat cartilage defects. A major disadvantage of these constructs is their inferior mechanical properties compared to the native tissue, which is likely due to the lack of structural organization of the extracellular matrix of the engineered constructs. In this study, we developed three-dimensional (3-D) cartilage constructs from rectangular scaffold sheets containing hMSCs in micro-guidance channels and characterized their mechanical properties and metabolic requirements. The work led to a novel roll-up method to embed 2-D microscale structures in 3-D constructs. Further, micro-guidance channels incorporated within the 3-D cartilage constructs led to the production of aligned cell-produced matrix and enhanced mechanical function. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  15. Analysis of the RPE sheet in the rd10 retinal degeneration model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory

    2011-01-04

    The normal RPE sheet in the C57Bl/6J mouse is subclassified into two major tiling patterns: A regular generally hexagonal array covering most of the surface and a 'soft network' near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells. We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rdl0 compared to C57BL/6J mice. RPE sheet damage was extensive but occurred in rd10 later than expected, after most retinal degeneration. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone around the optic nerve RPE cells take on larger irregular and varied shapes to form an intact monolayer. In mid periphery, there is a higher than normal density of cells that progress into involuted layers of RPE under the retina. The periphery remains mostly normal until late stages of degeneration. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate long after the photoreceptors have degenerated. The RPE cells are bystanders to the rd10 degeneration within photo receptors, and the collateral damage to the RPE sheet resembles stimulation of migration or chemotaxis. Quantitative measures of the tiling patterns and histopathology detected here, scripted in a pipeline written in Perl and Cell Profiler (an open source Matlab plugin), are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.

  16. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  18. Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns.

    Science.gov (United States)

    Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A

    2016-09-01

    Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.

  19. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  20. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

    Science.gov (United States)

    Shao, Jiawei; Xue, Shuai; Yu, Guiling; Yu, Yuanhuan; Yang, Xueping; Bai, Yu; Zhu, Sucheng; Yang, Linfeng; Yin, Jianli; Wang, Yidan; Liao, Shuyong; Guo, Sanwei; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-04-26

    With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic. Copyright © 2017, American Association for the Advancement of Science.

  1. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  2. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  3. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  4. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering.

    Science.gov (United States)

    Liu, Xifeng; Miller, A Lee; Waletzki, Brian E; Lu, Lichun

    2018-05-01

    Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018. © 2018 Wiley Periodicals, Inc.

  5. Space station/base food system study. Book 1: Element concept data sheets

    Science.gov (United States)

    1970-01-01

    The detail engineering data sheets are presented for all concepts considered in the final phase of the study as well as those only carried through the interim phase due to non-applicability or deleted missions.

  6. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  7. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    Science.gov (United States)

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  9. Probabilistic Design in a Sheet Metal Stamping Process under Failure Analysis

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao, Jian; Chen, Wei; Xia, Z. Cedric

    2005-01-01

    Sheet metal stamping processes have been widely implemented in many industries due to its repeatability and productivity. In general, the simulations for a sheet metal forming process involve nonlinearity, complex material behavior and tool-material interaction. Instabilities in terms of tearing and wrinkling are major concerns in many sheet metal stamping processes. In this work, a sheet metal stamping process of a mild steel for a wheelhouse used in automobile industry is studied by using an explicit nonlinear finite element code and incorporating failure analysis (tearing and wrinkling) and design under uncertainty. Margins of tearing and wrinkling are quantitatively defined via stress-based criteria for system-level design. The forming process utilizes drawbeads instead of using the blank holder force to restrain the blank. The main parameters of interest in this work are friction conditions, drawbead configurations, sheet metal properties, and numerical errors. A robust design model is created to conduct a probabilistic design, which is made possible for this complex engineering process via an efficient uncertainty propagation technique. The method called the weighted three-point-based method estimates the statistical characteristics (mean and variance) of the responses of interest (margins of failures), and provide a systematic approach in designing a sheet metal forming process under the framework of design under uncertainty

  10. Stem Cells for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  11. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    Science.gov (United States)

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Steel Sheet Piles - Applications and Elementary Design Issues

    Science.gov (United States)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    High-intensity housing having been carried out in town’s centres causes that many complex issues related to earthworks and foundations must be resolved. Project owners are required to ensure respective number of parking bays, which in turn demands 2-3 storeys of underground car parks. It is especially difficult to fulfil in dense buildings of old town areas where apart from engineering problems, very stringent requirements of heritage conservator supervision are also raised. The problems with ensuring stability of excavation sidewalls need to be, at the same time, dealt with analysis of foundations of neighbouring structures, and possible strengthening them at the stages of installing the excavation protection walls, progressing the excavations and constructing basement storeys. A separate problem refers to necessity of constructing underground storeys below the level of local groundwater. This requires long-term lowering of water table inside excavation while at possibly limited intervention in hydrological regime beyond the project in progress. In river valleys such “hoarding off” the excavation and cutting off groundwater leads to temporary or permanent disturbances of groundwater run-off and local swellings. Traditional way to protect vertical fault and simultaneously to cut-off groundwater inflow consists in application of steel sheet pilings. They enable to construct monolithic reinforced concrete structures of underground storeys thus ensuring both their tightness and high rigidity of foundation. Depending on situation, steel sheet pilings can be in retrieving or staying-in-place versions. This study deals with some selected aspects of engineering design and fabrication of sheet piling for deep excavations and underground parts of buildings.

  13. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  14. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    DEFF Research Database (Denmark)

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds...... for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell...... platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs....

  15. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    Science.gov (United States)

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  16. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  17. Energizing Engineering Students with Hydrogen Fuel Cell Project

    Science.gov (United States)

    Cannell, Nori; Zavaleta, Dan

    2010-01-01

    At Desert Vista High School, near Phoenix, Arizona, Perkins Innovation Grant funding is being used to fund a program that is helping to prepare students for careers in engineering by giving them hands-on experience in areas like hydrogen generation and fuel cell utilization. As one enters Dan Zavaleta's automotive and engineering classroom and lab…

  18. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  19. Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications

    Science.gov (United States)

    PATEL, RAVI GHANSHYAM; PURWADA, ALBERTO; CERCHIETTI, LEANDRO; INGHIRAMI, GIORGIO; MELNICK, ARI; GAHARWAR, AKHILESH K.; SINGH, ANKUR

    2014-01-01

    Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices. PMID:25328548

  20. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    Science.gov (United States)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  1. Implementation of Scientific Computing Applications on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Guochun Shi

    2009-01-01

    Full Text Available The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.

  2. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.

    Science.gov (United States)

    Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete

    2018-06-11

    CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

  3. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  4. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  5. The use of hTERT-immortalized cells in tissue engineering

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Yu, Zentao

    2004-01-01

    The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span...... and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell...... transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed....

  6. Cancer cell-oriented migration of mesenchymal stem cells engineered with an anticancer gene (PTEN: an imaging demonstration

    Directory of Open Access Journals (Sweden)

    Yang ZS

    2014-03-01

    Full Text Available Zhuo-Shun Yang,1,* Xiang-Jun Tang,2,* Xing-Rong Guo,1 Dan-Dan Zou,1 Xu-Yong Sun,3 Jing-Bo Feng,1 Jie Luo,1 Long-Jun Dai,1,4 Garth L Warnock4 1Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 2Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 3Guangxi Key Laboratory for Transplant Medicine, 303 Hospital of PLA, Nanning, People’s Republic of China; 4Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Background: Mesenchymal stem cells (MSCs have been considered to hold great potential as ideal carriers for the delivery of anticancer agents since the discovery of their tumor tropism. This study was performed to demonstrate the effects of phosphatase and tensin homolog (PTEN engineering on MSCs’ capacity for cancer cell-oriented migration. Methods: MSCs were engineered with a PTEN-bearing plasmid and the expression was confirmed with Western blotting. A human glioma cell line (DBTRG was used as the target cell; DBTRG cell-oriented migration of MSCs was monitored with a micro speed photographic system. Results: The expression of transfected PTEN in MSCs was identified by immunoblotting analysis and confirmed with cell viability assessment of target cells. The DBTRG cell-oriented migration of PTEN-engineered MSCs was demonstrated by a real-time dynamic monitoring system, and a phagocytosis-like action of MSCs was also observed. Conclusion: MSCs maintained their capacity for cancer cell-directed migration after they were engineered with anticancer genes. This study provides the first direct evidence of MSCs’ tropism post-anticancer gene engineering. Keywords: gene therapy, mesenchymal stem cells, phosphatase and tensin homolog, cancer

  7. Effect of Diagonal Belt to the Moment Capacity of the Precast Beam-Column Joint using CFRP Sheet

    OpenAIRE

    Djamaluddin, Rudy

    2017-01-01

    The FRP sheet has been applied in many fields of civil engineering structures. The study on the application has been spread out involving of precast concrete structures, such as the application on the connection of beam and column of precast concrete structures. Since the strength of the CFRP sheet is depend on the bonding capacity, it is necessary to apply a vertical U-wrap belt on the main sheet to increase its bonding strength. However, it was reported that the vertical U-wrap belt may cau...

  8. Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Nikogeorgos, Nikolaos; Ajalloueian, Ali

    2018-01-01

    In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression (PC) to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentratio...

  9. SYSTEMS BIOLOGY AND METABOLIC ENGINEERING OF ARTHROSPIRA CELL FACTORIES

    Directory of Open Access Journals (Sweden)

    Amornpan Klanchui

    2012-10-01

    Full Text Available Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  10. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  11. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering

  12. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  13. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  14. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  15. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.

    Science.gov (United States)

    Fan, Changjiang; Wang, Dong-An

    2017-10-01

    Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.

  16. Engineering a clinically-useful matrix for cell therapy.

    Science.gov (United States)

    Prestwich, Glenn D

    2008-01-01

    The design criteria for matrices for encapsulation of cells for cell therapy include chemical, biological, engineering, marketing, regulatory, and financial constraints. What is required is a biocompatible material for culture of cells in three-dimensions (3-D) that offers ease of use, experimental flexibility to alter composition and compliance, and a composition that would permit a seamless transition from in vitro to in vivo use. The challenge is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild a given tissue. Our approach is to deconstruct the ECM to a few modular components that can be reassembled into biomimetic materials that meet these criteria. These semi-synthetic ECMs (sECMs) employ thiol-modified derivatives of hyaluronic acid (HA) that can form covalently crosslinked, biodegradable hydrogels. These sECMs are "living" biopolymers, meaning that they can be crosslinked in the presence of cells or tissues to enable cell therapy and tissue engineering. Moreover, the sECMs allow inclusion of the appropriate biological cues needed to simulate the complexity of the ECM of a given tissue. Taken together, the sECM technology offers a manufacturable, highly reproducible, flexible, FDA-approvable, and affordable vehicle for cell expansion and differentiation in 3-D.

  17. Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet

    Directory of Open Access Journals (Sweden)

    Shogo Inoue

    2017-01-01

    Full Text Available The objective is to develop an easier technique for regenerating corpora cavernosa tissue through transplantation of human bone marrow-derived CD133 + cells into a rat corpora cavernosa defect model. We excised 2 mm × 2 mm squares of the right corpora cavernosa of twenty-three 8-week-old male nude rats. Alginate gel sponge sheets supplemented with 1 × 10 4 CD133 + cells were then placed over the excised area of nine rats. Functional and histological evaluations were carried out 8 weeks later. The mean intracavernous pressure/mean arterial pressure ratio for the nine rats (0.34258 ± 0.0831 was significantly higher than that for eight rats with only the excision (0.0580 ± 0.0831, P = 0.0238 and similar to that for five rats for which the penis was exposed, and there was no excision (0.37228 ± 0.1051, P = 0.8266. Immunohistochemical analysis revealed that the nine fully treated rats had venous sinus-like structures and quantitative reverse transcription polymerase chain reaction analysis of extracts from their alginate gel sponge sheets revealed that the amounts of mRNA encoding the nerve growth factor (NGF, and vascular endothelial growth factor (VEGF were significantly higher than those for rats treated with alginate gel sheets without cell supplementation (NGF: P = 0.0309; VEGF: P < 0.0001. These findings show that transplantation of CD133 + cells accelerates functional and histological recovery in the corpora cavernosa defect model.

  18. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  19. Microfluidic engineered high cell density three-dimensional neural cultures

    Science.gov (United States)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities =104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p 90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  20. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Engineering cell fitness: lessons for regenerative medicine.

    Science.gov (United States)

    Shakiba, Nika; Zandstra, Peter W

    2017-10-01

    Cell competition results in the loss of weaker cells and the dominance of stronger cells. So-called 'loser' cells are either removed by active elimination or by limiting their access to survival factors. Recently, competition has been shown to serve as a surveillance mechanism against emerging aberrant cells in both the developing and adult organism, contributing to overall organism fitness and survival. Here, we explore the origins and implications of cell competition in development, tissue homeostasis, and in vitro culture. We also provide a forward look on the use of cell competition to interpret multicellular dynamics while offering a perspective on harnessing competition to engineer cells with optimized and controllable fitness characteristics for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues

    OpenAIRE

    Ma, Teng; Grayson, Warren L.; Fröhlich, Mirjam; Vunjak-Novakovic, Gordana

    2009-01-01

    Stem cells have the ability for prolonged self-renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell p...

  3. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    International Nuclear Information System (INIS)

    Chen, F.-K.; Chang, C.-K.

    2005-01-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures

  4. Fuel Cell Car Design Project for Freshman Engineering Courses

    Science.gov (United States)

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  5. Genome engineering of stem cell organoids for disease modeling.

    Science.gov (United States)

    Sun, Yingmin; Ding, Qiurong

    2017-05-01

    Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  6. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  7. Unraveling metamaterial properties in zigzag-base folded sheets.

    Science.gov (United States)

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  8. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  9. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    Science.gov (United States)

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  10. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  11. Current sheets and pressure anisotropy in the reconnection exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  12. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  13. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    Science.gov (United States)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  14. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William

    2002-01-01

    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  15. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2015-09-01

    Full Text Available Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt nanoparticles were deposited on oxidized graphene sheets (cG. The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%. The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA was 88 m2/g (Pt/cG, much higher than that of Pt/C (46 m2/g. The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33% > Pt/cG (7%. The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C.

  16. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  17. Filament structure, organization, and dynamics in MreB sheets.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  18. Strengthening Interprofessional Requirements Engineering Through Action Sheets: A Pilot Study.

    Science.gov (United States)

    Kunz, Aline; Pohlmann, Sabrina; Heinze, Oliver; Brandner, Antje; Reiß, Christina; Kamradt, Martina; Szecsenyi, Joachim; Ose, Dominik

    2016-10-18

    The importance of information and communication technology for healthcare is steadily growing. Newly developed tools are addressing different user groups: physicians, other health care professionals, social workers, patients, and family members. Since often many different actors with different expertise and perspectives are involved in the development process it can be a challenge to integrate the user-reported requirements of those heterogeneous user groups. Nevertheless, the understanding and consideration of user requirements is the prerequisite of building a feasible technical solution. In the course of the presented project it proved to be difficult to gain clear action steps and priorities for the development process out of the primary requirements compilation. Even if a regular exchange between involved teams took place there was a lack of a common language. The objective of this paper is to show how the already existing requirements catalog was subdivided into specific, prioritized, and coherent working packages and the cooperation of multiple interprofessional teams within one development project was reorganized at the same time. In the case presented, the manner of cooperation was reorganized and a new instrument called an Action Sheet was implemented. This paper introduces the newly developed methodology which was meant to smooth the development of a user-centered software product and to restructure interprofessional cooperation. There were 10 focus groups in which views of patients with colorectal cancer, physicians, and other health care professionals were collected in order to create a requirements catalog for developing a personal electronic health record. Data were audio- and videotaped, transcribed verbatim, and thematically analyzed. Afterwards, the requirements catalog was reorganized in the form of Action Sheets which supported the interprofessional cooperation referring to the development process of a personal electronic health record for the

  19. Receptor control in mesenchymal stem cell engineering

    Science.gov (United States)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  20. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  1. Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing

    International Nuclear Information System (INIS)

    Ahmad, R.

    2016-01-01

    the sheet. • The movement of an electrically conducting fluid over an elastic sheet is much slower as compared to a stretching sheet. • A high viscous fluid such as oil has slow down the ow over an elastic stretching sheet and, as a result, the electrically conducting fluid having high viscosity will appear to coat the sheet, whereas the viscosity of water has rapidly increased the motion of an electrically conducting fluid over an elastic stretching sheet. • The study is applicable to a system involving fluid flow over various types of soft surfaces such as synthetic plastics, soft synthetic rubber sheet and fibres. Thus, the main contribution of this study is the depth of fluid flow analysis on the fluid–sheet interface and it's applications in engineering, which attract the readers.

  2. The Effects of Environmental Factors on Smooth Muscle Cells Differentiation from Adipose-Derived Stem Cells and Esophagus Tissues Engineering

    DEFF Research Database (Denmark)

    Wang, Fang

    Adipose-derived stem cells (ASCs) are increasingly being used for regenerative medicine and tissue engineering. Smooth muscle cells (SMCs) can be differentiated from ASCs. Oxygen is a key factor influencing the stem cell differentiation. Tissue engineered esophagus has been a preferred solution...... of esophagus was studied. Our results showed that both SMCs and ASCs could attach on the porcine esophageal acellular matrix (EAM) scaffold in vitro after 24 hours and survive until 7 days. Thus ASCs might be a substitute for SMCs in the construction of tissue engineered esophageal muscle layer....

  3. Collision of hydrogen molecules interacting with two grapheme sheets

    Directory of Open Access Journals (Sweden)

    Malivuk-Gak Dragana

    2017-01-01

    Full Text Available It have been performed the computational experiments with two hydrogen molecules and two graphene sheets. Hydrogen - hydrogen and hydrogen - carbon interactions are described by Lennard - Jones potential. Equations of motion of the wave packet centre are solved numerically. The initial molecule velocity was determined by temperature and collisions occur in central point between two sheets. The molecules after collision stay near or get far away of graphene sheets. Then one can find what temperatures, graphene sheet sizes and their distances are favourable for hydrogen storage. It is found that quantum corrections of the molecule classical trajectories are not significant here. Those investigations of possibility of hydrogen storage by physisorption are of interest for improvement of the fuel cell systems. The main disadvantages of computational experiments are: (1 it cannot compute with very large number of C atoms, (2 it is assumed that carbon atoms are placed always in their equilibrium positions and (3 the changes of wave packet width are not considered.

  4. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  5. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Patches in shells and tube sheets. 59.10-20 Section 59.10-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...

  6. [Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration].

    Science.gov (United States)

    Schaefer, D J; Klemt, C; Zhang, X H; Stark, G B

    2000-09-01

    Tissue engineering offers the possibility to fabricate living substitutes for tissues and organs by combining histogenic cells and biocompatible carrier materials. Pluripotent mesenchymal stem cells are isolated and subcultured ex vivo and then their histogenic differentiation is induced by external factors. The fabrication of bone and cartilage constructs, their combinations and gene therapeutic approaches are demonstrated. Advantages and disadvantages of these methods are described by in vitro and in vitro testing. The proof of histotypical function after implantation in vivo is essential. The use of autologous cells and tissue engineering methods offers the possibility to overcome the disadvantages of classical tissue reconstruction--donor site morbidity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Furthermore, tissue engineering widens the spectrum of surgical indications in bone and cartilage reconstruction.

  7. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Li, Ya-Ting [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China)

    2010-06-15

    The delivery of intact sheet transplants to the subretinal space can prevent cell loss that is generally associated with the injection of cell suspensions or cell aggregates. The aim of this study was to develop chemically modified gelatin matrices that enhance the delivery efficiency and analyze whether the gelatin membranes cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) can be considered as potential carriers for retinal sheets. The characteristics of EDC cross-linked gelatin membranes were determined by mechanical and in vitro degradation tests, melting point measurements, cell proliferation assays, cytokine expression analyses, and tissue delivery studies. Gelatin membranes without cross-linking and glutaraldehyde cross-linked gelatin samples were used for comparison. Results of this study indicated that introduction of cross-links is capable of rendering the gelatin network more stable against mechanical stresses and deformations as well as rapid hydrolysis during intraocular delivery of delicate tissue sheets. In comparison with the glutaraldehyde treated samples, the EDC cross-linked gelatin membranes showed a better degradation profile and a relatively higher cytocompatibility. In addition, after EDC cross-linking, the gelatin matrices having an acceptable melting point could be used for the fabrication of a sandwich-like carrier with a high transfer and encapsulation efficiency. These findings suggest that the cross-linking agent type gives an influence on delivery functionality of gelatin membranes. In summary, the EDC cross-linked gelatin is an ideal candidate for use as a carrier material in retinal sheet delivery applications.

  8. A Two-Ply Polymer-Based Flexible Tactile Sensor Sheet Using Electric Capacitance

    Directory of Open Access Journals (Sweden)

    Shijie Guo

    2014-01-01

    Full Text Available Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.

  9. Low cost light-sheet microscopy for whole brain imaging

    Science.gov (United States)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  10. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  11. Occupational Sequences: Auto Engines 1. AT 121.

    Science.gov (United States)

    Korb, A. W.; And Others

    In an attempt to individualize an automotive course, the Vocational-Technical Division of Northern Montana College has developed Occupational Sequences for an engine rebuilding course. Occupational Sequences, a learning or teaching aid, is an analysis of numbered operations involved in engine rebuilding. Job sheets, included in the book, provide a…

  12. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    Science.gov (United States)

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  13. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Hyaluronic acid (HA is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function.

  14. Electronic work sheets for nuclear equipment dimensioning according to AD-Merkblaetter

    International Nuclear Information System (INIS)

    Rodrigues, P.R.B.

    1994-01-01

    The purpose of this paper is to show the capability of Work sheet applications in solving engineering problems in a much easier way than by using languages such as Fortran, BASIC etc., once many routines that would have to be developed in these languages for printing and display on screen, just to give a few instances, are already included in the Work sheet application. It is also worth mentioning the fact the never version of the Excel, version 5,0, includes the Object-oriented language Visual Basic, thus making it possible to develop routines for customization as well as compiling interactive routines speeding up the program. (author). 2 refs, 8 figs, 2 tabs

  15. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  16. Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology

    Science.gov (United States)

    Fiegl, G. F.; Bonora, A. C.

    1980-01-01

    The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.

  17. Cell Formation in Industrial Engineering : Theory, Algorithms and Experiments

    NARCIS (Netherlands)

    Goldengorin, B.; Krushynskyi, D.; Pardalos, P.M.

    2013-01-01

    This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints

  18. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL...

  19. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Arkesteijn, I.T.M.; Wessling, Matthias; Poot, Andreas A.; Stamatialis, Dimitrios

    2013-01-01

    Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid

  20. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    Science.gov (United States)

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  2. Human Pluripotent Stem Cells to Engineer Blood Vessels.

    Science.gov (United States)

    Chan, Xin Yi; Elliott, Morgan B; Macklin, Bria; Gerecht, Sharon

    2018-01-01

    Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.

  3. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  4. Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Saradh Prasad

    2018-01-01

    Full Text Available Platinum-free counter electrodes (CE were developed for use in efficient and cost-effective energy conversion devices, such as dye-sensitized solar cells (DSSCs. Electrochemical deposition of CoS2 on fluorine-doped tin oxide (FTO formed a hierarchical sheet-like structured CoS2 thin film. This film was engaged as a cost-effective platinum-free and high-efficiency CE for DSSCs. High stability was achieved using a phthaloychitosan-based gel-polymer electrolyte as the redox electrolyte. The electrocatalytic performance of the sheet-like CoS2 film was analyzed by electrochemical impedance spectroscopy and cyclic voltammetry. The film displayed improved electrocatalytic behavior that can be credited to a low charge-transfer resistance at the CE/electrolyte boundary and improved exchange between triiodide and iodide ions. The fabricated DSSCs with a phthaloychitosan-based gel-polymer electrolyte and sheet-like CoS2 CE had a power conversion efficiency (PCE, η of 7.29% with a fill factor (FF of 0.64, Jsc of 17.51 mA/cm2, and a Voc of 0.65 V, which was analogous to that of Pt CE (η = 7.82%. The high PCE of the sheet-like CoS2 CE arises from the enhanced FF and Jsc, which can be attributed to the abundant active electrocatalytic sites and enhanced interfacial charge-transfer by the well-organized surface structure.

  5. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  6. Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.

    Science.gov (United States)

    Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander

    2017-07-01

    In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological

  7. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  8. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source.

    Science.gov (United States)

    Van Eijk, F; Saris, D B F; Riesle, J; Willems, W J; Van Blitterswijk, C A; Verbout, A J; Dhert, W J A

    2004-01-01

    Anterior cruciate ligament (ACL) reconstruction surgery still has important problems to overcome, such as "donor site morbidity" and the limited choice of grafts in revision surgery. Tissue engineering of ligaments may provide a solution for these problems. Little is known about the optimal cell source for tissue engineering of ligaments. The aim of this study is to determine the optimal cell source for tissue engineering of the anterior cruciate ligament. Bone marrow stromal cells (BMSCs), ACL, and skin fibroblasts were seeded onto a resorbable suture material [poly(L-lactide/glycolide) multifilaments] at five different seeding densities, and cultured for up to 12 days. All cell types tested attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I. On day 12 the scaffolds seeded with BMSCs showed the highest DNA content (p engineered ligament.

  9. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.

    Science.gov (United States)

    Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon

    2006-08-01

    In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.

  10. How Do Cells Make Decisions: Engineering Micro- and Nanoenvironments for Cell Migration

    Directory of Open Access Journals (Sweden)

    Siti Hawa Ngalim

    2010-01-01

    Full Text Available Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM, force generation through the cell's cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these decision-making processes.

  11. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    Science.gov (United States)

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  12. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.

  13. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.

    Science.gov (United States)

    Nakamura, Tomohiro; Takagi, Shunya; Kamon, Takafumi; Yamasaki, Ken-Ichi; Fujisato, Toshia

    2017-02-01

    Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation. C2C12 cells were embedded in a cold type-І collagen gel and placed between two artificial tendons on a silicone sheet. The construct shrank and tightly attached to the artificial tendons with differentiation, finally detaching from the silicone sheet within 1 week of culture onset. We successfully developed a tissue-engineered skeletal muscle with two artificial tendons from C2C12 myoblasts embedded in type-І collagen gel. The isometric twitch contractile force (TCF) significantly increased during differentiation. Time to Peak Tension (TPT) and Half-Relaxation Time (1/2RT) were significantly shortened during differentiation. Myogenic regulatory factors were maximally expressed at 2 weeks, and subsequently decreased at 3 weeks of culture. Histological analysis indicated that myotube formation increased markedly from 2 weeks and well-ordered sarcomere structures were observed on the surface of the 3D engineered muscle at 3 weeks of culture. These results suggested that robust muscle structure occurred by 3 weeks in the tissue-engineered skeletal muscle. Moreover, during the developmental process, the artificial tendons might contribute to well-ordered sarcomere formation. Our results indicated that this simple culture system could be used to evaluate the effects of various pharmacological and mechanical cues on muscle contractility in a variety of research areas. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  15. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent.

    Science.gov (United States)

    Papeta, Natalia; Chen, Tao; Vianello, Fabrizio; Gererty, Lyle; Malik, Ashish; Mok, Ying-Ting; Tharp, William G; Bagley, Jessamyn; Zhao, Guiling; Stevceva, Liljana; Yoon, Victor; Sykes, Megan; Sachs, David; Iacomini, John; Poznansky, Mark C

    2007-01-27

    Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.

  16. Recent advances in interfacial engineering of perovskite solar cells

    Science.gov (United States)

    Ye, Meidan; He, Chunfeng; Iocozzia, James; Liu, Xueqin; Cui, Xun; Meng, Xiangtong; Rager, Matthew; Hong, Xiaodan; Liu, Xiangyang; Lin, Zhiqun

    2017-09-01

    Due to recent developments, organometallic halide perovskite solar cells (PSCs) have attracted even greater interest owing to their impressive photovoltaic properties and simple device manufacturing processes with the potential for commercial applications. The power conversion efficiencies (PCEs) of PSCs have surged from 3.8% for methyl ammonium lead halide-sensitized liquid solar cells, CH3NH3PbX3 (X  =  Cl, Br, I), in 2009, to more than 22% for all-solid-state solar cells in 2016. Over the past few years, significant effort has been dedicated to realizing PSCs with even higher performance. In this review, recent advances in the interfacial engineering of PSCs are addressed. The specific strategies for the interfacial engineering of PSCs fall into two categories: (1) solvent treatment and additives to improve the light-harvesting capabilities of perovskite films, and (2) the incorporation of various functional materials at the interfaces between the active layers (e.g. electron transporting layer, perovskite layer, and hole transporting layer). This review aims to provide a comprehensive overview of strategies for the interfacial engineering of PSCs with potential benefits including enhanced light harvesting, improved charge separation and transport, improved device stability, and elimination of photocurrent hysteresis.

  17. 40 CFR 1054.690 - What bond requirements apply for certified engines?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... paragraph (b) of this section, include the values from your most recent balance sheet for buildings, land... values For engines with displacement falling in the following ranges . . . The per-engine bond valueis...

  18. Engineering drawing from the beginning

    CERN Document Server

    Cousins, M F

    1970-01-01

    Engineering Drawing from the Beginning, Volume 2 discusses the methods for communicating technical engineering concepts through illustrations and drawings. This volume covers the more advance techniques in engineering drawing. The coverage of the text includes the helix, which is the path traced by a point moving uniformly around the surface of a right cylinder that is moving axially. The book also covers drawings of solid objects such as prisms, pyramids, and cones, along with hollow objects made from sheet material. In Chapter 5, the text presents the conventional representations of common

  19. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  20. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  1. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Zhang, Chi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Ping, E-mail: dentistping@gmail.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Wang, Lin [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011 (China); Bao, Chunyun [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 (China); Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Weir, Michael D.; Reynolds, Mark A. [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Ren, Ke [Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD 21201 (United States); Zhao, Liang, E-mail: lzhaonf@126.com [Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201 (United States); Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515 (China); and others

    2017-06-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  2. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold

    International Nuclear Information System (INIS)

    Song, Yang; Zhang, Chi; Wang, Ping; Wang, Lin; Bao, Chunyun; Weir, Michael D.; Reynolds, Mark A.; Ren, Ke; Zhao, Liang

    2017-01-01

    Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0–0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell–cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12 weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1 ± 7.8) % in the defects, which was > 3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications. - Highlights: • Microfibers protected cells during CPC mixing and injection, and supported the viability, migration and differentiation of encapsulated cells. • Cells re-collected from the construct maintained good viability

  3. Measurement of liquid sheet using laser tagging method by photochromic dye

    Science.gov (United States)

    Rosli, Nurrina Binti; Amagai, Kenji

    2014-12-01

    Liquid atomization system has been extensively applied as the most significant process in many industrial fields. In the internal combustion engine, the combustion phenomenon is strongly influenced by the spray characteristics of the fuel given by the atomization process. In order to completely understand the whole atomization process, a detail investigation of relations between the liquid jet characteristics and the breakup phenomenon is required. In this study, a non-intrusive method called as laser tagging method by photochromic dye has been developed with aim to study the breakup process of liquid sheet in detail, covering from the behavior in film until disintegrated into ligament and droplets. The laser tagging method by photochromic dye is based on a shift in the absorption spectrum of photochromic dye molecules tagged by ultraviolet laser. The shift results a color change at the tagged region of liquid containing the dye. In this study, the motions of the dye traces were analyzed as the liquid surface velocity. As a result, liquid sheet was found to keep its velocity constantly in film before suddenly increase around broken point. However, it then decreased after broken into droplets. By forming a set of four points of dye traces on the liquid sheet, the change of relative position of the set enabled the measurement of deformation and rotational motion of the liquid sheet. As a result, the normal strain of the liquid sheet parallel to the flow direction depended on the flow behavior of ligament formation.

  4. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    Science.gov (United States)

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  5. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  6. Cell Engineering and Molecular Pharming for Biopharmaceuticals

    Science.gov (United States)

    Abdullah, M.A; Rahmah, Anisa ur; Sinskey, A.J; Rha, C.K

    2008-01-01

    Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted. PMID:19662143

  7. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  8. Flow visualization with laser light-sheet techniques in automotive research

    International Nuclear Information System (INIS)

    Hentschel, W.; Stoffregen, B.

    1987-01-01

    This paper presents different set-ups for the visualization of flow fields in automotive research i.e. aerodynamics and i.c. engines, with the help of laser light-sheet techniques. Special efforts are made to apply these techniques to temporarily resolved studies of unsteady flows and for the quantitative analysis of a flow field in two dimensions in a full plane instantaneously. Several examples taken from current work are presented

  9. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials.

    Science.gov (United States)

    Morano, Michela; Wrobel, Sandra; Fregnan, Federica; Ziv-Polat, Ofra; Shahar, Abraham; Ratzka, Andreas; Grothe, Claudia; Geuna, Stefano; Haastert-Talini, Kirsten

    2014-01-01

    Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR) whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation. Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs) and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs). The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12) cell sympathetic culture model system. We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell system. Our results evidence that nanotechnology as used in our setup is superior over stem cell engineering when it comes to in vitro models for PNR. Furthermore, np-NTFs can easily be suspended in regenerative hydrogel matrix and could be delivered that way to nerve conduits for future in vivo studies and medical application.

  10. Customizable engineered blood vessels using 3D printed inserts.

    Science.gov (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T

    2016-04-15

    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  12. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Jiaxian; Cui, Chang; Nan, Haiyan; Yu, Yuanfang; Xiao, Yini; Poon, Ellen; Yang, Gang; Wang, Xijie; Wang, Chenchen; Li, Lingsong; Boheler, Kenneth Richard; Ma, Xu; Cheng, Xin; Ni, Zhenhua; Chen, Minglong

    2017-08-09

    Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca 2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.

  14. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering

    International Nuclear Information System (INIS)

    Hwang, Chang Mo; Sant, Shilpa; Masaeli, Mahdokht; Kachouie, Nezamoddin N; Zamanian, Behnam; Khademhosseini, Ali; Lee, Sang-Hoon

    2010-01-01

    For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation inside alginate hydrogels simultaneously. Gelatin beads of 150-300 μm diameter were used as a sacrificial porogen for generating pores within cell-laden hydrogels. Gelation of gelatin at low temperature (4 0 C) was used to form beads without chemical crosslinking and their subsequent dissolution after cell encapsulation led to generation of pores within cell-laden hydrogels. The pore size and porosity of the scaffolds were controlled by the gelatin bead size and their volume ratio, respectively. Fabricated hydrogels were characterized for their internal microarchitecture, mechanical properties and permeability. Hydrogels exhibited a high degree of porosity with increasing gelatin bead content in contrast to nonporous alginate hydrogel. Furthermore, permeability increased by two to three orders while compressive modulus decreased with increasing porosity of the scaffolds. Application of these scaffolds for tissue engineering was tested by encapsulation of hepatocarcinoma cell line (HepG2). All the scaffolds showed similar cell viability; however, cell proliferation was enhanced under porous conditions. Furthermore, porous alginate hydrogels resulted in formation of larger spheroids and higher albumin secretion compared to nonporous conditions. These data suggest that porous alginate hydrogels may have provided a better environment for cell proliferation and albumin production. This may be due to the enhanced mass transfer of nutrients, oxygen and waste removal, which is potentially beneficial for tissue engineering and regenerative medicine applications.

  15. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    Science.gov (United States)

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  16. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  17. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  18. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  19. Chimeric Antigen Receptor-Engineered T Cells in Tumor Immunotherapy: From Bench to Beside

    Directory of Open Access Journals (Sweden)

    Peng WANG

    2017-06-01

    Full Text Available Chimeric antigen receptor-engineered T cells (CAR-T cells, a classification of cultured T cells after modification of gene engineering technology, can recognize specific tumor antigens in a major histocompatibility complex (MHC-independent manner, consequently leading to the activation of antitumor function. The recent studies have confirmed that a variety of tumor-associated antigens (TAAs can act as target antigens for CAR-T cells. Nowadays, CAR T-cell therapy, one of the most potential tumor immunotherapies, has made great breakthroughs in hematological malignancies and promising outcomes in solid tumors. In this article, the biological characteristics and antitumor mechanism of CAR-T cells, and their application in tumor treatment were mainly reviewed.

  20. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    Science.gov (United States)

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  1. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  2. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    Energy Technology Data Exchange (ETDEWEB)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  3. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    International Nuclear Information System (INIS)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-01-01

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given

  4. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  5. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    Science.gov (United States)

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  6. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  7. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  8. Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice.

    Science.gov (United States)

    Ma, Hongge; Qiao, Shupei; Wang, Zeli; Geng, Shuai; Zhao, Yufang; Hou, Xiaolu; Tian, Weiming; Chen, Xiongbiao; Yao, Lifen

    2017-05-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease that causes unremitting deposition of extracellular matrix proteins, thus resulting in distortion of the pulmonary architecture and impaired gas exchange. Associated with high morbidity and mortality, IPF is generally refractory to current pharmacological therapies. Lefty A, a potent inhibitor of transforming growth factor-β signaling, has been shown to have promising antifibrotic ability in vitro for the treatment of renal fibrosis and other potential organ fibroses. Here, we determined whether Lefty A can attenuate bleomycin (BLM)-induced pulmonary fibrosis in vivo based on a novel therapeutic strategy where human embryonic kidney 293 (HEK293) cells are genetically engineered with the Lefty A-associated GFP gene. The engineered HEK293 cells were encapsulated in alginate microcapsules and then subcutaneously implanted in ICR mice that had 1 wk earlier been intratracheally administered BLM to induce pulmonary fibrosis. The severity of fibrosis in lung tissue was assessed using pathological morphology and collagen expression to examine the effect of Lefty A released from the microencapsulated cells. The engineered HEK293 cells with Lefty A significantly reduced the expression of connective tissue growth factor and collagen type I mRNA, lessened the morphological fibrotic effects induced by BLM, and increased the expression of matrix metalloproteinase-9. This illustrates that engineered HEK293 cells with Lefty A can attenuate pulmonary fibrosis in vivo, thus providing a novel method to treat human pulmonary fibrotic disease and other organ fibroses. Copyright © 2017 the American Physiological Society.

  9. Absolute and convective instability of a liquid sheet with transverse temperature gradient

    International Nuclear Information System (INIS)

    Fu, Qing-Fei; Yang, Li-Jun; Tong, Ming-Xi; Wang, Chen

    2013-01-01

    Highlights: • The spatial–temporal instability of a liquid sheet with thermal effects was studied. • The flow can transit to absolutely unstable with certain flow parameters. • The effects of non-dimensional parameters on the transition were studied. -- Abstract: The spatial–temporal instability behavior of a viscous liquid sheet with temperature difference between the two surfaces was investigated theoretically. The practical situation motivating this investigation is liquid sheet heated by ambient gas, usually encountered in industrial heat transfer and liquid propellant rocket engines. The existing dispersion relation was used, to explore the spatial–temporal instability of viscous liquid sheets with a nonuniform temperature profile, by setting both the wave number and frequency complex. A parametric study was performed in both sinuous and varicose modes to test the influence of dimensionless numbers on the transition between absolute and convective instability of the flow. For a small value of liquid Weber number, or a great value of gas-to-liquid density ratio, the flow was found to be absolutely unstable. The absolute instability was enhanced by increasing the liquid viscosity. It was found that variation of the Marangoni number hardly influenced the absolute instability of the sinuous mode of oscillations; however it slightly affected the absolute instability in the varicose mode

  10. Design and numerical analysis of an SMA mesh-based self-folding sheet

    International Nuclear Information System (INIS)

    Peraza-Hernandez, Edwin A; Hartl, Darren J; Malak Jr, Richard J

    2013-01-01

    Origami engineering, which is the practice of creating useful three-dimensional structures through folding and fold-like operations applied to initially two-dimensional entities, has the potential to impact several areas of design and manufacturing. In some instances, however, it may be impractical to apply external manipulations to produce the desired folds (e.g., as in remote applications such as space systems). In such cases, self-folding capabilities are valuable. A self-folding material or material system is one that can perform folding operations without manipulations from external forces. This work considers a concept for a self-folding material system. The system extends the ‘programmable matter’ concept and consists of an active, self-morphing sheet composed of two meshes of thermally actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The geometric and power input parameters of the self-folding sheet are optimized to achieve the tightest local fold possible subject to stress and temperature constraints. The sheet folding performance considering folds at different angles relative to the orientation of the wire mesh is also analyzed. The optimization results show that a relatively low elastomer thickness is preferable to generate the tightest fold possible. The results also show that the self-folding sheet does not require large power inputs to achieve an optimal folding performance. It was shown that the self-folding sheet is capable of creating similar quality folds at different orientations. (paper)

  11. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  12. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues.

    Science.gov (United States)

    Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P; Gersbach, Charles A; Guilak, Farshid

    2017-05-01

    Proinflammatory cytokines such as interleukin-1 (IL-1) are found in elevated levels in diseased or injured tissues and promote rapid tissue degradation while preventing stem cell differentiation. This study was undertaken to engineer inflammation-resistant murine induced pluripotent stem cells (iPSCs) through deletion of the IL-1 signaling pathway and to demonstrate the utility of these cells for engineering replacements for diseased or damaged tissues. Targeted deletion of the IL-1 receptor type I (IL-1RI) gene in murine iPSCs was achieved using the RNA-guided, site-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome engineering system. Clonal cell populations with homozygous and heterozygous deletions were isolated, and loss of receptor expression and cytokine signaling was confirmed by flow cytometry and transcriptional reporter assays, respectively. Cartilage was engineered from edited iPSCs and tested for its ability to resist IL-1-mediated degradation in gene expression, histologic, and biomechanical assays after a 3-day treatment with 1 ng/ml of IL-1α. Three of 41 clones isolated possessed the IL-1RI +/- genotype. Four clones possessed the IL-1RI -/- genotype, and flow cytometry confirmed loss of IL-1RI on the surface of these cells, which led to an absence of NF-κB transcription activation after IL-1α treatment. Cartilage engineered from homozygous null clones was resistant to cytokine-mediated tissue degradation. In contrast, cartilage derived from wild-type and heterozygous clones exhibited significant degradative responses, highlighting the need for complete IL-1 blockade. This work demonstrates proof-of-concept of the ability to engineer custom-designed stem cells that are immune to proinflammatory cytokines (i.e., IL-1) as a potential cell source for cartilage tissue engineering. © 2016, American College of Rheumatology.

  13. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  14. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    Science.gov (United States)

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  16. Computer-Aided Engineering Of Cabling

    Science.gov (United States)

    Billitti, Joseph W.

    1989-01-01

    Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding

  17. HLA engineering of human pluripotent stem cells.

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  18. HLA Engineering of Human Pluripotent Stem Cells

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  19. Flexible Engineering Structures from the Corrugated Metal Sheets - Comparison of Costs of Solutions used in the Road Building

    Science.gov (United States)

    Ołdakowska, E.

    2017-11-01

    The flexible structures from the corrugated metal sheets are used in particular in the road building, especially as passages for animals. Easy and quick assembly, as well as lower realization costs when compared to the traditional solutions increase interest in such structures. Availability and variety of systems allows for searching for solutions which are the best and optimal in the economical range. The article presents the comparison of costs of the basic materials used in various systems of flexible structures from the corrugated metal sheets. In order to determine the costs of the material solutions the data for two systems used in Poland (for construction of the upper passages for animals) since 2008 have been used. The cost estimation for the basic materials required for realization of 1 m2 of the flexible structure from the corrugated steel sheets have been prepared with use of prices obtained directly from the Polish contractors and manufacturers, as well as process included in the quarterly information (Sekocenbud). The difference of prices of materials available on the market allows the investor for selecting the structure depending on the needs and financial possibilities, as well as for achieving some savings. The savings in case of purchasing sheets of identical parameters (thickness, profile characteristics) are from approx. 4% to 8% per 1 m2 of sheet. The connectors in form of bolts M20 cl. 8.8 of various lengths are an expense from 3.00 PLN to 3.50 PLN. Those values may seem low, but taking into consideration amounts connected with construction of many square meters of structure they may become very important factor in the total investment costs.

  20. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  1. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  2. Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering.

    Science.gov (United States)

    Dhinsa, Baljinder S; Mahapatra, Anant N; Khan, Wasim S

    2015-01-01

    Tendon and ligament injuries are common, and repair slowly with reduced biomechanical properties. With increasing financial demands on the health service and patients to recover from tendon and ligament injuries faster, and with less morbidity, health professionals are exploring new treatment options. Tissue engineering may provide the answer, with its unlimited source of natural cells that in the correct environment may improve repair and regeneration of tendon and ligament tissue. Mesenchymal stem cells have demonstrated the ability to self renew and have multilineage differentiation potential. The use of bone marrow-derived mesenchymal stem cells has been reported, however significant in vitro culture expansion is required due to the low yield of cells, which has financial implications. Harvesting of bone marrow cells also has associated morbidity. Several studies have looked at alternative sources for mesenchymal stem cells. Reports in literature from animal studies have been encouraging, however further work is required. This review assesses the potential sources of mesenchymal stem cells for tissue engineering in tendons and ligaments.

  3. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  4. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    Science.gov (United States)

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  5. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  6. Patterning nonisometric origami in nematic elastomer sheets

    Science.gov (United States)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  7. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  8. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  9. Cell based bone tissue engineering in jaw defects

    NARCIS (Netherlands)

    Meijer, Gert J.; de Bruijn, Joost Dick; Koole, Ron; van Blitterswijk, Clemens

    2008-01-01

    In 6 patients the potency of bone tissue engineering to reconstruct jaw defects was tested. After a bone marrow aspirate was taken, stem cells were cultured, expanded and grown for 7 days on a bone substitute in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix.

  10. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    Science.gov (United States)

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  11. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    Science.gov (United States)

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  12. Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality

    Directory of Open Access Journals (Sweden)

    Y Zhang

    2016-01-01

    Full Text Available In vivo cartilage is in a state of constant mechanical stimulation. It is therefore reasonable to deduce that mechanical forces play an important role in cartilage formation. Mechanical forces, such as compression, tension, and shear force, have been widely applied for cartilage engineering; however, relatively few review papers have summarized the influence of biomechanical signals on stem cell-based neo-cartilage formation and cartilage engineering in both molecular adaption and tissue functionality. In this review, we will discuss recent progress related to the influences of substrate elasticity on stem cell chondrogenic differentiation and elucidate the potential underlying mechanisms. Aside from active sensing and responding to the extracellular environment, stem cells also could respond to various external mechanical forces, which also influence their chondrogenic capacity; this topic will be updated along with associated signaling pathways. We expect that these different regimens of biomechanical signals can be utilized to boost stem cell-based cartilage engineering and regeneration.

  13. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    Science.gov (United States)

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  15. Multiphase lattice Boltzmann on the Cell Broadband Engine

    International Nuclear Information System (INIS)

    Belletti, F.; Mantovani, F.; Tripiccione, R.; Biferale, L.; Schifano, S.F.; Toschi, F.

    2009-01-01

    Computational experiments are one of the most used and flexible investigation tools in fluid dynamics. The Lattice Boltzmann Equation is a well established computational method particularly promising for multi-phase flows at micro and macro scales. Here we present preliminary results on performances of the Lbe method on the Cell Broadband Engine platform.

  16. Successful transplantation of in vitro expanded human corneal endothelial precursors to corneal endothelial surface using a nanocomposite sheet

    Directory of Open Access Journals (Sweden)

    Parikumar P

    2011-01-01

    Full Text Available Background: Though the transplantation of in vitro expanded human corneal endothelial precursors in animal models of endothelial damage by injecting into the anterior chamber has been reported, the practical difficulties of accomplishing such procedure in human patients have been a hurdle to clinical translation. Here we report the successful transplantation of in vitro expanded human corneal precursor cells to an animal eye using a transparent Nano-composite sheet and their engraftment.Materials and Methods: Human Corneal endothelial cells (HCEC were isolated from human cadaver eyes with informed consent and expanded in the lab using a sphere forming assay in a novel Thermoreversible Gelation Polymer (TGP for 26 days. HCEC obtained by sphere forming assay were seeded in a novel Nano-composite sheet, which was made of PNIPA-NC gels by in-situ, free-radical polymerization of NIPA monomer in the presence of exfoliated clay (synthetic hectorite “Laponite XLG” uniformly dispersed in aqueous media. After a further seven days in vitro culture of HCEC in the Nano-composite sheet, cells were harvested and transplanted on cadaver-bovine eyes (n=3. The cells were injected between the corneal endothelial layer and the Nano-composite sheet that had been placed prior to the injection in close proximity to the endothelial layer. After three hours, the transplanted Nano-composite sheets were removed from the bovine eyes and subjected to microscopic examination. The corneas were subjected to Histo-pathological studies along with controls. Results: HCEC formed sphere like colonies in TGP which expressed relevant markers as confirmed by RT-PCR. Microscopic studies of the Nanosheets and histopathological studies of the cornea of the Bull’s eye revealed that the HCEC got engrafted to the corneal endothelial layer of the bovine eyes with no remnant cells in the Nanosheet. Conclusion: Transplantation of in vitro expanded donor human corneal endothelial cells

  17. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.

    LENUS (Irish Health Repository)

    Lyons, Frank G

    2010-12-01

    One of the key challenges in tissue engineering is to understand the host response to scaffolds and engineered constructs. We present a study in which two collagen-based scaffolds developed for bone repair: a collagen-glycosaminoglycan (CG) and biomimetic collagen-calcium phosphate (CCP) scaffold, are evaluated in rat cranial defects, both cell-free and when cultured with MSCs prior to implantation. The results demonstrate that both cell-free scaffolds showed excellent healing relative to the empty defect controls and somewhat surprisingly, to the tissue engineered (MSC-seeded) constructs. Immunological analysis of the healing response showed higher M1 macrophage activity in the cell-seeded scaffolds. However, when the M2 macrophage response was analysed, both groups (MSC-seeded and non-seeded scaffolds) showed significant activity of these cells which are associated with an immunomodulatory and tissue remodelling response. Interestingly, the location of this response was confined to the construct periphery, where a capsule had formed, in the MSC-seeded groups as opposed to areas of new bone formation in the non-seeded groups. This suggests that matrix deposited by MSCs during in vitro culture may adversely affect healing by acting as a barrier to macrophage-led remodelling when implanted in vivo. This study thus improves our understanding of host response in bone tissue engineering.

  18. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials

    Directory of Open Access Journals (Sweden)

    Morano M

    2014-11-01

    Full Text Available Michela Morano,1,* Sandra Wrobel,2,3,* Federica Fregnan,1 Ofra Ziv-Polat,4 Abraham Shahar,4 Andreas Ratzka,2 Claudia Grothe,2,3 Stefano Geuna,1 Kirsten Haastert-Talini2,3 1Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy; 2Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany; 3Center for Systems Neuroscience (ZSN, Hannover, Lower-Saxony, Germany; 4NVR Research Ltd, Ness-Ziona, Israel *These authors contributed equally to this work and share first authorship Purpose: Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation.Methods: Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs. The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12 cell sympathetic culture model system.Results: We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell

  19. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  20. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Science.gov (United States)

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  1. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Emilio J Gualda

    2014-08-01

    Full Text Available The development of three dimensional cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex three dimensional matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy is becoming an excellent tool for fast imaging of such three-dimensional biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  2. Cell differentiation and matrix organization in engineered teeth.

    Science.gov (United States)

    Nait Lechguer, A; Couble, M L; Labert, N; Kuchler-Bopp, S; Keller, L; Magloire, H; Bleicher, F; Lesot, H

    2011-05-01

    Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.

  3. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs

    Directory of Open Access Journals (Sweden)

    Jennifer J. Warnock

    2014-09-01

    Full Text Available Meniscal tears are a common cause of stifle lameness in dogs. Use of autologous synoviocytes from the affected stifle is an attractive cell source for tissue engineering replacement fibrocartilage. However, the diseased state of these cells may impede in vitro fibrocartilage formation. Synoviocytes from 12 osteoarthritic (“oaTSB” and 6 normal joints (“nTSB” were cultured as tensioned bioscaffolds and compared for their ability to synthesize fibrocartilage sheets. Gene expression of collagens type I and II were higher and expression of interleukin-6 was lower in oaTSB versus nTSB. Compared with nTSB, oaTSB had more glycosaminoglycan and alpha smooth muscle staining and less collagen I and II staining on histologic analysis, whereas collagen and glycosaminoglycan quantities were similar. In conclusion, osteoarthritic joint—origin synoviocytes can produce extracellular matrix components of meniscal fibrocartilage at similar levels to normal joint—origin synoviocytes, which makes them a potential cell source for canine meniscal tissue engineering.

  4. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  5. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  6. Selectively reflective transparent sheets

    Science.gov (United States)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  7. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  8. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.

    Science.gov (United States)

    Shum, Thomas; Kruse, Robert L; Rooney, Cliona M

    2018-05-04

    Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. Areas covered: We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. Expert opinion: CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.

  9. Programming cells by multiplex genome engineering and accelerated evolution.

    Science.gov (United States)

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  10. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  11. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen S.

    2015-09-13

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.

  12. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  13. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties

    International Nuclear Information System (INIS)

    Saray, O.; Purcek, G.; Karaman, I.; Neindorf, T.; Maier, H.J.

    2011-01-01

    Highlights: → IF-steel sheets can successfully be processed in the continuous manner using the equal-channel angular sheet extrusion (ECASE). → The ECASE produces the microstructures including dislocation cell and micro-shear bands inside the grains with mainly low-angle grain boundaries. → The ECASE results in a considerable increase in the strength but limited ductility. → A good strength-ductility balance in the ECASE-processed IF-steel sheets can be managed with a suitable annealing parameters. - Abstract: Interstitial-free steel (IF-steel) sheets were processed at room temperature using a continuous severe plastic deformation (SPD) technique called equal-channel angular sheet extrusion (ECASE). After processing, the microstructural evolution and mechanical properties have been systematically investigated. To be able to directly compare the results with those from the same material processed using discontinuous equal channel angular extrusion, the sheets were ECASE processed up to eight passes. The microstructural investigations revealed that the processed sheets exhibited a dislocation cell and/or subgrain structures with mostly low angle grain boundaries. The grains after processing have relatively high dislocation density and intense micro-shear band formation. The electron backscattering diffraction (EBSD) examination showed that the processed microstructure is not fully homogeneous along the sheet thickness due probably to the corner angle of 120 deg. in the ECASE die. It was also observed that the strengths of the processed sheets increase with the number of ECASE passes, and after eight passes following route-A and route-C, the yield strengths reach 463 MPa and 459 MPa, respectively, which is almost 2.5 times higher than that of the initial material. However, the tensile ductility considerably dropped after the ECASE. The limited ductility was attributed to the early plastic instability in the tensile samples due to the inhomogeneous

  14. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  15. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang

    2008-01-01

    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  16. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available Lipofuscin (LF is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (--epigallocatechin gallate (EGCG, the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown.We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks.Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments.

  17. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    Science.gov (United States)

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  20. Biscrolling nanotube sheets and functional guests into yarns.

    Science.gov (United States)

    Lima, Márcio D; Fang, Shaoli; Lepró, Xavier; Lewis, Chihye; Ovalle-Robles, Raquel; Carretero-González, Javier; Castillo-Martínez, Elizabeth; Kozlov, Mikhail E; Oh, Jiyoung; Rawat, Neema; Haines, Carter S; Haque, Mohammad H; Aare, Vaishnavi; Stoughton, Stephanie; Zakhidov, Anvar A; Baughman, Ray H

    2011-01-07

    Multifunctional applications of textiles have been limited by the inability to spin important materials into yarns. Generically applicable methods are demonstrated for producing weavable yarns comprising up to 95 weight percent of otherwise unspinnable particulate or nanofiber powders that remain highly functional. Scrolled 50-nanometer-thick carbon nanotube sheets confine these powders in the galleries of irregular scroll sacks whose observed complex structures are related to twist-dependent extension of Archimedean spirals, Fermat spirals, or spiral pairs into scrolls. The strength and electronic connectivity of a small weight fraction of scrolled carbon nanotube sheet enables yarn weaving, sewing, knotting, braiding, and charge collection. This technology is used to make yarns of superconductors, lithium-ion battery materials, graphene ribbons, catalytic nanofibers for fuel cells, and titanium dioxide for photocatalysis.

  1. Engineering the Interface Between Inorganic Materials and Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, David

    2014-05-31

    To further optimize cell function in hybrid “living materials”, it would be advantageous to render mammalian cells responsive to novel “orthogonal” cues, i.e. signals they would not ordinarily respond to but that can be engineered to feed into defined intracellular signaling pathways. We recently developed an optogenetic method, based on A. thaliana Cry2, for rapid and reversible protein oligomerization in response to blue light. We also demonstrated the ability to use this method to channel the light input into several defined signaling pathways, work that will enhance communication between inorganic devices and living systems.

  2. Biomolecular strategies for cell surface engineering

    Science.gov (United States)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  3. Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells.

    Science.gov (United States)

    Shi, Ming-Zhu; Xie, De-Yu

    2011-04-01

    We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC-MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1-GL3/TT8-PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.

  4. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  5. 46 CFR 232.4 - Balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  6. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  7. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    Science.gov (United States)

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  8. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  9. Music engineering

    CERN Document Server

    Brice, Richard

    2001-01-01

    Music Engineering is a hands-on guide to the practical aspects of electric and electronic music. It is both a compelling read and an essential reference guide for anyone using, choosing, designing or studying the technology of modern music. The technology and underpinning science are introduced through the real life demands of playing and recording, and illustrated with references to well known classic recordings to show how a particular effect is obtained thanks to the ingenuity of the engineer as well as the musician. In addition, an accompanying companion website containing over 50 specially chosen tracks for download, provides practical demonstrations of the effects and techniques described in the book. Written by a music enthusiast and electronic engineer, this book covers the electronics and physics of the subject as well as the more subjective aspects. The second edition includes an updated Digital section including MPEG3 and fact sheets at the end of each chapter to summarise the key electronics and s...

  10. Fast elliptic-curve cryptography on the Cell Broadband Engine

    NARCIS (Netherlands)

    Costigan, N.; Schwabe, P.; Preneel, B.

    2009-01-01

    This paper is the first to investigate the power of the Cell Broadband Engine for state-of-the-art public-key cryptography. We present a high-speed implementation of elliptic-curve Diffie-Hellman (ECDH) key exchange for this processor, which needs 697080 cycles on one Synergistic Processor Unit for

  11. Speech recognition systems on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Jones, H; Vaidya, S; Perrone, M; Tydlitat, B; Nanda, A

    2007-04-20

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.

  12. A validated system for ligation-free USER™ -based assembly of expression vectors for mammalian cell engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram

    The development in the field of mammalian cell factories require fast and high-throughput methods, this means a high need for simpler and more efficient cloning techniques. For optimization of protein expression by genetic engineering and for allowing metabolic engineering in mammalian cells, a new...

  13. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  14. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  15. Assessment of the biocompatibility, stability, and suitability of novel thermoresponsive films for the rapid generation of cellular constructs

    Science.gov (United States)

    Reed, Jamie A.

    2011-12-01

    Stimuli responsive polymers (SRP) are of great interest in the bioengineering community due to their use in applications such as drug delivery and tissue engineering. One example of an SRP is poly(N-isopropyl acrylamide) or pNIPAM. This SRP has the capability of changing its conformation with a slight temperature change: adherent mammalian cells spontaneously release as a confluent cell sheet, which can be harvested for cell sheet engineering purposes. Since its initial use in 1968, many researchers have used pNIPAM to obtain a cell sheet composed of their cell type of interest. The differing protocols used for these diverse cell types, such as the conditions used for cell detachment, and the varying methods used for derivatizing substrates with pNIPAM have all led to conflicting reports on the utility of pNIPAM for cell sheet engineering purposes, as well as the relative cytotoxicity of the polymer. In this work, some of the key inconsistencies in the literature and previously unaddressed challenges when utilizing pNIPAM films are overcome for the purpose of rapid generation of cellular constructs, specifically spheroids. Pertinent characteristics of low temperature detachment are investigated for their effect on the kinetics of cell detachment. In addition, a novel, inexpensive method for obtaining pNIPAM films for mammalian cell detachment, combining pNIPAM with a sol-gel, was optimized and compared to plasma polymerization deposition. Furthermore, proper storage conditions (e.g. temperature and relative humidity) for these films were investigated to increase stability of the films for using tissue culture conditions. To increase the speed of generation of cell sheets, electrospun mats and hydrogels with a high surface area-to-volume ratio were developed. The result is a platform appropriate for the rapid formation of cellular constructs, such as engineered tissues and spheroids for cancer cell research.

  16. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  18. Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells

    Directory of Open Access Journals (Sweden)

    Malika Hale

    2017-03-01

    Full Text Available Gene editing by homology-directed recombination (HDR can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

  19. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Antti Siltanen

    2011-04-01

    Full Text Available After severe myocardial infarction (MI, heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF in the myoblast sheets. We studied the ability of wild type (L6-WT and human HGF-expressing (L6-HGF L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15 or L6-HGF (n = 16 myoblast sheet therapy. Control rats (n = 13 underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further

  20. Engineering muscle cell alignment through 3D bioprinting.

    Science.gov (United States)

    Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto

    2017-09-01

    Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.

  1. Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties

    International Nuclear Information System (INIS)

    Busch, Wibke; Bastian, Susanne; Trahorsch, Ulrike; Iwe, Maria; Kühnel, Dana; Meißner, Tobias; Springer, Armin; Gelinsky, Michael; Richter, Volkmar; Ikonomidou, Chrysanthy; Potthoff, Annegret; Lehmann, Irina; Schirmer, Kristin

    2011-01-01

    Cellular internalisation of industrial engineered nanoparticles is undesired and a reason for concern. Here we investigated and compared the ability of seven different mammalian cell cultures in vitro to incorporate six kinds of engineered nanoparticles, focussing on the role of cell type and particle properties in particle uptake. Uptake was examined using light and electron microscopy coupled with energy dispersive X-ray spectroscopy (EDX) for particle element identification. Flow cytometry was applied for semi-quantitative analyses of particle uptake and for exploring the influence on uptake by the phagocytosis inhibitor Cytochalasin D (CytoD). All particles studied were found to enter each kind of cultured cells. Yet, particles were never found within cell nuclei. The presence of the respective particles within the cells was confirmed by EDX. Live-cell imaging revealed the time-dependent process of internalisation of technical nanoparticles, which was exemplified by tungsten carbide particle uptake into the human skin cells, HaCaT. Particles were found to co-localise with lysosomal structures within the cells. The incorporated nanoparticles changed the cellular granularity, as measured by flow cytometry, already after 3 h of exposure in a particle specific manner. By correlating particle properties with flow cytometry data, only the primary particle size was found to be a weakly influential property for particle uptake. CytoD, an inhibitor of actin filaments and therewith of phagocytosis, significantly inhibited the internalisation of particle uptake in only two of the seven investigated cell cultures. Our study, therefore, supports the notion that nanoparticles can enter mammalian cells quickly and easily, irrespective of the phagocytic ability of the cells.

  2. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  3. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  5. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Science.gov (United States)

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  6. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Jessica Ratajczak

    2016-01-01

    Full Text Available Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.

  7. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  8. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  9. Buckling of Aluminium Sheet Components

    Science.gov (United States)

    Hegadekatte, Vishwanath; Shi, Yihai; Nardini, Dubravko

    Wrinkling is one of the major defects in sheet metal forming processes. It may become a serious obstacle to implementing the forming process and assembling the parts, and may also play a significant role in the wear of the tool. Wrinkling is essentially a local buckling phenomenon that results from compressive stresses (compressive instability) e.g., in the hoop direction for axi-symmetric systems such as beverage cans. Modern beverage can is a highly engineered product with a complex geometry. Therefore in order to understand wrinkling in such a complex system, we have started by studying wrinkling with the Yoshida buckling test. Further, we have studied the buckling of ideal and dented beverage cans under axial loading by laboratory testing. We have modelled the laboratory tests and also the imperfection sensitivity of the two systems using finite element method and the predictions are in qualitative agreement with experimental data.

  10. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  11. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  12. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    Science.gov (United States)

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  13. CHO On A Detox: Removing By-Product Formation Through Cell Engineering

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    Chinese Hamster Ovary (CHO) cells are the preferred hosts for the production of therapeutic glycoproteins. However, there is a need for improvement of the bioprocesses towards increased cell growth and higher productivities without compromising the product quality. Efforts to obtain tailor-made p......-made products with the desired properties that meet the requirements of regulatory authorities are continuously being made. Of equal relevance is to develop methods to engineer cell lines with improved by-product metabolism....

  14. Versatile strategy for controlling the specificity and activity of engineered T cells

    Science.gov (United States)

    Ma, Jennifer S. Y.; Kim, Ji Young; Kazane, Stephanie A.; Choi, Sei-hyun; Yun, Hwa Young; Kim, Min Soo; Rodgers, David T.; Pugh, Holly M.; Singer, Oded; Sun, Sophie B.; Fonslow, Bryan R.; Kochenderfer, James N.; Wright, Timothy M.; Schultz, Peter G.; Young, Travis S.; Kim, Chan Hyuk; Cao, Yu

    2016-01-01

    The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR–T-cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as “switch” molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a “universal” anti-FITC–directed CAR-T cell. Optimization of this CAR–switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR–T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy. PMID:26759368

  15. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  16. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  17. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  18. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    Science.gov (United States)

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  19. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    Science.gov (United States)

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  20. Application of stem cells in tissue engineering for defense medicine.

    Science.gov (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin

    2018-02-26

    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  1. Adjustable focus laser sheet module for generating constant maximum width sheets for use in optical flow diagnostics

    International Nuclear Information System (INIS)

    Hult, J; Mayer, S

    2011-01-01

    A general design of a laser light sheet module with adjustable focus is presented, where the maximum sheet width is preserved over a fixed region. In contrast, conventional focusing designs are associated with a variation in maximum sheet width with focal position. A four lens design is proposed here, where the first three lenses are employed for focusing, and the last for sheet expansion. A maximum sheet width of 1100 µm was maintained over a 50 mm long distance, for focal distances ranging from 75 to 500 mm, when a 532 nm laser beam with a beam quality factor M 2 = 29 was used for illumination

  2. Introduction to tissue engineering and application for cartilage engineering.

    Science.gov (United States)

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  3. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  4. Porous fluoropolymeric fibrous sheet and method of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G.E.; Cockshott, I.D.; McAloon, K.T.

    1978-11-28

    A method of preparing a porous sheet product comprises the step of introducing a spinning liquid comprising an organic fiber forming polymeric material into an electric field whereby fibers are drawn from the liquid to an electrode and collecting the fibers so produced upon the electrode. PTFE and other fluorinated polymer mats produced by the electrostatic process are useful as electrolytic cell diaphragms, battery separators, etc. 4 figures, 3 tables

  5. Structural analysis of alanine tripeptide with antiparallel and parallel beta-sheet structures in relation to the analysis of mixed beta-sheet structures in Samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy.

    Science.gov (United States)

    Asakura, Tetsuo; Okonogi, Michi; Nakazawa, Yasumoto; Yamauchi, Kazuo

    2006-05-10

    The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples: one with 100% parallel beta-sheet structure and the other with 100% antiparallel beta-sheet structure. All (13)C resonances of the tripeptides could be assigned by a comparison of the methyl (13)C resonances of Ala(3) with different [3-(13)C]Ala labeling schemes and also by a series of RFDR (radio frequency driven recoupling) spectra observed by changing mixing times. Two (13)C resonances observed for each Ala residue could be assigned to two nonequivalent molecules per unit cell. Differences in the (13)C chemical shifts and (13)C spin-lattice relaxation times (T(1)) were observed between the two beta-sheet structures. Especially, about 3 times longer T(1) values were obtained for parallel beta-sheet structure as compared to those of antiparallel beta-sheet structure, which could be explicable by the difference in the hydrogen-bond networks of both structures. This very large difference in T(1) becomes a good measure to differentiate between parallel or antiparallel beta-sheet structures. These differences in the NMR parameters found for the tripeptides may be applied to assign the parallel and antiparallel beta-sheet (13)C resonances in the asymmetric and broad methyl spectra of [3-(13)C]Ala silk protein fiber of a wild silkworm, Samia cynthia ricini.

  6. 17 CFR 210.6-04 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.6-04... sheets. This rule is applicable to balance sheets filed by registered investment companies except for... of this part. Balance sheets filed under this rule shall comply with the following provisions: Assets...

  7. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  8. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  9. Small Engine Repair Modules (Workbook) = Reparacion de Motores Pequenos (Guia de Trabajo)

    Science.gov (United States)

    New York State Dept. of Correctional Services, Albany.

    This package contains an English-Language set of task procedure sheets dealing with small-engine repair and a Spanish translation of the same material. Addressed in the individual sections of the manual are the following aspects of engine tune-up, reconditioning, and troubleshooting: servicing air cleaners; cleaning gas tanks, fuel lines, and fuel…

  10. SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities

    International Nuclear Information System (INIS)

    Q. S. Shu; I. Ben-Zvi; G. Cheng; I. M. Phipps; J. T. Susta; P. Kneisel; G. Myneni; J. Mast; R. Selim

    2007-01-01

    Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelerating fields

  11. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  12. The transposition of the balance sheet to financial and functional balance sheet. Research and development

    Directory of Open Access Journals (Sweden)

    Liana GĂDĂU

    2015-09-01

    Full Text Available As the title suggests, through this paper we want to highlight the necessity of treating again the content and the form of the balance sheet in order to adapt it to a more efficient analysis, this way surpassing the informational valences of the classic balance sheet. The functional and the financial balance sheet will be taken into account. These models of balance sheet permit the complex analyses regarding the solvability or the bankruptcy risk of an enterprise to take place, and also other analyses, like the analysis of the structure and the financial/ functional equilibrium, the analysis of the company on operating cycles and their role in the functioning of the company. Through the particularities offered by each of these two models of balance sheet, we want to present the advantages of a superior informing. This content of this material is based on a vast investigation of the specialized literature.

  13. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    Science.gov (United States)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  14. The prediction of necking and failure in 3 D. Sheet forming analysis using damage variable

    International Nuclear Information System (INIS)

    Brunet, M.; Sabourin, F.; Mguil-Touchal, S.

    1996-01-01

    The modeling of necking occurrence in sheet metal forming is a real challenge for the engineer concerned with processing of new geometries and materials. As fracture in metal forming is mainly due to the development of ductile damage and to represent the failure of anisotropic sheet-metals, an extension of the Gurson-Tvergaard model is presented and implemented in the context of plane-stress for shell elements. A one dimensional problem is solved and compared with the exact solution of the literature. The paper closes with a numerical and experimental study of the necking of a square cup deep-drawing using the modified Gurson's model to described the constitutive behavior of the material. Finally, a numerical necking criterion is proposed. (orig.)

  15. The prediction of necking and failure in 3 D. Sheet forming analysis using damage variable

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, M. [INSA, Villeurbanne (France). Lab. de Mecanique des Solides; Sabourin, F. [INSA, Villeurbanne (France). Lab. de Mecanique des Solides; Mguil-Touchal, S. [INSA, Villeurbanne (France). Lab. de Mecanique des Solides

    1996-10-01

    The modeling of necking occurrence in sheet metal forming is a real challenge for the engineer concerned with processing of new geometries and materials. As fracture in metal forming is mainly due to the development of ductile damage and to represent the failure of anisotropic sheet-metals, an extension of the Gurson-Tvergaard model is presented and implemented in the context of plane-stress for shell elements. A one dimensional problem is solved and compared with the exact solution of the literature. The paper closes with a numerical and experimental study of the necking of a square cup deep-drawing using the modified Gurson`s model to described the constitutive behavior of the material. Finally, a numerical necking criterion is proposed. (orig.).

  16. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  17. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  18. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  19. Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering

    Science.gov (United States)

    Si, Tong; Xiao, Han; Zhao, Huimin

    2014-01-01

    Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192

  20. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  1. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  2. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  3. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  4. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  5. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  6. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2012-10-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.

  7. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    International Nuclear Information System (INIS)

    Battuello, M; Girard, F; Florio, M

    2012-01-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon–carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux. (paper)

  8. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  9. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    Science.gov (United States)

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  11. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  12. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  13. Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice

    International Nuclear Information System (INIS)

    Hillerdal, Victoria; Ramachandran, Mohanraj; Leja, Justyna; Essand, Magnus

    2014-01-01

    Adoptive transfer of T cells genetically engineered with a chimeric antigen receptor (CAR) has successfully been used to treat both chronic and acute lymphocytic leukemia as well as other hematological cancers. Experimental therapy with CAR-engineered T cells has also shown promising results on solid tumors. The prostate stem cell antigen (PSCA) is a protein expressed on the surface of prostate epithelial cells as well as in primary and metastatic prostate cancer cells and therefore a promising target for immunotherapy of prostate cancer. We developed a third-generation CAR against PSCA including the CD28, OX-40 and CD3 ζ signaling domains. T cells were transduced with a lentivirus encoding the PSCA-CAR and evaluated for cytokine production (paired Student’s t-test), proliferation (paired Student’s t-test), CD107a expression (paired Student’s t-test) and target cell killing in vitro and tumor growth and survival in vivo (Log-rank test comparing Kaplan-Meier survival curves). PSCA-CAR T cells exhibit specific interferon (IFN)-γ and interleukin (IL)-2 secretion and specific proliferation in response to PSCA-expressing target cells. Furthermore, the PSCA-CAR-engineered T cells efficiently kill PSCA-expressing tumor cells in vitro and systemic treatment with PSCA-CAR-engineered T cells significantly delays subcutaneous tumor growth and prolongs survival of mice. Our data confirms that PSCA-CAR T cells may be developed for treatment of prostate cancer

  14. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  15. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  16. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  17. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering.

    Science.gov (United States)

    Lowenthal, Justin; Gerecht, Sharon

    2016-05-06

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  19. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  20. Tissue engineering by self-assembly and bio-printing of living cells

    International Nuclear Information System (INIS)

    Jakab, Karoly; Marga, Francoise; Forgacs, Gabor; Norotte, Cyrille; Murphy, Keith; Vunjak-Novakovic, Gordana

    2010-01-01

    Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matrices and, most lately, bioprinting. To be successful in this endeavor, it is crucial to provide in vitro micro-environmental clues for the cells resembling those in the organism. Therefore, scaffolds, populated with differentiated cells or stem cells, of increasing complexity and sophistication are being fabricated. However, no matter how sophisticated scaffolds are, they can cause problems stemming from their degradation, eliciting immunogenic reactions and other a priori unforeseen complications. It is also being realized that ultimately the best approach might be to rely on the self-assembly and self-organizing properties of cells and tissues and the innate regenerative capability of the organism itself, not just simply prepare tissue and organ structures in vitro followed by their implantation. Here we briefly review the different strategies for the fabrication of three-dimensional biological structures, in particular bioprinting. We detail a fully biological, scaffoldless, print-based engineering approach that uses self-assembling multicellular units as bio-ink particles and employs early developmental morphogenetic principles, such as cell sorting and tissue fusion. (topical review)