WorldWideScience

Sample records for cell selection migration

  1. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Directory of Open Access Journals (Sweden)

    Maria Bernard L

    2006-01-01

    Full Text Available Abstract Background Pluripotent mouse embryonic stem (ES cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321 or Stem Cell Factor (SCF. Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium. RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.

  2. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines

    Science.gov (United States)

    Serfozo, Peter; Schlarman, Maggie S; Pierret, Chris; Maria, Bernard L; Kirk, Mark D

    2006-01-01

    Background Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). Results Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. Conclusion Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed. PMID:16436212

  3. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis.

    Directory of Open Access Journals (Sweden)

    Katie Bentley

    2009-10-01

    Full Text Available Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF. Tip cells meet and fuse (anastomosis to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lateral inhibition resulting, under normal conditions, in an interleaved arrangement of tip and non-migrating stalk cells. Previously, we showed that the increased VEGF levels found in many diseases can cause the delayed negative feedback of lateral inhibition to produce abnormal oscillations of tip/stalk cell fates. Here we describe the development and implementation of a novel physics-based hierarchical agent model, tightly coupled to in vivo data, to explore the system dynamics as perpetual lateral inhibition combines with tip cell migration and fusion. We explore the tipping point between normal and abnormal sprouting as VEGF increases. A novel filopodia-adhesion driven migration mechanism is presented and validated against in vivo data. Due to the unique feature of ongoing lateral inhibition, 'stabilised' tip/stalk cell patterns show sensitivity to the formation of new cell-cell junctions during fusion: we predict cell fates can reverse. The fusing tip cells become inhibited and neighbouring stalk cells flip fate, recursively providing new tip cells. Junction size emerges as a key factor in establishing a stable tip/stalk pattern. Cell-cell junctions elongate as tip cells migrate, which is shown to provide positive feedback to lateral inhibition, causing it to be more susceptible to pathological oscillations. Importantly, down-regulation of the migratory pathway alone is shown to be sufficient to rescue the sprouting system from oscillation and restore stability. Thus we suggest the use of migration inhibitors as therapeutic agents for vascular

  4. Nardosinone improves the proliferation, migration and selective differentiation of mouse embryonic neural stem cells.

    Directory of Open Access Journals (Sweden)

    Ze-Hui Li

    Full Text Available In this study, we investigated the impact of Nardosinone, a bioactive component in Nardostachys root, on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay, bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers, respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes, as indicated by the expression of microtubule-associated protein-2 and myelin basic protein, respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion, this study reveals the regulatory effects of Nardosinone on neural stem cells, which may have significant implications for the treatment of brain injury and neurodegenerative diseases.

  5. Selected Activities of Citrus Maxima Merr. Fruits on Human Endothelial Cells: Enhancing Cell Migration and Delaying Cellular Aging

    OpenAIRE

    Paiwan Buachan; Linda Chularojmontri; Wattanapitayakul, Suvara K.

    2014-01-01

    Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. T...

  6. Selected Activities of Citrus Maxima Merr. Fruits on Human Endothelial Cells: Enhancing Cell Migration and Delaying Cellular Aging

    Directory of Open Access Journals (Sweden)

    Paiwan Buachan

    2014-04-01

    Full Text Available Endothelial injury and damage as well as accumulated reactive oxygen species (ROS in aging play a significant role in the development of cardiovascular disease (CVD. Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM fruit extract on human umbilical vein endothelial cell (HUVECs migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC. Short-term (48 h co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL. CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2′,7′-dichlorodihydrofluorescein diacetate (DCDHF while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.

  7. Spatial Autocorrelation Analysis of Migration and Selection

    OpenAIRE

    Sokal, R R; Jacquez, G M; Wooten, M. C.

    1989-01-01

    We test various assumptions necessary for the interpretation of spatial autocorrelation analysis of gene frequency surfaces, using simulations of Wright's isolation-by-distance model with migration or selection superimposed. Increasing neighborhood size enhances spatial autocorrelation, which is reduced again for the largest neighborhood sizes. Spatial correlograms are independent of the mean gene frequency of the surface. Migration affects surfaces and correlograms when immigrant gene freque...

  8. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  9. Human monocyte-derived dendritic cells expressing both chemotactic cytokines IL-8, MCP-1, RANTES and their receptors,and their selective migration to these chemokines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To characterize the mRNA expression of CXC chemokine IL-8, CC chemokine monocyte chemothractant protein-1 (MCP-1) and regulated on activation,normal T cell expressed and secreted (RANTES), and a newly defined DC chemokine DC- CK1 as well as the expression of IL-8 receptor, MCP-1 receptor and RANTES receptor in human monocyte derived dendritic cells (MoDCs).The migratory responsiveness of MoDC to IL-8, MCP-1 and RANTES was alsso studied. Methods In vitro generated MoDCs were obtained by differentiating monocytes in the presence of GM-CSF and IL-4 for 5 days. The time course of RNA expression was analyzed by RT-PCR and migratoly ability was assessed by a micromultiwell chemotaxis chamber assay. Results IL-8, MCP-1, RANTES and their corres ponding receptors were consistently expressed in MoDCs. DC-CK-1 expression was detectable efter 48 hours of differentiation. MoDC selectively migrated in response to MCP-1 and RANTES but not to IL-8 though transcripts of IL-8 receptor were present. Conclusion Because the capacity of dendritic cells to initiate immune responses depends on their specialized migratory and tissue homing properties, the expression of chemokines and their receptors along with the migratory responsiveness to chemokines of MoDC in our study suggests a potential role of chemokines in the interaction between dendritic cells and T cells and the induction of immune responses.

  10. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration.

    Science.gov (United States)

    Kim, Jin-Young; Burghardt, Robert C; Wu, Guoyao; Johnson, Greg A; Spencer, Thomas E; Bazer, Fuller W

    2011-01-01

    Histotroph is required for survival and development of ovine conceptuses (embryo and extraembryonic membranes). Results from our laboratory indicate that arginine (Arg), leucine (Leu), glutamine (Gln), and glucose increase in the uterine lumen between Days 10 and 15 of pregnancy, coincident with increases in expression of amino acid and glucose transporters by uterine epithelia as well as trophectoderm and yolk sac of conceptuses and elongation of the conceptus trophectoderm. Therefore, we hypothesized that Arg, Leu, Gln, and glucose have differential effects on hypertrophy, hyperplasia, and differentiated functions of trophectoderm cells that are critical to conceptus development. Primary ovine trophectoderm (oTr) cells isolated from Day 15 conceptuses were serum-starved for 24 h in a customized medium, deprived of select nutrients, and then treated with either Arg, Leu, Gln, or glucose. Western blot analyses of whole oTr cell extracts revealed that Arg, Leu, and glucose, but not Gln, increased phosphorylated AKT1 by 2.8-, 2.5-, and 1.8-fold, respectively, within 15 min, and the increase was maintained to 60 min. Arg, Leu, and glucose also stimulated increases in phosphorylated ribosomal protein S6K (pRPS6K) by 4.2-, 4.7-, and 2.3-fold, respectively, within 15 min, as well as increases in phosphorylated ribosomal protein S6 (pRPS6) between 0 and 30 min posttreatment, that were sustained to 60 min. When oTr cells were treated with Arg, pRPS6K protein increased in nuclei, but this was not observed in nuclei of oTr cells treated with Leu and glucose. Immunocytochemical analyses also revealed abundant amounts of pRPS6 protein in the cytoplasm of oTr cells treated with Arg, Leu, and glucose. Furthermore, Arg and Leu increased proliferation and migration of oTr cells. Collectively, these results indicate that Arg, Leu, and glucose, but not Gln, in histotroph coordinately activate AKT1-mechanistic target of rapamycin and RPS6K-RPS6 cell signaling pathways to stimulate

  11. Self-Selection Patterns in Mexico-U.S. Migration: The Role of Migration Networks

    OpenAIRE

    McKenzie, David; Rapoport, Hillel

    2010-01-01

    This paper examines the role of migration networks in determining self-selection patterns of Mexico-U.S. migration. A simple theoretical framework shows the impact of networks on migration incentives at different education levels and how this affects the composition of migrant skills. Empirically, we find positive or education-neutral selection in communities with weak migrant networks but negative self-selection in communities with stronger networks. This is consistent with high migration co...

  12. Return Migration, Self-Selection and Entrepreneurship in Mozambique

    OpenAIRE

    Batista, Catia; McIndoe-Calder, Tara; Vicente, Pedro

    2014-01-01

    Does return migration affect entrepreneurship? This question has important implications for the debate on the economic development effects of migration for origin countries. The existing literature has, however, not addressed how the estimation of the impact of return migration on entrepreneurship is affected by double unobservable migrant self-selection, both at the initial outward migration and at the final inward return migration stages. This paper uses a representative household survey co...

  13. Selection in Return Migration: the Role of the Ethnic Networks

    OpenAIRE

    Majlinda Joxhe

    2012-01-01

    Selection in Return Migration: the Role of the Ethnic Networks Majlinda Joxhe Abstract This paper attempts to identify the peer effects of the ethnic networks on the migration process among return migrants. Exploring a simple theoretical model I show how the size of the network reduce the re-migration cost at different level of education, thus determine a diverse selection process. As Borjas (1985, 1987) evidence, migration is not randomly drawn from the distribution of the home country popul...

  14. On the Dynamics of Interstate Migration: Migration Costs and Self-Selection

    OpenAIRE

    Bayer, Christian; Juessen, Falko

    2008-01-01

    This paper develops a tractable dynamic microeconomic model of migration decisions that is aggregated to describe the behavior of interregional migration. Our structural approach allows us to deal with dynamic self-selection problems that arise from the endogeneity of location choice and the persistency of migration incentives. Keeping track of the distribution of migration incentives over time has important consequences for the econometrical treatment, because the dynamics of this distributi...

  15. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  16. Single cell migration dynamics mediated by geometric confinement.

    Science.gov (United States)

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  17. OECD migration, welfare and skill selectivity

    DEFF Research Database (Denmark)

    Pedersen, Peder; Pytlikova, Mariola; Smith, Nina

    Recent migration patterns show growing migration pressure and changing composition of immigrants in many Western countries. According to theory, the impact of immigration depends on the skill distribution of immigrants compared to the natives. During the latest decade, an increasing proportion...... with generous welfare schemes and high tax pressures tend to attract the low-skilled migrants. We look as well at the role of migration networks and non-economics factors such as cultural and linguistic distance or threat to own freedom and safety....

  18. Migration of Cells in a Social Context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M.;

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. While this is essential for the basic processes of life such as embryonic development, wound healing and unregulated migration furthermore is implicated in diseases such as cancer, the influence of neighboring....... We quantified1 the migration of thousands of individual cells in their population context using time-lapse microscopy, microfluidic cell culture and automated image analysis, and discovered a much richer dynamics in the social context, with significant variations in directionality, displacement...

  19. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  20. Rho GTPases in collective cell migration

    NARCIS (Netherlands)

    Zegers, M.M.; Friedl, P.

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle traffickin

  1. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  2. Cell Migration from Baby to Mother

    OpenAIRE

    Dawe, Gavin S.; Tan, Xiao Wei; Xiao, Zhi-Cheng

    2007-01-01

    Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influen...

  3. Kinetic evolutionary behavior of catalysis-select migration

    Science.gov (United States)

    Wu, Yuan-Gang; Lin, Zhen-Quan; Ke, Jian-Hong

    2012-06-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates, where one unit of species A migrates to species B under the catalysts of species C, while under the catalysts of species D the reaction will become one unit of species B migrating to species A. Meanwhile the catalyst aggregates of species C perform self-coagulation, as do the species D aggregates. We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) = Kkij and D species catalysis-select migration rate kernel J(k;i,j)= Jkij. The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration, in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C, respectively). When JD0 -KC0 > 0, the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form. And in the case of JD0-KC0 0 case.

  4. Kinetic evolutionary behavior of catalysis-select migration

    Institute of Scientific and Technical Information of China (English)

    Wu Yuan-Gang; Lin Zhen-Quan; Ke Jian-Hong

    2012-01-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates,where one unit of species A migrates to species B under the catalysts of species C,while under the catalysts of species D the reaction will become one unit of species B migrating to species A.Meanwhile the catalyst aggregates of species C perform self-coagulation,as do the species D aggregates.We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) =Kkij and D species catalysis-select migration rate kernel J(k;i,j) =Jkij.The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration,in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C,respectively).When JD0 - KC0 > 0,the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form.And in the case of JDo - KCo < 0,species A and B exchange their aggregate size distributions as in the above JD0 - KC0 > 0 case.

  5. Kinetic evolutionary behavior of catalysis-select migration

    International Nuclear Information System (INIS)

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates, where one unit of species A migrates to species B under the catalysts of species C, while under the catalysts of species D the reaction will become one unit of species B migrating to species A. Meanwhile the catalyst aggregates of species C perform self-coagulation, as do the species D aggregates. We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) = Kkij and D species catalysis-select migration rate kernel J(k;i,j)= Jkij. The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration, in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C, respectively). When JD0 −KC0 > 0, the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form. And in the case of JD0−KC0 0−KC0 > 0 case. (interdisciplinary physics and related areas of science and technology)

  6. Engineered Models of Confined Cell Migration.

    Science.gov (United States)

    Paul, Colin D; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2016-07-11

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  7. Collective cell migration: guidance principles and hierarchies.

    Science.gov (United States)

    Haeger, Anna; Wolf, Katarina; Zegers, Mirjam M; Friedl, Peter

    2015-09-01

    Collective cell migration results from the establishment and maintenance of collective polarization, mechanocoupling, and cytoskeletal kinetics. The guidance of collective cell migration depends on a reciprocal process between cell-intrinsic multicellular organization with leader-follower cell behavior and results in mechanosensory integration of extracellular guidance cues. Important guidance mechanisms include chemotaxis, haptotaxis, durotaxis, and strain-induced mechanosensing to move cell groups along interfaces and paths of least resistance. Additional guidance mechanisms steering cell groups during specialized conditions comprise electrotaxis and passive drift. To form higher-order cell and tissue structures during morphogenesis and cancer invasion, these guidance principles act in parallel and are integrated for collective adaptation to and shaping of varying tissue environments. We review mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome. PMID:26137890

  8. The strength of selection in the context of migration speed.

    OpenAIRE

    Houston, A I

    2000-01-01

    I use a model of avian migration based on maximization of overall migration speed to compare the strength of selection acting on foraging performance and flight speed. Let the optimal foraging behaviour be u* and the optimal flight speed be v*. It is shown that at this optimum, the ratio of the strength of selection on foraging to the strength of selection on flight speed is theta = -(u*2Pgamma"/v*2gammaP"), where gamma is the rate of energy expenditure during flight and P is the rate at whic...

  9. Migration of cells in a social context

    OpenAIRE

    Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.

    2012-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, di...

  10. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  11. Bursts of activity in collective cell migration

    CERN Document Server

    Chepizhko, Oleksandr; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stephane; Alava, Mikko J; Zapperi, Stefano; La Porta, Caterina A M

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.

  12. Migration of cells in a social context

    DEFF Research Database (Denmark)

    Vedel, Søren; Tay, Savas; Johnston, Darius M;

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory...... based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals...... and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells....

  13. T cell migration, search strategies and mechanisms.

    Science.gov (United States)

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-03-01

    T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues. PMID:26852928

  14. Effect of 7-hydroxystaurosporine on glioblastoma cell invasion and migration

    Institute of Scientific and Technical Information of China (English)

    Qing-hui MENG; Li-xin ZHOU; Jia-lin LUO; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2005-01-01

    Aim: To investigate the effect of 7-hydroxystaurosporine (UCN-01), a selective protein kinase C (PKC) inhibitor, on cell growth, migration, and invasion in inva sive human glioblastoma U-87MG cells. Methods: PKC activity was determined based on the PKC-catalyzed transfer of the 32p-phosphate group from [g-32p]ATP into a PKC-specific peptide substrate. Cell viability was measured by MTT assay.Cell invasion and migration were evaluated by a Boyden chamber assay and scratch wound assay, respectively. Protein expression was analyzed using Western blot assay. The formation of 3-dimensional cellular aggregates was examined by a cell-cell aggregation assay. Results: UCN-01 treatment resulted in concentration- and time-dependent inhibition of U-87MG cell growth at higher doses (> 100 nmol/L), and reduced cell invasion and migration capability at less cytotoxic doses (<100 nmol/L). UCN-01 significantly repressed PKC activity. Consistent with this result, UCN-01 blocked cell invasion stimulated by phorbel 12-myristate13-acetate (PMA) and ethanol (EtOH), 2 PKC activators. Enforced expression of the tumor suppressor genes BRCA1 and PTEN increased the anti-invasion potential of UCN-01. Exposure to UCN-01 caused a dose-dependent increase in cell adhesion molecule E-cadherin. The effect of UCN-01 on the formation of cell-cell aggregation was significantly reduced by the addition of an anti-E-cadherin antibody. Conclusion: UCN-01 inhibits the invasion and migration of human glioma cells. Accordingly, UCN-01 can have potential clinical applications for the treatment of human glioma metastasis.

  15. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    Science.gov (United States)

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  16. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  17. Determinants of leader cells in collective cell migration.

    NARCIS (Netherlands)

    Khalil, A.; Friedl, P.H.A.

    2010-01-01

    Collective migration is a basic mechanism of cell translocation during morphogenesis, wound repair and cancer invasion. Collective movement requires cells to retain cell-cell contacts, exhibit group polarization with defined front-rear asymmetry, and consequently move as one multicellular unit. Depe

  18. Optimal chemotaxis in animal cell intermittent migration

    CERN Document Server

    Romanczuk, Pawel

    2015-01-01

    Animal cells can sense chemical gradients without moving, and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing a persistent random walk during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time, and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  19. Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Michelle M Hill

    Full Text Available Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.

  20. Taking Aim at Moving Targets in Computational Cell Migration.

    Science.gov (United States)

    Masuzzo, Paola; Van Troys, Marleen; Ampe, Christophe; Martens, Lennart

    2016-02-01

    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs.

  1. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  2. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  3. Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Takeshi Kawauchi

    2012-04-01

    Full Text Available Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.

  4. Differential migration and proliferation of geometrical ensembles of cell clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi, E-mail: hocc@email.uc.edu

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  5. On the theory of cell migration: durotaxis and chemotaxis

    OpenAIRE

    Diego Íñiguez, Javier

    2013-01-01

    Cell migration is a fundamental element in a variety of physiological and pathological processes. Alteration of its regulatory mechanisms leads to loss of adhesion and increased motility, critical steps in the initial stages of metastasis. Consequently, cell migration has become the focus of intensive experimental and theoretical studies; however the understanding many of its mechanisms remains elusive. Cell migration is the result of a periodic sequence of protrusion, adhesion remodeling and...

  6. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  7. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Science.gov (United States)

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  8. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  9. HIF-1α Promotes A Hypoxia-Independent Cell Migration.

    Science.gov (United States)

    Li, Liyuan; Madu, Chikezie O; Lu, Andrew; Lu, Yi

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.

  10. Physical role for the nucleus in cell migration.

    Science.gov (United States)

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  11. Physical role for the nucleus in cell migration

    Science.gov (United States)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  12. Cancer cell migration:when red light switched to green

    Institute of Scientific and Technical Information of China (English)

    Seth J Corey; Jindan Yu

    2011-01-01

    @@ The doctrine of 'the golden mean'of the Confucian certainly applies at the molecular level to cell growth and migration.It is critically important for tissue architec-ture and homeostasis that cells stop prolifera-tion when reaching appropriate density and halt migration in a direction to avoid collision with others.

  13. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    Science.gov (United States)

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc.

  14. Glycation of extracellular matrix proteins impairs migration of immune cells.

    Science.gov (United States)

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells.

  15. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  16. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    Science.gov (United States)

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration.

  17. Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge.

    Science.gov (United States)

    Yang, Gui-Yan; Zhu, Yao-Hong; Zhang, Wei; Zhou, Dong; Zhai, Cong-Cong; Wang, Jiu-Feng

    2016-01-01

    Efficient strategies for treating enteritis caused by F4(+) enterotoxigenic Escherichia coli (ETEC)/verocytotoxigenic Escherichia coli (VTEC)/enteropathogenic E. coli (EPEC) in mucin 4 resistant (MUC4 RR; supposed to be F4ab/ac receptor-negative [F4ab/acR(-)]) pigs remain elusive. A low (3.9 × 10(8) CFU/day) or high (7.8 × 10(8) CFU/day) dose of Bacillus licheniformis and Bacillus subtilis spore mixture (BLS-mix) was orally administered to MUC4 RR piglets for 1 week before F4(+) ETEC/VTEC/EPEC challenge. Orally fed BLS-mix upregulated the expression of TLR4, NOD2, iNOS, IL-8, and IL-22 mRNAs in the small intestine of pigs challenged with E. coli. Expression of chemokine CCL28 and its receptor CCR10 mRNAs was upregulated in the jejunum of pigs pretreated with high-dose BLS-mix. Low-dose BLS-mix pretreatment induced an increase in the proportion of peripheral blood CD4(-)CD8(-) T-cell subpopulations and high-dose BLS-mix induced the expansion of CD4(-)CD8(-) T cells in the inflamed intestine. Immunostaining revealed that considerable IL-7Rα-expressing cells accumulated at the lamina propria of the inflamed intestines after E. coli challenge, even in pigs pretreated with either low- or high-dose BLS-mix, although Western blot analysis of IL-7Rα expression in the intestinal mucosa did not show any change. Our data indicate that oral administration of the probiotic BLS-mix partially ameliorates E. coli-induced enteritis through facilitating upregulation of intestinal IL-22 and IκBα expression, and preventing loss of intestinal epithelial barrier integrity via elevating ZO-1 expression. However, IL-22 also elicits an inflammatory response in inflamed intestines as a result of infection with enteropathogenic bacteria. PMID:27424033

  18. A Selective Migration Review: from public policy to public health

    OpenAIRE

    Nikias Sarafoglou; William A. Sprigg

    2015-01-01

    The contribution of Steinbeck in the late-1930’s concerning motives and decisionmaking for environmental migrations did much to influence research in social science. The Tiebout’s hypothesis and theoretical model of migration, published in 1956, permitted evaluation of urban public policy implications. The impact of these two pioneers in migration theory set the stage for new models and new methods in migration research having advantage of much more data from many more environmental, economic...

  19. Novel 3,4-seco bile acid diamides as selective anticancer proliferation and migration agents.

    Science.gov (United States)

    Mao, Shi-Wei; Chen, Huang; Yu, Li-Fang; Lv, Fang; Xing, Ya-Jing; Liu, Ting; Xie, Jia; Tang, Jie; Yi, Zhengfang; Yang, Fan

    2016-10-21

    A series of new seco-A ring bile acid diamides were synthesized, and their antiproliferative activities against PC3M (prostate), HT29 (colon) and ES-2 (ovarian) cancer cell lines were investigated using SRB assays. Most synthesized compounds presented improved antiproliferative activities compared to the parent bile acids (IC50 > 80 μM), especially the piperazine conjugated compound 27 with IC50 values of 1.07, 4.58 and 3.86 μM against PC3M, HT29 and ES-2 cancer cell lines, respectively. In addition, all the tested compounds showed less cytotoxic activity on a noncancerous cell line (HAF), and the most active compound 27 exhibited the highest selectivity (Selectivity Index, SI(PC3M) = 26.3). Furthermore, 27 could also enhance G1 arrest in PC3M cell, revealed by cell cycle analysis, and increase anti-migration activity on PC3M cells, confirmed by transwell migration assay. PMID:27448915

  20. Nuclear stiffening inhibits migration of invasive melanoma cells

    OpenAIRE

    Ribeiro, Alexandre J. S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals....

  1. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht;

    2013-01-01

    Early studies of migrating fibroblasts showed that primary cilia orient in front of the nucleus and point toward the leading edge. Recent work has shown that primary cilia coordinate a series of signaling pathways critical to fibroblast cell migration during development and in wound healing. In p...

  2. Software Migration in Selected University and Special Libraries in Nigeria

    Directory of Open Access Journals (Sweden)

    Benson Oghenevwogaga Adogbeji

    2013-04-01

    Full Text Available The work has surveyed migration in selected University and Special Libraries in Nigeria, which was based on the experience of seven automated libraries in which four have changed from one library software to another. The objective of the study is to ascertain the major consideration in the choice of software by the selected library, to examine the problems encountered and reasons for the change of software. Questionnaire was used in data collection; a total of (70% of the questionnaire were used for analysis. Simple percentage was used to compute statistics of the findings. The study revealed that among the seven libraries, four have changed from one library application software to another while some are still in search of the library software to adopt. This was attributed to factors such as lack of systems analysis before and after embarking on the purchase of the software, lack of maintenance or technical support, limitation of software, absolute nature of the operating systems on which the software run. Recommendations made in the study include systems analysis study of library operations before embarking on automation, providing electricity, setting aside some fund for maintenance among others while it is recommended for the library software developers to endeavor to always develop upgrade that will not wipe not away old data, software that will be compatible with other library software sponsor users group conference among as this will help in automation process in Nigeria libraries.

  3. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    Science.gov (United States)

    Lamers, E; te Riet, J; Domanski, M; Luttge, R; Figdor, C G; Gardeniers, J G E; Walboomers, X F; Jansen, J A

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin) are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  4. Intracellular pH gradients in migrating cells

    DEFF Research Database (Denmark)

    Martin, Christine; Pedersen, Stine Helene Falsig; Schwab, Albrecht;

    2011-01-01

    Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons...

  5. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  6. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  7. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  8. Effect of epidermal growth factor on the migration of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Faliang Duan; Guoping Yang; Junwu Wei; Jinglei Wu

    2006-01-01

    BACKGROUND:Recently,researches on neural stem cells(NSCs)are focus on differentiation and migration of stem cells.How to regulate and control differentiation and migration of NSCs based on human wills is still a hot topic.OBJECTIVE:To investigate the effct of epidermal growth factor (EGF) on the migration and proliferation of NSCs and analyze duration of the effect.DESIGN:Contrast study based on cells.SETFING:Department of Neurological Surgery,the First Hospital of Wuhan.MATERIALS:Healthy SD rats aged 13-14 embryonic days.EGF(Sigma Company).METHODS:The experiment was carried out in the Animal Laboratory of Experimental Center Affiliated to the First Hospital of Wuhan from October 2004 to July 2006.NSCs selected from embryonic striatum of rats with 13-14 embryonic days were cultured;7 days later,suspended neural sphere was used to make simple cell suspension and cultured once more.Then,DMEM-F12+20 μg/L EGF was added into culture medium;14 days latar.the rats were divided into experimental group and control group.Rats in the experimental group were cultured with the same medium mentioned above;however, rats in the control group were cultured with only DMEM-F12.Migration of cells was observed under microscope every day.MAIN OUTCOME MEASURES:NSCs migration in both experimental group and control group.RESULTS:Cell spheres in primary culture were NSCs.In addition,14 days later,proliferation of stem cells were observed remarkably in EGF culture.and size of cell sphere was about that of 100 cells.In exparimental group.proliferation of cell sphere was slow down on the 14th culture day,and apophysis was erupted to neighbor cell sphere.Moreover,NSCs migrated from big cell sphere to small cell sphere during 14-17 culture days.and then,cell migration was disappeared at 17 days after culture.In control group.cell migration was not observed.CONCLUSION:EGF can induce proliferation and migration of NSCs during a special time(14-17 days).However,NSCs do not immigrate over the

  9. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  10. Phosphorylation of actopaxin regulates cell spreading and migration

    Science.gov (United States)

    Clarke, Dominic M.; Brown, Michael C.; LaLonde, David P.; Turner, Christopher E.

    2004-01-01

    Actopaxin is an actin and paxillin binding protein that localizes to focal adhesions. It regulates cell spreading and is phosphorylated during mitosis. Herein, we identify a role for actopaxin phosphorylation in cell spreading and migration. Stable clones of U2OS cells expressing actopaxin wild-type (WT), nonphosphorylatable, and phosphomimetic mutants were developed to evaluate actopaxin function. All proteins targeted to focal adhesions, however the nonphosphorylatable mutant inhibited spreading whereas the phosphomimetic mutant cells spread more efficiently than WT cells. Endogenous and WT actopaxin, but not the nonphosphorylatable mutant, were phosphorylated in vivo during cell adhesion/spreading. Expression of the nonphosphorylatable actopaxin mutant significantly reduced cell migration, whereas expression of the phosphomimetic increased cell migration in scrape wound and Boyden chamber migration assays. In vitro kinase assays demonstrate that extracellular signal-regulated protein kinase phosphorylates actopaxin, and treatment of U2OS cells with the MEK1 inhibitor UO126 inhibited adhesion-induced phosphorylation of actopaxin and also inhibited cell migration. PMID:15353548

  11. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  12. The Exposure of Breast Cancer Cells to Fulvestrant and Tamoxifen Modulates Cell Migration Differently

    Directory of Open Access Journals (Sweden)

    Dionysia Lymperatou

    2013-01-01

    Full Text Available There is no doubt that there are increased benefits of hormonal therapy to breast cancer patients; however, current evidence suggests that estrogen receptor (ER blockage using antiestrogens is associated with a small induction of invasiveness in vitro. The mechanism by which epithelial tumor cells escape from the primary tumor and colonize to a distant site is not entirely understood. This study investigates the effect of two selective antagonists of the ER, Fulvestrant (Fulv and Tamoxifen (Tam, on the invasive ability of breast cancer cells. We found that 17β-estradiol (E2 demonstrated a protective role regarding cell migration and invasion. Fulv did not alter this effect while Tam stimulated active cell migration according to an increase in Snail and a decrease in E-cadherin protein expression. Furthermore, both tested agents increased expression of matrix metalloproteinases (MMPs and enhanced invasive potential of breast cancer cells. These changes were in line with focal adhesion kinase (FAK rearrangement. Our data indicate that the anti-estrogens counteracted the protective role of E2 concerning migration and invasion since their effect was not limited to antiproliferative events. Although Fulv caused a less aggressive result compared to Tam, the benefits of hormonal therapy concerning invasion and metastasis yet remain to be investigated.

  13. Dynamic Cell Adhesion and Migration on Nanoscale Grooved Substrates

    NARCIS (Netherlands)

    Lamers, E.; Riet, te J.; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.A.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  14. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    NARCIS (Netherlands)

    Lamers, E.; Riet, J. te; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.B.M.J.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  15. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    Science.gov (United States)

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs. PMID:27287800

  16. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    Science.gov (United States)

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  17. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    Science.gov (United States)

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  18. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    OpenAIRE

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B; Parkos, Charles A.; Nusrat, Asma

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating c...

  19. Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways

    OpenAIRE

    Qian Rong Liu; Ju Mei Liu; Yong Chen; Xiao Qiang Xie; Xin Xin Xiong; Xin Yao Qiu; Feng Pan; Di Liu; Shang Bin Yu; Xiao Qian Chen

    2014-01-01

    Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did ...

  20. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Science.gov (United States)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  1. The thioredoxin system in breast cancer cell invasion and migration

    OpenAIRE

    Maneet Bhatia; Kelly L. McGrath; Giovanna Di Trapani; Pornpimol Charoentong; Fenil Shah; Mallory M. King; Clarke, Frank M.; Tonissen, Kathryn F

    2016-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient ...

  2. Junctional communication is induced in migrating capillary endothelial cells.

    Science.gov (United States)

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P

    1989-12-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  3. Dynamic cell adhesion and migration on nanoscale grooved substrates

    Directory of Open Access Journals (Sweden)

    E Lamers

    2012-03-01

    Full Text Available Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  4. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells

    OpenAIRE

    Sahin, Aysegul Ocal; Buitenhuis, Miranda

    2012-01-01

    Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activit...

  5. Expression of aquaporin-1 in SMMC-7221 liver carcinoma cells promotes cell migration

    Institute of Scientific and Technical Information of China (English)

    LI Yongming; FENG Xuechao; YANG Hong; MA Tonghui

    2006-01-01

    Migration of tumor cells is a crucial step in tumor invasion and metastasis. Here we provide evidence that aquaporin expression is involved in tumor cell migration. RT-PCR, immunofluorescence and Western blot analysis demonstrated the AQP1 protein expression on the plasma membrane of SMMC-7221 human hepatoma cells. SMMC-7221 cell clones with high (SMMC-7221hPf) and low (SMMC-7221/Pf) water permeability were identified by functional assays with corresponding high and low AQP1 expression. Cell migration rate was remarkably higher in SMMC-7221hPf cells than SMMC-7221/Pf cells, assessed by Boyden chamber and wound healing assays, whereas cell growth and adhesion were not different. Adenovirus-mediated AQP1 expression in SMMC-7221/Pf cells increased their water permeability and migration rate. These results provide the first evidence that aquaporin-mediated membrane water permeability enhances tumor cell migration and may be associated with tumor invasion and metastasis.

  6. The effects of acoustic vibration on fibroblast cell migration.

    Science.gov (United States)

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  7. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  8. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    OpenAIRE

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S.K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics ...

  9. Subventricular zone cell migration: lessons from quantitative 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Rachel eJames

    2011-03-01

    Full Text Available Neuroblasts born in the adult subventricular zone (SVZ migrate long distances in the rostral migratory stream (RMS to the olfactory bulbs where they integrate into circuitry as functional interneurons. As very little was known about the dynamic parameters of SVZ neuroblast migration, we used two-photon time-lapse microscopy to analyze migration in acute slices. This involved analyzing 3-dimensional stacks of images over time and uncovered several novel aspects of SVZ migration: chains remain stable, cells can be immotile for extensive periods, morphology does not necessarily correlate with motility, neuroblasts exhibit local exploratory motility, dorsoventral migration occurs throughout the striatal SVZ and neuroblasts turn at distinctive angles. We investigated these novel findings in the SVZ and RMS from the population to the single cell level. In this review we also discuss some technical considerations when setting up a two-photon microscopic imaging system. Throughout the review we identify several unsolved questions about SVZ neuroblast migration that might be addressed with current or emerging techniques.

  10. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  11. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  12. Income, self-selection, and return and onward interprovincial migration in Canada.

    Science.gov (United States)

    Newbold, K B

    1996-06-01

    "Estimated returns to migration based on comparison of individual migrants may be biased owing to self-selection in the migration process. Using data derived from the 1986 Canadian census, I will study the effects of expected wage differentials in determining the return or onward migration decision of nonnative adults aged 20 to 64 years. Evidence was found that return migrations were in the 'right' direction, as they are observed to respond to provincial economic variables (that is, average employment growth and income levels) in a rational manner. After accounting for self-selectivity, I found that...return migrants...are negatively selected, and experience lower income levels, following the return migration, than onward migrants would have, had they chosen the return migration option. This drop in expected wages decreases the propensity associated with making a return migration. Despite this drop in income, the large proportion selecting the return migration option suggests the importance of the province of birth in the mental map of nonnative migrants."

  13. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    Science.gov (United States)

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  14. Networks and Selection in International Migration to Spain

    DEFF Research Database (Denmark)

    Neubecker, Nina; Smolka, Marcel; Steinbacher, Anne

    of destinations located in the same region (or the same country), allowing for a rich structure of substitutability across alternative destinations. We find strong positive network effects on the scale of migration and a strong negative effect on the ratio of high-skilled to low-skilled migrants. Simplifying...... restrictions on substitutability across destinations are rejected by the data....

  15. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  16. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    Science.gov (United States)

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  17. Nuclear envelope rupture and repair during cancer cell migration

    Science.gov (United States)

    Denais, Celine M.; Gilbert, Rachel M.; Isermann, Philipp; McGregor, Alexandra L.; te Lindert, Mariska; Weigelin, Bettina; Davidson, Patricia M.; Friedl, Peter; Wolf, Katarina; Lammerding, Jan

    2016-01-01

    During cancer metastasis, tumor cells penetrate tissues through tight interstitial spaces, requiring extensive deformation of the cell and its nucleus. Here, we investigated tumor cell migration in confining microenvironments in vitro and in vivo. Nuclear deformation caused localized loss of nuclear envelope (NE) integrity, which led to the uncontrolled exchange of nucleo-cytoplasmic content, herniation of chromatin across the NE, and DNA damage. The incidence of NE rupture increased with cell confinement and with depletion of nuclear lamins, NE proteins that structurally support the nucleus. Cells restored NE integrity using components of the endosomal sorting complexes required for transport-III (ESCRT-III) machinery. Our findings indicate that cell migration incurs substantial physical stress on the NE and its content, requiring efficient NE and DNA damage repair for survival. PMID:27013428

  18. Study of dendritic cell migration using micro-fabrication.

    Science.gov (United States)

    Vargas, Pablo; Chabaud, Mélanie; Thiam, Hawa-Racine; Lankar, Danielle; Piel, Matthieu; Lennon-Dumenil, Ana-Maria

    2016-05-01

    Cell migration is a hallmark of dendritic cells (DCs) function. It is needed for DCs to scan their environment in search for antigens as well as to reach lymphatic organs in order to trigger T lymphocyte's activation. Such interaction leads to tolerance in the case of DCs migrating under homeostatic conditions or to immunity in the case of DCs migrating upon encounter with pathogen-associated molecular patterns. Cell migration is therefore essential for DCs to transfer information from peripheral tissues to lymphoid organs, thereby linking innate to adaptive immunity. This stresses the need to unravel the molecular mechanisms involved. However, the tremendous complexity of the tissue microenvironment as well as the limited spatio-temporal resolution of in vivo imaging techniques has made this task difficult. To bypass this problem, we have developed microfabrication-based experimental tools that are compatible with high-resolution imaging. Here, we will discuss how such devices can be used to study DC migration under controlled conditions that mimic their physiological environment in a robust quantitative manner.

  19. Cell migration in the developing rodent olfactory system.

    Science.gov (United States)

    Huilgol, Dhananjay; Tole, Shubha

    2016-07-01

    The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain. PMID:26994098

  20. Migratory Recovery from Infection as a Selective Pressure for the Evolution of Migration.

    Science.gov (United States)

    Shaw, Allison K; Binning, Sandra A

    2016-04-01

    Migration, a widespread animal behavior, can influence how individuals acquire and transmit pathogens. Past work has demonstrated that migration can reduce the costs of pathogen or parasite infection through two processes: migratory escape from infected areas or individuals and migratory culling of infected individuals. Here, we propose a third process: migratory recovery, where infected individuals lose their parasites and recover from infection during migration. Recovery can occur when parasites and/or their intermediate hosts cannot support changes in the migratory host's internal or external environment during migration. Thus, parasite mortality increases with migration. Although migratory recovery is likely widespread across species, it remains challenging to empirically test it as a selective force promoting migration. We develop a model and determine the conditions under which migratory recovery theoretically favors the evolution of migration. We show that incorporating migratory recovery into a model of migratory escape increases the range of biologically realistic conditions favoring migration and leads to scenarios where partial migration can evolve. Motivated by empirical estimates of infection costs, our model shows how recovery from infection could drive the evolution of migration. We suggest a number of future directions for both theoretical and empirical research in this area.

  1. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p < 0.05) increased expression of GRβ compared to UMUC-3, which also correlated with higher migration rates. Knockdown of GRβ in the T24 cells resulted in a decreased migration rate. Mutational analysis of the 3' untranslated region (UTR) of human GRβ revealed that miR144 might positively regulate expression. Indeed, overexpression of miR144 increased GRβ by 3.8 fold. In addition, miR144 and GRβ were upregulated during migration. We used a peptide nucleic acid conjugated to a cell penetrating-peptide (Sweet-P) to block the binding site for miR144 in the 3'UTR of GRβ. Sweet-P effectively prevented miR144 actions and decreased GRβ expression, as well as the migration of the T24 human bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease. PMID:27036026

  2. Self-Selection, Earnings, and Out-Migration: A Longitudinal Study of Immigrants to Germany

    OpenAIRE

    Amelie F. Constant; Massey, Douglas S.

    2003-01-01

    In this paper we seek to deepen understanding of out-migration as a social and economic process and to investigate whether cross-sectional earnings assimilation results suffer from selection bias. To model the process of out-migration we conduct a detailed event history analysis of men and women immigrants in Germany. Our 14-year longitudinal study reveals that emigrants are negatively selected with respect to occupational prestige and to stable full time employment. Our results show no selec...

  3. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  4. Quantification of hydrodynamic factors influencing cell lateral migration

    Science.gov (United States)

    Nix, Stephanie; Imai, Yohsuke; Ishikawa, Takuji

    2015-11-01

    The study of the migration of blood cells perpendicular to the direction of blood flow, or lateral migration, is motivated by the differing behavior of the various types of blood cells. In vivo, red blood cells are observed to flow in the central region of the blood vessel, particularly in the microcirculation, while other types of cells in the blood, including white blood cells and platelets, are observed to flow disproportionately near the vessel wall. However, the specifics regarding the effect of hydrodynamic and biological factors are still unknown. Thus, in this study, we aim to quantify the effect of hydrodynamic factors on a cell model numerically using the boundary integral method. By using the boundary integral method, we can isolate the effect of a single hydrodynamic factor, such as a wall or given flow distribution, in an otherwise infinite flow. Then, we can use the obtained numerical results to develop a semi-analytical model describing the cell lateral migration dependent on only the flow geometry and the viscosity ratio between the cell and external fluid.

  5. NHERF-1: Modulator of Glioblastoma Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Kerri L. Kislin

    2009-04-01

    Full Text Available The invasive nature of malignant gliomas is a clinical problem rendering tumors incurable by conventional treatment modalities such as surgery, ionizing radiation, and temozolomide. Na+/H+ exchanger regulatory factor 1 (NHERF-1 is a multifunctional adaptor protein, recruiting cytoplasmic signaling proteins and membrane receptors/transporters into functional complexes. This study revealed that NHERF-1 expression is increased in highly invasive cells that reside in the rim of glioblastoma multiforme (GBM tumors and that NHERF-1 sustains glioma migration and invasion. Gene expression profiles were evaluated from laser capture-microdissected human GBM cells isolated from patient tumor cores and corresponding invaded white matter regions. The role of NHERF-1 in the migration and dispersion of GBM cell lines was examined by reducing its expression with small-interfering RNA followed by radial migration, three-dimensional collagen dispersion, immunofluorescence, and survival assays. The in situ expression of NHERF-1 protein was restricted to glioma cells and the vascular endothelium, with minimal to no detection in adjacent normal brain tissue. Depletion of NHERF-1 arrested migration and dispersion of glioma cell lines and caused an increase in cell-cell cohesiveness. Glioblastoma multiforme cells with depleted NHERF-1 evidenced a marked decrease in stress fibers, a larger cell size, and a more rounded shape with fewer cellular processes. When NHERF-1 expression was reduced, glioma cells became sensitized to temozolomide treatment resulting in increased apoptosis. Taken together, these results provide the first evidence for NHERF-1 as a participant in the highly invasive phenotype of malignant gliomas and implicate NHERF-1 as a possible therapeutic target for treatment of GBM.

  6. Correction of Migration Through Resolution Cell in ISAR Imaging

    Institute of Scientific and Technical Information of China (English)

    JIANGZhenglin; XINGMengdao; BAOZheng

    2004-01-01

    For ISAR imaging-radar, after the translation motion compensated, the target can be changed to turntable and the R-D (Range-Doppler) algorithm usually adopted is based on small target flying steadily, with the assumption that all of the scatterers are not migrated through their range cells. But for maneuvering target this assumption is not satisfied, as the Doppler frequency is time varying. Actually, to obtain the cross-range resolution of dozens of centimeters for the large-scale or medium targets, especially for S or L wave band, with wave length so short, MTRC (the Migration through resolution cell)would occur on both fringes of the ISAR imaging. The Doppler migration is basically caused by nonuniform rotation of several parts of the target, so that the Doppler frequency of each scatterer is time varying, which can be accumulated coherently by the method of time-frequency analysis in order to get instant range-Doppler image. In this paper, the reason that causes migration through resolution cell is discussed, and a compensating algorithm is proposed. The method of time-frequency analysis to every range cell of scattererer is applied to estimate its instant frequency after range compressing and MTRC correcting,so that the quadratic term can be adjusted. Simulated data and real data prove that this method is effective.

  7. Manipulation of Neutrophil-Like HL-60 Cells for the Study of Directed Cell Migration

    OpenAIRE

    Millius, Arthur; Weiner, Orion D

    2010-01-01

    Many cells undergo directed cell migration in response to external cues in a process known as chemotaxis. This ability is essential for many single-celled organisms to hunt and mate, the development of multicellular organisms, and the functioning of the immune system. Because of their relative ease of manipulation and their robust chemotactic abilities, the neutrophil-like cell line (HL-60) has been a powerful system to analyze directed cell migration. In this chapter, we describe the mainten...

  8. An automated cell-counting algorithm for fluorescently-stained cells in migration assays

    Directory of Open Access Journals (Sweden)

    Novielli Nicole M

    2011-10-01

    Full Text Available Abstract A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells, images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P

  9. Migration strategy and divergent sexual selection on bird song

    OpenAIRE

    Collins, Sarah A; de Kort, Selvino R.; Pérez-Tris, Javier; Luis Tellería, José

    2008-01-01

    Migratory birds are assumed to be under stronger sexual selection pressure than sedentary populations, and the fact that their song is more complex has been taken as confirmation of this fact. However, this assumes that sexual selection pressure due to both male competition and female choice increase together. A further issue is that, in many species, songs become less complex during competitive encounters; in contrast, female choice selects for more complex song, so the two selection pressur...

  10. Migration characterization of Ga and In adatoms on dielectric surface in selective MOVPE

    Institute of Scientific and Technical Information of China (English)

    陈伟杰; 张佰君; 韩小标; 林佳利; 胡国亨; 柳铭岗; 杨亿斌; 陈杰; 吴志盛; 刘扬

    2015-01-01

    Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned SiO2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface.

  11. Curcumin suppresses migration and invasion of human endometrial carcinoma cells

    OpenAIRE

    Chen, Qian; Gao, Qing; Chen, Kunlun; Wang, Yidong; Chen, Lijuan; Li, Xu

    2015-01-01

    Curcumin, a widely used Chinese herbal medicine, has historically been used in anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism of curcumin in endometrial carcinoma (EC) are still poorly understood. The purpose of this study was to detect the anti-metastatic effects of curcumin and the associated mechanism(s) in EC. Based on assays carried out in EC cell lines, it was observed that curcumin inhibited EC cell migration and invasion in vitro. Furthermore, follo...

  12. Cell Migration and Invasion Assays as Tools for Drug Discovery

    OpenAIRE

    Hulkower, Keren I.; Herber, Renee L.

    2011-01-01

    Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screeni...

  13. Migration of amoeba cells in an electric field

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  14. Global migration and the selective reimagining of religions

    Directory of Open Access Journals (Sweden)

    Peter Beyer

    1998-06-01

    Full Text Available Abstract It is a commonplace in discussions of immigrant religion to speak of how religion aids in the adjustment of migrants to a new culture and society; how it serves as a dimension of continuity in the process of integration. This article examines theoretical foundations for reconsidering this perspective in the context of globalization in general and global migration in particular. In a global society, it is far less useful to think of migrants as leaving one society to join another, especially insofar as this optic tends to assume a that the new “host” culture remains comparatively unaffected while the immigrants culture faces the dilemma of assimilation versus ethnic preservation; and b that the culture of origin simply loses a few members without much effect by the migrants back onto their cultures of origin. By contrast, the article argues that the consequences of migration are to help (redefine religions in all areas where they are represented; and thus to make distinctions between “core” and “diaspora” far less salient. Instead, different areas where religious traditions are represented are better seen as centres for creating different options for the authentic construction of the same religion; options that are very often in communication with each other.

  15. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    Science.gov (United States)

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  16. Cell Migration and Invasion Assays as Tools for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Keren I. Hulkower

    2011-03-01

    Full Text Available Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screening process. This article will review the effective use of several principle formats for studying cell motility: scratch assays, transmembrane assays, microfluidic devices and cell exclusion zone assays.

  17. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    Science.gov (United States)

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  18. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    Science.gov (United States)

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  19. Migration of Drosophila intestinal stem cells across organ boundaries.

    Science.gov (United States)

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-05-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  20. Silencing of directional migration in roundabout4 knockdown endothelial cells

    Directory of Open Access Journals (Sweden)

    Roberts David D

    2008-11-01

    Full Text Available Abstract Background Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4, the predominant Robo in endothelial cells using small interfering RNA technology in vitro. Results Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells. Conclusion This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.

  1. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    International Nuclear Information System (INIS)

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K+ channels triggers K+ efflux, which leading to membrane hyperpolarization, preventing Ca2+entry through closing voltage-operated Ca2+ channels. Intracellular Ca2+ is the most important regulator of muscle contraction, cell proliferation and migration. K+ efflux decreases Ca2+ influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on human ASMCs

  2. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  3. How Do Cells Make Decisions: Engineering Micro- and Nanoenvironments for Cell Migration

    Directory of Open Access Journals (Sweden)

    Siti Hawa Ngalim

    2010-01-01

    Full Text Available Cell migration contributes to cancer metastasis and involves cell adhesion to the extracellular matrix (ECM, force generation through the cell's cytoskeletal, and finally cell detachment. Both adhesive cues from the ECM and soluble cues from neighbouring cells and tissue trigger intracellular signalling pathways that are essential for cell migration. While the machinery of many signalling pathways is relatively well understood, how hierarchies of different and conflicting signals are established is a new area of cellular cancer research. We examine the recent advances in microfabrication, microfluidics, and nanotechnology that can be utilized to engineer micro- and nanoscaled cellular environments. Controlling both adhesive and soluble cues for migration may allow us to decipher how cells become motile, choose the direction for migration, and how oncogenic transformations influences these decision-making processes.

  4. SENP1 regulates cell migration and invasion in neuroblastoma.

    Science.gov (United States)

    Xiang-Ming, Yan; Zhi-Qiang, Xu; Ting, Zhang; Jian, Wang; Jian, Pan; Li-Qun, Yuan; Ming-Cui, Fu; Hong-Liang, Xia; Xu, Cao; Yun, Zhou

    2016-05-01

    Neuroblastoma (NB) is an embryonic solid tumor derived from precursor cells of the sympathetic nervous system, and accounts for 11% of childhood cancers and around 15% of cancer deaths in children. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENP) remove SUMO conjugate from proteins, and their expression is deregulated in diverse cancers. However, nothing is known about the role of SENPs in NBL. In the present study, we found that SENP1 expression was significantly high in metastatic NB tissues compared with primary NB tissues. Overexpression of SENP1 promoted NB cells migration and invasion. Inhibition of SENP1 could significantly suppress NB cell migration and invasion. Moreover, we found that SENP1 could regulate the expression of CDH1, MMP9, and MMP2. In summary, the data presented here indicate a significant role of SENP1 in the regulation of cell migration and invasion in NB and suppress SENP1 expression as promising candidates for novel treatment strategies of NB.

  5. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  6. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-05-01

    Full Text Available Abstract Background Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Methods Migration was assessed in luminal (MCF-7, post-EMT (MDA-MB-231, MDA-MB-435S, and basal-like (MDA-MB-468 human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG was tested. Results Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Conclusions Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients.

  7. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  8. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Science.gov (United States)

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  9. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  10. Border cell migration: A model system for live imaging and genetic analysis of collective cell movement

    OpenAIRE

    Prasad, M; Wang, X; He, L.(Purdue University, West Lafayette, IN, 47907, USA); Cai, D; Montell, DJ

    2015-01-01

    © 2015, Springer Science+Business Media New York. Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late-stage egg chambers was long feasible, stage 9 egg chambers survived only briefl y outside the female body. We identifi ed culture conditions that suppo...

  11. Surface Modification of Intact Poly(dimethylsiloxane) for Cell Culture and Cell Migration

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU WenMing; WANG JinYi

    2009-01-01

    @@ Cell migration plays a crucial role in various biological processes including embryogenests,wound healing,immune response,and tissue development~([1]).Exploring and understanding the mechanisms and related factors underlying cell migration arc also very important for emerging areas of biotedmology which focus on cellular transplantation and the manufacture of artificial tissues,as well as for the development of new therapeutic strategies for controlling invasive tumor cells~([2]).

  12. Impact of migration on the multi-strategy selection in finite group-structured populations

    Science.gov (United States)

    Zhang, Yanling; Liu, Aizhi; Sun, Changyin

    2016-01-01

    For large quantities of spatial models, the multi-strategy selection under weak selection is the sum of two competition terms: the pairwise competition and the competition of multiple strategies with equal frequency. Two parameters σ1 and σ2 quantify the dependence of the multi-strategy selection on these two terms, respectively. Unlike previous studies, we here do not require large populations for calculating σ1 and σ2, and perform the first quantitative analysis of the effect of migration on them in group-structured populations of any finite sizes. The Moran and the Wright-Fisher process have the following common findings. Compared with well-mixed populations, migration causes σ1 to change with the mutation probability from a decreasing curve to an inverted U-shaped curve and maintains the increase of σ2. Migration (probability and range) leads to a significant change of σ1 but a negligible one of σ2. The way that migration changes σ1 is qualitatively similar to its influence on the single parameter characterizing the two-strategy selection. The Moran process is more effective in increasing σ1 for most migration probabilities and the Wright-Fisher process is always more effective in increasing σ2. Finally, our findings are used to study the evolution of cooperation under direct reciprocity. PMID:27767074

  13. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jian Wen MAO; Li Xin CHEN; Li Wei WANG; Tim JACOB; Xue Rong SUN; Hui LI; Lin Yan ZHU; Pan LI; Ping ZHONG; Si Huai NIE

    2005-01-01

    The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5'-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of nonmigrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.

  14. Cu Migration in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christian [Arizona State University

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  15. Functional screening with a live cell imaging-based random cell migration assay.

    Science.gov (United States)

    van Roosmalen, Wies; Le Dévédec, Sylvia E; Zovko, Sandra; de Bont, Hans; van de Water, Bob

    2011-01-01

    Cell migration, essential in cancer progression, is a complex process comprising a number of spatiotemporally regulated and well-coordinated mechanisms. In order to study (random) cell migration in the context of responses to various external cues (such as growth factors) or intrinsic cell signaling, a number of different tools and approaches have been developed. In order to unravel the key pathways and players involved in the regulation of (cancer) cell migration, a systematical mapping of the players/pathways is required. For this purpose, we developed a cell migration assay based on automatic high-throughput microscopy screen. This approach allows for screening of hundreds of genes, e.g., those encoding various kinases and phosphatases but can also be used for screening of drugs libraries. Moreover, we have developed an automatic analysis pipeline comprising of (a) automatic data acquisition (movie) and (b) automatic analysis of the acquired movies of the migrating cells. Here, we describe various facets of this approach. Since cell migration is essential in progression of cancer metastasis, we describe two examples of experiments performed on highly motile (metastatic) cancer cells.

  16. From cell differentiation to cell collectives : Bacillus subtilis uses division of labor to migrate

    NARCIS (Netherlands)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In thi

  17. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions.

    Science.gov (United States)

    Kurniawan, Nicholas A; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2016-05-24

    Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior.

  18. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    Science.gov (United States)

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  19. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    Science.gov (United States)

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status. PMID:24184124

  20. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways.

    Science.gov (United States)

    Liu, Qian Rong; Liu, Ju Mei; Chen, Yong; Xie, Xiao Qiang; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Yu, Shang Bin; Chen, Xiao Qian

    2014-01-01

    Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis. PMID:24967005

  1. Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qian Rong Liu

    2014-01-01

    Full Text Available Piperlongumine (PL is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU+-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA, reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC. Pharmacological administration of specific p38 (SB203580 or JNK (SP600125 inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NFκB activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM in the brain by suppressing tumor invasion and metastasis.

  2. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  3. Selection and network effects - Migration flows into OECD countries 1990-2000

    DEFF Research Database (Denmark)

    Pedersen, Peder J.; Pytlikova, Mariola; Smith, Nina

    2008-01-01

    . Network effects seem to be less important in the Nordic countries which also seem to attract immigrants from the lowest income level source countries. We do not find clear evidence that selection effects measured by migration flows being sensitive to differences in public social expenditures have had a......This paper presents empirical evidence on immigration flows into the OECD countries during the period 1990-2000. Our results indicate that network effects are strong, but vary between different groups of welfare states and between countries according to the type of immigration policy being applied...... major influence on the observed migration patterns until now. This may partly be explained by restrictive migration policies which may have dampened the potential selection effects....

  4. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Haiwei Zhang; Kaiming Zhang; Xinyu Wang; Shipu Li; Yixia Yin

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more signiifcantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not signiifcantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.

  5. Collagen attachment to the substrate controls cell clustering through migration

    International Nuclear Information System (INIS)

    Cell clustering and scattering play important roles in cancer progression and tissue engineering. While the extracellular matrix (ECM) is known to control cell clustering, much of the quantitative work has focused on the analysis of clustering between cells with strong cell–cell junctions. Much less is known about how the ECM regulates cells with weak cell–cell contact. Clustering characteristics were quantified in rat adenocarcinoma cells, which form clusters on physically adsorbed collagen substrates, but not on covalently attached collagen substrates. Covalently attaching collagen inhibited desorption of collagen from the surface. While changes in proliferation rate could not explain differences seen in the clustering, changes in cell motility could. Cells plated under conditions that resulted in more clustering had a lower persistence time and slower migration rate than those under conditions that resulted in less clustering. Understanding how the ECM regulates clustering will not only impact the fundamental understanding of cancer progression, but also will guide the design of tissue engineered constructs that allow for the clustering or dissemination of cells throughout the construct. (paper)

  6. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration.

    Science.gov (United States)

    Theveneau, Eric; Mayor, Roberto

    2012-01-01

    Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration. PMID:23801492

  7. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    Science.gov (United States)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  8. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    Science.gov (United States)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  9. The migrations of Drosophila muscle founders and primordial germ cells are interdependent.

    Science.gov (United States)

    Stepanik, Vincent; Dunipace, Leslie; Bae, Young-Kyung; Macabenta, Frank; Sun, Jingjing; Trisnadi, Nathanie; Stathopoulos, Angelike

    2016-09-01

    Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development. PMID:27578182

  10. To The Abercrombie Meeting and back again: a journey into the world of cell migration.

    Science.gov (United States)

    Makowska, Katarzyna Anna

    2013-01-01

    The 7th Abercrombie Meeting took place in Oxford this past summer. It was organized by The Royal Microscopical Society with the support of The British Society for Cell Biology. Michael Abercrombie was a pioneer in the field of investigating cell behavior using time-lapse microscopy. The meeting was focused on "multi-dimensional cell migration in development and disease" and it brought together many of the world's leading researchers in the area, providing an opportunity to discuss the very latest advances and possible future developments in the field. The meeting sessions included Invasive Migration, Invasive Adhesions in Migrating Cells, Signaling in Migration, Immune Cell Migration, Migrations during Morphogenesis and Migration and Disease. As with all Abercrombie meetings, the conference delegates were treated to a staggering array of live cell imaging, in vivo imaging and images generated by the latest developments in microscopy.

  11. The Effect of School Inputs on Labor Market Returns that Account for Selective Migration

    Science.gov (United States)

    McHenry, Peter

    2011-01-01

    In this paper, I estimate the effect of state school inputs on labor market returns to schooling. The method follows Card and Krueger (1992) and Heckman et al. (1996), but I extend their analysis in two ways. First, I correct state-level returns to schooling for selective migration, adapting a method from Dahl (2002). Second, I use more recent…

  12. Combination of a Cyano Migration Strategy and Alkene Difunctionalization: The Elusive Selective Azidocyanation of Unactivated Olefins.

    Science.gov (United States)

    Wu, Zhen; Ren, Rongguo; Zhu, Chen

    2016-08-26

    A conceptually new, efficient, and metal-free approach for the challenging azidocyanation of unactivated alkenes is presented. The strategy of intramolecular distal cyano migration is combined with alkene difunctionalization for the first time. A variety of useful azido-substituted alkyl nitriles are prepared in good yields and, most importantly, with exquisite regio- and stereo-selectivities.

  13. Approach to a Facile and Selective Benzyl-Protection of Carbohydrates Based on Silyl Migration

    Institute of Scientific and Technical Information of China (English)

    WANG,Wei; LI,Xiao-Liu; ZHANG,Ping-Zhu; CHEN,Hua

    2008-01-01

    A convenient and selective benzyl protection of carbohydrates has been investigated on the basis of the silyl migration under the conventional benzylation conditions, developing a facile and short synthesis of methyl 2,3,6-tri-O-benzyl-a-D-glucopyranoside.

  14. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

    Directory of Open Access Journals (Sweden)

    Prabhat S Kunwar

    2003-12-01

    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  15. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    Science.gov (United States)

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  16. First Evidence that Ecklonia cava-Derived Dieckol Attenuates MCF-7 Human Breast Carcinoma Cell Migration

    Directory of Open Access Journals (Sweden)

    Eun-Kyung Kim

    2015-03-01

    Full Text Available We investigated the effect of Ecklonia cava (E. cava-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6′-biecko, and 2,7″-phloroglucinol-6,6′-bieckol were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1–100 µM was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP-9 and vascular endothelial growth factor (VEGF. On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol.

  17. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    Science.gov (United States)

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  18. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets

    OpenAIRE

    Molino, D.; S. Quignard; Gruget, C.; Pincet, F.; Y. Chen; Piel, M.; Fattaccioli, J.

    2016-01-01

    The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we devel...

  19. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    OpenAIRE

    WANG, CHUNHUAI; Xiang, Ru; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were...

  20. A panel study of migration, self-selection and household real income.

    Science.gov (United States)

    Axelsson, R; Westerlund, O

    1998-02-01

    "The impact of migration on income for Swedish multi-adult households is examined using panel data pertaining to a sample of stable household constellations during the period 1980-1990. In contrast to previous studies, data on household disposable income is employed in estimating the income function. The empirical results indicate no significant effect on real disposable income from migration. In addition, the hypothesis of no self-selection, or zero correlation between the errors in the decision function and the income function, cannot be rejected."

  1. Heaven’s Swing Door: Endogenous skills, migration networks and the effectiveness of quality-selective immigration policies

    OpenAIRE

    Bertoli, Simone; Rapoport, Hillel

    2014-01-01

    A growing number of OECD countries are leaning toward adopting quality-selective immigration policies. The underlying assumption behind such policies is that more skill-selection should raise immigrants' average quality (or education level). This view tends to neglect two important dynamic effects: the role of migration networks, which could reduce immigrants' quality, and the responsiveness of education decisions to the prospects of migration. Our model shows that migration networks and immi...

  2. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  3. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  4. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration.

    Science.gov (United States)

    Spagnol, Stephen T; Lin, Wei-Chun; Booth, Elizabeth A; Ladoux, Benoit; Lazarus, Hillard M; Dahl, Kris Noel

    2016-07-01

    The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion. PMID:26581348

  5. Extravillous trophoblast cells-derived exosomes promote Vascular Smooth Muscle Cell Migration

    Directory of Open Access Journals (Sweden)

    Carlos eSalomon

    2014-08-01

    Full Text Available Background: Vascular smooth muscle cells (VSMCs migration is a critical process during human uterine spiral artery (SpA remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration.Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37 0C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected and exosomes (exo-JEG-3 and exo- HTR-8/SVneo isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™. Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software .Results: HTR-8/SVneo cells were significantly more (~30% invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 x 108 ± 2.5 x108 particles/106 cells compared to JEG-3 (2.86 x 108 ± 0.78 x108 particles/106 cells. VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (-exosomes (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, versus control 25.09 ± 0.58 h, p<0.05. Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes.Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls.

  6. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration

    Directory of Open Access Journals (Sweden)

    Marina Venero Galanternik

    2015-01-01

    Full Text Available Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2 revealed that loss of heparan sulfate (HS chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.

  7. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    Science.gov (United States)

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  8. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Science.gov (United States)

    Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165

  9. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  10. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  11. Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Cheng; Tscheuschner, Steffen; Paulus, Fabian; Hopkinson, Paul E; Kießling, Johannes; Köhler, Anna; Vaynzof, Yana; Huettner, Sven

    2016-03-23

    The migration and accumulation of iodide ions create a modulation of the respective interfacial barriers causing the hysteresis in solar cells based on methylammonium lead iodide perovskites. Iodide ions are identified as the migrating species by measuring temperature dependent current-transients and photoelectron spectroscopy. The involved changes in the built-in potential due to ion migration are directly measured by electroabsorption spectroscopy.

  12. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  13. The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells.

    Science.gov (United States)

    Dovere, Lisa; Fera, Stefania; Grasso, Margherita; Lamberti, Dante; Gargioli, Cesare; Muciaccia, Barbara; Lustri, Anna Maria; Stefanini, Mario; Vicini, Elena

    2013-01-01

    In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  14. Polydatin induces bone marrow stromal cells migration by activation of ERK1/2.

    Science.gov (United States)

    Chen, ZhenQiu; Wei, QiuShi; Hong, GuoJu; Chen, Da; Liang, Jiang; He, Wei; Chen, Mei Hui

    2016-08-01

    Bone marrow stromal cells (BMSCs) have proven to be useful for the treatment of numerous human diseases. However, the reparative ability of BMSCs is limited by their poor migration. Polydatin, widely used in traditional Chinese remedies, has proven to exert protective effects to BMSCs. However, little is known about its role in BMSCs migration. In this study, we studied the effects of polydatin on rat BMSCs migration using the scratch wound healing and transwell migration assays. Our results showed polydatin could promote BMSCs migration. Further experiments showed activation of ERK 1/2, but not JNK, was required for polydatin-induced BMSCs migration, suggesting that polydatin may promote BMSCs migration via the ERK 1/2 signaling pathways. Taken together, our results indicate that polydatin might be beneficial for stem cell replacement therapy by improving BMSCs migration.

  15. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Science.gov (United States)

    Carmona, Guillaume; Perera, Upamali; Gillett, Cheryl; Naba, Alexandra; Law, Ah-Lai; Sharma, Ved P.; Wang, Jian; Wyckoff, Jeffrey; Balsamo, Michele; Mosis, Fuad; De Piano, Mario; Monypenny, James; Woodman, Natalie; McConnell, Russell E.; Mouneimne, Ghassan; Van Hemelrijck, Mieke; Cao, Yihai; Condeelis, John; Hynes, Richard O.; Gertler, Frank B.; Krause, Matthias

    2016-01-01

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlates with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation, and matrix degradation were impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not Ena/VASP is required for random 2D cell migration. We identify a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, while Src-dependent phosphorylation enhances binding to Scar/WAVE but not Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of EGF gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis. PMID:26996666

  16. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations

    OpenAIRE

    Verboon, Jeffrey M; Travis K Rahe; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.

    2015-01-01

    Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome fa...

  17. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  18. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  19. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Science.gov (United States)

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  20. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Science.gov (United States)

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies.

  1. New strategy to control cell migration and metastasis regulated by CCN2/CTGF

    OpenAIRE

    Aguiar, Diego Pinheiro; de Farias, Gabriel Correa; de Sousa, Eduardo Branco; de Mattos Coelho-Aguiar, Juliana; Lobo, Julie Calixto; Casado, Priscila Ladeira; Duarte, Maria Eugênia Leite; Abreu, José Garcia Ribeiro

    2014-01-01

    Connective tissue growth factor (CTGF)/CCN family member 2 (CCN2) is a CCN family member of matricellular signaling modulators. It has been shown that CCN2/CTGF mediates cell adhesion, aggregation and migration in a large variety of cell types, including vascular endothelial cells, fibroblasts, epithelial cells, aortic smooth muscle and also pluripotent stem cells. Others matricellular proteins are capable of interacting with CCN2/CTGF to mediate its function. Cell migration is a key feature ...

  2. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death.

    Science.gov (United States)

    Raab, M; Gentili, M; de Belly, H; Thiam, H R; Vargas, P; Jimenez, A J; Lautenschlaeger, F; Voituriez, Raphaël; Lennon-Duménil, A M; Manel, N; Piel, M

    2016-04-15

    In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)-dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses. PMID:27013426

  3. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration.

    Science.gov (United States)

    Burrows, Carla; Abd Latip, Normala; Lam, Sarah-Jane; Carpenter, Lee; Sawicka, Kirsty; Tzolovsky, George; Gabra, Hani; Bushell, Martin; Glover, David M; Willis, Anne E; Blagden, Sarah P

    2010-09-01

    The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration. PMID:20430826

  4. ERP44 inhibits human lung cancer cell migration mainly via IP3R2.

    Science.gov (United States)

    Huang, Xue; Jin, Meng; Chen, Ying-Xiao; Wang, Jun; Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-06-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.

  5. Sexual selection predicts advancement of avian spring migration in response to climate change

    DEFF Research Database (Denmark)

    Spottiswoode, Claire N; Tøttrup, Anders P; Coppack, Timothy

    2006-01-01

    suggest that sexual selection could help to understand this variation, since early spring arrival of males is favoured by female choice. Climate change could weaken the strength of natural selection opposing sexual selection for early migration, which would predict greatest advancement in species...... with stronger female choice. We test this hypothesis comparatively by investigating the degree of long-term change in spring passage at two ringing stations in northern Europe in relation to a synthetic estimate of the strength of female choice, composed of degree of extra-pair paternity, relative testes size...... in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting...

  6. Microbial desalination cell with capacitive adsorption for ion migration control.

    Science.gov (United States)

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration. PMID:22784594

  7. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells.

    Science.gov (United States)

    Chan, Eddie; Saito, Akira; Honda, Tadashi; Di Guglielmo, Gianni M

    2016-04-01

    Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells.

  8. A simple non-perturbing cell migration assay insensitive to proliferation effects.

    Science.gov (United States)

    Glenn, Honor L; Messner, Jacob; Meldrum, Deirdre R

    2016-01-01

    Migration is a fundamental cellular behavior that plays an indispensable role in development and homeostasis, but can also contribute to pathology such as cancer metastasis. Due to its relevance to many aspects of human health, the ability to accurately measure cell migration is of broad interest, and numerous approaches have been developed. One of the most commonly employed approaches, because of its simplicity and throughput, is the exclusion zone assay in which cells are allowed to migrate into an initially cell-free region. A major drawback of this assay is that it relies on simply counting cells in the exclusion zone and therefore cannot distinguish the effects of proliferation from migration. We report here a simple modification to the exclusion zone migration assay that exclusively measures cell migration and is not affected by proliferation. This approach makes use of a lineage-tracing vital stain that is retained through cell generations and effectively reads out migration relative to the original, parental cell population. This modification is simple, robust, non-perturbing, and inexpensive. We validate the method in a panel of cell lines under conditions that inhibit or promote migration and demonstrate its use in normal and cancer cell lines as well as primary cells. PMID:27535324

  9. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    International Nuclear Information System (INIS)

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 µg cm−2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  10. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    Science.gov (United States)

    Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin

    2016-01-01

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 μg cm−2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  11. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation.

    Science.gov (United States)

    Wang, Chieh-Huei; Su, Pei-Tsu; Du, Xiao-Yan; Kuo, Meng-Wei; Lin, Chia-Yi; Yang, Chung-Chi; Chan, Hau-Shien; Chang, Shing-Jyh; Kuo, Calvin; Seo, Kyunga; Leung, Lawrence L; Chuang, Yung-Jen

    2010-03-01

    Angiogenesis is a highly organized process controlled by a series of molecular events. While much effort has been devoted to identifying angiogenic factors and their reciprocal receptors, far less information is available on the molecular mechanisms underlying directed endothelial cell migration. To search for novel proteins that participate in this process, we used the serial analysis of gene expression (SAGE) transcript profiling approach to identify genes that are selectively expressed in endothelial cells (ECs). Two EC SAGE libraries were constructed from human umbilical vein and artery ECs to enable data-mining against other non-ECs. A novel endothelial protein, Thrombospondin Type I Domain Containing 7A (THSD7A), with preferential expression in placenta vasculature and in human umbilical vein endothelial cells (HUVECs) was identified and targeted for further characterization. Overexpression of a THSD7A carboxyl-terminal fragment in HUVECs inhibited cell migration and disrupted tube formation, while suppression of THSD7A expression enhanced HUVEC migration and tube formation. Immunohistological analysis revealed that THSD7A was expressed at the leading edge of migrating HUVECs, and it co-localized with alpha(V)beta(3) integrin and paxillin. This distribution was dispersed from focal adhesions after disruption of the actin cytoskeleton, suggesting the involvement of THSD7A in cytoskeletal organization. Our results show that THSD7A is a novel placenta endothelial protein that mediates EC migration and tube formation, and they highlight its potential as a new target for anti-angiogenic therapy.

  12. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  13. Dynamic actin polymerization on endosomes regulates integrin trafficking, cell adhesion and cell migration

    OpenAIRE

    Duleh, Steve Niessen

    2012-01-01

    Activators of the Arp2/3 complex, termed nucleation-promoting factors (NPFs), are required for the proper spatial and temporal control of actin assembly in cells. Mammalian cells express several NPFs, each of which serve distinct functions in specific cellular processes, including N-WASP in phagocytosis and endocytosis, WAVE and JMY in cell migration, and WHAMM in ER-to-Golgi transport. Although another NPF termed WASH was recently identified, the cellular function and activity of this prot...

  14. Migration characterization of Ga and In adatoms on dielectric surface in selective MOVPE

    Science.gov (United States)

    Chen, Wei-Jie; Han, Xiao-Biao; Lin, Jia-Li; Hu, Guo-Heng; Liu, Ming-Gang; Yang, Yi-Bin; Chen, Jie; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-11-01

    Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned SiO2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the International Sci. & Tech. Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  15. The Pro-Fibrotic Factor IGFBP-5 Induces Lung Fibroblast and Mononuclear Cell Migration

    OpenAIRE

    Yasuoka, Hidekata; Yamaguchi, Yukie; Feghali-Bostwick, Carol A.

    2009-01-01

    We have previously shown that insulin-like growth factor–binding protein-5 (IGFBP-5) is overexpressed in fibrotic lung tissues and that it induces production of extracellular matrix components such as collagen and fibronectin both in vitro and in vivo. We recently observed mononuclear cell infiltration in lung tissues of mice expressing IGFBP-5. We therefore examined the role of IGFBP-5 on the migration of immune cells. Migration assays demonstrated that IGFBP-5 induced migration of periphera...

  16. ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.

    Science.gov (United States)

    Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo

    2016-10-01

    Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration.

  17. Computational modelling of multi-cell migration in a multi-signalling substrate

    International Nuclear Information System (INIS)

    Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell–cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell–cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell–cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works. (paper)

  18. Inhibition of Rho-Kinase Abrogates Migration of Human Transitional Cell Carcinoma Cells : Results of an in vitro Study

    NARCIS (Netherlands)

    vom Dorp, Frank; Sanders, Harald; Boergermann, Christof; Luemmen, Gerd; Ruebben, Herbert; Jakobs, Karl H.; Schmidt, Martina

    2011-01-01

    Introduction: Migration of cells involves a complex signaling network. The aim of the present study was to elucidate the impact of Rho-kinase (ROK) on G protein-coupled receptor-induced migration of human transitional cell carcinoma cells in an in vitro experimental setting. Materials and Methods: I

  19. Nonpolarized signaling reveals two distinct modes of 3D cell migration.

    Science.gov (United States)

    Petrie, Ryan J; Gavara, Núria; Chadwick, Richard S; Yamada, Kenneth M

    2012-04-30

    We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.

  20. Migration selection, protection, and acculturation in health: a binational perspective on older adults.

    Science.gov (United States)

    Riosmena, Fernando; Wong, Rebeca; Palloni, Alberto

    2013-06-01

    In this article, we test for four potential explanations of the Hispanic Health Paradox (HHP): the "salmon bias," emigration selection, and sociocultural protection originating in either destination or sending country. To reduce biases related to attrition by return migration typical of most U.S.-based surveys, we combine data from the Mexican Health and Aging Study in Mexico and the U.S. National Health Interview Survey to compare self-reported diabetes, hypertension, current smoking, obesity, and self-rated health among Mexican-born men ages 50 and older according to their previous U.S. migration experience, and U.S.-born Mexican Americans and non-Hispanic whites. We also use height, a measure of health during childhood, to bolster some of our tests. We find an immigrant advantage relative to non-Hispanic whites in hypertension and, to a lesser extent, obesity. We find evidence consistent with emigration selection and the salmon bias in height, hypertension, and self-rated health among immigrants with less than 15 years of experience in the United States; we do not find conclusive evidence consistent with sociocultural protection mechanisms. Finally, we illustrate that although ignoring return migrants when testing for the HHP and its mechanisms, as well as for the association between U.S. experience and health, exaggerates these associations, they are not fully driven by return migration-related attrition.

  1. The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish.

    Directory of Open Access Journals (Sweden)

    Taiju Saito

    Full Text Available Primordial germ cells (PGCs are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4 are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders.

  2. Matrix Metalloproteinase 9 Secreted by Hypoxia Cardiac Fibroblasts Triggers Cardiac Stem Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Gao

    2015-01-01

    Full Text Available Cessation of blood supply due to myocardial infarction (MI leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

  3. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKTSer473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not affected

  4. MicroRNA-200b Impacts Breast Cancer Cell Migration and Invasion by Regulating Ezrin-Radixin-Moesin.

    Science.gov (United States)

    Hong, Hong; Yu, Haizhong; Yuan, Jianfen; Guo, Chunyan; Cao, Hongyan; Li, Weibing; Xiao, Chunhong

    2016-01-01

    BACKGROUND Ezrin-radixin-moesin (ERM) plays an important role in multiple links of tumors. It also involved in breast cancer invasion and metastasis, and might be a potential biomarker of breast cancer. Another study suggested that ERM expression was regulated directly by miR-200c, and had a critical role in miR-200c suppressing cell migration. This study aimed to investigate the effect of miR-200b on ERM expression in a breast cancer cell line and its influence on invasion and metastasis ability in vitro. MATERIAL AND METHODS Breast cancer cell lines MCF-7 and MDA-MB-231 with different metastatic potentials were selected as a model. MiR-200b overexpression or inhibition was achieved by Lipofectamine™ 2000-mediated miRNA transfection. RT-PCR was used to test miR-200b level, while Western blot was selected to detect ERM protein expression. Wound healing assay and Transwell assay were performed to determine cell migration and invasion ability. RESULTS RT-PCR revealed that miR-200b level in MDA-MB-231 was obviously lower than that in MCF-7, while Western blot analysis showed that ERM expression was significantly higher. MiR-200b inhibition by transfection in MCF-7 markedly decreased miR-200b level, elevated ERM expression, and enhanced cell migration and invasion. MiR-200b overexpression in MDA-MB-231 obviously increased miR-200b level, reduced ERM expression, and weakened cell migration and invasion. CONCLUSIONS MiR-200b participates in breast cancer cell migration and invasion through regulating ERM in MCF-7 and MDA-MB-231. PMID:27276064

  5. Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific

    Science.gov (United States)

    Gill, Robert E., Jr.; Douglas, David C.; Handel, Colleen M.; Tibbitts, T. Lee; Hufford, Gary; Piersma, Theunis

    2014-01-01

    The annual 29 000 km long migration of the bar-tailed godwit, Limosa lapponica baueri, around the Pacific Ocean traverses what is arguably the most complex and seasonally structured atmospheric setting on Earth. Faced with marked variation in wind regimes and storm conditions across oceanic migration corridors, individuals must make critical decisions about when and where to fly during nonstop flights of a week's duration or longer. At a minimum, their decisions will affect wind profitability and thus reduce energetic costs of migration; in the extreme, poor decisions or unpredictable weather events will risk survival. We used satellite telemetry to track the annual migration of 24 bar-tailed godwits and analysed their flight performance relative to wind conditions during three major migration legs between nonbreeding grounds in New Zealand and breeding grounds in Alaska. Because flight altitudes of birds en route were unknown, we modelled flight efficiency at six geopotential heights across each migratory segment. Birds selected departure dates when atmospheric conditions conferred the greatest wind assistance both at departure and throughout their flights. This behaviour suggests that there exists a cognitive mechanism, heretofore unknown among migratory birds, that allows godwits to assess changes in weather conditions that are linked (i.e. teleconnected) across widely separated atmospheric regions. Godwits also showed adaptive flexibility in their response not only to cues related to seasonal changes in macrometeorology, such as spatial shifting of storm tracks and temporal periods of cyclogenesis, but also to cues associated with stochastic events, especially at departure sites. Godwits showed limits to their response behaviours, however, especially relative to rapidly developing stochastic events while en route. We found that flight efficiency depended significantly upon altitude and hypothesize that godwits exhibit further adaptive flexibility by varying

  6. A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    CERN Document Server

    Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B

    2016-01-01

    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.

  7. A Cellular Potts Model simulating cell migration on and in matrix environments

    NARCIS (Netherlands)

    Scianna, M.; Preziosi, L.; Wolf, K.A.

    2013-01-01

    Cell migration on and through extracellular matrix is fundamental in a wide variety of physiological and pathological phenomena, and is exploited in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix f

  8. miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen

    DEFF Research Database (Denmark)

    Verma, Pushpa; Cohen, Stephen M

    2015-01-01

    , they remain quiescent during larval development. During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis. Here, we provide evidence that the microRNA, miR-965, acts via string and wingless to control histoblast proliferation and migration. Ecdysone...... signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis. Replacement of the larval epidermis by adult epidermal progenitors involves regulation of both cell-intrinsic events and cell communication. By regulating both...... cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system....

  9. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Santanu Banerjee

    Full Text Available During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  10. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Science.gov (United States)

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  11. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    DEFF Research Database (Denmark)

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine;

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Ther...

  12. A modeling approach to study the effect of cell polarization on keratinocyte migration.

    Directory of Open Access Journals (Sweden)

    Matthias Jörg Fuhr

    Full Text Available The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2--an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents.

  13. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    Science.gov (United States)

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins.

  14. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  15. Neurotensin is a Versatile Modulator of In Vitro Human Pancreatic Ductal Adenocarcinoma Cell (PDAC Migration

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2007-01-01

    Full Text Available Background: While the neurotensin (NT roles in pancreatic cancer growth are well documented, its effects on pancreatic cancer cell migration have not been described. Methods: The NT-induced effects on the migration process of human pancreatic ductal adenocarcinoma cells (PDACs were characterized by means of various assays including computer-assisted video-microscopy, fluorescence microscopy, ELISA-based, small GTPase pull-down and phosphorylation assays. Results: The NT-induced modifications on in vitro PDACs migration largely depended on the extra-cellular matrix environment and cell propensity to migrate collectively or individually. While NT significantly reduced the level of migration of collectively migrating PDACs on vitronectin, it significantly increased the level of individually migrating PDACs. These effects were mainly mediated through the sortilin/NTR3 receptor. Neurotensin both induced altered expression of αV and β5 integrin subunits in PDACs cultured on vitronectin resulting in modified adhesion abilities, and caused modifications to the organization of the actin cytoskeleton through the NT-mediated activation of small Rho GTPases. While the NT effects on individually migrating PDACs were mediated at least through the EGFR/ERK signaling pathways, those on collectively migrating PDACs appeared highly dependent on the PI 3-kinase pathway. Conclusion: This study strongly suggests the involvement of neurotensin in the modulation of human PDAC migration.

  16. A Heuristic Placement Selection of Live Virtual Machine Migration for Energy-Saving in Cloud Computing Environment

    Science.gov (United States)

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339

  17. A heuristic placement selection of live virtual machine migration for energy-saving in cloud computing environment.

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    Full Text Available The field of live VM (virtual machine migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization idea with the SA (simulated annealing idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable.

  18. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  19. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-Seq

    OpenAIRE

    Yao, Li; Li, Yongchao; Knapp, Jennifer; Smith, Peter

    2015-01-01

    In peripheral nervous systems, Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. Following spinal cord injury, Schwann cells regenerate and migrate to the lesion and are involved in the spinal cord regeneration process. Transplantation of Schwann cells into injured neural tissue results in enhanced spinal axonal regeneration. Effective directional migration of Schwann cells is critical in the neural regeneration process. In this study, we report that Schw...

  20. Directional Migration of MDA-MB-231 Cells Under Oxygen Concentration Gradients.

    Science.gov (United States)

    Yahara, D; Yoshida, T; Enokida, Y; Takahashi, E

    2016-01-01

    To elucidate the initial mechanism of hematogenous metastasis of cancer cells, we hypothesized that cancer cells migrate toward regions with higher oxygen concentration such as intratumor micro vessels along the oxygen concentration gradient. To produce gradients of oxygen concentration in vitro, we devised the gap cover glass (GCG). After placing a GCG onto cultured MDA-MB-231 cells (a metastatic breast cancer cell line), the migration of individual cells under the GCG was tracked up to 12 h at 3 % oxygen in the micro incubator. We quantified the migration of individual cells using forward migration index (FMI). The cell migration perpendicular to the oxygen gradients was random in the direction whereas FMIs of the cell located at 300, 500, 700, and 1500 μm from the oxygen inlet were positive (p < 0.05) indicating a unidirectional migration toward the oxygen inlet. Present results are consistent with our hypothesis that MDA-MB-231 cells migrate toward regions with higher oxygen concentration. PMID:27526134

  1. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis. PMID:27121131

  2. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.

  3. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  4. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available BACKGROUND: The adult subventricular zone (SVZ contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair. METHODOLOGY/PRINCIPAL FINDINGS: We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS. In our search for motile progenitor cells, we uncovered a population of motile betaIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr. This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFr(low neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-alpha, an EGFr-selective agonist. Indeed, acute exposure to TGF-alpha decreased the percentage of motile cells by approximately 40%. CONCLUSIONS/SIGNIFICANCE: In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.

  5. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    Science.gov (United States)

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling. PMID:26779779

  6. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); Eisenbauer, Maria [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Czirók, András [Department of Biological Physics, Eötvös University, Budapest (Hungary); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS (United States); Dekan, Barbara; László, Viktória; Hoda, Mir Alireza [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Döme, Balázs [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); National Korányi Institute of TB and Pulmonology, Budapest (Hungary); Tímár, József [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary); Klepetko, Walter [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Berger, Walter [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Hegedűs, Balázs, E-mail: balazs.hegedus@meduniwien.ac.at [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.

  7. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices

    Science.gov (United States)

    Gjorevski, Nikolce; S. Piotrowski, Alexandra; Varner, Victor D.; Nelson, Celeste M.

    2015-01-01

    Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration. PMID:26165921

  8. Exogenous Expression of N-Cadherin in Breast Cancer Cells Induces Cell Migration, Invasion, and Metastasis

    OpenAIRE

    Hazan, Rachel B.; Phillips, Greg R.; Qiao, Rui Fang; Norton, Larry; Aaronson, Stuart A.

    2000-01-01

    E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell–cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin–mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findin...

  9. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  10. Aquaporin 1 Facilitated Hepatocellular Carcinoma SMMC7221 Cell Migration Associated with Water Permeability

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-li; LI Jiang; WANG Yan-qing; ZAKNROU Zohra; MA Tong-hui; LI Xiao-meng

    2011-01-01

    The authors investigated the regulation of human aquaporin l(hAQPl) and the involvement of aquaporin l(AQPl) in the migration of human hepatocellular carcinoma SMMC-7221 cells using RNA intereference technology.Firstly, two short hairpin RNA(shRNA) constructs in PBSU6 vector were reconstructed and their knockdown effects were identified in SMMC-7221 cells. Next, the involvement of endogenous hAQPl in regulating the migration of SMMC-7221 cells was investigated via siRNA technology. HAQPl-shRNA can specifically inhibit AQPl dependent osmotic water permeability. Meanwhile the migration of SMMC-7221 cells was inhibited remarkably after silencing AQPl by performing transwell cell migration assay and in vitro wound healing assay. Furthermore, in the presence of an inhibitor HgCl2, the water permeability of the cell membrane was remarkably decreased, the expression of AQPl was upregulated after HgCl2 treatment and the cell movement was decreased at the moment. Increased AQPl cannot attenuate cell migration ability when cell membrane loses its water permeability function. This demonstrates that the cell migration was remarkably related to the transporting water function of cell membrane.

  11. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore;

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...

  12. A role for PP1/NIPP1 in steering migration of human cancer cells.

    Directory of Open Access Journals (Sweden)

    Cristina Martin-Granados

    Full Text Available Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate cathodally, others anodally and some polarise with their long axis perpendicular to the electric vector. These striking phenomena are likely to have in vivo relevance since one of the determining factors during cancer metastasis is the ability to switch between attractive and repulsive migration in response to extracellular guidance stimuli. We present evidence that the cervical cancer cell line HeLa migrates cathodally in a direct current electric field of physiological intensity, while the strongly metastatic prostate cancer cell line PC-3-M migrates anodally. Notably, genetic disruption of protein serine/threonine phosphatase-1 (PP1 and its regulator NIPP1 decrease directional migration in these cell lines. Conversely, the inducible expression of NIPP1 switched the directional response of HeLa cells from cathodal to slightly anodal in a PP1-dependent manner. Remarkably, induction of a hyperactive PP1/NIPP1 holoenzyme, further shifted directional migration towards the anode. We show that PP1 association with NIPP1 upregulates signalling by the GTPase Cdc42 and demonstrate that pharmacological inhibition of Cdc42 in cells overexpressing NIPP1 recovered cathodal migration. Taken together, we provide the first evidence for regulation of directional cell migration by NIPP1. In addition, we identify PP1/NIPP1 as a novel molecular compass that controls directed cell migration via upregulation of Cdc42 signalling and suggest a way by which PP1/NIPP1 may contribute to the migratory properties of cancer cells.

  13. Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Stephen J Terry

    Full Text Available Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.

  14. In vivo knockdown of ErbB3 in mice inhibits Schwann cell precursor migration.

    Science.gov (United States)

    Torii, Tomohiro; Miyamoto, Yuki; Takada, Shuji; Tsumura, Hideki; Arai, Miyuki; Nakamura, Kazuaki; Ohbuchi, Katsuya; Yamamoto, Masahiro; Tanoue, Akito; Yamauchi, Junji

    2014-09-26

    The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration. PMID:25204498

  15. Androgen-induced cell migration: role of androgen receptor/filamin A association.

    Directory of Open Access Journals (Sweden)

    Gabriella Castoria

    Full Text Available BACKGROUND: Androgen receptor (AR controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK, paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. CONCLUSIONS/SIGNIFICANCE: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development

  16. A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress

    OpenAIRE

    Tanimoto, Hirokazu; Sano, Masaki

    2014-01-01

    For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dyna...

  17. TM4SF1: a tetraspanin-like protein necessary for nanopodia formation and endothelial cell migration.

    Science.gov (United States)

    Zukauskas, Andrew; Merley, Anne; Li, Dan; Ang, Lay-Hong; Sciuto, Tracey E; Salman, Samantha; Dvorak, Ann M; Dvorak, Harold F; Jaminet, Shou-Ching Shih

    2011-09-01

    Transmembrane-4-L-six-family-1 (TM4SF1) is a tetraspanin-like membrane protein that is highly and selectively expressed by cultured endothelial cells (EC) and, in vivo, by EC lining angiogenic tumor blood vessels. TM4SF1 is necessary for the formation of unusually long (up to a 50 μm), thin (~100-300 nm wide), F-actin-poor EC cell projections that we term 'nanopodia'. Immunostaining of nanopodia at both the light and electron microsopic levels localized TM4SF1 in a regularly spaced, banded pattern, forming TM4FS1-enriched domains. Live cell imaging of GFP-transduced HUVEC demonstrated that EC project nanopodia as they migrate and interact with neighboring cells. When TM4SF1 mRNA levels in EC were increased from the normal ~90 mRNA copies/cell to ~400 copies/cell through adenoviral transduction, EC projected more and longer nanopodia from the entire cell circumference but were unable to polarize or migrate effectively. When fibroblasts, which normally express TM4SF1 at ~5 copies/cell, were transduced to express TM4SF1 at EC-like levels, they formed typical TM4SF1-banded nanopodia, and broadened, EC-like lamellipodia. Mass-spectrometry demonstrated that TM4SF1 interacted with myosin-10 and β-actin, proteins involved in filopodia formation and cell migration. In summary, TM4SF1, like genuine tetraspanins, serves as a molecular organizer that interacts with membrane and cytoskeleton-associated proteins and uniquely initiates the formation of nanopodia and facilitates cell polarization and migration. PMID:21626280

  18. Collective migration models: Dynamic monitoring of leader cells in migratory/invasive disease processes

    Science.gov (United States)

    Dean, Zachary Steven

    Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological

  19. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP.

    Science.gov (United States)

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-03-20

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically. PMID:25788268

  20. Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation

    NARCIS (Netherlands)

    Borensztajn, Keren; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2010-01-01

    Previously, we showed that activated coagulation factor X (FXa) inhibits migration of breast, lung and colon cancer cells. We showed that the effect of FXa on migration was protease-activated receptor (PAR)-1-dependent, but the subsequent cellular signaling routes remained elusive. In the current ma

  1. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  2. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  3. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  4. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells.

    Science.gov (United States)

    Lucas, Eliana P; Khanal, Ichha; Gaspar, Pedro; Fletcher, Georgina C; Polesello, Cedric; Tapon, Nicolas; Thompson, Barry J

    2013-06-10

    Collective migration of Drosophila border cells depends on a dynamic actin cytoskeleton that is highly polarized such that it concentrates around the outer rim of the migrating cluster of cells. How the actin cytoskeleton becomes polarized in these cells to enable collective movement remains unknown. Here we show that the Hippo signaling pathway links determinants of cell polarity to polarization of the actin cytoskeleton in border cells. Upstream Hippo pathway components localize to contacts between border cells inside the cluster and signal through the Hippo and Warts kinases to polarize actin and promote border cell migration. Phosphorylation of the transcriptional coactivator Yorkie (Yki)/YAP by Warts does not mediate the function of this pathway in promoting border cell migration, but rather provides negative feedback to limit the speed of migration. Instead, Warts phosphorylates and inhibits the actin regulator Ena to activate F-actin Capping protein activity on inner membranes and thereby restricts F-actin polymerization mainly to the outer rim of the migrating cluster.

  5. Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors

    Directory of Open Access Journals (Sweden)

    Sylvia eSimon

    2015-09-01

    Full Text Available Bacteria trigger host defense and inflammatory processes such as cytokine production, pyroptosis and the chemotactic migration of immune cells towards the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called effector proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the Icm/Dot type IV secretion system and as many as 300 different effector proteins to govern host cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell autonomous immunity or cell migration, i.e. they interfere with (i endocytic, secretory or retrograde vesicle trafficking pathways, (ii organelle or cell motility, (iii the inflammasome and programmed cell death, or (iv the transcription factor NF-κB. Here we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila.

  6. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    Science.gov (United States)

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  7. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    Science.gov (United States)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  8. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE.

    Science.gov (United States)

    Carmona, G; Perera, U; Gillett, C; Naba, A; Law, A-L; Sharma, V P; Wang, J; Wyckoff, J; Balsamo, M; Mosis, F; De Piano, M; Monypenny, J; Woodman, N; McConnell, R E; Mouneimne, G; Van Hemelrijck, M; Cao, Y; Condeelis, J; Hynes, R O; Gertler, F B; Krause, M

    2016-09-29

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.

  9. Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility.

    Science.gov (United States)

    Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin

    2015-01-01

    We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed "bursts" where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments. PMID:26134134

  10. Effect of chymotrypsin C and related proteins on pancreatic cancer cell migration

    Institute of Scientific and Technical Information of China (English)

    Haibo Wang; Wei Sha; Zhixue Liu; Cheng-Wu Chi

    2011-01-01

    Pancreatic cancer is a malignant cancer with a bigh mortality rate. The amount of chymotrypsin C in pancreatic cancer cells is only 20% of that found in normal cells.Chymotrypsin C has been reported to be involved in cancer cell apoptosis, but its effect on pancreatic cancer cell migration is unclear. We performed cell migration scratch assays and Transwell experiments, and found that cell migration ability was downregulated in pancreatic cancer Aspc-1 cells that overexpressed chymotrypsin C, whereas the cell migration ability was upregulated in Aspc-1 cells in which chymotrypsin C was suppressed. Two-dimensional fluorescence differential in gel electrophoresis/mass spectrometry method was used to identify the proteins that were differentially expressed in Aspc-1 cells that were transfected with plasmids to induce either overexpression or suppressed expression of chymotrypsin C. Among 26 identified differential proteins, cytokeratin 18 was most obviously correlated with chymotrypsin C expression. Cytokeratin 18 is expressed in developmental tissues in early stages of cancer,and is highly expressed in most carcinomas. We speculated that chymotrypsin C might regulate pancreatic cancer cell migration in relation to cytokeratin 18 expression.

  11. Effect of heavy ion on the activity of migration and invasion of malignant cells

    International Nuclear Information System (INIS)

    Aim of present study was to clarify a role of p53 gene for ability of in vitro invasion and migration of malignant cells irradiated with carbon ions or X-rays. Three cell lines, which were produced by transfection of the plasmid encoding wild-, mutant- or deletion (neo)-type of p53 gene into human lung cancer H1299 cells (p53 deletion type), were used throughout the study. In vitro invasion and migration assay of cells were performed using a multiwell cell culture insert coated with MatrigelTM or fibronectin. Migration- and invasion-rates of cells irradiated with carbon-ions at 40 and 100 keV/μm decreased with increasing dose, showing a little dependence of p53 gene status. For all of three cell lines, the invasion-rates of cells irradiated at 1 and 2 Gy of X-rays increased as compared with that of non-irradiated cells. Migration of both deletion- and mutation-type cells were inhibited by exposure at 1-8 Gy of X-rays. The present results suggest that p53 gene status of cells may contribute to the ability of migration after X-ray irradiation. (author)

  12. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme

    Science.gov (United States)

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W.S.; Rauch, Bernhard H.

    2016-01-01

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient's survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient's survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells. In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation. PMID:26887055

  13. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration

    Science.gov (United States)

    Pathak, Amit

    2013-01-01

    It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression both are accompanied by increased cell polarization. Disruption of this polarization by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed. PMID:23832051

  14. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    Science.gov (United States)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  15. LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion.

    Science.gov (United States)

    Li, Yuanxia; Wan, Xiaolei; Wei, Ye; Liu, Xiuwen; Lai, Wensheng; Zhang, Liuping; Jin, Jie; Wu, Chaoyang; Shao, Qixiang; Shao, Genbao; Lin, Qiong

    2016-06-01

    Lysine-specific demethylase 1 (LSD1) has been implicated in the process of tumor progression at various steps, but its role in epithelial-messenchymal transition (EMT) and the migration of ovarian cancer cells remains obscure. In this study, we demonstrated the effect of LSD1 on ovarian cancer cell migration and the regulatory role of LSD1 in the expression of EMT markers. Inhibition of LSD1 expression impaired the migration and invasion of HO8910 ovarian cancer cells. In contrast, overexpression of LSD1 enhanced the cell migration and invasion of HO8910 cells. Mechanistic analyses showed that LSD1 promoted cell migration through induction of N-cadherin, vimentin, MMP-2 and inhibition of E-cadherin. Furthermore, LSD1 interacted with the promoter of E-cadherin and demethylated histone H3 lysine 4 (H3K4) at this region, downregulated E-cadherin expression, and consequently enhanced ovarian cancer cell migration. These data indicate that LSD1 acts as an epigenetic regulator of EMT and contributes to the metastasis of ovarian cancer. PMID:27109588

  16. A Computational Model of Cell Migration in Response to Biochemical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, Nicholas C [ORNL; Kruse, Kara L [ORNL; Nutaro, James J [ORNL; Ward, Richard C [ORNL

    2009-01-01

    The Computational Sciences and Engineering Division of the Oak Ridge National Laboratory is partnering with the University of Tennessee Graduate School of Medicine to design a computational model describing various factors related to the development of intimal hyperplasia (IH) in response to arterial injury. This research focuses on modeling the chemotactic and haptotactic processes that stimulate vascular smooth muscle cell migration into the intima. A hybrid discrete-continuous mathematical model of cell migration in response to biochemical diffusion was developed in C++. Chemoattractant diffusion is modeled as a continuous partial differential equation, whereas migration of the cells is modeled as a series of discrete events. Results obtained from the discrete state model for cell migration agree with those obtained from Boyden chamber experiments.

  17. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  18. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-seq.

    Science.gov (United States)

    Yao, Li; Li, Yongchao; Knapp, Jennifer; Smith, Peter

    2015-07-01

    In peripheral nervous systems, Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. Following spinal cord injury, Schwann cells regenerate and migrate to the lesion and are involved in the spinal cord regeneration process. Transplantation of Schwann cells into injured neural tissue results in enhanced spinal axonal regeneration. Effective directional migration of Schwann cells is critical in the neural regeneration process. In this study, we report that Schwann cells migrate anodally in an applied electric field (EF). The directedness and displacement of anodal migration increased significantly when the strength of the EF increased from 50 mV/mm to 200 mV/mm. The EF did not significantly affect the cell migration speed. To explore the genes and signaling pathways that regulate cell migration in EFs, we performed a comparative analysis of differential gene expression between cells stimulated with an EF (100 mV/mm) and those without using next-generation RNA sequencing, verified by RT-qPCR. Based on the cut-off criteria (FC > 1.2, q < 0.05), we identified 1,045 up-regulated and 1,636 down-regulated genes in control cells versus EF-stimulated cells. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that compared to the control group, 21 pathways are down-regulated, while 10 pathways are up-regulated. Differentially expressed genes participate in multiple cellular signaling pathways involved in the regulation of cell migration, including pathways of regulation of actin cytoskeleton, focal adhesion, and PI3K-Akt. PMID:25557037

  19. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  20. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  1. Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay

    Institute of Scientific and Technical Information of China (English)

    Zhi-hui Huang; Ying Wang; Li Cao; Zhi-da Su; Yan-ling Zhu; Yi-zhang Chen; Xiao-bing Yuan; Cheng He

    2008-01-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells that have axonal growth-promoting properties. OEC transplantation has emerged as a promising experimental therapy of axonal injuries and demyelinating diseases. However, some fundamental cellular properties of OECs remain unclear. In this study, we found that the distinct OEC subpopulations exhibited different migratory properties based on time-lapse imaging of single isolated cells, possibly due to their different cytoskeletal organizations. Moreover, OEC subpopulations displayed different attractive migratory responses to a gradient of lysophosphatidic acid (LPA) in single-cell migration assays. Finally, we found that OEC subpopulations transformed into each other spontaneously. Together, these results demonstrate, for the first time to our knowledge, that distinct OEC subpopulations display different migratory properties in vitro and provide new evidence to support the notion of OECs as a single cell type with malleable functional phenotypes.

  2. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    OpenAIRE

    Katarzyna A. Makowska; Ruth E. Hughes; Kathryn J. White; Claire M. Wells; Michelle Peckham

    2015-01-01

    We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-mus...

  3. The Role of TG2 in Regulating S100A4-Mediated Mammary Tumour Cell Migration

    OpenAIRE

    Zhuo Wang; Martin Griffin

    2013-01-01

    The importance of S100A4, a Ca(2+)-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca(2+)-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by...

  4. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates.

    Directory of Open Access Journals (Sweden)

    Seyed Jamaleddin Mousavi

    Full Text Available Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively

  5. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  6. Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hee [Department of Physiology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Lkhagvadorj, Sayamaa; Lee, Mi-Ra [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Hwang, Kyu-Hee [Department of Physiology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Chung, Hyun Chul; Jung, Jae Hung [Department of Urology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Cha, Seung-Kuy, E-mail: skcha@yonsei.ac.kr [Department of Physiology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Institute of Lifestyle Medicine, and Nuclear Receptor Research Consortium, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Eom, Minseob, E-mail: eomm@yonsei.ac.kr [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    2014-05-23

    Highlights: • Orai1 channel is highly expressed in clear cell renal cell carcinoma (ccRCC) tissues. • Orai1 and STIM1 constitute a native store-operated Ca{sup 2+} entry in ccRCC cells. • Orai1 and STIM1 promote cell migration and proliferation of ccRCC cells. - Abstract: The intracellular Ca{sup 2+} regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca{sup 2+} entry (SOCE) is a major Ca{sup 2+} entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration.

  7. The role of TG2 in regulating S100A4-mediated mammary tumour cell migration.

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    Full Text Available The importance of S100A4, a Ca(2+-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2 a Ca(2+-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector and highly metastatic KP1 cells (R37 cells transfected with S100A4, we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression. Inhibition was paralleled by a decrease in S100A4 polymer formation. In vitro co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and α5β1 integrin co-signalling pathways linked by activation of PKCα in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.

  8. Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Saisai Wei

    Full Text Available Angiogenin (ANG acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.

  9. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  10. Histological study of cell migration in the dermis of hamsters after immunisation with two different vaccines against visceral leishmaniasis.

    Science.gov (United States)

    Moreira, Nádia das Dores; Giunchetti, Rodolfo Cordeiro; Carneiro, Cláudia Martins; Vitoriano-Souza, Juliana; Roatt, Bruno Mendes; Malaquias, Luiz Cosme Cotta; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa

    2009-04-15

    Vaccine candidates, including live and/or killed parasites, Leishmania-purified fractions, defined recombinant antigens and antigen-encoding DNA-plasmids have been proposed to use as vaccine anti-Leishmania. More recently, the hamsters have been used to pre-selection of antigens candidate to apply in further experiments using canine model. In this report we evaluated the kinetics of cell migration in dermal inflammatory infiltrate, circulating leukocytes and the presence of nitric oxide (NO)/induced nitric oxide synthase during the early (1-24h) and late (48-168h) periods following inoculation of hamsters with antigenic components of anti-canine visceral leishmaniasis vaccines Leishmune and Leishmania braziliensis antigen (LB) with and without saponin (Sap) adjuvant. Our results show that LB caused an early reduction of lymphocytes in the dermis while Sap and LBSap triggered a late recruitment, suggesting the role of the adjuvant in the traffic of antigen-presenting cells and the induction of lymphocyte migration. In that manner our results suggest that the kinetics of cell migration on hamster model may be of value in the selection of vaccine antigens prior the tests in dogs particularly in respect of the toxicity of the preparations.

  11. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    Science.gov (United States)

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. PMID:26581033

  12. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    Science.gov (United States)

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.

  13. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  14. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    Science.gov (United States)

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed.

  15. Olfactory ensheathing cells form the microenvironment of migrating GnRH-1 neurons during mouse development.

    Science.gov (United States)

    Geller, Sarah; Kolasa, Elise; Tillet, Yves; Duittoz, Anne; Vaudin, Pascal

    2013-04-01

    During development, GnRH-1 neurons differentiate extracerebraly from the nasal placode and migrate from the vomeronasal organ to the forebrain along vomeronasal and terminal nerves. Numerous studies have described the influence of different molecules on the migration of GnRH-1 neurons, however, the role of microenvironment cells remains poorly understood. This study used GFAP-GFP transgenic mice to detect glial cells at early developmental stages. Using nasal explant cultures, the comigration of glial cells with GnRH-1 neurons was clearly demonstrated. This in vitro approach showed that glial cells began migrating from the explants before GnRH-1 neurons. They remained ahead of the GnRH-1 migratory front and stopped migrating after the GnRH-1 neurons. The association of these glial cells with the axons combined with gene expression analysis of GFAP-GFP sorted cells enabled them to be identified as olfactory ensheathing cells (OEC). Immunohistochemical analysis revealed the presence of multiple glial cell-type markers showing several OEC subpopulations surrounding GnRH-1 neurons. Moreover, these OEC expressed genes whose products are involved in the migration of GnRH-1 neurons, such as Nelf and Semaphorin 4. In situ data confirmed that the majority of the GnRH-1 neurons were associated with glial cells along the vomeronasal axons in nasal septum and terminal nerves in the nasal forebrain junction as early as E12.5. Overall, these data demonstrate an OEC microenvironment for migrating GnRH-1 neurons during mouse development. The fact that this glial cell type precedes GnRH-1 neurons and encodes for molecules involved in their nasal migration suggests that it participates in the GnRH-1 system ontogenesis. PMID:23404564

  16. Extracellular vesicles from malignant effusions induce tumor cell migration: inhibitory effect of LMWH tinzaparin.

    Science.gov (United States)

    Gamperl, Hans; Plattfaut, Corinna; Freund, Annika; Quecke, Tabea; Theophil, Friederike; Gieseler, Frank

    2016-10-01

    Elevated levels of extracellular vesicles (EVs) have been correlated with inflammatory diseases as well as progressive and metastatic cancer. By presenting tissue factor (TF) on their membrane surface, cellular microparticles (MPs) activate both the coagulation system and cell-signaling pathways such as the PAR/ERK pathway. We have shown before that malignant effusions are a rich source of tumor cell-derived EVs. Here, we used EVs from malignant effusions from three different patients after serial low-speed centrifugation steps as recommended by the ISTH (lsEV). Significant migration of human pancreatic carcinoma cells could be induced by lsEVs and was effectively inhibited by pre-incubation with tinzaparin, a low-molecular-weight heparin. Tinzaparin induced tissue factor pathway inhibitor (TFPI) release from tumor cells, and recombinant TFPI inhibited EV-induced tumor cell migration. EVs also induced ERK phosphorylation, whereas inhibitors of PAR2 and ERK suppressed EV-induced tumor cell migration. LsEVs have been characterized by high-resolution flow cytometry and, after elimination of smaller vesicles including exosomes, by further high-speed centrifugation (hsEV). The remaining population consisting primarily of MPs is indeed the main migration-inducing population with tenase activity. Compared to other LMWHs, tinzaparin is suggested to have high potency to induce TFPI release from epithelial cells. The migration-inhibitory effect of TFPI and the interruption of tumor cell migration by inhibitors of PAR2 and ERK suggest that lsEVs induce tumor cell migration by activating the PAR2 signaling pathway. Tinzaparin might inhibit this process at least partly by inducing the release of TFPI from tumor cells, which blocks PAR-activating TF complexes. The clinical relevance of the results is discussed. PMID:27435911

  17. Three-Dimensional Numerical Model of Cell Morphology during Migration in Multi-Signaling Substrates

    Science.gov (United States)

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell’s physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the

  18. A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Shimizu

    Full Text Available Collective cell migration is involved in many biological and pathological processes. Various factors have been shown to regulate the decision to migrate collectively or individually, but the impact of cell-extracellular matrix (ECM interactions is still debated. Here, we developed a method for analyzing collective cell migration by precisely tuning the interactions between cells and ECM ligands. Gold nanoparticles are arrayed on a glass substrate with a defined nanometer spacing by block copolymer micellar nanolithography (BCML, and photocleavable poly(ethylene glycol (Mw  =  12 kDa, PEG12K and a cyclic RGD peptide, as an ECM ligand, are immobilized on this substrate. The remaining glass regions are passivated with PEG2K-silane to make cells interact with the surface via the nanoperiodically presented cyclic RGD ligands upon the photocleavage of PEG12K. On this nanostructured substrate, HeLa cells are first patterned in photo-illuminated regions, and cell migration is induced by a second photocleavage of the surrounding PEG12K. The HeLa cells gradually lose their cell-cell contacts and become disconnected on the nanopatterned substrate with 10-nm particles and 57-nm spacing, in contrast to their behavior on the homogenous substrate. Interestingly, the relationship between the observed migration collectivity and the cell-ECM ligand interactions is the opposite of that expected based on conventional soft matter models. It is likely that the reduced phosphorylation at tyrosine-861 of focal adhesion kinase (FAK on the nanopatterned surface is responsible for this unique migration behavior. These results demonstrate the usefulness of the presented method in understanding the process of determining collective and non-collective migration features in defined micro- and nano-environments and resolving the crosstalk between cell-cell and cell-ECM adhesions.

  19. Selective tropism of liver stem cells to hepatocellular carcinoma in vivo

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the selective tropism of liver stem cells to hepatocellular carcinoma (HCC) in an animal model and its feasibility as a vector to deliver therapeutic genes for targeted therapy of HCC.METHODS: WB-F344, a kind of rat liver stem cell,was infected with recombinant virus to establish a cell line with stable, high-level expressing enhanced green fluorescent protein (EGFP). An animal model of HCC in Wistar rats was established by implanting HCC cells (CBRH7919) combined with an immunosuppressive drug.EGFP labeled liver stem cells were injected into caudal veins of the animals and distribution was observed at different time points after injection. SDF-1 and c-kit expression in non-tumor liver and tumor tissue were analysed by immunohistochemistry for the relationshiop between the expression and migration of liver stem cells.Furthermore, hepatic stem cells were injected via the portal vein, hepatic artery, caudal vein, or directly into the pericancerous liver tissue, respectively, and effects on migration, localization, and proliferation of the hepatic stem cells within the tumor tissue were observed and analyzed.RESULTS: Recombinant adenovirus could deliver the EGFP gene to hepatic stem cells. A new stem cell line,named WB-EGFP, was established that stably expressed EGFP. WB-EGFP cells still showed selective tropism towards HCC and EGFP expression was stable in vivo.According to immunohistochemistry results, SDF-1 may not be related to the mechanisms of tropism of hepatic stem cells. Different application sites affected the distribution of liver stem cells. Injection via the portal vein was superior with regard to selective migration,localization, and proliferation of the hepatic stem cells within the tumor tissue.CONCLUSION: Liver stem cells have the biological behavior of selective migration to HCC in vivo and they could localize and proliferate within HCC tissue stably expressing the target gene. Liver stem cells are a potential tool for a targeted

  20. Using a co-culture microsystem for cell migration under fluid shear stress.

    Science.gov (United States)

    Yeh, Chia-Hsien; Tsai, Shen-Hsing; Wu, Li-Wha; Lin, Yu-Cheng

    2011-08-01

    We have successfully developed a microsystem to co-cultivate two types of cells with a minimum defined gap of 50 μm, and to quantitatively study the impact of fluid shear stress on the mutual influence of cell migration velocity and distance. We used the hydrostatic pressure to seed two different cells, endothelial cells (ECs) and smooth muscle cells (SMCs), on opposite sides of various gap sizes (500 μm, 200 μm, 100 μm, and 50 μm). After cultivating the cells for 12 h and peeling the co-culture microchip from the culture dish, we studied the impacts of gap size on the migration of either cell type in the absence or presence of fluid shear stress (7 dyne cm(-2) and 12 dyne cm(-2)) influence. We found that both gap size and shear stress have profound influence on cell migration. Smaller gap sizes (100 μm and 50 μm) significantly enhanced cell migration, suggesting a requirement of an effective concentration of released factor(s) by either cell type in the gap region. Flow-induced shear stress delayed the migration onset of either cell type in a dose-dependent manner regardless of the gap size. Moreover, shear stress-induced decrease of cell migration becomes evident when the gap size was 500 μm. We have developed a co-culture microsystem for two kinds of cells and overcome the conventional difficulties in observation and mixed culture, and it would have more application for bio-manipulation and tissue repair engineering.

  1. A model for cell density effect on stress fiber alignment and collective directional migration.

    Science.gov (United States)

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes--including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements--are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement. PMID:26717999

  2. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Science.gov (United States)

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  3. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Mian Wang

    Full Text Available Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa cells and bone marrow derived human mesenchymal stem cells (MSCs were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  4. Mechano-sensing and cell migration: a 3D model approach

    International Nuclear Information System (INIS)

    Cell migration is essential for tissue development in different physiological and pathological conditions. It is a complex process orchestrated by chemistry, biological factors, microstructure and surrounding mechanical properties. Focusing on the mechanical interactions, cells do not only exert forces on the matrix that surrounds them, but they also sense and react to mechanical cues in a process called mechano-sensing. Here, we hypothesize the involvement of mechano-sensing in the regulation of directional cell migration through a three-dimensional (3D) matrix. For this purpose, we develop a 3D numerical model of individual cell migration, which incorporates the mechano-sensing process of the cell as the main mechanism regulating its movement. Consistent with this hypothesis, we found that factors, such as substrate stiffness, boundary conditions and external forces, regulate specific and distinct cell movements

  5. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    Science.gov (United States)

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  6. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues.

    Science.gov (United States)

    Bordeleau, Francois; Reinhart-King, Cynthia A

    2016-01-01

    There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors. PMID:27508074

  7. Effects of osthole on migration and invasion in breast cancer cells.

    Science.gov (United States)

    Yang, Dapeng; Gu, Tianwei; Wang, Ting; Tang, Qingjiu; Ma, Changyan

    2010-01-01

    Osthole, a natural coumarin derivative, is extracted from the fruit of Cnidium monnieri Cusson. Breast cancer is one of the most commonly diagnosed cancers and the leading cause of death in women. Recent studies have shown that Osthole has anti-tumor activity. However, the effects of Osthole on the migration and invasion of cancer cells have not yet been reported. Here, we found that Osthole is effective in inhibiting the migration and invasion of breast cancer cells by wound healing and transwell assays. Luciferase and zymography assays revealed that Osthole effectively inhibits matrix metalloproteinase-2 promoter and enzyme activity, which might be one of the causes that lead to the inhibition of migration and invasion by Osthole. This is the first report on the inhibitory function of Osthole in migration and invasion in breast cancer cells. Our findings indicate a need for further evaluation of Osthole in breast cancer chemotherapy and chemoprevention. PMID:20622464

  8. The migration of human lens epithelial cells induced by UV-irradiation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jin Yao; Guoxing Yuan; Yuan Liu; Yi Shen; Qin Jiang

    2008-01-01

    Objective: Ultraviolet (UV) radiation is one of the important cataract risk factors. However, the pathogenesis is still poorly understood.The migration of human lens epithelial cells(HLECs) plays a crucial role in the remodeling of lens capsule and cataract formation. The purpose of this study is to investigate the mechanism of UV inducing cataractogenesis. Methods:The toxicity of UV-irradiation on HLECs was assessed by Methyl thiazolyl tetrazolium(MTT) assay. The activity of matrix metalloproteinase-2(MMP-2) was observed by Gelatin zymography. The migration of HLECs was examined by Cell Track Motility. Results:UV-irradiation does great harm to HLECs, and may induce apoptosis in the cells when UV higher than 15 mj/cm2. UV significantly increased MMP-2 activity in a timedependent manner. In addition, the irradiation could induce the migration of HLECs. Conclusion:UV-irradiation could induce the migration of HLECs by increasing the activity of MMP-2.

  9. Rat monocyte-derived dendritic cells function and migrate in the same way as isolated tissue dendritic cells.

    Science.gov (United States)

    Richters, C D; Mayen, I; Havenith, C E G; Beelen, R H J; Kamperdijk, E W A

    2002-04-01

    Dendritic cells (DC) are the most potent antigen-presenting cells and are therefore useful to induce immune responses against tumor cells in patients. DC can be generated in vitro from monocytes using GM-CSF and IL-4, the so-called monocyte-derived DC (MoDC). To achieve antitumor responses, MoDC must be able to migrate to the draining lymph nodes after injection to induce cytotoxic T cells. Therefore, we studied migration of MoDC in a rat model. Functional rat MoDC were generated from PVG-RT7B rats and injected subcutaneously into PVG rats. These rat strains differ only at one epitope of the leukocyte-common antigen, which can be recognized by the antibody His 41. The advantage is that migrated cells can be detected in the draining lymph nodes by staining sections with His 41+; thus, migration is not influenced by labeling procedures. Rat MoDC migrated to the T-cell areas of the draining lymph nodes, just as isolated Langerhans cells or spleen DC do. In contrast, monocytes also migrated to the B-cell areas and the medulla. PMID:11927643

  10. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis.

    Science.gov (United States)

    Kim, Ki Mo; Im, A-Rang; Kim, Seung Hyung; Hyun, Jin Won; Chae, Sungwook

    2016-02-01

    Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2, and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors.

  11. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    Science.gov (United States)

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.

  12. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  13. Cell migration is another player of the minute virus of mice infection

    Energy Technology Data Exchange (ETDEWEB)

    Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2014-11-15

    The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edge of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication.

  14. Cell migration is another player of the minute virus of mice infection

    International Nuclear Information System (INIS)

    The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edge of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication

  15. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries

    Science.gov (United States)

    McArdle, Sara; Chodaczek, Grzegorz; Ray, Nilanjan; Ley, Klaus

    2015-02-01

    Intravital multiphoton imaging of arteries is technically challenging because the artery expands with every heartbeat, causing severe motion artifacts. To study leukocyte activity in atherosclerosis, we developed the intravital live cell triggered imaging system (ILTIS). This system implements cardiac triggered acquisition as well as frame selection and image registration algorithms to produce stable movies of myeloid cell movement in atherosclerotic arteries in live mice. To minimize tissue damage, no mechanical stabilization is used and the artery is allowed to expand freely. ILTIS performs multicolor high frame-rate two-dimensional imaging and full-thickness three-dimensional imaging of beating arteries in live mice. The external carotid artery and its branches (superior thyroid and ascending pharyngeal arteries) were developed as a surgically accessible and reliable model of atherosclerosis. We use ILTIS to demonstrate Cx3cr1GFP monocytes patrolling the lumen of atherosclerotic arteries. Additionally, we developed a new reporter mouse (Apoe-/-Cx3cr1GFP/+Cd11cYFP) to image GFP+ and GFP+YFP+ macrophages "dancing on the spot" and YFP+ macrophages migrating within intimal plaque. ILTIS will be helpful to answer pertinent open questions in the field, including monocyte recruitment and transmigration, macrophage and dendritic cell activity, and motion of other immune cells.

  16. Temporal plasticity in thermal-habitat selection of burbot Lota lota a diel-migrating winter-specialist.

    Science.gov (United States)

    Harrison, P M; Gutowsky, L F G; Martins, E G; Patterson, D A; Cooke, S J; Power, M

    2016-06-01

    In this study, animal-borne telemetry with temperature sensors was coupled with extensive habitat temperature monitoring in a dimictic reservoir, to test the following hypotheses: behavioural thermoregulation occurs throughout the year and temperature selection varies on a diel and seasonal basis, in a winter-specialist diel-migrating fish. Burbot Lota lota demonstrated nightly behavioural thermoregulation throughout the year, with a large seasonal shift between selection for very cold temperatures (hunting and feeding during non-reproductive periods. During daylight hours, while L. lota avoided habitats warmer than optimal for reproduction and feeding during the spawning and non-reproductive periods, respectively, active selection was limited to selection for 4-6° C habitat during the prespawning period. Although behavioural thermoregulation explained the night-time migration, behavioural thermoregulation only partially explained daytime behaviour, indicating that diel migration is best explained by a combination of factors. Thus, thermal-habitat selection was a good predictor of night-time habitat occupancy in a diel-migrating species. Together, these results show that thermal-habitat selection by fishes may be important throughout the year and a more seasonally plastic behaviour than previously recognized. PMID:27125426

  17. The SHIP2 interactor Myo1c is required for cell migration in 1321 N1 glioblastoma cells.

    Science.gov (United States)

    Edimo, William's Elong; Ramos, Ana Raquel; Ghosh, Somadri; Vanderwinden, Jean-Marie; Erneux, Christophe

    2016-08-01

    The phosphoinositide 5-phosphatases consist of several enzymes that have been shown to modulate cell migration and invasion. SHIP2, one family member, is known to interact with growth factor receptors and cytoskeletal proteins. In a human model of glioblastoma 1321 N1 cells, we recently identified Myo1c as a new interactor of SHIP2. This was shown in a complex of proteins also containing filamin A. We show here that SHIP2 localization at lamellipodia and ruffles is impaired in Myo1c depleted cells. In the absence of Myo1c, N1 cells tend to associate to form clusters. Cell migration is very much reduced in Myo1c depleted cells, concomitantly with a decrease in FAK Tyr397 phosphorylation, focal adhesion length and PI(4,5)P2 immunostaining. In N1 cells, Myo1c is thus important for lamellipodia formation to assemble a protein complex containing SHIP2 to facilitate cell migration. PMID:27246739

  18. Directed Migration of Pulmonary Neuroendocrine Cells toward Airway Branches Organizes the Stereotypic Location of Neuroepithelial Bodies

    Directory of Open Access Journals (Sweden)

    Masafumi Noguchi

    2015-12-01

    Full Text Available The airway epithelium consists of diverse cell types, including neuroendocrine (NE cells. These cells are thought to function as chemoreceptors and as a component of the stem cell niche as well as the cells of origin in small-cell lung cancer. NE cells often localize at bifurcation points of airway tubes, forming small clusters called neuroepithelial bodies (NEBs. To investigate NEB development, we established methods for 3D mapping and ex vivo 4D imaging of developing lungs. We found that NEBs localize at stereotypic positions in the bifurcation area irrespective of variations in size. Notch-Hes1 signaling contributes to the differentiation of solitary NE cells, regulating their number but not localization. Live imaging revealed that individual NE cells migrate distally to and cluster at bifurcation points, driving NEB formation. We propose that NEB development is a multistep process involving differentiation of individual NE cells and their directional migration to organize NEBs.

  19. Inhibition of Pim-1 attenuates the proliferation and migration in nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Wei Jie; Qi-Yi He; Bo-Tao Luo; Shao-Jiang Zheng; Yue-Qiong Kong; Han-Guo Jiang; Ru-Jia Li; Jun-Li Guo; Zhi-Hua Shen

    2012-01-01

    Objective:To explore the role of proto-oncogenePim-1 in the proliferation and migration of nasopharyngeal carcinoma(NPC) cells.Methods:Pim-1 expressions inNPC cell lines CNE1,CNE1-GL,CNE-2Z andC666-1 were examined byRT-PCR, western blotting and immunoflucesence, respectively.AfterCNE1,CNE1-GL andC666-1 cells were treated with different concentrations ofPim-1 special inhibitor, quercetagetin, the cell viability, colony formation rate and migration ability were analyzed.Results:Pim-1 expression was negative in well-differentiatedCNE1 cells, whereas expressed weakly positive in poor-differentiated CNE-2Z cells and strongly positive in undifferentiatedC666-1 cells.Interestingly,CNE1-GL cells that derived fromCNE1 transfected with anEpsteinBarr virus latent membrane protein-1 over-expression plasmid displayed stronger expression ofPim-1.Treatment ofCNE1-GL and C666-1 cells with quercetagetin significantly decreased the cell viability, colony formation rate and migration ability but not theCNE1 cells.Conclusions:These findings suggest thatPim-1 overexpression contributes toNPC proliferation and migration, and targetingPim-1 may be a potential treatment for anti-Pim-1-expressedNPCs.

  20. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    Science.gov (United States)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039. PMID:27145382

  1. Effect of γ-ray irradiation on migration of pulmonary adenocarcinoma cells and its mechanism

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of radiation on the migration of the pulmonary adenocarcinoma cell line, A549, and the mechanism involved in this process. Methods: Migration of A549 cells irradiated with 2 and 4 Gy doses of γ-ray was detected using wound healing assay. The level of STAT3 and phosphorylated STAT3 was detected by Western blot. The distribution of p-STAT3 (Y705) in A549 cells was examined by immunofluorescence staining. Finally, the secretion of IL-6 by cultured A549 cells was detected by ELISA. Results: The migration of A549 cells was significantly enhanced by γ-ray radiation at dose levels of either 2 or 4 Gy. Furthermore, radiation was found to activate the phosphorylation of STAT3 and promote the nucleus localization of STAT3. The result of ELISA showed that the secretion of IL-6 increased after 2 or 4 Gy doses of γ-ray. AG490, a special inhibitor of JAK-2, suppressed the radiation-induced phosphorylation of STAT3 and migration of A549 cells. Conclusion: Our results indicated that radiation results in the activation of JAK-2/STAT3 pathway, which triggers the migration of A549 cells. It is possible that the IL-6 is involved in the radiation-induced activation of JAK-2/STAT3 pathway. (authors)

  2. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    Science.gov (United States)

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  3. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets

    Science.gov (United States)

    Molino, D.; Quignard, S.; Gruget, C.; Pincet, F.; Chen, Y.; Piel, M.; Fattaccioli, J.

    2016-07-01

    The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.

  4. Independent regulation of tumor cell migration by matrix stiffness and confinement

    Science.gov (United States)

    Pathak, Amit; Kumar, Sanjay

    2012-01-01

    Tumor invasion and metastasis are strongly regulated by biophysical interactions between tumor cells and the extracellular matrix (ECM). While the influence of ECM stiffness on cell migration, adhesion, and contractility has been extensively studied in 2D culture, extension of this concept to 3D cultures that more closely resemble tissue has proven challenging, because perturbations that change matrix stiffness often concurrently change cellular confinement. This coupling is particularly problematic given that matrix-imposed steric barriers can regulate invasion speed independent of mechanics. Here we introduce a matrix platform based on microfabrication of channels of defined wall stiffness and geometry that allows independent variation of ECM stiffness and channel width. For a given ECM stiffness, cells confined to narrow channels surprisingly migrate faster than cells in wide channels or on unconstrained 2D surfaces, which we attribute to increased polarization of cell-ECM traction forces. Confinement also enables cells to migrate increasingly rapidly as ECM stiffness rises, in contrast with the biphasic relationship observed on unconfined ECMs. Inhibition of nonmuscle myosin II dissipates this traction polarization and renders the relationship between migration speed and ECM stiffness comparatively insensitive to matrix confinement. We test these hypotheses in silico by devising a multiscale mathematical model that relates cellular force generation to ECM stiffness and geometry, which we show is capable of recapitulating key experimental trends. These studies represent a paradigm for investigating matrix regulation of invasion and demonstrate that matrix confinement alters the relationship between cell migration speed and ECM stiffness. PMID:22689955

  5. The Migration of Cancer Cells in Gradually Varying Chemical Gradients and Mechanical Constraints

    Directory of Open Access Journals (Sweden)

    Smitha M. N. Rao

    2014-01-01

    Full Text Available We report a novel approach to study cell migration under physical stresses by utilizing established growth factor chemotaxis. This was achieved by studying cell migration in response to epidermal growth factor (EGF chemoattraction in a gradually tapered space, imposing mechanical stresses. The device consisted of two 5-mm-diameter chambers connected by ten 600 µm-long and 10 µm-high tapered microchannels. The taper region gradually changes the width of the channel. The channels tapered from 20 µm to 5 µm over a transition length of 50 µm at a distance of 250 µm from one of the chambers. The chemoattractant drove cell migration into the narrow confines of the tapered channels, while the mechanical gradient clearly altered the migration of cells. Cells traversing the channels from the wider to narrow-end and vice versa were observed using time-lapsed imaging. Our results indicated that the impact of physical stress on cell migration patterns may be cell type specific.

  6. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets

    Science.gov (United States)

    Molino, D.; Quignard, S.; Gruget, C.; Pincet, F.; Chen, Y.; Piel, M.; Fattaccioli, J.

    2016-01-01

    The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement. PMID:27373558

  7. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    Science.gov (United States)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  8. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina.

    Science.gov (United States)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-01-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment. PMID:26935401

  9. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    OpenAIRE

    Naghmeh Ahmadiankia; Hamid Kalalian Moghaddam; Mohammad Amir Mishan; Ahmad Reza Bahrami; Hojjat Naderi-Meshkin; Hamid Reza Bidkhori; Maryam Moghaddam; Seyed Jamal Aldin Mirfeyzi

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chem...

  10. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  11. Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio embryos.

    Directory of Open Access Journals (Sweden)

    Kwok Hong Lo

    Full Text Available BACKGROUND: As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, the effect of hypoxia on primordial germ cell (PGC migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1, an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration. CONCLUSIONS/SIGNIFICANCE: This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1.

  12. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    International Nuclear Information System (INIS)

    Ezrin is highly expressed in skin cancer and promotes tumor metastasis. Ezrin serves as a promising target for anti-metastasis therapy. The aim of this study is to determine if the flavonoid bacailein inhibits the metastasis of skin cancer cells through Ezrin. Cells from a cutaneous squamous carcinoma cell line, A431, were treated with baicalein at 0-60 μM to establish the non-cytotoxic concentration (NCC) range for baicalein. Following treatment with baicalein within this range, total Ezrin protein (both phosphorylated and unphosphorylated forms) and phosphorylated-Ezrin (phos-Ezrin) were detected by western blotting, and Ezrin RNA was detected in A431 cells using reverse transcription-polymerase chain reaction (RT-PCR). Thereafter, the motility and invasiveness of A431 cells following baicalein treatment were determined using wound-healing and Boyden chamber invasion assays. Short-interfering RNA (si-RNA) specifically targeting Ezrin was transfected into A431 cells, and a si-RNA Ezrin-A431 cell line was established by G418 selection. This stable cell line was transiently transfected with Ezrin and mutant Ezrin plasmids, and its motilityand invasiveness was subsequently determined to clarify whether bacailein inhibits these processes through Ezrin. We determined the range of NCCs for baicalein to be 2.5-40 μM in A431 cells. Baicalein displayed a dose- and time-dependent inhibition of expressions of total Ezrin and phos-Ezrin within this range NCCs. In addition, it exerted this inhibitory effect through the reduction of Ezrin RNA transcript. Baicalein also inhibited the motility and invasiveness of A431 skin carcinoma cells within the range of NCCs, in a dose- and time-dependent manner. A431 cell motility and invasiveness were inhibited by 73% and 80% respectively when cells were treated with 20 μM baicalein. However, the motility and invasiveness of A431 cells containing the Ezrin mutant were not effectively inhibited by baicalein. Baicalein reduces the

  13. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration.

    Science.gov (United States)

    Banerjee, Santanu; Gordon, Laura; Donn, Thomas M; Berti, Caterina; Moens, Cecilia B; Burden, Steven J; Granato, Michael

    2011-08-01

    Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.

  14. Least-squares Migration and Full Waveform Inversion with Multisource Frequency Selection

    KAUST Repository

    Huang, Yunsong

    2013-09-01

    Multisource Least-Squares Migration (LSM) of phase-encoded supergathers has shown great promise in reducing the computational cost of conventional migration. But for the marine acquisition geometry this approach faces the challenge of erroneous misfit due to the mismatch between the limited number of live traces/shot recorded in the field and the pervasive number of traces generated by the finite-difference modeling method. To tackle this mismatch problem, I present a frequency selection strategy with LSM of supergathers. The key idea is, at each LSM iteration, to assign a unique frequency band to each shot gather, so that the spectral overlap among those shots—and therefore their crosstallk—is zero. Consequently, each receiver can unambiguously identify and then discount the superfluous sources—those that are not associated with the receiver in marine acquisition. To compare with standard migration, I apply the proposed method to 2D SEG/EAGE salt model and obtain better resolved images computed at about 1/8 the cost; results for 3D SEG/EAGE salt model, with Ocean Bottom Seismometer (OBS) survey, show a speedup of 40×. This strategy is next extended to multisource Full Waveform Inversion (FWI) of supergathers for marine streamer data, with the same advantages of computational efficiency and storage savings. In the Finite-Difference Time-Domain (FDTD) method, to mitigate spectral leakage due to delayed onsets of sine waves detected at receivers, I double the simulation time and retain only the second half of the simulated records. To compare with standard FWI, I apply the proposed method to 2D velocity model of SEG/EAGE salt and to Gulf Of Mexico (GOM) field data, and obtain a speedup of about 4× and 8×. Formulas are then derived for the resolution limits of various constituent wavepaths pertaining to FWI: diving waves, primary reflections, diffractions, and multiple reflections. They suggest that inverting multiples can provide some low and intermediate

  15. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Shun-Yao Ko

    Full Text Available Advanced glycation end products (AGEs are produced in an irreversible non-enzymatic reaction of carbohydrates and proteins. Patients with diabetes mellitus (DM are known to have elevated AGE levels, which is viewed as a risk factor of diabetes-related complications. In a clinical setting, it has been shown that patients with oral cancer in conjunction with DM have a higher likelihood of cancer metastasis and lower cancer survival rates. AGE-RAGE (a receptor of AGEs is also correlated with metastasis and angiogenesis. Recent studies have suggested that the malignancy of cancer may be enhanced by glyceraldehyde-derived AGEs; however, the underlying mechanism remains unclear. This study examined the apparently close correlation between AGE-RAGE and the malignancy of SAS oral cancer cell line. In this study, AGEs increased ERK phosphorylation, enhanced cell migration, and promoted the expression of RAGE, MMP2, and MMP9. Using PD98059, RAGE antibody, and RAGE RNAi to block RAGE pathway resulted in the inhibition of ERK phosphorylation. Cell migration, MMP2 and MMP9 expression were also reduced by this treatment. Our findings demonstrate the importance of AGE-RAGE with regard to the malignancy of oral cancer, and help to explain the poor prognosis of DM subjects with oral cancer.

  16. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  17. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  18. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    OpenAIRE

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubul...

  19. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes.

    Directory of Open Access Journals (Sweden)

    Ikjoo Seong

    Full Text Available It is believed that the inherent differentiation program of melanocytes during embryogenesis predisposes melanoma cells to high frequency of metastasis. Sox10, a transcription factor expressed in neural crest stem cells and a subset of progeny lineages, plays a key role in the development of melanocytes. We show that B16F10 melanoma cells transfected with siRNAs specific for Sox10 display reduced migratory activity which in turn indicated that a subset of transcriptional regulatory target genes of Sox10 is likely to be involved in migration and metastasis of melanoma cells. We carried out a microarray-based gene expression profiling using a Sox10-specific siRNA to identify relevant regulatory targets and found that multiple genes including melanocortin-1 receptor (Mc1r partake in the regulation of migration. We provide evidences that the effect of Sox10 on migration is mediated in large part by Mitf, a transcription factor downstream to Sox10. Among the mouse melanoma cell lines examined, however, only B16F10 showed robust down-regulation of Sox10 and inhibition of cell migration indicating that further dissection of dosage effects and/or cell line-specific regulatory networks is necessary. The involvement of Mc1r in migration was studied in detail in vivo using a murine metastasis model. Specifically, B16F10 melanoma cells treated with a specific siRNA showed reduced tendency in metastasizing to and colonizing the lung after being injected in the tail vein. These data reveal a cadre of novel regulators and mediators involved in migration and metastasis of melanoma cells that represents potential targets of therapeutic intervention.

  20. Annexin A6 and Late Endosomal Cholesterol Modulate Integrin Recycling and Cell Migration.

    Science.gov (United States)

    García-Melero, Ana; Reverter, Meritxell; Hoque, Monira; Meneses-Salas, Elsa; Koese, Meryem; Conway, James R W; Johnsen, Camilla H; Alvarez-Guaita, Anna; Morales-Paytuvi, Frederic; Elmaghrabi, Yasmin A; Pol, Albert; Tebar, Francesc; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas; Rentero, Carles

    2016-01-15

    Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN). Because FN is directly linked to the ability of cells to migrate, this prompted us to investigate the role of AnxA6 in cell migration. Up-regulation of AnxA6 in several cell models was associated with reduced cell migration in wound healing, individual cell tracking and three-dimensional migration/invasion assays. The reduced ability of AnxA6-expressing cells to migrate was associated with decreased cell surface expression of αVβ3 and α5β1 integrins, both FN receptors. Mechanistically, we found that elevated AnxA6 levels interfered with syntaxin-6 (Stx6)-dependent recycling of integrins to the cell surface. AnxA6 overexpression caused mislocalization and accumulation of Stx6 and integrins in recycling endosomes, whereas siRNA-mediated AnxA6 knockdown did not modify the trafficking of integrins. Given our recent findings that inhibition of cholesterol export from late endosomes (LEs) inhibits Stx6-dependent integrin recycling and that elevated AnxA6 levels cause LE cholesterol accumulation, we propose that AnxA6 and blockage of LE cholesterol transport are critical for endosomal function required for Stx6-mediated recycling of integrins in cell migration.

  1. Advanced Glycation End-Products Enhance Lung Cancer Cell Invasion and Migration

    Science.gov (United States)

    Hsia, Te-Chun; Yin, Mei-Chin; Mong, Mei-Chin

    2016-01-01

    Effects of carboxymethyllysine (CML) and pentosidine, two advanced glycation end-products (AGEs), upon invasion and migration in A549 and Calu-6 cells, two non-small cell lung cancer (NSCLC) cell lines were examined. CML or pentosidine at 1, 2, 4, 8 or 16 μmol/L were added into cells. Proliferation, invasion and migration were measured. CML or pentosidine at 4–16 μmol/L promoted invasion and migration in both cell lines, and increased the production of reactive oxygen species, tumor necrosis factor-α, interleukin-6 and transforming growth factor-β1. CML or pentosidine at 2–16 μmol/L up-regulated the protein expression of AGE receptor, p47phox, intercellular adhesion molecule-1 and fibronectin in test NSCLC cells. Matrix metalloproteinase-2 protein expression in A549 and Calu-6 cells was increased by CML or pentosidine at 4–16 μmol/L. These two AGEs at 2–16 μmol/L enhanced nuclear factor κ-B (NF-κ B) p65 protein expression and p38 phosphorylation in A549 cells. However, CML or pentosidine at 4–16 μmol/L up-regulated NF-κB p65 and p-p38 protein expression in Calu-6 cells. These findings suggest that CML and pentosidine, by promoting the invasion, migration and production of associated factors, benefit NSCLC metastasis. PMID:27517907

  2. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  3. AAMP Regulates Endothelial Cell Migration and Angiogenesis Through RhoA/Rho Kinase Signaling.

    Science.gov (United States)

    Hu, Jianjun; Qiu, Juhui; Zheng, Yiming; Zhang, Tao; Yin, Tieying; Xie, Xiang; Wang, Guixue

    2016-05-01

    Angiogenesis is a complicated process including endothelial cell proliferation, migration and tube formation. AAMP plays a role in regulating cell migration of multiple cell types. The purpose of this study was to investigate whether AAMP regulates angiogenesis, and to clarify the role of AAMP in the VEGF-induced angiogenesis. We found that AAMP expressed in multiple cell types and mainly localized in cytoplasm and membrane in vascular endothelial cells. Using tube formation assay in vitro and aortic ring assay, siRNA-mediated knockdown and antibody blockade of AAMP impaired VEGF-induced endothelial cell tube formation and aortic ring angiogenic sprouting. Mechanistic studies showed that AAMP expression was significantly upregulated by VEGF in a concentration and time-dependent manner. Moreover, VEGF recruited AAMP to the cell membrane protrusions. AAMP regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. AAMP knock-down reduced VEGF-induced actin stress fibers and collagen gel contraction. Furthermore, we identified RhoA/Rho kinase signaling as an important factor that contributes to the action of AAMP in regulating endothelial cell migration and angiogenesis. Altogether, these data demonstrated the critical role of AAMP in angiogenesis and suggested blocking AAMP could serve as a potential therapeutic strategy for angiogenesis-related diseases. PMID:26350504

  4. Gβγ subunits inhibit Epac-induced melanoma cell migration

    Directory of Open Access Journals (Sweden)

    Goydos James S

    2011-06-01

    Full Text Available Abstract Background Recently we reported that activation of Epac1, an exchange protein activated by cAMP, increases melanoma cell migration via Ca 2+ release from the endoplasmic reticulum (ER. G-protein βγ subunits (Gβγ are known to act as an independent signaling molecule upon activation of G-protein coupled receptor. However, the role of Gβγ in cell migration and Ca 2+ signaling in melanoma has not been well studied. Here we report that there is crosstalk of Ca 2+ signaling between Gβγ and Epac in melanoma, which plays a role in regulation of cell migration. Methods SK-Mel-2 cells, a human metastatic melanoma cell line, were mainly used in this study. Intracellular Ca 2+ was measured with Fluo-4AM fluorescent dyes. Cell migration was examined using the Boyden chambers. Results The effect of Gβγ on Epac-induced cell migration was first examined. Epac-induced cell migration was inhibited by mSIRK, a Gβγ -activating peptide, but not its inactive analog, L9A, in SK-Mel-2 cells. Guanosine 5', α-β-methylene triphosphate (Gp(CH2pp, a constitutively active GTP analogue that activates Gβγ, also inhibited Epac-induced cell migration. In addition, co-overexpression of β1 and γ2, which is the major combination of Gβγ, inhibited Epac1-induced cell migration. By contrast, when the C-terminus of β adrenergic receptor kinase (βARK-CT, an endogenous inhibitor for Gβγ, was overexpressed, mSIRK's inhibitory effect on Epac-induced cell migration was negated, suggesting the specificity of mSIRK for Gβγ. We next examined the effect of mSIRK on Epac-induced Ca 2+ response. When cells were pretreated with mSIRK, but not with L9A, 8-(4-Methoxyphenylthio-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-pMeOPT, an Epac-specific agonist, failed to increase Ca 2+ signal. Co-overexpression of β1 and γ2 subunits inhibited 8-pMeOPT-induced Ca 2+ elevation. Inhibition of Gβγ with βARK-CT or guanosine 5'-O-(2-thiodiphosphate (GDPβS, a GDP

  5. A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration.

    Science.gov (United States)

    van de Ven, Rieneke; Scheffer, George L; Reurs, Anneke W; Lindenberg, Jelle J; Oerlemans, Ruud; Jansen, Gerrit; Gillet, Jean-Pierre; Glasgow, Joel N; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2008-09-15

    The capacity of dendritic cells (DCs) to migrate from peripheral organs to lymph nodes (LNs) is important in the initiation of a T cell-mediated immune response. The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; ABCB1) and the multidrug resistance protein 1 (MRP1; ABCC1) have been shown to play a role in both human and murine DC migration. Here we show that a more recently discovered family member, MRP4 (ABCC4), is expressed on both epidermal and dermal human skin DCs and contributes to the migratory capacity of DCs. Pharmacological inhibition of MRP4 activity or down-regulation through RNAi in DCs resulted in reduced migration of DCs from human skin explants and of in vitro generated Langerhans cells. The responsible MRP4 substrate remains to be identified as exogenous addition of MRP4's known substrates prostaglandin E(2), leukotriene B(4) and D(4), or cyclic nucleotides (all previously implicated in DC migration) could not restore migration. This notwithstanding, our data show that MRP4 is an important protein, significantly contributing to human DC migration toward the draining lymph nodes, and therefore relevant for the initiation of an immune response and a possible target for immunotherapy.

  6. Saltatory formation, sliding and dissolution of ER–PM junctions in migrating cancer cells

    OpenAIRE

    Dingsdale, Hayley; Okeke, Emmanuel; Awais, Muhammad; Haynes, Lee; Criddle, David N.; Sutton, Robert; Tepikin, Alexei V.

    2013-01-01

    We demonstrated three novel forms of dynamic behaviour of junctions between the ER (endoplasmic reticulum) and the PM (plasma membrane) in migrating cancer cells: saltatory formation, long-distance sliding and dissolution. The individual ER–PM junctions formed near the leading edge of migrating cells (usually within 0.5 μm of polymerized actin and close to focal adhesions) and appeared suddenly without sliding from the interior of the cell. The long distance sliding and dissolution of ER–PM j...

  7. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Rui BAI; Zhong SHI; Jia-wei ZHANG; Dan LI; Yong-liang ZHU; Shu ZHENG

    2012-01-01

    Background and objective:ST13,is the gene encoding the HSP70 interacting protein (HIP).Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues.This study aims at the role of ST13 in the proliferation and migration of CRC cells.Methods:The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction,followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay,plate colony formation,cell-cycle analysis,and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro.Moreover,a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells.Results:Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation,colony formation,and cell migration in vitro.In contrast,down-regulation of ST13 by lentiviralbased short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro.In addition,down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo.Conclusions:ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.

  8. Optimizing micropattern geometries for cell shape and migration with genetic algorithms.

    Science.gov (United States)

    Albert, Philipp J; Schwarz, Ulrich S

    2016-07-11

    Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture. However, the variety of possible patterns is infinitely large and experiments often restrict themselves to established designs. Here we suggest a systematic method to establish novel micropatterns for desired functions using genetic algorithms. The evolutionary fitness of a certain pattern is computed using a cellular Potts model that describes cell behavior on micropattern. We first predict optimal patterns for a desired cell shape. We then optimize ratchet geometries to bias cell migration in a certain direction and find that asymmetric triangles are superior over the symmetric ones often used in experiments. Finally we design geometries which reverse the migration direction of cells when cell density increases due to cell division. PMID:27334659

  9. Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF

    Science.gov (United States)

    Sukhova, Anna A.; Sagaradze, George D.; Albert, Eugene A.; Ageeva, Ludmila V.; Sharonov, George V.; Tkachuk, Vsevolod A.

    2016-01-01

    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt. PMID:27110716

  10. Trefoil factor 3 peptide regulates migration via a Twist-dependent pathway in gastric cell.

    Science.gov (United States)

    Zheng, Qianqian; Gao, Jian; Li, Honglin; Guo, Wendong; Mao, Qi; Gao, Enhui; Zhu, Ya-qin

    2013-08-16

    Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.

  11. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  12. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E;

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986...... in vivo exhibited a marked cytoplasmic immunoreactivity for the receptor antigen. Together these findings indicate a specific role for the laminin receptor in laminin-mediated migration and that the ligand binding of the laminin receptor is encompassed in the COOH-terminal end of the protein....

  13. Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway*

    OpenAIRE

    Qin, Li; Zhang, Ming

    2010-01-01

    Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the ac...

  14. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo

    DEFF Research Database (Denmark)

    Luckashenak, Nancy; Wähe, Anna; Breit, Katharina;

    2013-01-01

    Epidermal Langerhans cells (LCs) of the skin represent the prototype migratory dendritic cell (DC) subtype. In the skin, they take up Ag, migrate to the draining lymph nodes, and contribute to Ag transport and immunity. Different depletion models for LCs have revealed contrasting roles and contri...

  15. Cell-stiffness-induced mechanosignaling - a key driver of leukocyte transendothelial migration

    NARCIS (Netherlands)

    A. Schaefer; P.L. Hordijk

    2015-01-01

    The breaching of cellular and structural barriers by migrating cells is a driving factor in development, inflammation and tumor cell metastasis. One of the most extensively studied examples is the extravasation of activated leukocytes across the vascular endothelium, the inner lining of blood vessel

  16. In-chip fabrication of free-form 3D constructs for directed cell migration analysis

    DEFF Research Database (Denmark)

    Olsen, Mark Holm; Hjortø, Gertrud Malene; Hansen, Morten;

    2013-01-01

    with a range of pore sizes from 5 × 5 μm to 15 × 15 μm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8 × 8 μm or larger. The cells migrating...

  17. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  18. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration.

    Directory of Open Access Journals (Sweden)

    Yanli Ma

    Full Text Available Aflatoxin B1 (AFB1 is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.

  19. Tubular Bridges for Bronchial Epithelial Cell Migration and Communication

    OpenAIRE

    Zani, Brett G.; Laura Indolfi; Edelman, Elazer R.

    2010-01-01

    BACKGROUND: Biological processes from embryogenesis to tumorigenesis rely on the coordinated coalescence of cells and synchronized cell-to-cell communication. Intercellular signaling enables cell masses to communicate through endocrine pathways at a distance or by direct contact over shorter dimensions. Cellular bridges, the longest direct connections between cells, facilitate transfer of cellular signals and components over hundreds of microns in vitro and in vivo. METHODOLOGY/PRINCIPAL FIND...

  20. Migration within China and from China to the USA: The effects of migration networks, selectivity, and the rural political economy in Fujian Province

    OpenAIRE

    Liang, Zai; Chunyu, Miao David

    2013-01-01

    This paper tests a new strategy to study domestic and international migration from China simultaneously. Our theoretical discussion draws on ideas from migration networks theory and the market transition debate. Data collection is modeled on the Mexican Migration Project. We find that education is more important in the initiation of internal migration than international migration. Second, although there is consistent evidence regarding the role of migration networks at a community level, migr...

  1. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells

    International Nuclear Information System (INIS)

    Oral squamous cell carcinoma is an aggressive neoplasm with serious morbidity and mortality, which typically spreads through local invasive growth. Lysophosphatidic acid (LPA) is involved in a number of biological processes, and may have a role in cancer cell migration and invasiveness. LPA is present in most tissues and can activate cells through six different LPA receptors (LPAR1-6). Although LPA is predominantly promigratory, some of the receptors may have antimigratory effects in certain cells. The signalling mechanisms of LPA are not fully understood, and in oral carcinoma cells the specific receptors and pathways involved in LPA-stimulated migration are unknown. The oral carcinoma cell lines E10, SCC-9, and D2 were investigated. Cell migration was studied in a scratch wound assay, and invasion was demonstrated in organotypic three dimensional co-cultures. Protein and mRNA expression of LPA receptors was studied with Western blotting and qRT-PCR. Activation of signalling proteins was examined with Western blotting and isoelectric focusing, and signalling mechanisms were further explored using pharmacological agents and siRNA directed at specific receptors and pathways. LPA stimulated cell migration in the two oral carcinoma cell lines E10 and SCC-9, but was slightly inhibitory in D2. The receptor expression profile and the effects of specific pharmacological antagonist and agonists indicated that LPA-stimulated cell migration was mediated through LPAR3 in E10 and SCC-9. Furthermore, in both these cell lines, the stimulation by LPA was dependent on PKC activity. However, while LPA induced transactivation of EGFR and the stimulated migration was blocked by EGFR inhibitors in E10 cells, LPA did not induce EGFR transactivation in SCC-9 cells. In D2 cells, LPA induced EGFR transactivation, but this was associated with slowing of a very high inherent migration rate in these cells. The results demonstrate LPA-stimulated migration in oral carcinoma cells through LPAR3

  2. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF.

    Science.gov (United States)

    Yoshida, Tatsushi; Tsujioka, Masatsune; Honda, Shinya; Tanaka, Masato; Shimizu, Shigeomi

    2016-06-01

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1.

  3. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF

    Science.gov (United States)

    Tanaka, Masato; Shimizu, Shigeomi

    2016-01-01

    Cell migration is a process crucial for a variety of biological events, such as morphogenesis and wound healing. Several reports have described the possible regulation of cell migration by autophagy; however, this remains controversial. We here demonstrate that mouse embryonic fibroblasts (MEFs) lacking autophagy protein 5 (Atg5), an essential molecule of autophagy, moved faster than wild-type (WT) MEFs. Similar results were obtained for MEFs lacking Atg7 and unc-51-like kinase 1 (Ulk1), which are molecules required for autophagy. This phenotype was also observed in Atg7-deficient macrophages. WT MEFs moved by mesenchymal-type migration, whereas Atg5 knockout (KO) MEFs moved by amoeba-like migration. This difference was thought to be mediated by the level of RhoA activity, because Atg5 KO MEFs had higher RhoA activity, and treatment with a RhoA inhibitor altered Atg5 KO MEF migration from the amoeba type to the mesenchymal type. Autophagic regulation of RhoA activity was dependent on GEF-H1, a member of the RhoA family of guanine nucleotide exchange factors. In WT MEFs, GEF-H1 directly bound to p62 and was degraded by autophagy, resulting in low RhoA activity. In contrast, the loss of autophagy increased GEF-H1 levels and thereby activated RhoA, which caused cells to move by amoeba-like migration. This amoeba-like migration was cancelled by the silencing of GEF-H1. These results indicate that autophagy plays a role in the regulation of migration by degrading GEF-H1. PMID:27120804

  4. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  5. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  6. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    Science.gov (United States)

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  7. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    Science.gov (United States)

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  8. Lipocalin-2-induced cytokine production enhances endometrial carcinoma cell survival and migration

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin, Chi-Jr Liao, Ying-Chu Lee, Keng-Hsun Hu, Hsien-Wei Meng, Sin-Tak Chu

    2011-01-01

    Full Text Available Lipocalin-2 (Lcn-2 is an acute-phase protein that has been implicated in diverse physiological processes in mice, including: apoptosis, ion transport, inflammation, cell survival, and tumorigenesis. This study characterized the biological activity of Lcn-2 in human endometrial carcinoma cells (RL95-2. Exposure of RL95-2 cells to Lcn-2 for >24 h reduced Lcn-2-induced cell apoptosis, changed the cell proliferation and up-regulated cytokine secretions, including: interleukin-8 (IL-8, inteleukin-6 (IL-6, monocyte chemotatic protein-1 (MCP-1 and growth-related oncogene (GRO. However, IL-8 mRNA and protein levels were dramatically increased in Lcn-2-treated RL95-2 cells. To determine the IL-8 effect on Lcn-2-treated RL95-2 cells was our major focus. Adding recombinant IL-8 (rIL-8 resulted in decreased caspase-3 activity in Lcn-2-treated cells, whereas the addition of IL-8 antibodies resulted in significantly increased caspase-3 activity and decreased cell migration. Data indicate that IL-8 plays a crucial role in the induction of cell migration. Interestingly, Lcn-2-induced cytokines, secretion from RL95-2 cells, could not show the potent cell migration ability with the exception of IL-8. We conclude that Lcn-2 triggered cytokine secretions to prevent RL95-2 cells from undergoing apoptosis and subsequently increased cell migration. We hypothesize that Lcn-2 increased cytokine secretion by RL95-2 cells, which in turn activated a cellular defense system. This study suggests that Lcn-2 may play a role in the human female reproductive system or in endometrial cancer.

  9. Protein kinase d isoforms differentially modulate cofilin-driven directed cell migration.

    Directory of Open Access Journals (Sweden)

    Heike Döppler

    Full Text Available BACKGROUND: Protein kinase D (PKD enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4 and the phosphatase slingshot 1L (SSH1L. The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. METHODOLOGY/PRINCIPAL FINDINGS: We here analyzed two cell lines (HeLa and MDA-MB-468 that express the subtypes protein kinase D2 (PKD2 and protein kinase D3 (PKD3. We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. CONCLUSIONS/SIGNIFICANCE: Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.

  10. Nanofiber-modified surface directed cell migration and orientation in microsystem

    Science.gov (United States)

    Zhang, Xu; Gao, Xinghua; Jiang, Lei; Zhang, Xulang; Qin, Jianhua

    2011-01-01

    Cell-microscale pattern surface interactions are crucial to understand many fundamental biological questions and develop regenerative medicine and tissue engineering approaches. In this work, we demonstrated a simple method to pattern PDMS surface by sacrificing poly vinyl pyrrolidone (PVP) electrospinning nanofibers and investigated the growth profile of cells on the modified patterned surfaces using stroma cells. The stromal cells were observed to exhibit good viability on this modified surface and the patterned surface with alignment nanofibers could promote cell migration. Furthermore, the modified PDMS surface was integrated with microfluidic channels to create the microscale spatial factor and was used to explore the cell migration and orientation under this microsystem. Both spatial factor and patterned surfaces were found to contribute to the complex cell orientation under the combined dual effects. This established method is simple, fast, and easy for use, demonstrating the potential of this microsystem for applications in addressing biological questions in complex environment. PMID:22662030

  11. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells

    Science.gov (United States)

    Zhu, Dongmei; Hölz, Stefanie; Metzger, Eric; Pavlovic, Mihael; Jandausch, Anett; Jilg, Cordula; Galgoczy, Petra; Herz, Corinna; Moser, Markus; Metzger, Daniel; Günther, Thomas; Arnold, Sebastian J.; Schüle, Roland

    2014-01-01

    Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.

  12. Investigating migration inhibition and apoptotic effects of Fomitopsis pinicola chloroform extract on human colorectal cancer SW-480 cells.

    Directory of Open Access Journals (Sweden)

    Yaqin Wang

    Full Text Available BACKGROUND: Fomitopsis pinicola (Sw. Ex Fr.m Karst (FPK which belongs to the Basidiomycota fungal class is one of the most popular medical fungi in China. It has been used for many diseases: cancer, heart diseases, diabetes and so on. However, little study on the pro-apoptotic effect and migration inhibition of FPK chloroform extract (FPKc has been reported and the possible involved mechanism has not been illuminated. METHODOLOGY/PRINCIPAL FINDINGS: Chemical analysis was performed by HPLC which showed ergosterol (ES concentration was 105 µg/mg. MTT assay revealed that FPKc could selectively inhibit SW-480 cells viability with the IC50 of 190.28 µg/ml. Wound healing and transwell assay indicated that FPKc could inhibit the migration of SW-480 cells obviously, FPKc could also dramatically decreased the matrix metalloproteinases-2, 9 (MMP-2 and MMP-9 expression. Annexin V-FITC/PI staining, nuclear Hoechst 33342 staining and DNA fragmentation analysis revealed that FPKc and ES could induce SW-480 cells apoptosis. The apoptosis process closely involved in ROS accumulation and depletion of GSH, activation of caspase 3, poly (ADP-ribose polymerase (PARP degradation. FPKc could also up-regulate P53 expression and thus lead to G1 phase arrest. When SW-480 cells were pretreated with N-acetylcysteine (NAC, the ROS generation, cell viability and apoptotic ratio were partially declined, which indicated that ROS was vertical in the pro-apoptosis process induced by FPKc. Moreover, in the whole process, ES which has been previously found in FPKc had the similar effect to FPKc. Thus we could conclude that ES, as one of the highest abundant components in FPKc, might also be one of the active constituents. CONCLUSION/SIGNIFICANCE: FPKc could inhibit the migration of SW-480 cells, induce SW-480 cells G1 phase arrest and cause ROS-mediated apoptosis effect. And ES might be one of the effective constituents in the whole process.

  13. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  14. Drain tube migration into the anastomotic site of an esophagojejunostomy for gastric small cell carcinoma: short report

    OpenAIRE

    Lin Long-Wei; Lo Chiao; Lai Peng-Sheng; Lee Po-Chu

    2010-01-01

    Abstract Background Intraluminal migration of a drain through an anastomotic site is a rare complication of gastric surgery. Case Presentation We herein report the intraluminal migration of a drain placed after a lower esophagectomy and total gastrectomy with Roux-en-Y anastomosis for gastric small cell carcinoma. Persistent drainage was noted 1 month after surgery, and radiographic studies were consistent with drain tube migration. Endoscopy revealed the drain had migrated into the esophagoj...

  15. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-01-01

    Full Text Available Tetrandrine (TET, a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC-3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting.

  16. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration.

    Science.gov (United States)

    Machiyama, Hiroaki; Hirata, Hiroaki; Loh, Xia Kun; Kanchi, Madhu Mathi; Fujita, Hideaki; Tan, Song Hui; Kawauchi, Keiko; Sawada, Yasuhiro

    2014-08-15

    Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton. PMID:24928898

  17. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeyuki [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro; Kawana, Hiromasa [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyauchi, Yoshiteru [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Katsuyama, Eri; Fujie, Atsuhiro [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hao, Wu [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  18. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    Science.gov (United States)

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC.

  19. CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.

    Science.gov (United States)

    Kovacevic, Ismar; Ho, Richard; Cram, Erin J

    2012-01-01

    The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439

  20. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    Directory of Open Access Journals (Sweden)

    Hai-Lang He

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK, an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC. Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1 and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs, and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources.

  1. C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment.

    Science.gov (United States)

    Voss, Anne K; Britto, Joanne M; Dixon, Mathew P; Sheikh, Bilal N; Collin, Caitlin; Tan, Seong-Seng; Thomas, Tim

    2008-06-01

    Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.

  2. Movements, home-range size and habitat selection of mallards during autumn migration.

    Directory of Open Access Journals (Sweden)

    Daniel Bengtsson

    Full Text Available The mallard (Anas platyrhynchos is a focal species in game management, epidemiology and ornithology, but comparably little research has focused on the ecology of the migration seasons. We studied habitat use, time-budgets, home-range sizes, habitat selection, and movements based on spatial data collected with GPS devices attached to wild mallards trapped at an autumn stopover site in the Northwest European flyway. Sixteen individuals (13 males, 3 females were followed for 15-38 days in October to December 2010. Forty-nine percent (SD = 8.4% of the ducks' total time, and 85% of the day-time (SD = 28.3%, was spent at sheltered reefs and bays on the coast. Two ducks used ponds, rather than coast, as day-roosts instead. Mallards spent most of the night (76% of total time, SD = 15.8% on wetlands, mainly on alvar steppe, or in various flooded areas (e.g. coastal meadows. Crop fields with maize were also selectively utilized. Movements between roosting and foraging areas mainly took place at dawn and dusk, and the home-ranges observed in our study are among the largest ever documented for mallards (mean  = 6,859 ha; SD = 5,872 ha. This study provides insights into relatively unknown aspects of mallard ecology. The fact that autumn-staging migratory mallards have a well-developed diel activity pattern tightly linked to the use of specific habitats has implications for wetland management, hunting and conservation, as well as for the epidemiology of diseases shared between wildlife and domestic animals.

  3. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells.

    Science.gov (United States)

    Mattox, Austin K; Li, Jing; Adamson, David C

    2012-12-01

    Glioblastoma multiforme (GBM) represents one of the most common aggressive types of primary brain tumors. Despite advances in surgical resection, novel neuroimaging procedures, and the most recent adjuvant radiotherapy and chemotherapy, the median survival after diagnosis is about 12-14 months. Targeting migrating GBM cells is a key research strategy in the fight against this devastating cancer. Though the vast majority of the primary tumor focus can be surgically resected, these migrating cells are responsible for its universal recurrence. Numerous strategies and technologies are being explored to target migrating glioma cells, with small molecular inhibitors as one of the most commonly studied. Small molecule inhibitors, such as protein kinase inhibitors, phosphorylation site inhibitors, protease inhibitors, and antisense oligonucleotides show promise in slowing the progression of this disease. A better understanding of these small molecule inhibitors and how they target various extra- and intracellular signaling pathways may eventually lead to a cure for GBM.

  4. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA

    Institute of Scientific and Technical Information of China (English)

    Supachai YODKEEREE; Spiridione GARBISA; Pomngarm LIMTRAKUL

    2008-01-01

    Aim: Tetrahydrocurcumin (THC) is an active metabolite of curcumin. It has been reported to have similar pharmacological activity to curcumin. The proteases that participate in extracellular matrix (ECM) degradation are involved in cancer cell metastasis. The present study investigates the effect of an ultimate metabolite of curcumin, THC, on the invasion and motility of highly-metastatic HT1080 human fibrosarcoma cells. Methods: The effect of THC on HTI080 cell invasion and migration was determined using Boyden chamber assay. Cell-adhesion assay was used for examining the binding of cells to ECM molecules. Zymography assay was used to analyze the effect of THC on matrix metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) secretion from HT1080 cells. Tissue inhibitor of metalloproteinase (TIMP)-2 and membrane-type 1 matrix metalloproteinase (MT1-MMP) proteins levels were analyzed by Western blotting. Results: Treatment with THC reduced HT1080 cell invasion and migration in a dose-dependent manner. THC also decreased the cell adhesion to Matrigel and laminin-coated plates. Analysis by zymography demonstrated that treatment with THC reduced the levels of MMP-2, MMP-9, and uPA. THC also inhibited the levels of MT1-MMP and TIMP-2 proteins detected by Western blot analysis. Conclusion: Our findings revealed that THC reduced HT1080 cell invasion and migration. The inhibition of cancer cell invasion is associated with the downregulation of ECM degradation enzymes and the inhibition of cell adhesion to ECM proteins.

  5. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    Full Text Available BACKGROUND: The role of CTGF varies in different types of cancer. The purpose of this study is to investigate the involvement of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC. EXPERIMENTAL DESIGN: CTGF expression levels were examined in NPC tissues and cells, nasopharynx (NP tissues, and NP69 cells. The effects and molecular mechanisms of CTGF expression on cell proliferation, migration, invasion, and cell cycle were also explored. RESULTS: NPC cells exhibited decreased mRNA expression of CTGF compared to immortalized human nasopharyngeal epithelial cell line NP69. Similarly, CTGF was observed to be downregulated in NPC compared to normal tissues at mRNA and protein levels. Furthermore, reduced CTGF was negatively associated with the progression of NPC. Knocking down CTGF expression enhanced the colony formation, cell migration, invasion, and G1/S cell cycle transition. Mechanistic analysis revealed that CTGF suppression activated FAK/PI3K/AKT and its downstream signals regulating the cell cycle, epithelial-mesenchymal transition (EMT and MMPs. Finally, DNA methylation microarray revealed a lack of hypermethylation at the CTGF promoter, suggesting other mechanisms are associated with suppression of CTGF in NPC. CONCLUSION: Our study demonstrates that reduced expression of CTGF promoted cell proliferation, migration, invasion and cell cycle progression through FAK/PI3K/AKT, EMT and MMP pathways in NPC.

  6. Embryonic stem cell-derived neural progenitors transplanted to the hippocampus migrate on host vasculature

    Directory of Open Access Journals (Sweden)

    Chelsea M. Lassiter

    2016-05-01

    Full Text Available This study describes the migration of transplanted ESNPs either injected directly into the hippocampus of a mouse, seeded onto hippocampal slices, or under in vitro culture conditions. We show that transplanted mouse ESNPs associate with, and appear to migrate on the surface of the vasculature, and that human ESNPs also associate with blood vessels when seeded on hippocampal slices, and migrate towards BECs in vitro using a Boyden chamber assay. This initial adhesion to vessels is mediated, at least in part, via the integrin α6β1, as observed for SVZ neural progenitor cells. Our data are consistent with CXCL12, expressed by the astroglial-vasculature niche, playing an important role in the migration of transplanted neural progenitors within and outside of the hippocampus.

  7. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David;

    2013-01-01

    endothelium. We observed that US28-expressing cells migrated more than CX3CR1-expressing cells when adhering to immobilized CX3CL1. US28-induced migration was G protein-signalling dependent and was blocked by the phospholipase Cβ inhibitor U73122 and the intracellular calcium chelator BAPTA-AM. In addition......, migration was inhibited in a dose-dependent manner by competition from CCL2 and CCL5, whereas CCL3 had little effect. Instead of migrating, CX3CR1-expressing cells performed 'dancing-on-the-spot' movements, demonstrating that anchored CX3CL1 acts as a strong tether for these cells. At low receptor...

  8. Effects of Garlic Oil on the Migration of Neutrophil-Like Cell Studied by Using a Chemotactic Gradient Labchip

    Directory of Open Access Journals (Sweden)

    Po-Chen Shih

    2010-01-01

    Full Text Available We have designed and fabricated a novel chemotactic gradient Labchip for studying cell migration quantitatively. Owing to the great potential of garlic and its preparations in developing antiinflammatory drugs, the aim of the present study is to investigate the effect of garlic oil on the locomotion of a neutrophil-like cell by measuring the dynamic features of cell migration including migration direction, average migration speed, chemotactic index (CI, and motility index (MI with the newly designed Labchip. We found that garlic oil treatment lowered the values of CI and MI and reduced the average speed of cell migration from 13 to 8 μm/min. The results indicate that garlic oil is a potential inhibitor for neutrophil-like cell migration and chemotactic responsiveness. By comparing with the effects of nocodazole and cytochalasin B, we also suggest that the antiinflammatory activity exhibited by garlic oil was mainly through inhibiting the assembly-disassembly processes of the cytoskeleton.

  9. Bromoenol Lactone Attenuates Nicotine-Induced Breast Cancer Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Lindsay E Calderon

    Full Text Available Calcium independent group VIA phospholipase A2 (iPLA2β and Matrix Metalloproteinase-9 (MMP-9 are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2β mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL to attenuate the severity of nicotine-induced breast cancer was examined.We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2β dependent manner. These results suggest that iPLA2β plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05 and nicotine-induced tumor growth (p<0.01. Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis.The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2β dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis.

  10. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    Science.gov (United States)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.

  11. Cell Selection Using Recursive Bipartite Matching

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Ruepp, Sarah Renée; Berger, Michael Stübert

    Wireless communication network consist nowadays of multiple standards, as well as cells of different sizes and coverage. Providing the best connection in such environment is a challenging task. We propose a new approach of solving the cell selection problem in heterogeneous networks. The method...

  12. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  13. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  14. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning

    Science.gov (United States)

    Gaylo, Alison; Schrock, Dillon C.; Fernandes, Ninoshka R. J.; Fowell, Deborah J.

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell’s antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function. PMID:27790220

  15. Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors.

    Science.gov (United States)

    Manning, Alyssa J; Kimelman, David

    2015-10-15

    The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT. Mesodermal cells in these embryos are unable to perform the EMT necessary to leave the most posterior end of the body (the tailbud) and join the pre-somitic mesoderm, a process that is conserved in all vertebrates. It has previously been very difficult to study this EMT in vertebrates because of the multiple cell types in the tailbud and the morphogenetic changes the whole embryo undergoes. Here, we describe a novel tissue explant system for imaging the mesodermal cell EMT in vivo that allows us to investigate the requirements for cells to acquire migratory properties during the EMT with high spatio-temporal resolution. This method revealed that, despite the inability of tbx16;msgn1-deficient cells to leave the tailbud, actin-based protrusions form surprisingly normally in these cells and they become highly motile. However, tbx16;msgn1-deficient cells have specific cell-autonomous defects in the persistence and anterior direction of migration because the lamellipodia they form are not productive in driving anteriorward migration. Additionally, we show that mesoderm morphogenesis and differentiation are separable and that there is a migratory cue that directs mesodermal cell migration that is independent of Tbx16 and Msgn1. This work defines changes that cells undergo as they complete the EMT and provides new insight into the mechanisms required in vivo for cells to become mesenchymal.

  16. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    Science.gov (United States)

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  17. Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell

    Institute of Scientific and Technical Information of China (English)

    Chong; Shi; Guo-Bin; Zhang; Shu-Wang; Yin

    2015-01-01

    Objective:To explore the effect of bortezomib on migration and invasion of cervical carcinoma HeLa cell and specific molecular mechanism.Methods:The effect of bortezomib on the viability of HeLa cell was measured by MTT assay.The effect of bortezomib on cell migration and invasion was measured by Transwell assay and invasion experiment respectively.The activation of Akt/mTOR signaling pathway and expression level of MMP2,MMP9 were assayed by western blot.Results:MTT assay indicated bortezomib(2.5 μM.5 μM,10 μM)could inhibit HeLa cell viability,and the inhibitory rate was highest at 48 h.Transwell assay and invasion experiment results showed that bortezomib inhibited HeLa cell migration and invasion.Western blotting assays presented bortezomib could suppress the phosphorylation of Akt and mTOR.and down-regulate the expression of MMP2 and MMP9.Conclusions:These results suggested bortezomib could inhibit migration and invasion in cervical carcinoma HeLa cell,which might be related to Akt/mTOR signal pathway.

  18. Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell

    Institute of Scientific and Technical Information of China (English)

    Chong Shi; Guo-Bin Zhang; Shu-Wang Yin

    2015-01-01

    Objective: To explore the effect of bortezomib on migration and invasion of cervical carcinoma HeLa cell and specific molecular mechanism. Methods:The effect of bortezomib on the viability of HeLa cell was measured by MTT assay. The effect of bortezomib on cell migration and invasion was measured by Transwell assay and invasion experiment respectively. The activation of Akt/mTOR signaling pathway and expression level of MMP2, MMP9 were assayed by western blot. Results:MTT assay indicated bortezomib (2.5μM, 5μM, 10μM) could inhibit HeLa cell viability, and the inhibitory rate was highest at 48 h. Transwell assay and invasion experiment results showed that bortezomib inhibited HeLa cell migration and invasion. Western blotting assays presented bortezomib could suppress the phosphorylation of Akt and mTOR, and down-regulate the expression of MMP2 and MMP9. Conclusions:These results suggested bortezomib could inhibit migration and invasion in cervical carcinoma HeLa cell, which might be related to Akt/mTOR signal pathway.

  19. Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2013-01-01

    Full Text Available Cardiotoxin III (CTXIII, isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways.

  20. Axitinib affects cell viability and migration of a primary foetal lung adenocarcinoma culture.

    Science.gov (United States)

    Menna, Cecilia; De Falco, Elena; Pacini, Luca; Scafetta, Gaia; Ruggieri, Paola; Puca, Rosa; Petrozza, Vincenzo; Ciccone, Anna Maria; Rendina, Erino Angelo; Calogero, Antonella; Ibrahim, Mohsen

    2014-01-01

    Fetal lung adenocarcinoma (FLAC) is a rare variant of lung adenocarcinoma. Studies regarding FLAC have been based only on histopathological observations, thus representative in vitro models of FLAC cultures are unavailable. We have established and characterized a human primary FLAC cell culture, exploring its biology, chemosensitivity, and migration. FLAC cells and specimen showed significant upregulation of VEGF165 and HIF-1α mRNA levels. This observation was confirmed by in vitro chemosensitivity and migration assay, showing that only Axitinib was comparable to Cisplatin treatment. We provide a suitable in vitro model to further investigate the nature of this rare type of cancer. PMID:24380379

  1. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  2. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  3. Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I*

    Science.gov (United States)

    Watson, H. Angharad; Holley, Rebecca J.; Langford-Smith, Kia J.; Wilkinson, Fiona L.; van Kuppevelt, Toin H.; Wynn, Robert F.; Wraith, J. Edmond; Merry, Catherine L. R.; Bigger, Brian W.

    2014-01-01

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  4. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration

    OpenAIRE

    Heiman, Maxwell G.; Shaham, Shai

    2009-01-01

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, whic...

  5. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma.

    Science.gov (United States)

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Abe, Masaaki; Hino, Okio; Saga, Tsuneo

    2014-02-01

    The worldwide incidence of the highly aggressive tumor mesothelioma is expected to increase. Mesothelioma is classified into three main histological subtypes: epithelioid, sarcomatoid and biphasic. Although the pathological diagnostic markers for epithelioid are established, to date no adequate marker for sarcomatoid mesothelioma has been found. Thus, a reliable diagnostic marker of sarcomatoid mesothelioma is necessary. In this study, to identify an unknown protein with 120 kDa expressed only in the mesothelioma cell line 211H, we conducted proteomic analysis and found five candidate proteins. One such protein, AHNAK, was highly expressed in all seven mesothelioma cell lines (211H, H28, H226, H2052, H2452, MESO1 and MESO4), but not in the mesothelial cell line MeT-5A by RT-PCR and immunofluorescence staining. Furthermore, we confirmed high AHNAK expression not only in xenografts but also in human mesothelioma specimens including sarcomatoid, epithelioid and biphasic mesothelioma using immunohistochemical staining. These findings suggest that AHNAK has the potential to be a new marker for detecting mesothelioma. Since AHNAK is involved in cell migration and invasion in other metastatic tumor cells, we conducted migration and invasion assays in mesothelioma cell lines. The number of migrating cells in six of seven mesothelioma cell lines and the number of invading cells in all seven cell lines were significantly increased compared with those in MeT-5A. Knockdown of AHNAK significantly reduced the cell migration and invasion ability in all seven mesothelioma cell lines. These results support further clinical evaluation of the association of AHNAK and metastasis in mesothelioma. PMID:24253341

  6. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration

    OpenAIRE

    McLaughlin, Laura M.; Xu, Hui; Carden, Sarah E.; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C.; Monack, Denise M.

    2014-01-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involv...

  7. Cellular bridges: Routes for intercellular communication and cell migration

    OpenAIRE

    Zani, Brett G.; Edelman, Elazer R.

    2010-01-01

    Cell-to-cell communication is the basis of all biology in multicellular organisms, allowing evolution of complex forms and viability in dynamic environments. Though biochemical interactions occur over distances, physical continuity remains the most direct means of cellular interactions. Cellular bridging through thin cytoplasmic channels—plasmodesmata in plants and tunneling nanotubes in animals—creates direct routes for transfer of signals and components, even pathogens, between cells. Recen...

  8. Migration of Drosophila intestinal stem cells across organ boundaries

    OpenAIRE

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this p...

  9. Effect of S1P5 on proliferation and migration of human esophageal cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the sphingosine 1phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells. METHODS: S1P receptor expression profile in human esophageal squamous cell carcinoma cell line Eca109 was detected by semiquantitative reverse trans cription polymerase chain reaction. Eca109 cells were stably transfected with S1P5EGFP or controlEGFP constructs. The relation between the responses of cell prol...

  10. U.S. Migration and Reproductive Health among Mexican Women: Assessing the Evidence for Health Selectivity

    Directory of Open Access Journals (Sweden)

    Alexandra M. Minnis

    2010-10-01

    Full Text Available Health selectivity posits that individuals who practice preventive health behaviors are more likely to migrate to the United States, and this has been proposed as one explanation of the Latino Paradox. This paper examines evidence for health selection in the context of reproductive health using national survey data from Mexico (the longitudinal Mexico Family Life Survey [MxFLS], 2002 and 2005 waves and the United States (the National Survey of Family Growth [NSFG], 2002. We compared sexual behaviors and contraceptive practices of Mexican women residing in Mexico who subsequently migrated to the United States with those who remained in Mexico and with Mexican immigrants in the United States. MxFLS respondents who migrated to the United States had a younger mean age, and a larger proportion had no children compared to MxFLS nonmigrants. Within the MxFLS sample, a smaller proportion of women who migrated had ever had vaginal sex, though this difference was nonsignificant with adjustment for sociodemographic factors. No sexual behavior or contraceptive use measures varied between Mexican migrants and nonmigrants within the MxFLS. The mean lifetime number of sexual partners was lower for MxFLS respondents than for Mexican immigrants in the NSFG. Smaller proportions of MxFLS respondents reported using hormonal methods or condoms relative to NSFG respondents. We found no evidence for health selectivity with regard to sexual behaviors or contraceptive practices, underscoring the importance of continued attention to the factors that influence the adaptation trajectories following U.S. migration.L’hypothèse de la sélection par la santé selon laquelle les individus qui adoptent des comportements de prévention sont plus susceptibles d’immigrer aux Etats-Unis, a été proposée comme une explication au paradoxe latino. Cet article examine les signes de sélection par la santé dans le contexte de la santé en matière de procréation sur la base des

  11. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  12. Slit2 involvement in glioma cell migration is mediated by Robo1 receptor.

    Science.gov (United States)

    Mertsch, Sonja; Schmitz, Nicole; Jeibmann, Astrid; Geng, Jian-Guo; Paulus, Werner; Senner, Volker

    2008-03-01

    Slit and Robo proteins are evolutionarily conserved molecules whose interaction underlies axon guidance and neuronal precursor cell migration. During development secreted Slit proteins mediate chemorepulsive signals on cells expressing Robo receptors. Because similar molecular mechanisms may be utilized in glioma cell invasion and neuroblast migration, we studied the expression of Slit2 and its transmembrane receptor Robo1 as well as their functional role in migration in glioma cells. qRT-PCR and immunohistochemistry of human specimens revealed that Slit2 was distinctly expressed by non-neoplastic neurons, but at only very low levels in fibrillary astrocytoma and glioblastoma. Robo1 also was mainly restricted to neurons in the normal brain, whereas astrocytic tumor cells in situ as well as glioblastoma cell lines overexpressed Robo1 at mRNA and protein levels. Recombinant human Slit2 in a concentration of 0.45 nM was repulsive for glioma cell lines in a modified Boyden chamber assay. RNAi-mediated knockdown of Robo1 in glioma cell lines neutralized the repulsive effect of Slit2, demonstrating that Robo1 served as the major Slit2 receptor. Our findings suggest that a chemorepulsive effect mediated by interaction of Slit2 and Robo1 participates in glioma cell guidance in the brain.

  13. 14-3-3ε Is required for germ cell migration in Drosophila.

    Directory of Open Access Journals (Sweden)

    K Kirki Tsigkari

    Full Text Available Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.

  14. Downregulation of SOK1 promotes the migration of MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xu-Dong, E-mail: xudongchen305@hotmail.com [Key Lab of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai (China); Cho, Chien-Yu [Department of Biochemistry, College of Medicine, National Cheng Kung University, Taiwan (China)

    2011-04-08

    Highlights: {yields} SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. {yields} Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. {yields} But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  15. The Effects of Omega-3 Fatty Acids on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune Cells: Implications for Multiple Sclerosis

    OpenAIRE

    Lynne Shinto; Gail Marracci; Lauren Bumgarner; Vijayshree Yadav

    2011-01-01

    In multiple sclerosis (MS), compromised blood-brain barrier (BBB) integrity contributes to inflammatory T cell migration into the central nervous system. Matrix metalloproteinase-9 (MMP-9) is associated with BBB disruption and subsequent T cell migration into the CNS. The aim of this paper was to evaluate the effects of omega-3 fatty acids on MMP-9 levels and T cell migration. Peripheral blood mononuclear cells (PBMC) from healthy controls were pretreated with two types of omega-3 fatty acids...

  16. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Pablo Cruz-Martinez

    Full Text Available Fibroblast growth factor 8 (FGF8 is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.

  17. Control of directed cell migration in vivo by membrane-to-cortex attachment.

    Directory of Open Access Journals (Sweden)

    Alba Diz-Muñoz

    Full Text Available Cell shape and motility are primarily controlled by cellular mechanics. The attachment of the plasma membrane to the underlying actomyosin cortex has been proposed to be important for cellular processes involving membrane deformation. However, little is known about the actual function of membrane-to-cortex attachment (MCA in cell protrusion formation and migration, in particular in the context of the developing embryo. Here, we use a multidisciplinary approach to study MCA in zebrafish mesoderm and endoderm (mesendoderm germ layer progenitor cells, which migrate using a combination of different protrusion types, namely, lamellipodia, filopodia, and blebs, during zebrafish gastrulation. By interfering with the activity of molecules linking the cortex to the membrane and measuring resulting changes in MCA by atomic force microscopy, we show that reducing MCA in mesendoderm progenitors increases the proportion of cellular blebs and reduces the directionality of cell migration. We propose that MCA is a key parameter controlling the relative proportions of different cell protrusion types in mesendoderm progenitors, and thus is key in controlling directed migration during gastrulation.

  18. Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary

    Science.gov (United States)

    Saadin, Afsoon; Starz-Gaiano, Michelle

    2016-01-01

    The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed “border cells” in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration. PMID:27175018

  19. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems

    Directory of Open Access Journals (Sweden)

    Scott A. Nelson

    2012-11-01

    Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APCMin/+; multiple intestinal neoplasia model demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APCMin/+ intestines are overpopulated with cells, suggesting that a lack of migration might cause cell

  20. Comparative actions of progesterone, medroxyprogesterone acetate, drospirenone and nestorone on breast cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Sitruk-Ware Regine

    2008-06-01

    Full Text Available Abstract Background Limited information is available on the effects of progestins on breast cancer progression and metastasis. Cell migration and invasion are central for these processes, and require dynamic cytoskeletal and cell membrane rearrangements for cell motility to be enacted. Methods We investigated the effects of progesterone (P, medroxyprogesterone acetate (MPA, drospirenone (DRSP and nestorone (NES alone or with 17β-estradiol (E2 on T47-D breast cancer cell migration and invasion and we linked some of these actions to the regulation of the actin-regulatory protein, moesin and to cytoskeletal remodeling. Results Breast cancer cell horizontal migration and invasion of three-dimensional matrices are enhanced by all the progestins, but differences are found in terms of potency, with MPA being the most effective and DRSP being the least. This is related to the differential ability of the progestins to activate the actin-binding protein moesin, leading to distinct effects on actin cytoskeleton remodeling and on the formation of cell membrane structures that mediate cell movement. E2 also induces actin remodeling through moesin activation. However, the addition of some progestins partially offsets the action of estradiol on cell migration and invasion of breast cancer cells. Conclusion These results imply that P, MPA, DRSP and NES alone or in combination with E2 enhance the ability of breast cancer cells to move in the surrounding environment. However, these progestins show different potencies and to some extent use distinct intracellular intermediates to drive moesin activation and actin remodeling. These findings support the concept that each progestin acts differently on breast cancer cells, which may have relevant clinical implications.

  1. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    Science.gov (United States)

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  2. Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration

    DEFF Research Database (Denmark)

    Ström, A.; Olin, A. I.; Aspberg, A.;

    2006-01-01

    and is upregulated during SMC phenotypic modulation in cell culture. Moreover, treatments with peptides that block the interaction between versican and fibulin-2 inhibit SMC migration in vitro. Conclusions: Fibulin-2 can be produced by SMC as a response to injury and may participate in the ECM organisation......Objective: The vascular extracellular matrix (ECM) can affect smooth muscle cell (SMC) adhesion, migration and proliferation-events that are important during the atherosclerotic process. Fibulin-2 is a member of the ECM protein family of fibulins and has been found to cross-link versican....../hyaluronan complexes, an ECM network that has been suggested to be important during tissue repair. In this study we have analysed the presence of fibulin-2 in two different models of murine vascular lesions. We have also examined how the fibulin-2/versican network influences SMC migration. Methods: Presence of fibulin...

  3. [Macrophages promote the migration of neural stem cells into mouse spinal cord injury site].

    Science.gov (United States)

    Cheng, Zhijian; Zhu, Wen; Li, Haopeng; He, Xijing

    2016-09-01

    Objective To explore the role of macrophages in the migration of neural stem cells (NSCs) in vivo and in vitro . Methods NSCs with green fluorescent protein (GFP) were isolated from GFP transgenic mice and the immunofluorescence cytochemical staining of nestin was used to identify NSCs. After spinal cord injury was induced, the tissue level of macrophage chemotactic protein-1 (MCP-1) mRNA was detected using quantitative real time PCR. The migration of GFP-NSCs was investigated 1 week after GFP-NSCs were injected into both sides of the damaged area. The effect of macrophage on the migration of NSCs in vitro was tested by Transwell(TM) system and the content of MCP-1 was detected by ELISA. Results NSCs highly expressed nestin. Compared with the control group, the level of MCP-1 mRNA significantly increased in the spinal cord injury group. The NSCs which were injected into the spinal cord migrated into the center of the injured site where F4/80 was highly expressed. Macrophages significantly increased the number of migrating NSCs in vitro and the secretion of MCP-1. Conclusion Macrophages induce NSC migrating into the spinal cord injury site possibly through promoting the secretion of MCP-1. PMID:27609570

  4. MYEOV (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2.

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-01-01

    INTRODUCTION: We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. AIM: To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. METHODS: siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 micro M, 0.1 micro M and 1 micro M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. RESULTS: Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 micro M, 0.1 micro M and 1 micro M PGE 2 respectively. CONCLUSION: In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  5. Myeov (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-06-22

    Abstract Introduction We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. Aim To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. Methods siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 μ M, 0.1 μ M and 1 μ M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. Results Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 μ M, 0.1 μ M and 1 μ M PGE 2 respectively. Conclusion In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  6. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Science.gov (United States)

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  7. Effects of neuritin on the migration, senescence and proliferation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Xuhui; Liu, Chunyan; Xu, Fen; Cui, Lijuan; Tan, Siwei; Chen, Rong; Yang, Lei; Huang, Jin

    2015-09-01

    Neuritin is a neurotrophic factor associated with neuroplasticity. Most studies on neuritin focus on the nervous system; however, there has been no comprehensive evaluation of neuritin in non-neuronal cells. In this study, we screened 11 cell lines and found that neuritin was not expressed in bone marrowderived mesenchymal stem cells (BMSCs). Neuritin-expressing BMSCs were obtained by transfection. In the neuritin-expressing BMSC model, we observed significantly greater cell migration and improved anti-senescence protection, in addition to reduced proliferation and viability. In conclusion, neuritin not only plays an important role in the nervous system but also has an effect on the migration, senescence, proliferation, and viability of stem cells. This study provides a theoretical basis for understanding the function of neuritin. PMID:26208391

  8. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-JunS73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  9. Directed cell migration in the presence of obstacles

    Directory of Open Access Journals (Sweden)

    Grima Ramon

    2007-01-01

    Full Text Available Abstract Background Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. Results We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. Conclusion Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles.

  10. Conformational changes and translocation of tissue-transglutaminase to the plasma membranes: role in cancer cell migration

    International Nuclear Information System (INIS)

    Tissue-transglutaminase (TG2), a dual function G-protein, plays key roles in cell differentiation and migration. In our previous studies we reported the mechanism of TG2-induced cell differentiation. In present study, we explored the mechanism of how TG2 may be involved in cell migration. To study the mechanism of TG2-mediated cell migration, we used neuroblastoma cells (SH-SY5Y) which do not express TG2, neuroblastoma cells expressing exogenous TG2 (SHYTG2), and pancreatic cancer cells which express high levels of endogenous TG2. Resveratrol, a natural compound previously shown to inhibit neuroblastoma and pancreatic cancer in the animal models, was utilized to investigate the role of TG2 in cancer cell migration. Immunofluorescence assays were employed to detect expression and intracellular localization of TG2, and calcium levels in the migrating cells. Native gel electrophoresis was performed to analyze resveratrol-induced cellular distribution and conformational states of TG2 in migrating cells. Data are presented as the mean and standard deviation of at least 3 independent experiments. Comparisons were made among groups using one-way ANOVA followed by Tukey-Kramer ad hoc test. TG2 containing cells (SHYTG2 and pancreatic cancer cells) exhibit increased cell migration and invasion in collagen-coated and matrigel-coated transwell plate assays, respectively. Resveratrol (1 μM-10 μM) prevented migration of TG2-expressing cells. During the course of migration, resveratrol increased the immunoreactivity of TG2 without affecting the total TG2 protein level in migrating cells. In these cells, resveratrol increased calcium levels, and depletion of intracellular calcium by a calcium chelator, BAPTA, attenuated resveratrol-enhanced TG2 immunoreactivity. In native-polyacrylamide gels, we detected an additional TG2 protein band with slower migration in total cell lysates of resveratrol treated cells. This TG2 form is non-phosphorylated, exclusively present in plasma

  11. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  12. Migration of Indian health professionals to selected European nations : the case of Denmark, Netherlands, Norway, Sweden

    OpenAIRE

    Bhattacharjee, Ayona

    2013-01-01

    CARIM-India: Developing a knowledge base for policymaking on India-EU migration India’s comparative advantage in health care is due to a large resource pool and competence in English. Indian migration to the US, UK or Australia has been widely studied, but not much attention has been given to the Scandinavian countries. This paper fills the gap by analysing recent trends and prospects for Indian health professionals in Denmark, Netherlands, Norway and Sweden. It combines available data sou...

  13. Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells.

    Science.gov (United States)

    Wang, Li; Wang, JianTao; Li, Zhixi; Liu, YanYang; Jiang, Ming; Li, Yan; Cao, Dan; Zhao, Maoyuan; Wang, Feng; Luo, Feng

    2016-06-01

    Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy. PMID:26666817

  14. Distinct apolipoprotein E isoform preference for inhibition of smooth muscle cell migration and proliferation.

    Science.gov (United States)

    Zeleny, Michelle; Swertfeger, Debi K; Weisgraber, Karl H; Hui, David Y

    2002-10-01

    The current study compared the effectiveness of the various human apolipoprotein E (apoE) isoforms in inhibiting platelet-derived growth factor- (PDGF-) stimulated smooth muscle cell proliferation and migration. The incubation of primary mouse aortic smooth muscle cells with apoE3 resulted in dose-dependent inhibition of smooth muscle cells stimulated by 10 ng/mL PDGF. Greater than 50% inhibition of smooth muscle cell proliferation was observed at 15 microg/mL of human apoE3. Human apoE2 was less effective, requiring a higher concentration to achieve inhibition comparable to that of apoE3. Human apoE4 was the least effective of the apoE isoforms with no significant inhibition of cell proliferation observed at concentrations up to 15 microg/mL. Interestingly, apoE inhibition of PDGF-directed smooth muscle cell migration did not show preference for any apoE isoforms. Human apoE2, apoE3, and apoE4 were equally effective in inhibiting smooth muscle cell migration toward PDGF. These results are consistent with previous data showing that apoE inhibition of smooth muscle cell proliferation is mediated through its binding to heparan sulfate proteoglycans, whereas its inhibition of cell migration is mediated via binding to the low-density lipoprotein receptor related protein. The low efficiency of apoE4 to inhibit smooth muscle cell proliferation also suggested another mechanism to explain the association between the apolipoprotein epsilon4 allele with increased risk of coronary artery disease. PMID:12269825

  15. Promoter Hypomethylation of Maspin Inhibits Migration and Invasion of Extravillous Trophoblast Cells during Placentation.

    Directory of Open Access Journals (Sweden)

    Xinwei Shi

    Full Text Available Extravillous trophoblast (EVT cells invade the endometrium and the maternal spiral arterioles during the first trimester. Mammary Serine Protease Inhibitor (Maspin, SERPINB5 plays a putative role in regulating the invasive activity of cytotrophoblasts. The maspin gene is silenced in various cancers by an epigenetic mechanism that involves aberrant cytosine methylation. We investigated the effect of the methylation status of the maspin promoter on the maspin expression and the aggressiveness of EVT cells.Western blotting was used to detect the maspin protein expression in EVT cells upon hypoxia. The proliferative ability, the apoptosis rate and the migration and invasiveness were measured with Cell Counting Kit-8 assay, Flow Cytometry technology and Transwell methods. Subsequently, we treated cells with recombinant maspin protein. The methylation degree of maspin promoter region upon hypoxia/ decitabine was detected by bisulfite sequencing PCR and methylation-specific PCR. Finally, we explored the effects of decitabine on maspin protein expression and the aggressiveness of EVT cells.Hypoxia effectively increased maspin protein expression in EVT cells and significantly inhibited their aggressiveness. The addition of recombinant maspin protein inhibited this aggressiveness. Decitabine reduced the methylation in the maspin promoter region and effectively increased the maspin protein expression, which significantly weakened the migration and invasiveness of EVT cells.The methylation status of the maspin promoter is an important factor that affects the migration and invasion of EVT cells during early pregnancy. A decrease in the methylation status can inhibit the migration and invasion of EVT cells to affect placentation and can result in the ischemia and hypoxia of placenta.

  16. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    Science.gov (United States)

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  17. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    International Nuclear Information System (INIS)

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  18. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  19. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    He Xianghuo

    2010-07-01

    Full Text Available Abstract Background The formation of metastasis is the most common cause of death in patients with lung cancer. A major implement to understand the molecular mechanisms involved in lung cancer metastasis has been the lack of suitable models to address it. In this study, we aimed at establishing a highly metastatic model of human lung cancer and characterizing its metastatic properties and underlying mechanisms. Methods The human lung adeno-carcinoma SPC-A-1 cell line was used as parental cells for developing of highly metastatic cells by in vivo selection in NOD/SCID mice. After three rounds of selection, a new SPC-A-1sci cell line was established from pulmonary metastatic lesions. Subsequently, the metastatic properties of this cell line were analyzed, including optical imaging of in vivo metastasis, immunofluorescence and immunohistochemical analysis of several epithelial mesenchymal transition (EMT makers and trans-well migration and invasion assays. Finally, the functional roles of fibronectin in the invasive and metastatic potentials of SPC-A-1sci cells were determined by shRNA analysis. Results A spontaneously pulmonary metastatic model of human lung adeno-carcinoma was established in NOD/SCID mice, from which a new lung cancer cell line, designated SPC-A-1sci, was isolated. Initially, the highly metastatic behavior of this cell line was validated by optical imaging in mice models. Further analyses showed that this cell line exhibit phenotypic and molecular alterations consistent with EMT. Compared with its parent cell line SPC-A-1, SPC-A-1sci was more aggressive in vitro, including increased potentials for cell spreading, migration and invasion. Importantly, fibronectin, a mesenchymal maker of EMT, was found to be highly expressed in SPC-A-1sci cells and down-regulation of it can decrease the in vitro and in vivo metastatic abilities of this cell line. Conclusions We have successfully established a new human lung cancer cell line with

  20. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Directory of Open Access Journals (Sweden)

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  1. Regulation of cancer cell migration and invasion by sphingosine-1-phosphate

    Institute of Scientific and Technical Information of China (English)

    James; R; Van; Brocklyn

    2010-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid that has been implicated in regulation of a number of cancer cell malignant behaviors, including cell proliferation, survival, chemotherapeutic resistance and angiogenesis. However, the effects of S1P on cancer cell migration, invasion and metastasis, are perhaps its most complex, due to the fact that, depending upon the S1P receptors that mediate its responses and the crosstalk with other signaling pathways, S1P can either positively or negatively regulate invasion. This review summarizes the effects of S1P on cancer cell invasion and the mechanisms by which it affects this important aspect of cancer cell behavior.

  2. Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.

    Science.gov (United States)

    Schulte, Carsten; Ferraris, Gian Maria Sarra; Oldani, Amanda; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; de Lorenzi, Valentina; Lenardi, Cristina; Milani, Paolo; Sidenius, Nicolai

    2016-01-01

    The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required. PMID:26616200

  3. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Directory of Open Access Journals (Sweden)

    Kei Inai

    Full Text Available Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM components, versican and hyaluronan (HA, and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  4. Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration

    NARCIS (Netherlands)

    Jacobs, J.J.L.; Lehé, C.L.; Hasegawa, H.; Elliott, G.R.; Das, P.K.

    2006-01-01

    Skin irritants and contact allergens reduce the number of Langerhans cells (LCs). It has been assumed that this reduction is due their migration to the draining lymph node (LN) for initiating immune sensitization in a host. Skin irritation, however, as opposed to contact allergy is not considered to

  5. Insect Pupil Mechanisms. II. Pigment Migration in Retinula Cells of Butterflies

    NARCIS (Netherlands)

    Stavenga, D.G.; Numan, J.A.J.; Tinbergen, J.; Kuiper, J.W.

    1977-01-01

    The hypothesis that the glow observable in dark adapted butterfly eyes is extinguished upon light adaptation by the action of migrating retinula cell pigment granules has been investigated. Experimental procedures applying optical methods to intact, living animals were similar to those used previous

  6. A composite hydrogel platform for the dissection of tumor cell migration at tissue interfaces.

    Science.gov (United States)

    Rape, Andrew D; Kumar, Sanjay

    2014-10-01

    Glioblastoma multiforme (GBM), the most prevalent primary brain cancer, is characterized by diffuse infiltration of tumor cells into brain tissue, which severely complicates surgical resection and contributes to tumor recurrence. The most rapid mode of tissue infiltration occurs along blood vessels or white matter tracts, which represent topological interfaces thought to serve as "tracks" that speed cell migration. Despite this observation, the field lacks experimental paradigms that capture key features of these tissue interfaces and allow reductionist dissection of mechanisms of this interfacial motility. To address this need, we developed a culture system in which tumor cells are sandwiched between a fibronectin-coated ventral surface representing vascular basement membrane and a dorsal hyaluronic acid (HA) surface representing brain parenchyma. We find that inclusion of the dorsal HA surface induces formation of adhesive complexes and significantly slows cell migration relative to a free fibronectin-coated surface. This retardation is amplified by inclusion of integrin binding peptides in the dorsal layer and expression of CD44, suggesting that the dorsal surface slows migration through biochemically specific mechanisms rather than simple steric hindrance. Moreover, both the reduction in migration speed and assembly of dorsal adhesions depend on myosin activation and the stiffness of the ventral layer, implying that mechanochemical feedback directed by the ventral layer can influence adhesive signaling at the dorsal surface. PMID:25047626

  7. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer

    Science.gov (United States)

    Li, Yang; Francia, Giulio; Zhang, Jian-Ying

    2015-01-01

    p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression. PMID:26416451

  8. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis.

    Science.gov (United States)

    Wang, Xu-Hua; Xu, Bo; Liu, Jing-Tao; Cui, Jing-Rong

    2008-01-01

    beta-Escin, the major active compound in extracts of the horse chestnut Aesculus hippocastanum seed, has shown clinically significant activity in chronic venous insufficiency (CVI). Our previous studies had shown that beta-escin sodium inhibited angiogenesis in chick chorioallantoic membrane (CAM) and in aortic disk assay. In this study, we explored the direct effect of beta-escin sodium on proliferation, migration and apoptosis in human umbilical vein endothelial cells (HUVECs) and ECV304 cells. Sulforhodamine B (SRB) assay showed that beta-escin sodium (10, 20, 40 microg/ml) inhibited endothelial cells (ECs) proliferation dose-dependently. beta-escin sodium also induced ECs apoptosis at 40 microg/ml. Cell migration was evaluated by an improved wound assay: barren spot assay. And the direct effect on cell motility excluding influence of cell proliferation was examined by High Content Screening (HCS, Cellomics) assay. The data indicated that beta-escin sodium suppressed ECs migration and cell motility. Western blot results suggested that beta-escin sodium acts on ECs possibly by increasing expression of thrombospondin-1 (TSP-1), and decreasing expression of PKC-alpha and activation of p44/42 mitogen-activated protein kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK). Our findings give the evidence that beta-escin sodium might have potential anti-angiogenic activity via its direct effects on ECs. PMID:18718875

  9. Topographical guidance of 3D tumor cell migration at an interface of collagen densities

    International Nuclear Information System (INIS)

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of high- and low-density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the high-density side into the low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a low-to-high density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration. (paper)

  10. The palmitoylation state of PMP22 modulates epithelial cell morphology and migration

    Directory of Open Access Journals (Sweden)

    David A. Zacharias

    2012-12-01

    Full Text Available PMP22 (peripheral myelin protein 22, also known as GAS 3 (growth-arrest-specific protein 3, is a disease-linked tetraspan glycoprotein of peripheral nerve myelin and constituent of intercellular junctions in epithelia. To date, our knowledge of the post-translational modification of PMP22 is limited. Using the CSS-Palm 2.0 software we predicted that C85 (cysteine 85, a highly conserved amino acid located between the second and third transmembrane domains, is a potential site for palmitoylation. To test this, we mutated C85S (C85 to serine and established stable cells lines expressing the WT (wild-type or the C85S-PMP22. In Schwann and MDCK (Madin–Darby canine kidney cells mutating C85 blocked the palmitoylation of PMP22, which we monitored using 17-ODYA (17-octadecynoic acid. While palmitoylation was not necessary for processing the newly synthesized PMP22 through the secretory pathway, overexpression of C85S-PMP22 led to pronounced cell spreading and uneven monolayer thinning. To further investigate the functional significance of palmitoylated PMP22, we evaluated MDCK cell migration in a wound-healing assay. While WT-PMP22 expressing cells were resistant to migration, C85S cells displayed lamellipodial protrusions and migrated at a similar rate to vector control. These findings indicate that palmitoylation of PMP22 at C85 is critical for the role of the protein in modulating epithelial cell shape and motility.

  11. A Cilia Independent Role of Ift88/Polaris during Cell Migration.

    Directory of Open Access Journals (Sweden)

    Christopher Boehlke

    Full Text Available Ift88 is a central component of the intraflagellar transport (Ift complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88.

  12. A Cilia Independent Role of Ift88/Polaris during Cell Migration.

    Science.gov (United States)

    Boehlke, Christopher; Janusch, Heike; Hamann, Christoph; Powelske, Christian; Mergen, Miriam; Herbst, Henriette; Kotsis, Fruzsina; Nitschke, Roland; Kuehn, E Wolfgang

    2015-01-01

    Ift88 is a central component of the intraflagellar transport (Ift) complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT) dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88. PMID:26465598

  13. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.

  14. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP

    OpenAIRE

    Chen, Yong; Liu, Ju Mei; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Lan, Shu Jue; Jin, Si; Yu, Shang Bin; Chen, Xiao Qian

    2015-01-01

    Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 μM...

  15. Sensitivity Analysis of Centralized Dynamic Cell Selection

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Alvarez, Beatriz Soret; Pedersen, Klaus I.;

    2016-01-01

    and a suboptimal optimization algorithm that nearly achieves the performance of the optimal Hungarian assignment. Moreover, an exhaustive sensitivity analysis with different network and traffic configurations is carried out in order to understand what conditions are more appropriate for the use of the proposed...... with two different traffic models, and it is not necessary to be able to connect to a large number of cells in order to reap most of the benefits of the centralized dynamic cell selection....

  16. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    Science.gov (United States)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  17. The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice.

    Science.gov (United States)

    Glasco, Derrick M; Pike, Whitney; Qu, Yibo; Reustle, Lindsay; Misra, Kamana; Di Bonito, Maria; Studer, Michele; Fritzsch, Bernd; Goffinet, André M; Tissir, Fadel; Chandrasekhar, Anand

    2016-09-01

    The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons. PMID:27395006

  18. The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice.

    Science.gov (United States)

    Glasco, Derrick M; Pike, Whitney; Qu, Yibo; Reustle, Lindsay; Misra, Kamana; Di Bonito, Maria; Studer, Michele; Fritzsch, Bernd; Goffinet, André M; Tissir, Fadel; Chandrasekhar, Anand

    2016-09-01

    The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons.

  19. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    OpenAIRE

    Bacher, M; Metz, C N; Calandra, T; Mayer, K.; Chesney, J.; Lohoff, M.; Gemsa, D.; Donnelly, T.; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glu...

  20. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Emmanuel Reyes-Uribe

    2015-08-01

    Full Text Available Discoidin domain receptors (DDRs are receptor tyrosine kinases that are activated by native collagens and have an important role during cell adhesion, development, differentiation, proliferation, and migration. DDR deregulation is associated with progression of several different cancers. However, there is limited information about the role of DDRs in the progression of breast cancer. In this review we attempt to collect the most relevant information about DDR signaling and their role in various cancer-related processes such as adhesion, epithelial to mesenchymal transition, migration, invasion, and survival, with a focus on breast cancer.

  1. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion

    Science.gov (United States)

    Li, Xiao Ling; Lu, Xing; Parvathaneni, Swetha; Bilke, Sven; Zhang, Hongen; Thangavel, Saravanabhavan; Vindigni, Alessandro; Hara, Toshifumi; Zhu, Yuelin; Meltzer, Paul S; Lal, Ashish; Sharma, Sudha

    2014-01-01

    The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis. PMID:25483193

  2. A Minimum-Entropy Based Residual Range Cell Migration Correction for Bistatic Forward-Looking SAR

    OpenAIRE

    Yuebo Zha; Wei Pu; Gao Chen; Yulin Huang; Jianyu Yang

    2016-01-01

    For bistatic forward-looking synthetic aperture radar (BFSAR), motion errors induce two adverse effects on the echo, namely, azimuth phase error and residual range cell migration (RCM). Under the presumption that residual RCM is within a range resolution cell, residual RCM can be neglected, and azimuth phase error can be compensated utilizing autofocus methods. However, in the case that residual RCM exceeds the range resolution, two-dimensional defocus would emerge in the final image. General...

  3. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  4. Migration paths of cells different origins in the embryonic human heart

    OpenAIRE

    Voloshin N. A.; Chaykovsky Yu. B.

    2010-01-01

    Hearts of human embryos were investigated using immunohistochemical method with antibodies to neurofilaments from 4 to 8 week of prenatal development. It was found that the embryonic human heart there are NF-positive cells, which occupy its territory by two mechanisms: through the migration of intercellular spaces and on the mechanism immersion out of heart cavity. In the second case neurofilaments-positive cells through the endothelium of blood vessels or endocardium immersion into the myoca...

  5. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

    Directory of Open Access Journals (Sweden)

    Aleksandra Nowicka

    Full Text Available Adipose tissue contains a population of multipotent adipose stem cells (ASCs that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5 and without (O-ASC1 omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

  6. Local immunosuppressive microenvironment enhances migration of melanoma cells to lungs in DJ-1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chien

    Full Text Available DJ-1 is an oncoprotein that promotes survival of cancer cells through anti-apoptosis. However, DJ-1 also plays a role in regulating IL-1β expression, and whether inflammatory microenvironment built by dysregulated DJ-1 affects cancer progression is still unclear. This study thus aimed to compare the metastatic abilities of melanoma cells in wild-type (WT and DJ-1 knockout (KO mice, and to check whether inflammatory microenvironment built in DJ-1 KO mice plays a role in migration of cancer cells to lungs. First, B16F10 melanoma cells (at 6 × 10(4 were injected into the femoral vein of mice, and formation of lung nodules, levels of lung IL-1β and serum cytokines, and accumulation of myeloid-derived suppressor cells (MDSCs were compared between WT and DJ-1 KO mice. Second, the cancer-bearing mice were treated with an interleukin-1 beta (IL-1β neutralizing antibody to see whether IL-1β is involved in the cancer migration. Finally, cultured RAW 264.7 macrophage and B16F10 melanoma cells were respectively treated with DJ-1 shRNA and recombinant IL-1β to explore underlying molecular mechanisms. Our results showed that IL-1β enhanced survival and colony formation of cultured melanoma cells, and that IL-1β levels were elevated both in DJ-1 KO mice and in cultured macrophage cells with DJ-1 knockdown. The elevated IL-1β correlated with higher accumulation of immunosuppressive MDSCs and formation of melanoma module in the lung of DJ-1 KO mice, and both can be decreased by treating mice with IL-1β neutralizing antibodies. Taken together, these results indicate that immunosuppressive tissue microenvironment built in DJ-1 KO mice can enhance lung migration of cancer, and IL-1β plays an important role in promoting the cancer migration.

  7. Agonist binding to β-adrenergic receptors on human airway epithelial cells inhibits migration and wound repair.

    Science.gov (United States)

    Peitzman, Elizabeth R; Zaidman, Nathan A; Maniak, Peter J; O'Grady, Scott M

    2015-12-15

    Human airway epithelial cells express β-adrenergic receptors (β-ARs), which regulate mucociliary clearance by stimulating transepithelial anion transport and ciliary beat frequency. Previous studies using airway epithelial cells showed that stimulation with isoproterenol increased cell migration and wound repair by a cAMP-dependent mechanism. In the present study, impedance-sensing arrays were used to measure cell migration and epithelial restitution following wounding of confluent normal human bronchial epithelial (NHBE) and Calu-3 cells by electroporation. Stimulation with epinephrine or the β2-AR-selective agonist salbutamol significantly delayed wound closure and reduced the mean surface area of lamellipodia protruding into the wound. Treatment with the β-AR bias agonist carvedilol or isoetharine also produced a delay in epithelial restitution similar in magnitude to epinephrine and salbutamol. Measurements of extracellular signal-regulated kinase phosphorylation following salbutamol or carvedilol stimulation showed no significant change in the level of phosphorylation compared with untreated control cells. However, inhibition of protein phosphatase 2A activity completely blocked the delay in wound closure produced by β-AR agonists. In Calu-3 cells, where CFTR expression was inhibited by RNAi, salbutamol did not inhibit wound repair, suggesting that β-AR agonist stimulation and loss of CFTR function share a common pathway leading to inhibition of epithelial repair. Confocal images of the basal membrane of Calu-3 cells labeled with anti-β1-integrin (clone HUTS-4) antibody showed that treatment with epinephrine or carvedilol reduced the level of activated integrin in the membrane. These findings suggest that treatment with β-AR agonists delays airway epithelial repair by a G protein- and cAMP-independent mechanism involving protein phosphatase 2A and a reduction in β1-integrin activation in the basal membrane. PMID:26491049

  8. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C;

    2009-01-01

    Effector T cells are a crucial component of the adaptive immune response to respiratory virus infections. Although it was previously reported that the chemokine receptors CCR5 and CXCR3 affect trafficking of respiratory virus-specific CD8(+) T cells, it is unclear whether these receptors govern...... effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype...

  9. Protein phosphatase 2A Cα regulates proliferation, migration, and metastasis of osteosarcoma cells.

    Science.gov (United States)

    Yang, Di; Okamura, Hirohiko; Morimoto, Hiroyuki; Teramachi, Jumpei; Haneji, Tatsuji

    2016-10-01

    Osteosarcoma is the most frequent primary bone tumor. Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes, such as cell cycle, growth, apoptosis, and signal transduction. In this study, we examined the expression and function of PP2A Cα in osteosarcoma cells. PP2A Cα expression was expected to be higher in malignant osteosarcoma tissues. PP2A Cα expression level and PP2A activity was higher in malignant osteosarcoma LM8 cells compared with that in primary osteoblasts and in the osteoblast-like cell line MC3T3-E1. Okadaic acid, an inhibitor of PP2A, reduced cell viability and induced apoptosis in LM8 cells. PP2A Cα-knockdown LM8 cells (shPP2A) exhibited less striking filopodial and lamellipodial structures than that in original LM8 cells. Focal adhesion kinase phosphorylation and NF-κB activity decreased in shPP2A-treated cells. Sensitivity to serum deprivation-induced apoptosis increased in shPP2A-treated cells, accompanied by a lower expression level of anti-apoptotic BCL-2 in these cells. Reduction of PP2A Cα resulted in a decrease in the migration ability of LM8 cells in vitro. Reduction in PP2A Cα levels in vivo suppressed proliferation and metastasis in LM8 cells. PP2A Cα expression was also higher in human osteosarcoma MG63 and SaOS-2 cells than that in primary osteoblasts and MC3T3-E1 cells, and reduction in PP2A Cα levels suppressed the cell proliferation rate and migration ability of MG63 cells. These results indicate that PP2A Cα has a critical role in the proliferation and metastasis of osteosarcoma cells; therefore, its inhibition could potentially suppress the malignancy of osteosarcoma cells. PMID:27617401

  10. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells.

    Science.gov (United States)

    Saviola, Anthony J; Burns, Patrick D; Mukherjee, Ashis K; Mackessy, Stephen P

    2016-07-01

    Integrins play an essential role in cancer survival and invasion, and they have been major targets in drug development and design. Disintegrins are small (4-16kDa) viperid snake venom proteins that exhibit a canonical integrin-binding site (often RGD). These non-enzymatic proteins inhibit integrin-mediated cell-cell and cell-extracellular matrix interactions, making them potential candidates as therapeutics in cancer and numerous other human disorders. The present study examined the cytotoxic, anti-adhesion, and anti-migration effects of a recently characterized disintegrin, tzabcanin, towards melanoma (A-375) and lung (A-549) cancer cell lines. Tzabcanin inhibits adhesion of both cells lines to vitronectin and exhibited very weak cytotoxicity towards A-375 cells; however, it had no effect on cell viability of A-549 cells. Further, tzabcanin significantly inhibited migration of both cell lines in cell scratch/wound healing assays. Flow cytometric analysis indicates that both A-375 and A-549 cell lines express integrin αvβ3, a critical integrin in tumor motility and invasion, and a major receptor of the extracellular matrix protein vitronectin. Flow cytometric analysis also identified αvβ3 as a binding site of tzabcanin. These results suggest that tzabcanin may have utility in the development of anticancer therapies, or may be used as a biomarker to detect neoplasms that over-express integrin αvβ3. PMID:27060015

  11. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    Science.gov (United States)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  12. Tinospora crispa extract inhibits MMP-13 and migration of head and neck squamous cell carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Hataipan Phienwej; Ih-si Swasdichira; Surattana Amnuoypol; Prasit Pavasant; Piyamas Sumrejkanchanakij

    2015-01-01

    To investigate the effect of Tinospora crispa (T. crispa) extract on matrix metalloproteinase 13 (MMP-13) expression and cell migration. Methods: The cytotoxicity of T. crispa extract was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on head and neck squamous cell carcinoma (HNSCC) cell lines. The effect on expression of MMP-13 was analysed by RT-PCR and ELISA. The migration was assessed by wound healing assay. Results: MMP-13 mRNA was highly expressed in the metastatic human HNSCC cell lines, HN22 and HSC-3. T. crispa extract at a concentration of 100.0 µg/mL caused about 50% reduction of cell survival. T. crispa extract at a non-toxic concentration of 12.5, 25.0 and 50.0 µg/mL significantly suppressed MMP-13 mRNA expression and secreted MMP-13 in both HN22 and HSC-3. The expression of tissue inhibitors of metalloprotease by HSC-3 cells was attenuated by 25.0 and 50.0 µg/mL of T. crispa extract. Addition of the extract to cells in a wound healing assay showed inhibition of cell migration by HN22 cells. Conclusions: These data suggest that T. crispa could be considered as a potential therapeutic drug to prevent metastasis of HNSCC.

  13. Tinospora crispa extract inhibits MMP-13 and migration of head and neck squamous cell carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Hataipan; Phienwej; Ih-si; Swasdichira; Surattana; Amnuoypol; Prasit; Pavasant; Piyamas; Sumrejkanchanakij

    2015-01-01

    Objective: To investigate the effect of Tinospora crispa(T. crispa) extract on matrix metalloproteinase 13(MMP-13) expression and cell migration. Methods: The cytotoxicity of T. crispa extract was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on head and neck squamous cell carcinoma(HNSCC) cell lines. The effect on expression of MMP-13 was analysed by RT-PCR and ELISA. The migration was assessed by wound healing assay. Results: MMP-13 m RNA was highly expressed in the metastatic human HNSCC cell lines, HN22 and HSC-3. T. crispa extract at a concentration of 100.0 μg/m L caused about 50% reduction of cell survival. T. crispa extract at a non-toxic concentration of 12.5, 25.0 and 50.0 μg/m L signii cantly suppressed MMP-13 m RNA expression and secreted MMP-13 in both HN22 and HSC-3. The expression of tissue inhibitors of metalloprotease by HSC-3 cells was attenuated by 25.0 and 50.0 μg/m L of T. crispa extract. Addition of the extract to cells in a wound healing assay showed inhibition of cell migration by HN22 cells. Conclusions: These data suggest that T. crispa could be considered as a potential therapeutic drug to prevent metastasis of HNSCC.

  14. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model.

    Science.gov (United States)

    Lee, Jeong-Hyun; Kim, Hye-Lee; Lee, Mi Hee; You, Kyung Eun; Kwon, Byeong-Ju; Seo, Hyok Jin; Park, Jong-Chul

    2012-10-15

    Wound healing proceeds through a complex collaborative process involving many types of cells. Keratinocytes and fibroblasts of epidermal and dermal layers of the skin play prominent roles in this process. Asiaticoside, an active component of Centella asiatica, is known for beneficial effects on keloid and hypertrophic scar. However, the effects of this compound on normal human skin cells are not well known. Using in vitro systems, we observed the effects of asiaticoside on normal human skin cell behaviors related to healing. In a wound closure seeding model, asiaticoside increased migration rates of skin cells. By observing the numbers of cells attached and the area occupied by the cells, we concluded that asiaticoside also enhanced the initial skin cell adhesion. In cell proliferation assays, asiaticoside induced an increase in the number of normal human dermal fibroblasts. In conclusion, asiaticoside promotes skin cell behaviors involved in wound healing; and as a bioactive component of an artificial skin, may have therapeutic value.

  15. Elastic Properties of Nematic Liquid Crystals Formed by Living and Migrating Cells

    CERN Document Server

    Kemkemer, R; Kaufmann, D; Gruler, H; Kemkemer, Ralf; Kling, Dieter; Kaufmann, Dieter; Gruler, Hans

    1998-01-01

    In culture migrating and interacting amoeboid cells can form nematic liquid crystal phases. A polar nematic liquid crystal is formed if the interaction has a polar symmetry. One type of white blood cells (granulocytes) form clusters where the cells are oriented towards the center. The core of such an orientational defect (disclination) is either a granulocyte forced to be in an isotropic state or another cell type like a monocyte. An apolar nematic liquid crystal is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (= fat cells) etc., form an apolar nematic liquid crystal. The orientational elastic energy is derived and the orientational defects (disclination) of nematic liquid crystals are investigated. The existence of half-numbered disclinations show that the nematic phase has an apolar symmetry. The density- and order parameter dependence...

  16. Dexamethasone blocks the migration of the human neuroblastoma cell line SK-N-SH

    Directory of Open Access Journals (Sweden)

    Casulari L.A.

    2006-01-01

    Full Text Available Glucocorticoids (Gc influence the differentiation of neural crest-derived cells such as those composing sympathoadrenal tumors like pheochromocytomas, as well as neuroblastomas and gangliomas. In order to obtain further information on the effects of Gc on cells evolving from the neural crest, we have used the human neuroblastoma cell line SK-N-SH to analyze: 1 the presence and the binding characteristics of Gc receptors in these cells, 2 the effect of dexamethasone (Dex on the migration of SK-N-SH cells, and 3 the effect of Dex on the organization of the cytoskeleton of SK-N-SH cells. We show that: 1 receptors that bind [³H]-Dex with high affinity and high capacity (Kd of 9.6 nM, Bmax of 47 fmol/mg cytosolic protein, corresponding to 28,303 sites/cell are present in cytosolic preparations of SK-N-SH cells, and 2 treatment with Dex (in the range of 10 nM to 1 µM has an inhibitory effect (from 100% to 74 and 43%, respectively on the chemotaxis of SK-N-SH cells elicited by fetal bovine serum. This inhibition is completely reversed by the Gc receptor antagonist RU486 (1 µM, and 3 as demonstrated by fluorescent phalloidin-actin detection, the effect of Dex (100 nM on SK-N-SH cell migration is accompanied by modifications of the cytoskeleton organization that appear with stress fibers. These modifications did not take place in the presence of 1 µM RU486. The present data demonstrate for the first time that Dex affects the migration of neuroblastoma cells as well as their cytoskeleton organization by interacting with specific receptors. These findings provide new insights on the mechanism(s of action of Gc on cells originating in the neural crest.

  17. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Chu, M. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Medicine, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Jin, J., E-mail: jinjian31@126.com [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)

    2013-06-14

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G{sub 2}/S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G{sub 2}/S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment.

  18. Flavonoid Fraction of Citrus reticulata Juice Reduces Proliferation and Migration of Anaplastic Thyroid Carcinoma Cells.

    Science.gov (United States)

    Celano, Marilena; Maggisano, Valentina; De Rose, Roberta Francesca; Bulotta, Stefania; Maiuolo, Jessica; Navarra, Michele; Russo, Diego

    2015-01-01

    Effects of flavonoids extracted from Citrus reticulata (mandarin) juice on proliferation and migration of 3 human anaplastic thyroid carcinoma (ATC) cell lines were evaluated. Flavonoid components of Mandarin juice extract (MJe) were analyzed by uHPLC. Proliferation of CAL-62, C-643, and 8505C cells, measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, was significantly reduced by MJe in a concentration- and time-dependent way, with maximal effect elicited at 0.5 mg/ml concentration after 48 h. Cytofluorimetric analysis showed a block in the G2/M phase of the cell cycle, accompanied by low cell mortality owed to autophagic death. The extract caused also a reduction of cell migration, associated with decreased activity of the metalloproteinase MMP-2. These findings demonstrate that the flavonoid fraction of mandarin juice exerts in vitro antiproliferative effects on ATC cells, associated with a reduction of migration, suggesting for such a functional food a potential use as adjuvant in the treatment of thyroid cancer. PMID:26365817

  19. A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination

    Science.gov (United States)

    Ahronian, Leanne G.; Zhu, Lihua Julie; Chen, Ya-Wen; Chu, Hsiao-Chien; Klimstra, David S.; Lewis, Brian C.

    2016-01-01

    The presence of invasion into the extra-hepatic portion of the portal vein or the development of distant metastases renders hepatocellular carcinoma (HCC) patients ineligible for the only potential curative options for this malignancy - tumor resection or organ transplantation. Gene expression profiling of murine HCC cell lines identified KLF6 as a potential regulator of HCC cell migration. KLF6 knockdown increases cell migration, consistent with the correlation between decreased KLF6 mRNA levels and the presence of vascular invasion in human HCC. Concordantly, single-copy deletion of Klf6 in a HCC mouse model results in increased tumor formation, increased metastasis to the lungs, and decreased survival, indicating that KLF6 suppresses both HCC development and metastasis. By combining gene expression profiling and chromatin immunoprecipitation coupled to deep sequencing, we identified novel transcriptional targets of KLF6 in HCC cells including VAV3, a known activator of the RAC1 small GTPase. Indeed, RAC1 activity is increased in KLF6 knockdown cells in a VAV3-dependent manner, and knockdown of either RAC1 or VAV3 impairs HCC cell migration. Together, our data demonstrate a novel function for KLF6 in constraining HCC dissemination through the regulation of a VAV3-RAC1 signaling axis. PMID:26876204